JP3217602B2 - Method for activating catalyst for purifying exhaust gas of internal combustion engine - Google Patents

Method for activating catalyst for purifying exhaust gas of internal combustion engine

Info

Publication number
JP3217602B2
JP3217602B2 JP18960794A JP18960794A JP3217602B2 JP 3217602 B2 JP3217602 B2 JP 3217602B2 JP 18960794 A JP18960794 A JP 18960794A JP 18960794 A JP18960794 A JP 18960794A JP 3217602 B2 JP3217602 B2 JP 3217602B2
Authority
JP
Japan
Prior art keywords
reducing agent
exhaust gas
catalyst
activating
supplied
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP18960794A
Other languages
Japanese (ja)
Other versions
JPH0852358A (en
Inventor
真 川並
典正 奥田
真 堀内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ICT Co Ltd
Original Assignee
ICT Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ICT Co Ltd filed Critical ICT Co Ltd
Priority to JP18960794A priority Critical patent/JP3217602B2/en
Publication of JPH0852358A publication Critical patent/JPH0852358A/en
Application granted granted Critical
Publication of JP3217602B2 publication Critical patent/JP3217602B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/03Adding substances to exhaust gases the substance being hydrocarbons, e.g. engine fuel

Landscapes

  • Exhaust Gas After Treatment (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、内燃機関排気ガス浄化
用触媒の活性化方法に関するものである。詳しくは、内
燃機関排ガス中の有害成分のうち、特に窒素酸化物(N
Ox)を低減する触媒の活性を高めることにより、内燃
機関排ガス中のNOxを効率よく除去する方法に関する
ものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for activating an exhaust gas purifying catalyst for an internal combustion engine. Specifically, among the harmful components in the exhaust gas of the internal combustion engine, in particular, nitrogen oxides (N
The present invention relates to a method for efficiently removing NOx in exhaust gas of an internal combustion engine by increasing the activity of a catalyst for reducing Ox).

【0002】[0002]

【従来の技術】大気中のNOxは、光化学スモッグや酸
性雨の原因となる。NOx発生源の一つであるディーゼ
ル車からのNOxの排出が社会的な問題となっており、
今後排出量に関して法規制を行う方向で検討が進められ
ている。そこで排気ガス浄化触媒の開発が進められてい
る。従来、ガソリンエンジンの排気ガスを浄化するため
に三元触媒が用いられている。ガソリンエンジンにおい
ては、排気ガス中に酸素はほとんど残っておらず、未燃
焼の炭化水素や一酸化炭素でNOxを効率よく還元でき
た。しかし、ディーゼルエンジンの排ガスにおいてはそ
のエンジン特性から酸素が大幅に過剰であり、また量論
的にNOxに比較して炭化水素類、一酸化炭素等の還元
剤の排出が少ないため、通常の三元触媒ではNOxはほ
とんど低減できない。
2. Description of the Related Art Atmospheric NOx causes photochemical smog and acid rain. The emission of NOx from diesel vehicles, one of the sources of NOx, has become a social problem.
In the future, studies are under way to regulate emissions. Therefore, development of an exhaust gas purifying catalyst is being promoted. Conventionally, a three-way catalyst has been used for purifying exhaust gas of a gasoline engine. In the gasoline engine, almost no oxygen remained in the exhaust gas, and NOx could be efficiently reduced by unburned hydrocarbons and carbon monoxide. However, the exhaust gas of a diesel engine has a large excess of oxygen due to its engine characteristics, and stoichiometrically emits less reducing agents such as hydrocarbons and carbon monoxide than NOx. NOx can hardly be reduced by the original catalyst.

【0003】ディーゼルエンジン排気ガスやガソリンリ
ーンバーンエンジンの排気ガスのように、酸素を多く含
む排気ガス中のNOxを除去するのにも有効な触媒とし
ては、例えば特開昭63−100919号に記載されて
いるように、銅−ゼオライト触媒が提案されている。し
かしながら、この触媒は耐熱性に劣り、また硫黄酸化物
により被毒されやすいという問題点がある。
As a catalyst effective for removing NOx in exhaust gas containing a large amount of oxygen, such as diesel engine exhaust gas and gasoline lean burn engine exhaust gas, for example, a catalyst described in JP-A-63-100919 is described. As mentioned, copper-zeolite catalysts have been proposed. However, this catalyst has problems in that it has poor heat resistance and is easily poisoned by sulfur oxides.

【0004】また、例えば、特開平5−137963号
に記載の方法のように、白金を主触媒として用いる方法
も提案されている。しかしながら、このような白金含有
触媒はSO2 を酸化する活性が強いため、ディーゼルエ
ンジン排気ガスの処理に用いると、SO2 の酸化によっ
て硫酸塩類を増加させるため排気ガス中の微粒子物質を
増加させてしまうという問題があった。また製造直後に
はNOx分解能力を有している触媒でも、短時間使用の
うちにその活性が低下するという現象がある。この原因
ははっきりしないが例えば触媒表面が酸化され失活した
り軽油に含まれる硫黄分が触媒を被毒するものと推定さ
れる。
Further, a method using platinum as a main catalyst has been proposed, for example, as described in Japanese Patent Application Laid-Open No. 5-137983. However, since such a platinum-containing catalyst has a strong activity of oxidizing SO 2 , when it is used for treating a diesel engine exhaust gas, the sulfates are increased by oxidizing the SO 2 , so that the particulate matter in the exhaust gas is increased. There was a problem that it would. Immediately after production, there is a phenomenon that the activity of a catalyst having NOx decomposing ability is reduced in a short period of use. Although the cause is not clear, it is assumed that, for example, the catalyst surface is oxidized and deactivated, and sulfur contained in light oil poisons the catalyst.

【0005】このように、現在のところNOxを有効に
除去できる触媒は開発されていないのが現状である。
As described above, a catalyst capable of effectively removing NOx has not been developed at present.

【0006】[0006]

【発明が解決しようとする課題】したがって、本発明の
目的は、内燃機関排ガス浄化用触媒の活性化方法を提供
することにある。
SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide a method for activating an exhaust gas purifying catalyst for an internal combustion engine.

【0007】本発明の他の目的は、内燃機関から排出さ
れる、常に空燃比が酸素過剰である排気ガス中のNOx
を触媒を用いて浄化する方法において、排気ガス中の空
燃比が常に酸素過剰の状態を保つ範囲で還元剤を排気ガ
ス中に供給することにより触媒を活性化し、排気ガス中
のNOxを効率よく浄化する方法を提供することにあ
る。
[0007] Another object of the present invention is to provide a fuel cell system comprising:
In the method of purifying with a catalyst, the catalyst is activated by supplying a reducing agent into the exhaust gas within a range where the air-fuel ratio in the exhaust gas always keeps the state of excess oxygen, and the NOx in the exhaust gas is efficiently removed. It is to provide a method of purifying.

