JP2008229459A - Exhaust gas cleaning device - Google Patents

Exhaust gas cleaning device Download PDF

Info

Publication number
JP2008229459A
JP2008229459A JP2007071362A JP2007071362A JP2008229459A JP 2008229459 A JP2008229459 A JP 2008229459A JP 2007071362 A JP2007071362 A JP 2007071362A JP 2007071362 A JP2007071362 A JP 2007071362A JP 2008229459 A JP2008229459 A JP 2008229459A
Authority
JP
Japan
Prior art keywords
exhaust gas
catalyst
noble metal
filter
cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007071362A
Other languages
Japanese (ja)
Inventor
Yoshitsugu Ogura
義次 小倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2007071362A priority Critical patent/JP2008229459A/en
Publication of JP2008229459A publication Critical patent/JP2008229459A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To prevent a filter base material from being thermally damaged by enhancing regeneration efficiency in a forced regeneration, and preventing accelerated temperature rising and thermal runaway caused thereby. <P>SOLUTION: The exhaust gas cleaning device is provided with a base metal carrying part 20 carrying a PM oxidation catalyst comprising a base metal and oxidizing PM in a catalyst layer of the inner circumferential part in the radius direction, and a noble metal carrying part 21 carrying a noble metalcatalyst in a catalyst layer of the outer circumferential part in the radius direction. Heat generation by the reaction at the base metal carrying part 20 is small, and that of the noble metal carrying part 21 is large. Therefore, a temperature difference in the inner and outer circumferential parts becomes small, unburning is prevented at the outer circumferential part, and thermal damage can be prevented at the downstream part of the inner circumferential part. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、ディーゼル排ガスなどに含まれる粒子状物質(以下、PMという)を低温域から浄化でき、強制再生時におけるフィルタ基材の熱損傷を抑制できる排ガス浄化装置に関する。   The present invention relates to an exhaust gas purification apparatus that can purify particulate matter (hereinafter referred to as PM) contained in diesel exhaust gas and the like from a low temperature range and suppress thermal damage of a filter base material during forced regeneration.

ガソリンエンジンについては、排ガスの厳しい規制とそれに対処できる技術の進歩とにより、排ガス中の有害成分は確実に減少している。一方、ディーゼルエンジンについては、有害成分がPM(炭素微粒子、サルフェート等の硫黄系微粒子、高分子量炭化水素微粒子( SOF)等)として排出されるという特異な事情から、ガソリンエンジンの場合より排ガスの浄化が難しい。   As for gasoline engines, toxic components in exhaust gas are steadily decreasing due to strict regulations on exhaust gas and technological advances that can cope with it. On the other hand, in the case of diesel engines, exhaust gases are more purified than in the case of gasoline engines because harmful components are emitted as PM (carbon particulates, sulfur particulates such as sulfate, high molecular weight hydrocarbon particulates (SOF), etc.). Is difficult.

そこで従来より、セラミック製の目封じタイプのハニカム体(ディーゼルパティキュレートフィルタ(以下 DPFという))が知られている。この DPFは、セラミックハニカム構造体のセルの開口部の両端を例えば交互に市松状に目封じしてなるものであり、排ガス下流側で目詰めされた流入側セルと、流入側セルに隣接し排ガス上流側で目詰めされた流出側セルと、流入側セルと流出側セルを区画するセル隔壁とよりなり、セル隔壁の細孔で排ガスを濾過してPMを捕集する。   Therefore, a ceramic plug-type honeycomb body (diesel particulate filter (hereinafter referred to as DPF)) has been known. This DPF is formed by alternately sealing both ends of the openings of the cells of the ceramic honeycomb structure, for example, in a checkered pattern, and is adjacent to the inflow side cells and the inflow side cells clogged on the exhaust gas downstream side. It consists of an outflow side cell clogged on the exhaust gas upstream side and a cell partition wall that partitions the inflow side cell and the outflow side cell, and collects PM by filtering the exhaust gas through the pores of the cell partition wall.

しかし DPFでは、PMの堆積によって圧力損失(以下、圧損という)が上昇するため、何らかの手段で堆積したPM(主にスート)を定期的に除去して再生する必要がある。そこで従来は、圧損が上昇した場合に高温の排ガスを流してPMを燃焼させることで DPFを再生することが行われている。例えば DPFの上流側に酸化触媒を配置し、HCやCOの多い排ガスを供給して酸化触媒における反応熱で排ガス温度を上昇させ、その高温の排ガスを DPFに供給することで堆積したPMを酸化する方法が知られている。しかしながらこの場合には、PMの堆積量が多いと加速度的な燃焼が生じ、時には熱暴走が生じて DPFの中心部や下流側端部に熱損傷が生じる場合がある。   However, in DPF, pressure loss (hereinafter referred to as pressure loss) increases due to PM accumulation, so it is necessary to periodically remove and regenerate PM (mainly soot) accumulated by some means. Therefore, conventionally, when pressure loss increases, DPF is regenerated by burning high-temperature exhaust gas and burning PM. For example, an oxidation catalyst is placed upstream of the DPF, exhaust gas rich in HC and CO is supplied, the exhaust gas temperature is raised by the reaction heat in the oxidation catalyst, and the high temperature exhaust gas is supplied to the DPF to oxidize the deposited PM. How to do is known. However, in this case, if the amount of PM deposited is large, acceleration combustion occurs, and sometimes thermal runaway occurs, causing thermal damage to the center or downstream end of the DPF.

そこで近年では、例えば特公平07−106290号公報に記載されているように、 DPFのセル隔壁の表面にアルミナなどからコート層を形成し、そのコート層に白金(Pt)などの触媒金属を担持したフィルタ触媒が開発されている。このフィルタ触媒によれば、捕集されたPMが触媒金属の触媒反応によって酸化燃焼するため、捕集と同時にあるいは捕集に連続して燃焼させることでフィルタ触媒を連続的に再生することができる。そして触媒反応は比較的低温で生じること、及び捕集量が少ないうちに燃焼できることから、フィルタ触媒に作用する熱応力が小さく破損が防止されるという利点がある。   Therefore, in recent years, for example, as described in Japanese Patent Publication No. 07-106290, a coating layer is formed on the surface of the cell partition wall of DPF from alumina or the like, and a catalytic metal such as platinum (Pt) is supported on the coating layer. Filter catalysts have been developed. According to this filter catalyst, the collected PM is oxidized and burned by the catalytic reaction of the catalytic metal, so that the filter catalyst can be regenerated continuously by burning simultaneously with the collection or continuously with the collection. . Since the catalytic reaction occurs at a relatively low temperature and can be burned while the amount collected is small, there is an advantage that the thermal stress acting on the filter catalyst is small and breakage is prevented.