【0008】ここで酸素過剰の状態とは、排気ガス中の
未燃の炭化水素等や一酸化炭素および供給した還元剤が
排気ガス中の酸素と完全に反応したとしてもなおかつ排
気ガス中に酸素が残存する状態のことをいう。完全に酸
化された場合、メタンであればその2倍量の酸素を消費
し、一酸化炭素であればその0.5倍量の酸素を消費す
るため、例えば、排気ガス中の酸素濃度が8容量%。一
酸化炭素濃度が300ppmであれば、一酸化炭素は完
全に酸化された場合150ppmの酸素を消費するた
め、残り79850ppmの酸素と完全に反応するため
にはメタン換算で3.99容量%(39925ppm)
の還元剤が必要となり、排気ガス中に含まれれている炭
化水素等の還元剤の濃度がメタン換算で39925pp
m未満の場合は酸素過剰の状態となる。
Here, the state of oxygen excess means that unburned hydrocarbons and the like in the exhaust gas, carbon monoxide and the supplied reducing agent completely react with the oxygen in the exhaust gas and still contain oxygen in the exhaust gas. Refers to the state where remains. When completely oxidized, methane consumes twice the amount of oxygen and carbon monoxide consumes 0.5 times the amount of oxygen. capacity%. If the concentration of carbon monoxide is 300 ppm, if carbon monoxide is completely oxidized, it consumes 150 ppm of oxygen. In order to completely react with the remaining 79850 ppm of oxygen, 3.99% by volume in terms of methane (39925 ppm) )
Is required, and the concentration of the reducing agent such as hydrocarbons contained in the exhaust gas is 39925 pp in terms of methane.
If it is less than m, an oxygen excess state results.

【0009】[0009]

【課題を解決するための手段】これらの諸目的は、内燃
機関から排出されかつ常に空燃比が酸素過剰である排気
ガス中のNOxを触媒を用いて浄化する方法において、
該排気ガス中の空燃比が常に酸素過剰の状態を保つ範囲
で、かつ還元剤を排気ガス中に供給しない時間が還元剤
を排気ガス中に供給する時間の5〜10,000倍の割
合で還元剤を定期的に該排気ガスに供給することを特徴
とする白金、ロジウム、パラジウム、銅および鉄よりな
る群から選ばれた少なくとも1種のものを活性成分とし
て含有してなる触媒の活性化方法により達成される。
SUMMARY OF THE INVENTION An object of the present invention is to provide a method for purifying NOx in exhaust gas discharged from an internal combustion engine and having an air-fuel ratio that is always in excess of oxygen using a catalyst.
A time period during which the air-fuel ratio in the exhaust gas always keeps the state of excess oxygen, and a period in which the reducing agent is not supplied to the exhaust gas is a reducing agent.
5 to 10,000 times the time for supplying gas into exhaust gas
A catalyst comprising at least one selected from the group consisting of platinum, rhodium, palladium, copper and iron as an active ingredient , wherein the reducing agent is supplied to the exhaust gas periodically. Achieved by the activation method.

【0010】本発明はまた、該還元剤を排気ガス中に供
給する時に共存する酸素濃度が、該排気ガスの2〜20
容量%、好ましくは4〜20容量%である前記触媒の活
性方法である。本発明はまた、該還元剤が炭素を含有す
るものである前記触媒の活性化方法である。本発明はさ
らに、排気ガス中に供給するときの還元剤の濃度が、該
排気ガスに対してメタン換算で500ppm〜10%、
好ましくは5000ppm〜5%である前記触媒の活性
化方法である。本発明はまた供給される還元剤の量が平
均して燃料消費量の0.01〜3重量%である前記触媒
の活性化方法である。本発明はまた、該還元剤が水素、
飽和炭化水素類、不飽和炭化水素類、芳香族炭化水素
類、およびアルコール類よりなる群から選ばれた少なく
とも1種のものを含む還元剤である前記触媒の活性化方
法である。本発明はさらに該還元剤が、軽油、灯油、液
化石油ガス、ガソリン、メタノールおよびエタノールよ
りなる群から選ばれた少なくとも1種のものを含む還元
剤である前記触媒の活性化方法である。本発明はまた、
触媒活性成分が、耐火性三次元構造体に担持されてなる
前記触媒の活性化方法である。本発明はさらに、該排気
ガスがディーゼルエンジン由来のものである前記触媒の
活性化方法である。本発明はまた、供給される還元剤の
平均のTHC/NOxの比が0.01〜3である前記触
媒の活性化方法である。
The present invention also provides that the concentration of oxygen coexisting when the reducing agent is supplied into the exhaust gas is 2 to 20% of the exhaust gas.
% Of the catalyst, preferably 4 to 20% by volume. The present invention is also the method for activating the catalyst, wherein the reducing agent contains carbon. The present invention further provides the exhaust gas wherein the concentration of the reducing agent is 500 ppm to 10% in terms of methane with respect to the exhaust gas,
The method for activating the catalyst, which is preferably 5000 ppm to 5% . The present invention is also the method for activating the catalyst, wherein the amount of the supplied reducing agent is 0.01 to 3% by weight of the fuel consumption on average. The present invention also provides that the reducing agent is hydrogen,
The method for activating the catalyst, which is a reducing agent including at least one selected from the group consisting of saturated hydrocarbons, unsaturated hydrocarbons, aromatic hydrocarbons, and alcohols. The present invention further provides the method for activating a catalyst, wherein the reducing agent is a reducing agent containing at least one selected from the group consisting of gas oil, kerosene, liquefied petroleum gas, gasoline, methanol and ethanol. The invention also provides
The method for activating a catalyst, wherein the catalytically active component is supported on a refractory three-dimensional structure. The present invention is further the method for activating the catalyst, wherein the exhaust gas is derived from a diesel engine. The present invention is also the method for activating the catalyst, wherein the average THC / NOx ratio of the supplied reducing agent is 0.01 to 3.

【0011】なお、ここでTHCとは、供給する還元剤
のメタン換算の容量濃度(ppm)であり、これと内燃
機関排気ガス中に含まれるNOxの容量濃度(ppm)
との比をとったものがTHC/NOxの比である。
Here, THC is the methane-converted capacity concentration (ppm) of the supplied reducing agent, and this and the NOx capacity concentration (ppm) contained in the exhaust gas of the internal combustion engine.
Is the ratio of THC / NOx.

【0012】[0012]

【作用】本発明においてNOx浄化の対象となる排気ガ
スは、内燃機関から排出されるものでかつ常に空燃比が
酸素過剰である排気ガスである。具体的にはディーゼル
エンジンからの排気ガスや常にリーン条件で運転される
ガソリンエンジンからの排気ガスなどである。本発明に
おいては、排気ガス中に還元剤を供給することにより触
媒のNOx分解能力を高めることができ、しかも触媒が
活性化された状態は還元剤の供給を中止してもしばらく
の間継続する。
In the present invention, the exhaust gas to be subjected to NOx purification is exhaust gas which is discharged from the internal combustion engine and whose air-fuel ratio is always excessive in oxygen. Specifically, it is an exhaust gas from a diesel engine or an exhaust gas from a gasoline engine that is always operated under lean conditions. In the present invention, the NOx decomposing ability of the catalyst can be increased by supplying the reducing agent into the exhaust gas, and the activated state of the catalyst continues for a while even after the supply of the reducing agent is stopped. .

【0013】しかしながら、還元剤供給による触媒の活
性化効果は、数分から数時間の間に失われるため、還元
剤の供給は定期的に行う必要がある。本発明において還
元剤の供給を停止したにもかかわらずNOxを分解でき
る機構については明確ではないが、例えば、比較的高濃
度の炭化水素が触媒に接触することにより、触媒表面が
還元され、一時的にNOx分解能力が高められるものと
推定できる。しかし、その活性化は一時的なものであ
り、その後酸素過剰の排気ガスにさらされるている間に
触媒表面が徐々に酸化され、やがて触媒が活性化する前
の状態に戻るものと推定される。
However, the effect of activating the catalyst due to the supply of the reducing agent is lost within a few minutes to several hours, so that the supply of the reducing agent must be performed periodically. In the present invention, the mechanism by which NOx can be decomposed even though the supply of the reducing agent is stopped is not clear, but, for example, when a relatively high concentration of hydrocarbon comes into contact with the catalyst, the catalyst surface is reduced, and It can be presumed that the NOx decomposing ability can be enhanced. However, the activation is temporary, and it is presumed that the catalyst surface is gradually oxidized during the subsequent exposure to the oxygen-exhausted exhaust gas and eventually returns to the state before the catalyst was activated. .

【0014】本発明においては、後述する実施例より明
らかなように、定常的に平均して同量の還元剤を供給し
た場合は、NOx浄化率が大きく低下するため、単なる
NOxの還元剤による還元や、触媒に吸着されたNOx
が還元剤を供給したとき還元剤によって還元されるとい
うような機構では説明がつかない。本発明においては、
還元剤の供給を停止してもNOxを分解できるため、従
来還元剤によりNOxを還元する際には平均還元剤TH
C/NOx比が3を越える量の還元剤が必要とされてい
たのに対し、本発明では平均還元剤THC/NOx比が
0.01〜3、さらに好ましくは0.01〜1でも効率
よくNOxを浄化できる。
In the present invention, when the same amount of reducing agent is constantly supplied on average, the NOx purification rate is greatly reduced, as is apparent from the examples described later. Reduction or NOx adsorbed on the catalyst
Is not explained by such a mechanism that is reduced by the reducing agent when the reducing agent is supplied. In the present invention,
Since NOx can be decomposed even when the supply of the reducing agent is stopped, when reducing NOx with the conventional reducing agent, the average reducing agent TH is used.
Whereas the C / NOx ratio required a reducing agent in an amount exceeding 3, the present invention efficiently used the average reducing agent THC / NOx ratio of 0.01 to 3 and more preferably 0.01 to 1 even if the ratio was 0.01 to 1. NOx can be purified.

【0015】本発明方法において供給する還元剤の種類
は特に限定されないが、例えば、水素、飽和炭化水素
類、不飽和炭化水素類、芳香族炭化水素類、アルコール
類等の還元剤が挙げられる。
The type of reducing agent supplied in the method of the present invention is not particularly limited, and examples thereof include reducing agents such as hydrogen, saturated hydrocarbons, unsaturated hydrocarbons, aromatic hydrocarbons, alcohols and the like.

【0016】飽和炭化水素類としては、炭素原子数1〜
30、好ましくは1〜20のアルカンが挙げられる。一
例を挙げると、例えばメタン、エタン、プロパン、ブタ
ン、ペンタン、ヘキサン、ヘプタン、オクタン、ノナ
ン、デカン等が挙る。これらの飽和炭化水素類は直鎖状
でも分岐状でもよい。
The saturated hydrocarbons include those having 1 to 1 carbon atoms.
30, preferably 1 to 20 alkanes. For example, methane, ethane, propane, butane, pentane, hexane, heptane, octane, nonane, decane and the like are mentioned. These saturated hydrocarbons may be linear or branched.

【0017】またシクロヘキサンのような環状であって
もよい。
It may be cyclic, such as cyclohexane.

【0018】不飽和炭化水素類としては、炭素原子数2
〜30、好ましくは2〜20のアルケンが挙げられる。
一例を挙げると、例えばエチレン、プロピレン、ブデ
ン、ブタジエン、ペンテン、ペンタジエン、ヘキセン、
ヘキサジエン、ヘキサトリエン、ヘプテン、ヘプタジエ
ン、ヘプタトリエン、オクテン、オクタジエン、オクタ
トリエン等が挙げられる。これらの不飽和炭化水素類は
直鎖状であっても分岐状であってもよい。
The unsaturated hydrocarbons include those having 2 carbon atoms.
To 30, preferably 2 to 20 alkenes.
For example, ethylene, propylene, butene, butadiene, pentene, pentadiene, hexene,
Hexadiene, hexatriene, heptene, heptadiene, heptatriene, octene, octadiene, octatriene and the like can be mentioned. These unsaturated hydrocarbons may be linear or branched.

【0019】芳香族炭化水素としては、例えばベンゼ
ン、トルエン、キシレン、トリメチルベンゼン等が挙げ
られる。アルコール類としては、炭素数1〜20、好ま
しくは1〜10のアルコール類が挙げられる。一例を挙
げると、例えばメタノール、エタノール、プロパノー
ル、ブタノール、ペンタノール、ヘキサノール、ヘプタ
ノール、オクタノール、ノナノール、デカノール等があ
る。これらのアルコール類は直鎖状であっても分岐状で
あってもよい。
As the aromatic hydrocarbon, for example, benzene, toluene, xylene, trimethylbenzene and the like can be mentioned. Examples of the alcohols include alcohols having 1 to 20 carbon atoms, preferably 1 to 10 carbon atoms. Examples include methanol, ethanol, propanol, butanol, pentanol, hexanol, heptanol, octanol, nonanol, decanol and the like. These alcohols may be linear or branched.

【0020】供給する還元剤は、常温で気体または液体
のものが取り扱いが容易であり好ましい。さらに好まし
くは軽油、天然ガス、液化石油ガスLPG、ガソリン、
メタノール、エタノール等、内燃機関の燃料として搭載
している還元剤を用いれば、本発明で供給する還元剤専
用の容器が不要となりメリットは大きい。
The reducing agent to be supplied is preferably gaseous or liquid at room temperature because it is easy to handle. More preferably, light oil, natural gas, liquefied petroleum gas LPG, gasoline,
If a reducing agent such as methanol or ethanol, which is mounted as a fuel for an internal combustion engine, is used, a container dedicated to the reducing agent to be supplied in the present invention is not required, and the merit is great.

【0021】本発明において供給する還元剤の濃度は、
還元剤を排気ガス中に供給しても酸素過剰の状態が維持
される限り特に限定されないが、還元剤の濃度が低すぎ
ると触媒活性化の効果が得られず、還元剤の濃度が高す
ぎてもそれに見合うだけの効果がないことから、好まし
くはTHC濃度として500ppm〜10容量%、さら
に好ましくは5000ppmから5容量%である。ここ
でTHC濃度とは、炭化水素等の還元剤をメタンに換算
したときの濃度である。
In the present invention, the concentration of the reducing agent supplied is
The supply of the reducing agent into the exhaust gas is not particularly limited as long as the state of excess oxygen is maintained.However, if the concentration of the reducing agent is too low, the effect of activating the catalyst cannot be obtained, and the concentration of the reducing agent is too high. However, since there is no effect corresponding thereto, the THC concentration is preferably 500 ppm to 10% by volume, more preferably 5000 ppm to 5% by volume. Here, the THC concentration is a concentration when a reducing agent such as a hydrocarbon is converted into methane.