また特開平09−094434号公報には、セル隔壁のみならず、セル隔壁の細孔内にも触媒金属を担持したコート層を形成したフィルタ触媒が記載されている。細孔内にも触媒金属を担持することで、PMと触媒金属との接触確率が高まり、細孔内に捕集されたPMも酸化燃焼させることができる。   Japanese Patent Application Laid-Open No. 09-094434 describes a filter catalyst in which a coating layer supporting a catalyst metal is formed not only in the cell partition walls but also in the pores of the cell partition walls. By supporting the catalyst metal also in the pores, the probability of contact between the PM and the catalyst metal is increased, and the PM collected in the pores can be oxidized and burned.

ところがフィルタ触媒を用いても、触媒金属の活性化温度未満の低温域ではPMを酸化することは困難であり、PMの堆積によって圧損が上昇するため、強制再生は不可欠である。そこで特開2003−097251号公報には、内周部にPtなどの貴金属を担持し外周部にカリウムを担持したフィルタ触媒が提案されている。カリウムはPtなどの貴金属に比べて低温でPMを酸化できるため、外周部における燃焼開始が早まり、内外周でのPMの燃焼状態のばらつきを是正することができる。したがって内外周での再生度合いの格差を是正することができる。   However, even if a filter catalyst is used, it is difficult to oxidize PM in a low temperature range below the activation temperature of the catalytic metal, and forced regeneration is indispensable because pressure loss increases due to PM deposition. Japanese Patent Laid-Open No. 2003-097251 proposes a filter catalyst in which a noble metal such as Pt is supported on the inner periphery and potassium is supported on the outer periphery. Since potassium can oxidize PM at a lower temperature than noble metals such as Pt, the combustion start at the outer periphery is accelerated, and variation in the combustion state of PM at the inner and outer periphery can be corrected. Therefore, the disparity in the degree of regeneration between the inner and outer periphery can be corrected.

また特開2003−161138号公報には、上流から下流に向け、あるいは外周から内周に向けて段階的又は連続的にPM酸化力が低くなるように構成されたフィルタ触媒が提案されている。この技術によれば、下流側あるいは内周部の触媒は酸化力が弱いため、急速なPMの酸化燃焼が回避され、その部分の温度の急激な上昇が防止される。したがってフィルタ基材の熱損傷を防止することができる。
特開2003−097251号公報 特開2003−161138号公報
JP-A-2003-161138 proposes a filter catalyst configured such that the PM oxidizing power decreases stepwise or continuously from upstream to downstream or from the outer periphery to the inner periphery. According to this technique, the catalyst on the downstream side or the inner peripheral portion has a weak oxidizing power, so that rapid oxidative combustion of PM is avoided, and a rapid increase in temperature of that portion is prevented. Therefore, thermal damage to the filter base material can be prevented.
JP2003-097251 JP 2003-161138 A

しかしながら、上記公報に記載のように触媒の酸化力を制御するだけでは、熱暴走を止められないことが明らかとなった。すなわち、フィルタ触媒の上流側で再生に必要な温度(約 600℃)を確保すると、PMの酸化燃焼によって下流側の温度が 700℃を超える温度となり、この温度ではPMが自然燃焼するために熱暴走が生じる。特に、温度が高温となりやすい内周部にPtなどの貴金属が担持されていると、PMがCO2 まで酸化されるために発熱量がきわめて大きくなり、熱暴走が起こりやすい。 However, it has become clear that thermal runaway cannot be stopped only by controlling the oxidizing power of the catalyst as described in the above publication. In other words, if the temperature required for regeneration (approximately 600 ° C) is secured on the upstream side of the filter catalyst, the temperature on the downstream side exceeds 700 ° C due to the oxidation combustion of PM. Runaway occurs. In particular, when a noble metal such as Pt is supported on the inner peripheral portion where the temperature tends to be high, since PM is oxidized to CO 2 , the calorific value becomes extremely large and thermal runaway tends to occur.

本発明は上記事情に鑑みてなされたものであり、強制再生時の再生効率を向上させるとともに、加速度的な昇温やそれに伴う熱暴走を防止し、フィルタ基材の熱損傷を防止することを解決すべき課題とする。   The present invention has been made in view of the above circumstances, and improves the regeneration efficiency at the time of forced regeneration, prevents accelerated temperature rise and thermal runaway associated therewith, and prevents thermal damage to the filter base material. It is a problem to be solved.

上記課題を解決する本発明の排ガス浄化装置の特徴は、排ガス下流側で目詰めされた流入側セルと、流入側セルに隣接し排ガス上流側で目詰めされた流出側セルと、流入側セルと流出側セルを区画し多数の細孔を有する多孔質のセル隔壁とを有するウォールフロー構造のフィルタ基材と、
セル隔壁に形成された触媒層と、を備えた排ガス浄化装置であって、
径方向内周部の触媒層には卑金属よりなりPMを酸化可能なPM酸化触媒を担持した卑金属担持部を有し、径方向外周部の触媒層には貴金属触媒を担持した貴金属担持部を有することにある。
The features of the exhaust gas purification apparatus of the present invention that solves the above-described problems are characterized in that an inflow side cell clogged on the exhaust gas downstream side, an outflow side cell adjacent to the inflow side cell and clogged on the exhaust gas upstream side, and an inflow side cell And a filter substrate having a wall flow structure having a porous cell partition wall partitioning the outflow side cell and having a large number of pores,
An exhaust gas purification device comprising a catalyst layer formed on a cell partition wall,
The catalyst layer in the radially inner peripheral portion has a base metal supporting portion made of a base metal and supporting a PM oxidation catalyst capable of oxidizing PM, and the catalyst layer in the radially outer peripheral portion has a noble metal supporting portion supporting a noble metal catalyst. There is.

卑金属担持部は、フィルタ基材の直径に対して1/4〜3/4の範囲に形成されていることが望ましい。   It is desirable that the base metal supporting part is formed in a range of 1/4 to 3/4 with respect to the diameter of the filter base material.

DPFやフィルタ触媒のようなハニカム体においては、外周部は内周部に比べて冷却されやすい。また排ガスを層流とみなせば、排ガスは内周部の方が流速が大きい。したがって強制再生時には、外周部に燃え残りが生じやすく、内周部の下流部に熱損傷が生じやすい。   In a honeycomb body such as a DPF or a filter catalyst, the outer peripheral portion is more easily cooled than the inner peripheral portion. If the exhaust gas is regarded as a laminar flow, the exhaust gas has a larger flow velocity in the inner peripheral portion. Therefore, during forced regeneration, unburned residue is likely to occur in the outer peripheral portion, and thermal damage is likely to occur in the downstream portion of the inner peripheral portion.