【0022】本発明において、還元剤を定期的に排気ガ
ス中に供給するサイクルが還元剤を排気ガス中に供給す
る時間に対して小さすぎると、還元剤の使用量が増え好
ましくない。また、逆に還元剤を排気ガス中に供給する
サイクルが還元剤を排気ガス中に供給する時間に対して
大きすぎると、活性化した触媒がその効果を失いNOx
の浄化効率が低下する。したがって、還元剤を排気ガス
中に供給しない時間は、還元剤を排気ガス中に供給する
時間に対して好ましくは5〜1万倍、さらに好ましくは
100〜1000倍である。
In the present invention, if the cycle in which the reducing agent is periodically supplied to the exhaust gas is too short with respect to the time in which the reducing agent is supplied into the exhaust gas, the amount of the reducing agent used is undesirably increased. On the other hand, if the cycle of supplying the reducing agent into the exhaust gas is too large with respect to the time of supplying the reducing agent into the exhaust gas, the activated catalyst loses its effect and loses NOx.
Purification efficiency decreases. Therefore, the time during which the reducing agent is not supplied into the exhaust gas is preferably 50 to 10,000 times, more preferably 100 to 1000 times the time during which the reducing agent is supplied into the exhaust gas.

【0023】本発明において供給する平均の還元剤の量
は特に限定されないが、燃料消費量の3重量%を越える
還元剤を供給すると経済的に不利であり、一方、燃料消
費量の0.01重量%より少ない供給量では触媒活性化
の効果が得られないため、供給する平均の還元剤の量は
好ましくは燃料消費の0.01〜3重量%である。
In the present invention, the average amount of the reducing agent supplied is not particularly limited, but supplying a reducing agent exceeding 3% by weight of the fuel consumption is economically disadvantageous. Since an effect of activating the catalyst cannot be obtained with a supply amount of less than% by weight, the average amount of the reducing agent supplied is preferably 0.01 to 3% by weight of the fuel consumption.

【0024】本発明において共存する酸素濃度は特に限
定されないが、酸素濃度が高すぎると触媒を活性化させ
る目的で供給した還元剤の一部が酸素により消費されて
しまい好ましくない。また、一方、酸素濃度が低すぎる
と、還元剤の定期的な供給による触媒の活性化効果が少
なくなる。このため、共存する酸素濃度は、好ましくは
2〜20重量%、さらに好ましくは4〜20重量であ
る。排気ガス中の酸素濃度は、エンジンでの空気と燃料
との比を変えることにより制御することが可能である
し、また、吸入した空気をバイパス等でエンジンからの
排気ガスに混入することによって排気ガス中の酸素濃度
を制御することも可能である。
In the present invention, the coexisting oxygen concentration is not particularly limited. However, if the oxygen concentration is too high, part of the reducing agent supplied for the purpose of activating the catalyst is undesirably consumed by oxygen. On the other hand, if the oxygen concentration is too low, the effect of activating the catalyst by the periodic supply of the reducing agent is reduced. Therefore, the coexisting oxygen concentration is preferably 2 to 20% by weight, and more preferably 4 to 20% by weight. The oxygen concentration in the exhaust gas can be controlled by changing the ratio of air to fuel in the engine, and the exhaust gas can be controlled by mixing the intake air into the exhaust gas from the engine through a bypass or the like. It is also possible to control the oxygen concentration in the gas.

【0025】本発明において用いる触媒に関しては特に
制限はないが、触媒の例としては、例えば白金、ロジウ
ム、パラジウム、銅、鉄等を活性成分として含むものが
挙げられる。これらの活性成分は単独で用いても良い
し、複数を組合わせて用いても良い。また、これらの活
性成分以外に助触媒としてその他の成分を含有していて
も良い。助触媒の成分に関しては特に制限はないが、一
例を挙げると、例えばナトリウム、カリウム等のアルカ
リ金属、マグネシウム、カルシウム等のアルカリ土類金
属、セリウムやイットリウム、ランタン、プラセオジム
等の希土類等が挙げられる。これらの活性成分や助触媒
は、通常耐火性三次元構造体上に耐火性無機酸化物と共
に担持されて用いられる。
The catalyst used in the present invention is not particularly limited, but examples of the catalyst include those containing, for example, platinum, rhodium, palladium, copper, iron and the like as active components. These active ingredients may be used alone or in combination of two or more. In addition to these active components, other components may be contained as co-catalysts. There is no particular limitation on the components of the co-catalyst, but examples include alkali metals such as sodium and potassium, alkaline earth metals such as magnesium and calcium, and rare earths such as cerium, yttrium, lanthanum, and praseodymium. . These active components and cocatalysts are usually used by being supported together with a refractory inorganic oxide on a refractory three-dimensional structure.

【0026】触媒成分の担持量についても特に制限はな
いが、担持量を多くしすぎると、経済的に不利であり、
また、一方少なすぎると触媒としての効果が低下する。
したがって、触媒成分の担持量としては、白金、ロジウ
ム、パラジウム等の貴金属の場合は、触媒担体1リット
ル当り好ましくは0.1〜10gさらに好ましくは0.
2〜5gである。銅や鉄等の卑金属やその他の助触媒に
ついては、触媒担体1リットル当り好ましくは1〜50
g、さらに好ましくは2〜25gである。
There is no particular limitation on the amount of the catalyst component to be carried. However, if the amount is too large, it is economically disadvantageous.
On the other hand, if the amount is too small, the effect as a catalyst is reduced.
Accordingly, the loading amount of the catalyst component is preferably 0.1 to 10 g, more preferably 0.1 to 10 g per liter of the catalyst carrier in the case of a noble metal such as platinum, rhodium, and palladium.
2-5 g. For base metals such as copper and iron and other cocatalysts, preferably 1 to 50 per liter of the catalyst carrier.
g, more preferably 2 to 25 g.

【0027】耐火性三次元構造体に関しては特に制限は
ないが、例としてはセラミックフォーム、オープンフロ
ーのセラミックハニカム、ウオールフローのハニカムモ
ノリス、オープンフローのメタルハニカム、金属発泡
体、メタルメッシュなどを用いることができる。耐火性
無機材料に関しても特に制限はないが、例として活性ア
ルミナ、シリカ、チタニア、ジルコニア等が挙げられ
る。これらの耐火性無機酸化物は、通常粉末状として使
用され、単独で用いても良いし、混合して用いてもよ
い。またさらに、セリウム、ランタン、プラセオジウ
ム、イットリウム、アルミニウム、ケイ素、チタン、ジ
ルコニウム等の溶液を2種以上混合して共沈法等で得ら
れる複合酸化物およびそれらの混合物を耐火性無機材料
として用いてもよい。
The fire-resistant three-dimensional structure is not particularly limited, but examples thereof include ceramic foam, open-flow ceramic honeycomb, wall-flow honeycomb monolith, open-flow metal honeycomb, metal foam, metal mesh, and the like. be able to. There is no particular limitation on the refractory inorganic material, but examples thereof include activated alumina, silica, titania, zirconia and the like. These refractory inorganic oxides are usually used in the form of powder, and may be used alone or as a mixture. Further, a composite oxide obtained by mixing two or more kinds of solutions of cerium, lanthanum, praseodymium, yttrium, aluminum, silicon, titanium, zirconium and the like by a coprecipitation method or the like and using a mixture thereof as a refractory inorganic material. Is also good.