そこで本発明の排ガス浄化装置は、PMを酸化可能な卑金属を担持した卑金属担持部を内周部に有している。卑金属よりなるPM酸化触媒はPMを酸化するもののCOまでの酸化に留まり、CO2 までは酸化が進まないと考えられ、卑金属担持部での反応による発熱は小さい。一方、外周部に担持された貴金属は、PMをCO2 まで酸化するため、貴金属担持部は発熱量が大きい。したがって内外周部における温度差が小さくなり、外周部では燃え残りが防止され、内周部の下流部では熱損傷が生じるのが防止される。 In view of this, the exhaust gas purifying apparatus of the present invention has a base metal supporting portion supporting a base metal capable of oxidizing PM on the inner peripheral portion. A PM oxidation catalyst made of a base metal oxidizes PM, but stays in the oxidation to CO, and it is considered that the oxidation does not progress to CO 2, and the heat generated by the reaction at the base metal supporting portion is small. On the other hand, since the noble metal supported on the outer peripheral portion oxidizes PM to CO 2 , the noble metal supporting portion generates a large amount of heat. Accordingly, the temperature difference between the inner and outer peripheral portions is reduced, and unburned residue is prevented at the outer peripheral portion, and thermal damage is prevented from occurring at the downstream portion of the inner peripheral portion.

本発明の排ガス浄化装置は、フィルタ基材と、フィルタ基材のセル隔壁に形成された触媒層とからなる。このうちフィルタ基材は、排ガス下流側で目詰めされた流入側セルと、流入側セルに隣接し排ガス上流側で目詰めされた流出側セルと、流入側セルと流出側セルを区画し多数の細孔を有する多孔質のセル隔壁とをもつ従来の DPFと同様のウォールフロー構造のものである。   The exhaust gas purification apparatus of the present invention comprises a filter base material and a catalyst layer formed on the cell partition walls of the filter base material. Among these, the filter base material is divided into an inflow side cell clogged on the exhaust gas downstream side, an outflow side cell adjacent to the inflow side cell and clogged on the exhaust gas upstream side, and an inflow side cell and an outflow side cell. The wall flow structure is the same as that of the conventional DPF, which has a porous cell partition wall having a number of pores.

フィルタ基材は、金属フォームや耐熱性不織布などから形成することもできるし、コージェライト、炭化ケイ素などの耐熱性セラミックスから製造することもできる。例えば耐熱性セラミックスから製造する場合、コージェライト粉末を主成分とする粘土状のスラリーを調製し、それを押出成形などで成形し、焼成する。コージェエライト粉末に代えて、アルミナ、マグネシア及びシリカの各粉末をコージェライト組成となるように配合することもできる。その後、一端面のセル開口を同様の粘土状のスラリーなどで市松状などに目封じし、他端面では一端面で目封じされたセルに隣接するセルのセル開口を目封じする。その後焼成などで目封じ材を固定することでハニカム構造のフィルタ基材を製造することができる。流入側セル及び流出側セルの形状は、断面三角形、断面四角形、断面六角形、断面円形など、特に制限されない。   The filter substrate can be formed from a metal foam, a heat-resistant nonwoven fabric, or the like, or can be manufactured from a heat-resistant ceramic such as cordierite or silicon carbide. For example, when manufacturing from heat-resistant ceramics, a clay-like slurry containing cordierite powder as a main component is prepared, formed by extrusion molding or the like, and fired. Instead of cordierite powder, each powder of alumina, magnesia, and silica can be blended so as to have a cordierite composition. Thereafter, the cell opening on one end face is sealed in a checkered pattern with the same clay-like slurry, and the cell opening of the cell adjacent to the cell sealed on the one end face is sealed on the other end face. Thereafter, a filter substrate having a honeycomb structure can be manufactured by fixing the plugging material by firing or the like. The shapes of the inflow side cell and the outflow side cell are not particularly limited, such as a cross-sectional triangle, a cross-sectional square, a cross-sectional hexagon, and a cross-sectional circle.

セル隔壁は、排ガスが通過可能な多孔質構造である。セル隔壁に細孔を形成するには、上記したスラリー中にカーボン粉末、木粉、澱粉、樹脂粉末などの可燃物粉末などを混合しておき、可燃物粉末が焼成時に消失することで細孔を形成することができ、可燃物粉末の粒径及び添加量を調整することで細孔の径と細孔容積を制御することができる。この細孔により流入側セルと流出側セルは互いに連通し、PMは細孔内に捕集されるが気体は流入側セルから流出側セルへと細孔を通過可能となる。   The cell partition wall has a porous structure through which exhaust gas can pass. In order to form pores in the cell partition walls, carbon powder, wood powder, starch, resin powder and other combustible powders are mixed in the above-mentioned slurry, and the combustible powder disappears during firing to form pores. The diameter and pore volume of the pores can be controlled by adjusting the particle size and the amount of the combustible powder. The inflow side cell and the outflow side cell communicate with each other through this pore, and PM is collected in the pore, but gas can pass through the pore from the inflow side cell to the outflow side cell.

セル隔壁の気孔率は、40〜70%であることが望ましく、平均細孔径が10〜40μmであることが望ましい。気孔率及び平均細孔径がこの範囲にあることで、触媒層を 100〜 200g/L形成しても圧損の上昇を抑制することができ、強度の低下もさらに抑制することができる。そしてPMをさらに効率よく捕集することができる。   The porosity of the cell partition walls is preferably 40 to 70%, and the average pore diameter is preferably 10 to 40 μm. When the porosity and average pore diameter are in this range, an increase in pressure loss can be suppressed even when the catalyst layer is formed at 100 to 200 g / L, and a decrease in strength can be further suppressed. And PM can be collected more efficiently.

本発明の排ガス浄化装置は、フィルタ基材のセル隔壁に触媒層を有している。触媒層は、セル隔壁の表面のみでもよいが、セル隔壁の内部の細孔内表面にも形成することが望ましい。この触媒層は、アルミナ、チタニア、ジルコニア、セリア、あるいはこれらから選ばれる複数種からなる複合酸化物の一種又は混合物などから選ばれる多孔質酸化物を担体とし、この担体に触媒金属を担持してなる。   The exhaust gas purification apparatus of the present invention has a catalyst layer on the cell partition wall of the filter base material. The catalyst layer may be formed only on the surface of the cell partition wall, but it is desirable to form the catalyst layer also on the pore inner surface of the cell partition wall. This catalyst layer uses as a support a porous oxide selected from alumina, titania, zirconia, ceria, or one or a mixture of complex oxides selected from these, and supports the catalyst metal on this support. Become.

触媒層は、卑金属よりなりPMを酸化可能なPM酸化触媒を担持した卑金属担持部を径方向内周部に有し、貴金属触媒を担持した貴金属担持部を径方向外周部に有している。   The catalyst layer has a base metal supporting portion made of a base metal and supporting a PM oxidation catalyst capable of oxidizing PM on the radially inner peripheral portion, and has a noble metal supporting portion supporting a noble metal catalyst on the radially outer peripheral portion.

卑金属担持部は、フィルタ基材の直径に対して1/4〜3/4の範囲に形成されていることが望ましい。卑金属担持部がフィルタ基材の直径に対して1/4未満の範囲では、貴金属担持部の範囲が広くなるために、強制再生時に内周部の下流部で熱損傷が生じやすくなる。また卑金属担持部がフィルタ基材の直径に対して3/4を超えると、貴金属担持部の範囲が狭くなるために、強制再生時にPMの燃え残りが生じやすくなり、平常の使用時に未反応のHCが多く排出される場合がある。   It is desirable that the base metal supporting part is formed in a range of 1/4 to 3/4 with respect to the diameter of the filter base material. In the range where the base metal carrying part is less than 1/4 with respect to the diameter of the filter substrate, the range of the noble metal carrying part is widened, so that thermal damage is likely to occur in the downstream part of the inner peripheral part during forced regeneration. Also, if the base metal carrying part exceeds 3/4 of the diameter of the filter base, the range of the noble metal carrying part becomes narrow, so that unburned PM tends to occur during forced regeneration, and unreacted during normal use. A lot of HC may be discharged.

PM酸化可能な卑金属よりなるPM酸化触媒としては、アルカリ金属及びランタノイド元素から選ばれる少なくとも一種が好ましく、K、Cs、Rb、Ce、Ndなどが特に好ましい。   As the PM oxidation catalyst comprising a base metal capable of PM oxidation, at least one selected from alkali metals and lanthanoid elements is preferable, and K, Cs, Rb, Ce, Nd and the like are particularly preferable.

卑金属担持部における卑金属よりなるPM酸化触媒の担持量は、卑金属担持部の容積1リットルあたり 0.1〜 0.5モルの範囲が好ましい。PM酸化触媒の担持量が 0.1モル/Lより少ないとPMの浄化率が低下するとともに強制再生時に内周部においてPMの燃え残りが多くなる。またPM酸化触媒の担持量が 0.5モル/Lより多くなると、フィルタ基材との反応によってフィルタ基材の強度が低下するようになる。PM酸化触媒を担持するには、含浸担持法によって担持することができる。   The loading amount of the PM oxidation catalyst made of a base metal in the base metal carrying portion is preferably in the range of 0.1 to 0.5 mol per liter of the volume of the base metal carrying portion. If the amount of the PM oxidation catalyst supported is less than 0.1 mol / L, the PM purification rate decreases, and PM remains unburned in the inner periphery during forced regeneration. On the other hand, when the amount of the PM oxidation catalyst supported is more than 0.5 mol / L, the strength of the filter base material decreases due to the reaction with the filter base material. The PM oxidation catalyst can be supported by an impregnation supporting method.

貴金属担持部は、卑金属担持部の外周に形成されている。貴金属担持部に担持された貴金属触媒としては、酸化活性の高いPtを少なくとも含むことが望ましい。またPd、Rhなど、他の貴金属触媒をさらに担持してもよい。貴金属触媒の担持量は、貴金属担持部の1リットルあたり 0.1〜5gの範囲とすることが好ましい。担持量がこれより少ないと活性が低すぎて実用的でなく、この範囲より多く担持しても活性が飽和するとともにコストアップとなってしまう。また貴金属を担持するには、貴金属の硝酸塩などを溶解した溶液を用い、吸着担持法、含浸担持法などによって担持させることができる。   The noble metal carrying part is formed on the outer periphery of the base metal carrying part. The noble metal catalyst supported on the noble metal supporting part preferably contains at least Pt having high oxidation activity. Further, other noble metal catalysts such as Pd and Rh may be further supported. The amount of the noble metal catalyst supported is preferably in the range of 0.1 to 5 g per liter of the noble metal supporting portion. If the loading amount is less than this, the activity is too low to be practical, and if the loading amount exceeds this range, the activity is saturated and the cost is increased. In order to support the noble metal, a solution in which a nitrate of noble metal is dissolved can be used and supported by an adsorption support method, an impregnation support method, or the like.

触媒層を形成するには、多孔質酸化物粉末をアルミナゾルなどのバインダ成分及び水とともにスラリーとし、そのスラリーをセル隔壁に付着させた後に焼成してコート層を形成し、不要な部位にマスキングを施して、コート層に貴金属触媒と卑金属よりなるPM酸化触媒とをそれぞれ担持すればよい。スラリーをセル隔壁に付着させるには通常の浸漬法を用いることができるが、エアブローあるいは吸引によって、セル隔壁の細孔に強制的にスラリーを充填するとともに、細孔内に入ったスラリーの余分なものを除去することが望ましい。   In order to form the catalyst layer, the porous oxide powder is made into a slurry together with a binder component such as alumina sol and water, and the slurry is attached to the cell partition wall and then baked to form a coat layer, and masking unnecessary portions. And a coating layer may be loaded with a noble metal catalyst and a PM oxidation catalyst made of a base metal. A normal dipping method can be used to attach the slurry to the cell partition walls. However, the slurry is forcibly filled into the pores of the cell partition walls by air blowing or suction, and the excess slurry contained in the pores is filled. It is desirable to remove things.

この場合のコート層あるいは触媒層の形成量は、フィルタ基材の1Lあたり30〜 200gとすることが好ましい。コート層あるいは触媒層が30g/L未満では、貴金属の耐久性の低下が避けられず、 200g/Lを超えると圧損が高くなりすぎて実用的ではない。   In this case, the formation amount of the coat layer or the catalyst layer is preferably 30 to 200 g per liter of the filter base material. When the coat layer or the catalyst layer is less than 30 g / L, the durability of the noble metal is inevitably lowered. When the coat layer or catalyst layer exceeds 200 g / L, the pressure loss becomes too high to be practical.

ところで強制再生時には、従来の技術で説明したように、フィルタ触媒の上流側に酸化触媒を配置し、燃料を排ガス中に添加するなどの方法でHCやCOの多い排ガスを供給して、酸化触媒における反応熱で排ガス温度を上昇させ、その高温の排ガスをフィルタ触媒に供給する方法が行われる場合が多い。この場合には、フィルタ触媒にはHC及びCOの濃度が高い排ガスが流入するが、卑金属担持部である内周部ではこれらの酸化活性が低く、HCなどの排出量が多くなる場合がある。   By the way, at the time of forced regeneration, as explained in the prior art, an oxidation catalyst is arranged upstream of the filter catalyst, and exhaust gas rich in HC and CO is supplied by a method such as adding fuel to the exhaust gas. In many cases, the exhaust gas temperature is raised by the reaction heat in the step and the high temperature exhaust gas is supplied to the filter catalyst. In this case, exhaust gas having a high concentration of HC and CO flows into the filter catalyst. However, in the inner peripheral portion that is the base metal supporting portion, the oxidation activity thereof is low, and the amount of HC and the like discharged may increase.