【0028】本発明に用いる触媒の調製方法に特に制限
はないが、例えば下記(1)または(2)の方法によっ
て調製できる。
The method for preparing the catalyst used in the present invention is not particularly limited. For example, the catalyst can be prepared by the following method (1) or (2).

【0029】(1)耐火性無機酸化物の粉体を湿式粉砕
してスラリー化し、このスラリーに耐火性三次元構造体
を浸漬し、余分なスラリーを取り除いた後、80〜25
0℃、好ましくは100〜150℃で乾燥し、ついで3
00〜850℃、好ましくは400〜600℃で焼成す
る。つぎに上記耐火性三次元構造体を所定量の触媒を含
有する溶液に浸漬して、余分な溶液を取り除いた後80
〜250℃、好ましくは100〜150℃、で乾燥し、
ついで300〜850℃、好ましくは400〜600℃
で焼成して目的とする触媒を得る。
(1) The powder of the refractory inorganic oxide is wet-pulverized to form a slurry, and the refractory three-dimensional structure is immersed in the slurry to remove excess slurry.
Dry at 0 ° C., preferably 100-150 ° C., then
Baking at 00 to 850 ° C, preferably 400 to 600 ° C. Next, the refractory three-dimensional structure is immersed in a solution containing a predetermined amount of catalyst to remove excess solution, and
Drying at ~ 250C, preferably 100-150C,
Then 300 to 850 ° C, preferably 400 to 600 ° C
To obtain the desired catalyst.

【0030】(2)所定量の触媒を含有する溶液中に耐
火性無機酸化物粉末を投入してして含浸せしめ、スラリ
ー化し、このスラリーを300〜850℃好ましくは4
00〜600℃で焼成する。得られた粉体を湿式粉砕し
てスラリー化し、このスラリーに耐火性三次元構造体を
浸漬、余分なスラリーを取り除いた後80〜250℃、
好ましくは100〜150℃で乾燥し、次いで300〜
850℃、好ましくは400〜600℃で焼成して目的
とする触媒を得る。
(2) A refractory inorganic oxide powder is charged into a solution containing a predetermined amount of a catalyst, impregnated with the powder, and slurried.
Bake at 00-600 ° C. The obtained powder is wet-pulverized to form a slurry, the refractory three-dimensional structure is immersed in the slurry, and after removing excess slurry, the temperature is 80 to 250 ° C.
Preferably dried at 100-150 ° C, then 300-
Calcination at 850 ° C, preferably 400 to 600 ° C, gives the desired catalyst.

【0031】[0031]

【実施例】以下、実施例を挙げて本発明を具体的に説明
するが、本発明は以下の実施例に限定されるものでない
ことは言うまでもない。
EXAMPLES Hereinafter, the present invention will be described specifically with reference to Examples, but it is needless to say that the present invention is not limited to the following Examples.

【0032】触媒A調製法 比表面積が10m2 /gであるチタニア粉末(a)10
0g、硝酸ガリウム54.4gおよび硝酸カルシウム4
2.2gを白金10.0gを含有する塩化白金酸水溶液
中に投入し、十分混合した後、150℃で2時間乾燥
し、さらに500℃で1時間焼成し、白金、酸化ガリウ
ムおよび酸化カルシウムを分散担持したチタニア粉末を
得た。
Method for Preparing Catalyst A Titania powder (a) 10 having a specific surface area of 10 m 2 / g
0 g, gallium nitrate 54.4 g and calcium nitrate 4
2.2 g was put into an aqueous solution of chloroplatinic acid containing 10.0 g of platinum, mixed well, dried at 150 ° C. for 2 hours, and calcined at 500 ° C. for 1 hour to remove platinum, gallium oxide and calcium oxide. A dispersed and supported titania powder was obtained.

【0033】つぎに、この粉末112gと前記チタニア
粉末(a)と同じチタニア粉末800gおよび比表面積
が145m2 /gであるアルミナ320gを混合し、湿
式粉砕してスラリー化した。このスラリーに横断面積1
平方インチ当り約400個のオープンフローのガス流通
セルを有する5.66インチ径×6.00インチ長さの
円筒状のコージライト製ハニカム担体を含浸し、余分な
スラリーを除去した後、150℃で2時間乾燥し、つい
で500℃で1時間焼成した。
Next, 112 g of this powder, 800 g of the same titania powder as the above-mentioned titania powder (a) and 320 g of alumina having a specific surface area of 145 m 2 / g were mixed and wet-pulverized to form a slurry. Cross-sectional area 1
After impregnating a 5.66 inch diameter x 6.00 inch length cylindrical cordierite honeycomb carrier having about 400 open flow gas flow cells per square inch, removing excess slurry, For 2 hours, and then fired at 500 ° C. for 1 hour.

【0034】触媒B調製法 比表面積が50m2 /gであるジルコニア粉末1000
gを、硝酸銅372gを含有する水溶液中に投入し、十
分混合した後、150℃で2時間乾燥し、さらに500
℃で1時間焼成し、銅を分散担持したジルコニア粉末を
得た。
Method for Preparing Catalyst B Zirconia powder 1000 having a specific surface area of 50 m 2 / g
g was poured into an aqueous solution containing 372 g of copper nitrate, mixed well, and dried at 150 ° C. for 2 hours.
C. for 1 hour to obtain a zirconia powder carrying copper dispersed therein.

【0035】つぎに、この粉末を湿式粉砕してスラリー
化した。このスラリーに横断面積1平方インチ当り約4
00個のオープンフローのガス流通セルを有する5.6
6インチ径×6.00インチ長さの円筒状のコージライ
ト製ハニカム担体を含浸し、余分なスラリーを除去した
後、150℃で2時間乾燥し、ついで500℃で1時間
焼成した。
Next, this powder was slurried by wet pulverization. Approximately 4 per square inch of cross-sectional area
5.6 with 00 open flow gas flow cells
After impregnating with a cylindrical cordierite honeycomb carrier having a diameter of 6 inches and a length of 6.00 inches, excess slurry was removed, dried at 150 ° C. for 2 hours, and fired at 500 ° C. for 1 hour.

【0036】NOx浄化率の評価方法 過給直噴式ディーゼルエンジン(4気筒、2800c
c)、燃料として硫黄含有量が0.05重量%である軽
油を用いた。
Evaluation method for NOx purification rate Supercharged direct injection diesel engine (4 cylinders, 2800c
c) Light oil having a sulfur content of 0.05% by weight was used as a fuel.

【0037】触媒は上記エンジンからの排気ガス管中に
取り付け、エンジン回転数2000rpm、所定の触媒
入口温度となるようにトルクを設定し、触媒入口温度が
十分安定した後、還元剤を定期的に触媒入口に供給しつ
つ、触媒入口および触媒出口の排気ガス中のNOx濃度
を測定してNOx浄化率を求めた。
The catalyst is installed in the exhaust gas pipe from the engine, and the engine speed is set to 2000 rpm. The torque is set so as to reach a predetermined catalyst inlet temperature. After the catalyst inlet temperature is sufficiently stabilized, the reducing agent is periodically supplied. While supplying the catalyst to the catalyst inlet, the NOx concentration in the exhaust gas at the catalyst inlet and the catalyst outlet was measured to obtain the NOx purification rate.