そこで本発明の排ガス浄化装置では、卑金属担持部の排ガス下流側の端部に、貴金属触媒をさらに担持した追加貴金属担持部をもつことが望ましい。この場合は、排ガス下流側端部では内周部から外周部まで全体に貴金属触媒が担持された構成となる。このようにすることで、卑金属担持部で酸化されなかったHCなどは追加貴金属担持部で酸化されるため、HCなどの排出を抑制することができる。   Therefore, in the exhaust gas purifying apparatus of the present invention, it is desirable to have an additional noble metal carrying portion further carrying a noble metal catalyst at the end of the base metal carrying portion on the exhaust gas downstream side. In this case, the noble metal catalyst is supported on the entire exhaust gas downstream end from the inner periphery to the outer periphery. By doing in this way, since HC etc. which were not oxidized by the base metal carrying part are oxidized by the additional noble metal carrying part, discharge of HC etc. can be controlled.

追加貴金属担持部は、排ガス下流側の端面から上流側へ50mm以内かつフィルタ基材全長の1/3以下の範囲に形成されていることが望ましい。追加貴金属担持部が排ガス下流側の端面から上流側へ50mmを超えて形成されたり、あるいはフィルタ基材全長の1/3を超えて形成されると、強制再生時に熱暴走が生じる場合がある。また追加貴金属担持部には、卑金属よりなるPM酸化触媒を担持しないことが望ましい。PM酸化触媒によって貴金属触媒の活性が低下する場合があるからである。   It is desirable that the additional noble metal supporting portion is formed within 50 mm from the end face on the downstream side of the exhaust gas to the upstream side and within 1/3 or less of the total length of the filter base. If the additional noble metal supporting portion is formed to exceed 50 mm from the end surface on the exhaust gas downstream side to the upstream side, or if it is formed to exceed 1/3 of the total length of the filter substrate, thermal runaway may occur during forced regeneration. Further, it is desirable that the additional noble metal supporting portion does not support a PM oxidation catalyst made of a base metal. This is because the PM oxidation catalyst may reduce the activity of the noble metal catalyst.

なお追加貴金属担持部の形成長さは、フィルタ基材がどれだけ長くても50mm以内とすればよい。過剰のHCなどを酸化するためには、50mm以内の範囲で十分だからである。追加貴金属担持部の形成長さの下限は、少しでも形成されていればその分HCなどを酸化できるが、一般には20mmもあれば十分である。   Note that the length of the additional noble metal support may be 50 mm or less no matter how long the filter base is. This is because the range within 50 mm is sufficient to oxidize excess HC. The lower limit of the formation length of the additional noble metal supporting portion can oxidize HC and the like as long as it is formed, but generally 20 mm is sufficient.

追加貴金属担持部における貴金属触媒の担持量は、貴金属担持部の担持量と同様に、追加貴金属担持部の1リットルあたり 0.1〜5gの範囲とすることが好ましい。また担持される貴金属触媒種は、貴金属担持部と同一種でもよいし異種の貴金属触媒を担持してもよい。   The loading amount of the noble metal catalyst in the additional noble metal supporting portion is preferably in the range of 0.1 to 5 g per liter of the additional noble metal supporting portion, similarly to the loading amount of the noble metal supporting portion. Further, the supported noble metal catalyst species may be the same as the noble metal supporting portion or a different type of noble metal catalyst.

以下、実施例及び比較例により本発明を具体的に説明する。   Hereinafter, the present invention will be specifically described with reference to Examples and Comparative Examples.

(実施例1)
図1、2に本実施例の排ガス浄化装置を示す。この排ガス浄化装置はフィルタ触媒であり、排ガス下流側で目詰めされた流入側セル10と、流入側セル10に隣接し排ガス上流側で目詰めされた流出側セル11と、流入側セル10と流出側セル11を区画するセル隔壁12と、からなるフィルタ基材1と、セル隔壁12の表面及び細孔内表面に形成された図示しない触媒層とからなる。
Example 1
1 and 2 show an exhaust gas purification apparatus of the present embodiment. This exhaust gas purification device is a filter catalyst, an inflow side cell 10 clogged on the exhaust gas downstream side, an outflow side cell 11 adjacent to the inflow side cell 10 and clogged on the exhaust gas upstream side, and an inflow side cell 10 It consists of a filter substrate 1 comprising a cell partition wall 12 that defines the outflow side cell 11, and a catalyst layer (not shown) formed on the surface of the cell partition wall 12 and the pore inner surface.

触媒層は、PM酸化触媒としてのカリウムが担持された卑金属担持部20を内周部に有し、その外周部にPtが担持された貴金属担持部21を有している。卑金属担持部20は、フィルタ基材1の中心軸を中心にして直径40mmの範囲に形成され、フィルタ基材1の直径に対して40/ 130(1.23/4)の範囲に形成されている
以下、卑金属担持部20と貴金属担持部21とからなる触媒層の製法を説明し、その構成の詳細な説明に代える。
The catalyst layer has a base metal supporting part 20 supporting potassium as a PM oxidation catalyst on its inner peripheral part, and has a noble metal supporting part 21 supporting Pt on its outer peripheral part. The base metal support 20 is formed in a range of 40 mm in diameter around the central axis of the filter base 1 and is formed in a range of 40/130 (1.23 / 4) with respect to the diameter of the filter base 1 The method for producing the catalyst layer composed of the base metal supporting part 20 and the noble metal supporting part 21 will be described, and a detailed description of the configuration will be given.

直径 130mm、長さ 150mmのコージェライト製フィルタ基材1(ウォールフロー構造、12mil/300cpsi)を用意した。次にγ-Al2O3粉末をアルミナゾル及びイオン交換水とともに粘度が100cps以下となるように混合してスラリーを調製し、固形分粒子の平均粒径が1μm以下となるようにミリングした。そして上記フィルタ基材1をこのスラリーに浸漬してセル内部にスラリーを流し込み、引き上げて浸漬側と反対側の端面から吸引することで余分なスラリーを除去し、 120℃で2時間通風乾燥後 600℃で2時間焼成した。この操作は2回行われ、流入側セル10及び流出側セル11にほぼ同量のコート層が形成されるように調整した。コート層の形成量は、フィルタ基材1の1リットルあたり 100gである。 A cordierite filter substrate 1 (wall flow structure, 12 mil / 300 cpsi) having a diameter of 130 mm and a length of 150 mm was prepared. Next, γ-Al 2 O 3 powder was mixed with alumina sol and ion-exchanged water so that the viscosity was 100 cps or less to prepare a slurry, and milled so that the average particle size of the solid particles was 1 μm or less. Then, the filter base material 1 is immersed in this slurry, the slurry is poured into the cell, and the excess slurry is removed by pulling up and sucking from the end surface opposite to the immersion side. Baked at 2 ° C. for 2 hours. This operation was performed twice, and adjustment was performed so that the same amount of coat layer was formed in the inflow side cell 10 and the outflow side cell 11. The formation amount of the coat layer is 100 g per liter of the filter substrate 1.