【0038】なお、還元剤を供給する前から排気ガス中
に含まれている未燃焼の一酸化炭素および炭化水素類の
濃度(THC)は、300℃で一酸化炭素350pp
m、THCが150ppm、400℃では一酸化炭素が
300ppm、THCが130ppmであった。
The concentration (THC) of unburned carbon monoxide and hydrocarbons contained in the exhaust gas before the supply of the reducing agent was 350 pp at 300 ° C.
m, THC was 150 ppm, and at 400 ° C., carbon monoxide was 300 ppm and THC was 130 ppm.

【0039】実施例1 触媒Aを用い、触媒入口温度300℃、還元剤としては
軽油を用いた。還元剤を20分間に1回、排気ガス中の
THC濃度が8000ppmとなるようにして10秒間
触媒入口に供給した。このときの還元剤の平均濃度はメ
タン換算で63ppm(以下、全てメタン換算濃度であ
る)、触媒入口の酸素濃度は11容量%、触媒入口のN
Ox濃度は400ppm、平均THC/NOx比は0.
16、還元剤供給サイクルと還元剤供給時間との比は1
20、燃料消費量に対する還元剤供給量は0.12重量
%、平均NOx浄化率は25%であった。
Example 1 Using catalyst A, the catalyst inlet temperature was 300 ° C., and light oil was used as the reducing agent. Once every 20 minutes, the reducing agent was supplied to the catalyst inlet for 10 seconds so that the THC concentration in the exhaust gas became 8000 ppm. At this time, the average concentration of the reducing agent is 63 ppm in terms of methane (hereinafter, all concentrations are methane equivalent), the oxygen concentration at the catalyst inlet is 11% by volume, and the N at the catalyst inlet is
The Ox concentration was 400 ppm and the average THC / NOx ratio was 0.1 ppm.
16. The ratio of the reducing agent supply cycle to the reducing agent supply time is 1
20, the reducing agent supply amount relative to the fuel consumption amount was 0.12% by weight, and the average NOx purification rate was 25%.

【0040】実施例2 触媒Aを用い、触媒入口温度300℃、還元剤としては
軽油を用いた。還元剤は200分間に1回、排気ガス中
のTHC濃度が8000ppmとなるようにして10秒
間触媒入口に供給した。このときの還元剤の平均濃度は
6.3ppm、触媒入口の酸素濃度は11容量%、触媒
入口のNOx濃度は400ppm、平均THC/NOx
比は0.01、還元剤供給サイクルと還元剤供給時間と
の比は1200、燃料消費量に対する還元剤供給量は
0.01重量%、平均NOx浄化率は10%であった。
Example 2 Using catalyst A, the catalyst inlet temperature was 300 ° C., and light oil was used as the reducing agent. Once every 200 minutes, the reducing agent was supplied to the catalyst inlet for 10 seconds so that the THC concentration in the exhaust gas became 8000 ppm. At this time, the average concentration of the reducing agent was 6.3 ppm, the oxygen concentration at the catalyst inlet was 11% by volume, the NOx concentration at the catalyst inlet was 400 ppm, and the average THC / NOx.
The ratio was 0.01, the ratio of the reducing agent supply cycle to the reducing agent supply time was 1200, the amount of the reducing agent supplied to the fuel consumption was 0.01% by weight, and the average NOx purification rate was 10%.

【0041】実施例3 触媒Aを用い、触媒入口温度300℃、還元剤としては
軽油を用いた。還元剤は20分間に1回、排気ガス中の
THC濃度が800ppmとなるようにして10秒間触
媒入口に供給した。このときの還元剤の平均濃度は6.
3ppm、触媒入口の酸素濃度は11容量%、触媒入口
のNOx濃度は400ppm、平均THC/NOx比は
0.01、還元剤供給サイクルと還元剤供給時間との比
は120、燃料消費量に対する還元剤供給量は0.01
重量%、平均NOx浄化率は9%であった。
Example 3 Using catalyst A, the catalyst inlet temperature was 300 ° C., and light oil was used as the reducing agent. Once every 20 minutes, the reducing agent was supplied to the catalyst inlet for 10 seconds so that the THC concentration in the exhaust gas became 800 ppm. At this time, the average concentration of the reducing agent is 6.
3 ppm, oxygen concentration at catalyst inlet 11% by volume, NOx concentration at catalyst inlet 400 ppm, average THC / NOx ratio 0.01, ratio of reducing agent supply cycle to reducing agent supply time 120, reduction to fuel consumption The agent supply amount is 0.01
% By weight, and the average NOx purification rate was 9%.

【0042】実施例4 触媒Aを用い、触媒入口温度300℃、還元剤としては
軽油を用いた。還元剤は20分間に1回、排気ガス中の
THC濃度が8000ppmとなるようにして30秒間
触媒入口に供給した。このときの還元剤の平均濃度は1
89ppm、触媒入口の酸素濃度は11容量%、触媒入
口のNOx濃度は400ppm、平均THC/NOx比
は0.47、還元剤供給サイクルと還元剤供給時間との
比は40、燃料消費量に対する還元剤供給量は0.35
重量%、平均NOx浄化率は25%であった。
Example 4 Using catalyst A, the catalyst inlet temperature was 300 ° C., and light oil was used as the reducing agent. The reducing agent was supplied to the catalyst inlet once every 20 minutes so that the THC concentration in the exhaust gas became 8000 ppm for 30 seconds. At this time, the average concentration of the reducing agent is 1
89 ppm, oxygen concentration at catalyst inlet 11% by volume, NOx concentration at catalyst inlet 400 ppm, average THC / NOx ratio 0.47, ratio of reducing agent supply cycle to reducing agent supply time 40, reduction to fuel consumption 0.35 agent supply
% By weight, and the average NOx purification rate was 25%.

【0043】実施例5 触媒Aを用い、触媒入口温度300℃、還元剤としては
軽油を用いた。還元剤は6分間に1回、排気ガス中のT
HC濃度が8000ppmとなるようにして30秒間触
媒入口に供給した。このときの還元剤の平均濃度は63
0ppm、触媒入口の酸素濃度は11容量%、触媒入口
のNOx濃度は400ppm、平均THC/NOx比は
1.58、還元剤供給サイクルと還元剤供給時間との比
は12、燃料消費量に対する還元剤供給量は1.2重量
%、平均NOx浄化率は26%であった。
Example 5 Catalyst A was used, the catalyst inlet temperature was 300 ° C., and light oil was used as the reducing agent. The reducing agent is used once every 6 minutes to reduce T in the exhaust gas.
It was supplied to the catalyst inlet for 30 seconds so that the HC concentration became 8000 ppm. The average concentration of the reducing agent at this time was 63
0 ppm, oxygen concentration at the catalyst inlet is 11% by volume, NOx concentration at the catalyst inlet is 400 ppm, average THC / NOx ratio is 1.58, ratio of reducing agent supply cycle to reducing agent supply time is 12, reduction to fuel consumption The supply amount of the agent was 1.2% by weight, and the average NOx purification rate was 26%.