次に、コート層が形成されたフィルタ基材1の中心からφ40mmの範囲について両端面をマスキングし、マスキングされていない外周部に所定濃度のジニトロジアンミン白金水溶液の所定量を吸水させ、60℃で温風乾燥後に 120℃で2時間通風乾燥してPtを担持し、貴金属担持部21を形成した。Ptの担持量は、貴金属担持部21の容積1リットルあたり1gである。   Next, both end faces are masked in the range of φ40 mm from the center of the filter substrate 1 on which the coating layer is formed, and a predetermined amount of a dinitrodiammine platinum aqueous solution having a predetermined concentration is absorbed in the outer peripheral portion that is not masked, After drying with warm air, it was dried by ventilation at 120 ° C. for 2 hours to carry Pt, and a noble metal carrying part 21 was formed. The amount of Pt supported is 1 g per liter of the volume of the noble metal support 21.

上記マスキングを除去した後、フィルタ基材1の中心からφ40mmの範囲を除く外周部について両端面をマスキングし、中心からφ40mmの範囲に所定濃度の酢酸カリウム水溶液の所定量を吸水させた。マスキングを除去した後、60℃で温風乾燥後に 120℃で2時間通風乾燥し、さらに 300℃で1時間加熱して酢酸塩を分解させてカリウム(K)を担持して卑金属担持部20を形成した。Kの担持量は、卑金属担持部20の容積1リットルあたり 0.3モルである。   After removing the masking, both end surfaces of the outer peripheral portion excluding the range of φ40 mm from the center of the filter substrate 1 were masked, and a predetermined amount of a potassium acetate aqueous solution having a predetermined concentration was absorbed in the range of φ40 mm from the center. After removing the masking, dry with warm air at 60 ° C, then air dry at 120 ° C for 2 hours, and further heat at 300 ° C for 1 hour to decompose the acetate and carry potassium (K) to form base metal carrier 20 Formed. The loading amount of K is 0.3 mol per liter of the volume of the base metal supporting portion 20.

(実施例2)
卑金属担持部20の形成範囲を中心からφ65mmの範囲(フィルタ基材1の直径に対して65/130(2/4)の範囲)とし、その外周に貴金属担持部21を形成したこと以外は実施例1と同様である。
(Example 2)
The base metal carrier 20 is formed in a range of φ65 mm from the center (65/130 (2/4) with respect to the diameter of the filter base 1), and the precious metal carrier 21 is formed on the outer periphery. Similar to Example 1.

(実施例3)
卑金属担持部20の形成範囲を中心からφ97.5mmの範囲(フィルタ基材1の直径に対して97.5/130(3/4)の範囲)とし、その外周に貴金属担持部21を形成したこと以外は実施例1と同様である。
(Example 3)
The base metal carrier 20 is formed in a range of φ97.5 mm from the center (97.5 / 130 (3/4) of the diameter of the filter base 1), and the noble metal carrier 21 is formed on the outer periphery. Is the same as in Example 1.

(実施例4)
卑金属担持部20の形成範囲を中心からφ20mmの範囲(フィルタ基材1の直径に対して20/130(0.62/4)の範囲)とし、その外周に貴金属担持部21を形成したこと以外は実施例1と同様である。
Example 4
The base metal carrier 20 is formed in a range of φ20mm from the center (20/130 (0.62 / 4) of the filter base 1 diameter), and the noble metal carrier 21 is formed on the outer periphery. Similar to Example 1.

(実施例5)
酢酸カリウム水溶液に代えて硝酸ネオジム水溶液を用い、 300℃で1時間の加熱に代えて 500℃で1時間加熱したこと以外は実施例2と同様である。Ndの担持量は、卑金属担持部20の容積1リットルあたり 0.3モルである。
(Example 5)
Example 2 is the same as Example 2 except that a neodymium nitrate aqueous solution is used instead of the potassium acetate aqueous solution, and heating is performed at 500 ° C. for 1 hour instead of heating at 300 ° C. for 1 hour. The amount of Nd supported is 0.3 mol per liter of the volume of the base metal support 20.

(実施例6)
実施例1と同様のフィルタ基材1を用い、γ-Al2O3粉末に代えてCeO2粉末を用いたこと以外は実施例1と同様にしてコート層を形成した。コート層の形成量は、フィルタ基材1の1リットルあたり 100gである。次いで実施例2と同様にして、PtとKを同様に担持した。
(Example 6)
A coating layer was formed in the same manner as in Example 1 except that the same filter substrate 1 as in Example 1 was used and CeO 2 powder was used instead of γ-Al 2 O 3 powder. The formation amount of the coat layer is 100 g per liter of the filter substrate 1. Subsequently, Pt and K were supported in the same manner as in Example 2.

(実施例7)
酢酸カリウム水溶液に代えて酢酸セシウム水溶液を用いたこと以外は実施例6と同様である。Csの担持量は、卑金属担持部20の容積1リットルあたり 0.3モルである。
(Example 7)
Example 6 is the same as Example 6 except that a cesium acetate aqueous solution was used instead of the potassium acetate aqueous solution. The amount of Cs supported is 0.3 mol per liter of the volume of the base metal support 20.

(比較例1)
実施例1と同様のコート層が形成されたフィルタ基材1を用い、マスキングすることなく全体にPtを担持した。Ptの担持量は、フィルタ基材の容積1リットルあたり1gである。
(Comparative Example 1)
Using the filter base material 1 on which the same coating layer as in Example 1 was formed, Pt was supported on the whole without masking. The amount of Pt supported is 1 g per liter of filter substrate volume.

(比較例2)
実施例1と同様のコート層が形成されたフィルタ基材1を用い、マスキングすることなく全体にKを担持した。Kの担持量は、フィルタ基材の容積1リットルあたり 0.3モルである。
(Comparative Example 2)
Using the filter base material 1 on which the same coating layer as in Example 1 was formed, K was supported on the whole without masking. The amount of K supported is 0.3 mol per liter of the filter substrate volume.

<試験・評価>
上記した各フィルタ触媒をコモンレール式ディーゼルエンジン(排気量 2.2L)の排気系にそれぞれ取付け、1800rpm 、60Nm、入りガス温度 260℃で1時間運転して、フィルタ基材1の容積1リットルあたり3gのPMを捕集した。なおPM捕集量は、フィルタ触媒の前後に取付けたスモークメータにてPM捕集効率と流入PM量とを計測して算出した。
<Test and evaluation>
Each of the above filter catalysts is attached to the exhaust system of a common rail diesel engine (displacement of 2.2 L), and is operated for 1 hour at 1800 rpm, 60 Nm, inlet gas temperature of 260 ° C. PM was collected. The PM trapping amount was calculated by measuring the PM trapping efficiency and the inflow PM amount with a smoke meter attached before and after the filter catalyst.

次に、図2に示すように、同じエンジンの排気系で各フィルタ触媒1’の上流側に、直径 130mm、長さ 150mmのフロースルー型酸化触媒3を配設し、以下の熱暴走試験を行った。   Next, as shown in FIG. 2, a flow-through oxidation catalyst 3 having a diameter of 130 mm and a length of 150 mm is disposed upstream of each filter catalyst 1 ′ in the exhaust system of the same engine, and the following thermal runaway test is performed. went.

先ず 2000rpm、 100Nmでエンジン4を安定化した後、排気管の上流に設置したインジェクタ5から排ガス中に所定量の軽油を添加し、上流側の酸化触媒3で燃焼させることで排ガス温度を上昇させる。フィルタ触媒1’の中心温度が 700℃に到達した時点で軽油の添加を停止すると共に、トルクを解除しかつエンジン回転数をアイドルに落とす。   First, after stabilizing the engine 4 at 2000 rpm and 100 Nm, a predetermined amount of light oil is added to the exhaust gas from the injector 5 installed upstream of the exhaust pipe, and the exhaust gas temperature is raised by burning with the oxidation catalyst 3 on the upstream side. . When the center temperature of the filter catalyst 1 ′ reaches 700 ° C., the addition of light oil is stopped, the torque is released, and the engine speed is lowered to idle.

この操作により、フィルタ触媒の床温は酸素濃度が低くPM燃焼が起こらない条件で上昇し、軽油の添加の停止時には捕集されたPMに着火すると同時に燃焼が伝播し、フィルタ触媒が異常加熱する。このときそれぞれのフィルタ触媒内部の温度を15点計測し、そのうちの最高温度をそれぞれ記録した。結果を表1に示す。   By this operation, the bed temperature of the filter catalyst rises under conditions where oxygen concentration is low and PM combustion does not occur. When the addition of light oil is stopped, the captured PM is ignited and at the same time, combustion is propagated and the filter catalyst is abnormally heated. . At this time, the temperature inside each filter catalyst was measured at 15 points, and the maximum temperature was recorded. The results are shown in Table 1.

上記試験後のフィルタ触媒1’を排気系からそれぞれ取り外し、 300℃の電気炉中で2時間処理することでPM中の SOF分を揮発させ、その後の重量を測定した。さらに電気炉中にて 600℃で2時間処理してPMを燃焼させ、その後の重量を測定することで、上記の熱暴走試験時におけるPM燃焼率をそれぞれ算出した。結果を表1に示す。   The filter catalyst 1 'after the test was removed from the exhaust system and treated in an electric furnace at 300 ° C for 2 hours to volatilize the SOF content in PM, and the weight after that was measured. Further, PM was burned by treating at 600 ° C. for 2 hours in an electric furnace, and then the weight was measured to calculate the PM burning rate during the thermal runaway test. The results are shown in Table 1.

Figure 2008229459
Figure 2008229459

比較例1のフィルタ触媒は、酸化活性の高いPtを全体に担持しているため、PM燃焼率は高いものの最高温度がきわめて高く熱暴走が起きている。また比較例2のフィルタ触媒は、酸化能の低いKを全体に担持しているため、熱暴走は起きていないもののPM燃焼率がきわめて低く燃え残りが生じている。   Since the filter catalyst of Comparative Example 1 carries Pt having high oxidation activity as a whole, the maximum temperature is extremely high but thermal runaway occurs although the PM combustion rate is high. In addition, since the filter catalyst of Comparative Example 2 carries K having a low oxidizing ability as a whole, although the thermal runaway does not occur, the PM combustion rate is extremely low, and unburned residue is generated.

しかし各実施例のフィルタ触媒では、PM燃焼率が高く、最高温度は比較例1より低いことが明らかであり、強制再生時の再生効率が高くかつ熱暴走が抑制されていることが明らかである。そして実施例4のフィルタ触媒は、他の実施例に比べて最高温度が高いことから、卑金属担持部20の範囲はフィルタ基材1の直径に対して0.62/4以上、つまり1/4以上とすることが望ましいことが明らかである。   However, it is clear that the filter catalyst of each Example has a high PM combustion rate and a maximum temperature lower than that of Comparative Example 1, and it is clear that regeneration efficiency during forced regeneration is high and thermal runaway is suppressed. . And since the filter catalyst of Example 4 has the highest temperature compared with other Examples, the range of the base metal carrying | support part 20 is 0.62 / 4 or more with respect to the diameter of the filter base material 1, ie, 1/4 or more. Obviously it is desirable to do.

本発明の一実施例に係る排ガス浄化装置の一部断面を含む斜視図である。1 is a perspective view including a partial cross section of an exhaust gas purification apparatus according to an embodiment of the present invention. 本発明の一実施例に係る排ガス浄化装置をディーゼルエンジンの排気系に搭載した状態を示す説明図である。It is explanatory drawing which shows the state which mounted the exhaust gas purification apparatus which concerns on one Example of this invention in the exhaust system of a diesel engine.

符号の説明Explanation of symbols

1:フィルタ基材 3:酸化触媒 5:インジェクタ
20:卑金属担持部 21:貴金属担持部
1: Filter base material 3: Oxidation catalyst 5: Injector
20: Base metal carrying part 21: Precious metal carrying part

Claims (5)