【0044】実施例6 触媒Bを用い、触媒入口温度400℃、還元剤としては
軽油を用いた。還元剤は20分間に1回、排気ガス中の
THC濃度が8000ppmとなるようにして10秒間
触媒入口に供給した。このときの還元剤の平均濃度は6
3ppm、触媒入口の酸素濃度は8容量%、触媒入口の
NOx濃度は500ppm、平均THC/NOx比は
0.13、還元剤供給サイクルと還元剤供給時間との比
は120、燃料消費量に対する還元剤供給量は0.09
重量%、平均NOx浄化率は19%であった。
Example 6 The catalyst B was used, the catalyst inlet temperature was 400 ° C., and light oil was used as the reducing agent. Once every 20 minutes, the reducing agent was supplied to the catalyst inlet for 10 seconds so that the THC concentration in the exhaust gas became 8000 ppm. The average concentration of the reducing agent at this time was 6
3 ppm, oxygen concentration at catalyst inlet 8% by volume, NOx concentration at catalyst inlet 500 ppm, average THC / NOx ratio 0.13, ratio of reducing agent supply cycle to reducing agent supply time 120, reduction to fuel consumption 0.09
% By weight, and the average NOx purification rate was 19%.

【0045】実施例7 触媒Aを用い、触媒入口温度300℃、還元剤としては
プロピレンを用いた。還元剤は20分間に1回、排気ガ
ス中のTHC濃度が8000ppmとなるようにして1
0秒間触媒入口に供給した。このときの還元剤の平均濃
度は63ppm、触媒入口の酸素濃度は11容量%、触
媒入口のNOx濃度は400ppm、平均THC/NO
x比は0.16、還元剤供給サイクルと還元剤供給時間
との比は120、燃料消費量に対する還元剤供給量は
0.12重量%、平均NOx浄化率は39%であった。
Example 7 Catalyst A was used, the catalyst inlet temperature was 300 ° C., and propylene was used as the reducing agent. The reducing agent is added once every 20 minutes so that the THC concentration in the exhaust gas becomes 8000 ppm.
It was fed to the catalyst inlet for 0 seconds. At this time, the average concentration of the reducing agent was 63 ppm, the oxygen concentration at the catalyst inlet was 11% by volume, the NOx concentration at the catalyst inlet was 400 ppm, and the average THC / NO
The x ratio was 0.16, the ratio between the reducing agent supply cycle and the reducing agent supply time was 120, the reducing agent supply amount relative to the fuel consumption was 0.12% by weight, and the average NOx purification rate was 39%.

【0046】比較例1 軽油を定常的に63ppmの濃度で供給した以外は、実
施例1と同様に行った。その結果、平均NOx浄化率は
1%であった。
Comparative Example 1 The procedure was as in Example 1, except that light oil was constantly supplied at a concentration of 63 ppm. As a result, the average NOx purification rate was 1%.

【0047】比較例2 軽油の供給時間を1秒とした以外は、実施例2と同様に
行った。その結果、平均NOx浄化率は0%であった。
Comparative Example 2 The same operation as in Example 2 was carried out except that the supply time of light oil was changed to 1 second. As a result, the average NOx purification rate was 0%.

【0048】比較例3 軽油を定常的に630ppmの濃度で供給した以外は、
実施例1と同様に行った。その結果、平均NOx浄化率
は3%であった。
Comparative Example 3 Except that gas oil was constantly supplied at a concentration of 630 ppm,
Performed in the same manner as in Example 1. As a result, the average NOx purification rate was 3%.

【0049】比較例4 軽油を定常的に63ppmの濃度で供給した以外は、実
施例6と同様に行った。その結果、平均NOx浄化率は
1%であった。
Comparative Example 4 The same operation as in Example 6 was carried out except that light oil was constantly supplied at a concentration of 63 ppm. As a result, the average NOx purification rate was 1%.

【0050】比較例5 プロピレンを定常的に63ppmの濃度で供給した以外
は、実施例7と同様に行った。その結果、平均NOx浄
化率は5%であった。
Comparative Example 5 The same procedure as in Example 7 was carried out except that propylene was constantly supplied at a concentration of 63 ppm. As a result, the average NOx purification rate was 5%.

【0051】以上の実施例1〜7および比較例1〜5で
得られた試験結果を表1および表2に示す。
The test results obtained in Examples 1 to 7 and Comparative Examples 1 to 5 are shown in Tables 1 and 2.

【0052】[0052]

【表1】 [Table 1]

【0053】[0053]

【表2】 [Table 2]

【0054】[0054]

【発明の効果】以上述べたように、本発明は、内燃機関
から排出されかつ常に空燃比が酸素過剰である排気ガス
中のNOxを触媒を用いて浄化する方法において、該排
気ガス中の空燃比が常に酸素過剰の状態を保つ範囲で、
かつ還元剤を排気ガス中に供給しない時間が還元剤を排
気ガス中に供給する時間の5〜10,000倍の割合で
還元剤を定期的に該排気ガスに供給することを特徴とす
る触媒の活性化方法であるから、触媒は常に活性化さ
れ、排気ガス中の空燃比が常に酸素過剰の状態であって
も排気ガス中のNOxを効率よく浄化できるのである。
As described above, the present invention relates to a method for purifying NOx in exhaust gas discharged from an internal combustion engine and always having an excess air-fuel ratio with oxygen using a catalyst. As long as the fuel ratio always keeps excess oxygen,
The time when the reducing agent is not supplied to the exhaust gas
Since the catalyst activation method is characterized in that the reducing agent is periodically supplied to the exhaust gas at a rate of 5 to 10,000 times the supply time to the gas, the catalyst is always used. Thus, even when the air-fuel ratio in the exhaust gas is always in excess of oxygen, NOx in the exhaust gas can be efficiently purified.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平6−285335(JP,A) 特開 平6−26328(JP,A) 特開 平4−349939(JP,A) (58)調査した分野(Int.Cl.7,DB名) B01D 53/86 F01N 3/08 ────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-A-6-285335 (JP, A) JP-A-6-26328 (JP, A) JP-A-4-349939 (JP, A) (58) Field (Int.Cl. 7 , DB name) B01D 53/86 F01N 3/08