排ガス下流側で目詰めされた流入側セルと、該流入側セルに隣接し排ガス上流側で目詰めされた流出側セルと、該流入側セルと該流出側セルを区画し多数の細孔を有する多孔質のセル隔壁とを有するウォールフロー構造のフィルタ基材と、
該セル隔壁に形成された触媒層と、を備えた排ガス浄化装置であって、
径方向内周部の該触媒層には卑金属よりなりPMを酸化可能なPM酸化触媒を担持した卑金属担持部を有し、径方向外周部の該触媒層には貴金属触媒を担持した貴金属担持部を有することを特徴とする排ガス浄化装置。
An inflow side cell clogged on the exhaust gas downstream side, an outflow side cell adjacent to the inflow side cell and clogged on the exhaust gas upstream side, the inflow side cell and the outflow side cell are partitioned, and a large number of pores are formed. A filter substrate having a wall flow structure having a porous cell partition wall, and
An exhaust gas purification device comprising a catalyst layer formed on the cell partition wall,
The catalyst layer in the radially inner peripheral portion has a base metal supporting portion that is made of a base metal and supports a PM oxidation catalyst capable of oxidizing PM, and the catalyst layer in the radially outer peripheral portion has a noble metal supporting portion that supports a noble metal catalyst. An exhaust gas purification apparatus comprising:
前記卑金属担持部は、該フィルタ基材の直径に対して1/4〜3/4の範囲に形成されている請求項1に記載の排ガス浄化装置。   The exhaust gas purifying apparatus according to claim 1, wherein the base metal supporting part is formed in a range of ¼ to ¾ with respect to a diameter of the filter base material. 前記PM酸化触媒はアルカリ金属及びランタノイド元素から選ばれる少なくとも一種である請求項1又は請求項2に記載の排ガス浄化装置。   The exhaust gas purification apparatus according to claim 1 or 2, wherein the PM oxidation catalyst is at least one selected from alkali metals and lanthanoid elements. 前記卑金属担持部の排ガス下流側の端部には、貴金属触媒をさらに担持した追加貴金属担持部をもつ請求項1に記載の排ガス浄化装置。   The exhaust gas purifying apparatus according to claim 1, wherein an end of the base metal supporting portion on the exhaust gas downstream side has an additional noble metal supporting portion further supporting a noble metal catalyst. 前記追加貴金属担持部は、排ガス下流側の端面から上流側へ50mm以内かつ前記フィルタ基材全長の1/3以下の範囲に形成されている請求項4に記載の排ガス浄化装置。   The exhaust gas purifying apparatus according to claim 4, wherein the additional noble metal supporting portion is formed within a range of 50 mm from the end face on the exhaust gas downstream side to the upstream side and within 1/3 or less of the total length of the filter base material.
JP2007071362A 2007-03-19 2007-03-19 Exhaust gas cleaning device Pending JP2008229459A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007071362A JP2008229459A (en) 2007-03-19 2007-03-19 Exhaust gas cleaning device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007071362A JP2008229459A (en) 2007-03-19 2007-03-19 Exhaust gas cleaning device

Publications (1)

Publication Number Publication Date
JP2008229459A true JP2008229459A (en) 2008-10-02

Family

ID=39902894

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007071362A Pending JP2008229459A (en) 2007-03-19 2007-03-19 Exhaust gas cleaning device

Country Status (1)

Country Link
JP (1) JP2008229459A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013108756A1 (en) 2012-01-20 2013-07-25 トヨタ自動車株式会社 Production method for base metal catalyst for exhaust gas purification
WO2015025890A1 (en) * 2013-08-23 2015-02-26 住友化学株式会社 Particulate filter
JP2016061153A (en) * 2014-09-12 2016-04-25 マツダ株式会社 Particulate filter with catalyst
JP2019198837A (en) * 2018-05-17 2019-11-21 エヌ・イーケムキャット株式会社 Method for producing exhaust gas purification catalyst

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003148141A (en) * 2001-11-16 2003-05-21 Isuzu Motors Ltd Exhaust emission control device
JP2003161138A (en) * 2001-11-28 2003-06-06 Isuzu Motors Ltd Diesel particulate filter
JP2004092584A (en) * 2002-09-03 2004-03-25 Mitsubishi Motors Corp Exhaust emission control device for internal combustion engine
JP2004239197A (en) * 2003-02-07 2004-08-26 Mazda Motor Corp Engine exhaust fine particulate reduction device
JP2006150223A (en) * 2004-11-29 2006-06-15 Babcock Hitachi Kk Exhaust-gas cleaning filter, production method of the filter and exhaust-gas cleaning apparatus
JP2006320818A (en) * 2005-05-18 2006-11-30 Toyota Motor Corp Pm purifying device and pm purifying method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003148141A (en) * 2001-11-16 2003-05-21 Isuzu Motors Ltd Exhaust emission control device
JP2003161138A (en) * 2001-11-28 2003-06-06 Isuzu Motors Ltd Diesel particulate filter
JP2004092584A (en) * 2002-09-03 2004-03-25 Mitsubishi Motors Corp Exhaust emission control device for internal combustion engine
JP2004239197A (en) * 2003-02-07 2004-08-26 Mazda Motor Corp Engine exhaust fine particulate reduction device
JP2006150223A (en) * 2004-11-29 2006-06-15 Babcock Hitachi Kk Exhaust-gas cleaning filter, production method of the filter and exhaust-gas cleaning apparatus
JP2006320818A (en) * 2005-05-18 2006-11-30 Toyota Motor Corp Pm purifying device and pm purifying method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013108756A1 (en) 2012-01-20 2013-07-25 トヨタ自動車株式会社 Production method for base metal catalyst for exhaust gas purification
US9050584B2 (en) 2012-01-20 2015-06-09 Toyota Jidosha Kabushiki Kabushiki Kaisha Production method of base metal catalyst for exhaust gas purification
WO2015025890A1 (en) * 2013-08-23 2015-02-26 住友化学株式会社 Particulate filter
EP3037168A4 (en) * 2013-08-23 2017-04-12 Sumitomo Chemical Company, Limited Particulate filter
JP2016061153A (en) * 2014-09-12 2016-04-25 マツダ株式会社 Particulate filter with catalyst
JP2019198837A (en) * 2018-05-17 2019-11-21 エヌ・イーケムキャット株式会社 Method for producing exhaust gas purification catalyst

Similar Documents

Publication Publication Date Title
JP4907860B2 (en) Filter catalyst
JP5193437B2 (en) Exhaust gas purification catalyst
JP4845795B2 (en) Exhaust gas purification filter and manufacturing method thereof
JP2010269205A (en) Catalyst for cleaning exhaust gas
JP2007144371A (en) Catalyst for cleaning exhaust gas and its manufacturing method
JP2009160547A (en) Exhaust-gas cleaning catalyst and its production method
JP2009285605A (en) Catalyst for cleaning exhaust gas
JP2012036821A (en) Exhaust emission control system of internal combustion engine
JP4006645B2 (en) Exhaust gas purification device
JP4715032B2 (en) Diesel exhaust gas purification filter
JP2006233935A (en) Exhaust emission control device
JP2008151100A (en) Exhaust emission control device
JP2006231116A (en) Exhaust gas-cleaning filter catalyst
JP4239864B2 (en) Diesel exhaust gas purification device
JP2017185467A (en) Exhaust gas cleaning catalyst
JP2007117954A (en) Catalyst for cleaning exhaust gas from diesel engine
JP2008229459A (en) Exhaust gas cleaning device
JP2009228618A (en) Exhaust emission control device
JP2007190459A (en) Catalyst for pm purification
JP4218559B2 (en) Diesel exhaust gas purification device
JP4889585B2 (en) Internal combustion engine exhaust gas purification method
JP2009247995A (en) Exhaust gas cleaning catalyst and production method thereof
JP5502885B2 (en) Oxidation catalyst suitable for burning light oil components
JP2006077672A (en) Exhaust emission control filter and exhaust emission control device
JP2006159020A (en) Filter and catalyst for purification of exhaust gas

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090703

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110609

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110628

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120202