Claims (10)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 内燃機関から排出されかつ常に空燃比が
酸素過剰である排気ガス中のNOxを触媒を用いて浄化
する方法において、該排気ガス中の空燃比が常に酸素過
剰の状態を保つ範囲で、かつ還元剤を排気ガス中に供給
しない時間が還元剤を排気ガス中に供給する時間の5〜
10,000倍の割合で還元剤を定期的に該排気ガスに
供給することを特徴とする白金、ロジウム、パラジウ
ム、銅および鉄よりなる群から選ばれた少なくとも1種
のものを活性成分として含有してなる触媒の活性化方
法。
1. A method for purifying NOx in exhaust gas discharged from an internal combustion engine and always having an excess air-fuel ratio with oxygen using a catalyst, wherein the air-fuel ratio in the exhaust gas always maintains an excess oxygen state. And supply the reducing agent into the exhaust gas
The time of not supplying the reducing agent to the exhaust gas
Containing at least one selected from the group consisting of platinum, rhodium, palladium, copper and iron as an active ingredient , wherein a reducing agent is periodically supplied to the exhaust gas at a ratio of 10,000 times. A method for activating a catalyst comprising:
【請求項2】 該還元剤を排気ガス中に供給するときに
共存する酸素濃度が、該外気ガスの2〜20容量%であ
る請求項1に記載の触媒の活性化方法。
2. The catalyst activation method according to claim 1, wherein the concentration of oxygen present when the reducing agent is supplied into the exhaust gas is 2 to 20% by volume of the outside air gas.
【請求項3】 該還元剤が炭素を含有するものである請
求項1に記載の触媒の活性化方法。
3. The method according to claim 1, wherein the reducing agent contains carbon.
【請求項4】 排気ガス中に供給するときの還元剤の濃
度が、該排気ガスに対してメタン換算で500ppm〜
10%である請求項3に記載の触媒の活性化方法。
4. The method according to claim 1, wherein the concentration of the reducing agent when supplied into the exhaust gas is 500 ppm or less in terms of methane with respect to the exhaust gas.
The method for activating a catalyst according to claim 3, which is 10%.
【請求項5】 供給される還元剤の量が平均して燃料消
費量の0.01〜3重量%である請求項1〜のいずれ
か一つに記載の触媒の活性化方法。
5. A method for activating a catalyst according to any one of the amount of reducing agent supplied on average fuel consumption of 0.01-3 claims 1-4 by weight.
【請求項6】 該還元剤が、水素、飽和炭化水素類、不
飽和炭化水素類、芳香族炭化水素類、およびアルコール
類よりなる群れから選ばれた少なくとも1種のものを含
む還元剤である請求項1〜のいずれか一つに記載の触
媒の活性化方法。
6. A reducing agent containing at least one selected from the group consisting of hydrogen, saturated hydrocarbons, unsaturated hydrocarbons, aromatic hydrocarbons, and alcohols. A method for activating a catalyst according to any one of claims 1 to 5 .
【請求項7】 該還元剤が、軽油、灯油、液化石油ガ
ス、ガソリン、メタノールおよびエタノールよりなる群
から選ばれた少なくとも1種のものを含む還元剤である
請求項1〜のいずれか一つに記載の触媒の活性化方
法。
7. A reducing agent is gas oil, kerosene, liquefied petroleum gas, gasoline, any one of claims 1 to 5 which is a reducing agent, including those of at least one selected from the group consisting of methanol and ethanol A method for activating a catalyst according to any one of the first to third aspects.
【請求項8】 触媒活性成分が、耐火性三次元構造体に
担持されてなる請求項1〜のいずれか一つに記載の触
媒の活性化方法。
8. catalytic active component, according to claim 1-7 activating a catalyst according to any one of made carried on the refractory three-dimensional structure.
【請求項9】 該排気ガスがディーゼルエンジン由来の
ものである請求項1〜のいずれか一つに記載の触媒の
活性化方法。
9. exhaust gas activation method of the catalyst according to any one of claims 1-8 is derived from the diesel engine.
【請求項10】 供給される還元剤の平均のTHC/N
Oxの比が0.01〜3である請求項1〜のいずれか
一つに記載の触媒の活性化方法。
10. The average THC / N of the supplied reducing agent.
The method for activating a catalyst according to any one of claims 1 to 9 , wherein the ratio of Ox is from 0.01 to 3.
JP18960794A 1994-08-11 1994-08-11 Method for activating catalyst for purifying exhaust gas of internal combustion engine Expired - Lifetime JP3217602B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18960794A JP3217602B2 (en) 1994-08-11 1994-08-11 Method for activating catalyst for purifying exhaust gas of internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18960794A JP3217602B2 (en) 1994-08-11 1994-08-11 Method for activating catalyst for purifying exhaust gas of internal combustion engine

Publications (2)

Publication Number Publication Date
JPH0852358A JPH0852358A (en) 1996-02-27
JP3217602B2 true JP3217602B2 (en) 2001-10-09

Family

ID=16244143

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18960794A Expired - Lifetime JP3217602B2 (en) 1994-08-11 1994-08-11 Method for activating catalyst for purifying exhaust gas of internal combustion engine

Country Status (1)

Country Link
JP (1) JP3217602B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2778205B1 (en) * 1998-04-29 2000-06-23 Inst Francais Du Petrole CONTROLLED HYDROCARBON INJECTION PROCESS INTO AN EXHAUST LINE OF AN INTERNAL COMBUSTION ENGINE
JP4548565B2 (en) * 2001-07-26 2010-09-22 コスモ石油株式会社 Catalyst for catalytic reduction and removal of nitrogen oxides
GB0308944D0 (en) * 2003-04-17 2003-05-28 Johnson Matthey Plc Method of decomposing nitrogen dioxide
KR101172020B1 (en) * 2006-03-30 2012-08-07 인터내쇼날 카탈리스트 테크놀로지, 인코포레이티드 Method of purifying exhaust gas from internal combustion engine
JP4889585B2 (en) * 2006-07-13 2012-03-07 株式会社アイシーティー Internal combustion engine exhaust gas purification method

Also Published As

Publication number Publication date
JPH0852358A (en) 1996-02-27

Similar Documents

Publication Publication Date Title
AU710944B2 (en) Close coupled catalyst
CN101512116B (en) Diesel exhaust treatment system catalyst monitoring
US6497851B1 (en) Engine exhaust treatment apparatus and method of use
US6413483B1 (en) Catalytic converter for a lean burn internal combustion engine
US6066587A (en) Catalyst for purifying exhaust gas
EP0562516B1 (en) Method for purifying exhaust gas
JP2007534467A (en) Noble metal catalyst stabilized with iron oxide for removing pollutants from exhaust gas from lean burn engine
JP2002542015A (en) Catalyst composition comprising ceria and platinum group metal
KR19980033126A (en) Catalysts and purification methods for exhaust gas purification of internal combustion engines
US6287527B1 (en) Method for controlling exhaust emission
EP0551342A1 (en) Catalyst composition containing base metal oxide-promoted rhodium
US5939037A (en) Sulfur tolerant NOx traps highly loaded with sodium or potassium
US5758489A (en) Sulfur tolerant Pt/lithium NOx traps
EP0701859B1 (en) Catalyst for decomposition of nitrogen oxides and method for purifying diesel engine exhaust gas by the use of the catalyst
JP3217602B2 (en) Method for activating catalyst for purifying exhaust gas of internal combustion engine
JP3267862B2 (en) Diesel engine exhaust gas purification catalyst and exhaust gas purification method using the same
US20020076373A1 (en) Use of lithium in NOx adsorbers for improved low temperature performance
JPH10118457A (en) Exhaust gas cleaning apparatus for internal combustion engine
EP0888816B1 (en) Exhaust gas purification catalyst and waste gas purification method
JP3408905B2 (en) Diesel engine exhaust gas purification catalyst and diesel engine exhaust gas purification method
JP3805079B2 (en) Diesel engine exhaust gas purification catalyst and purification method
EP4191031B1 (en) Three-way catalytic conversion system for engine exhaust purification treatment and application thereof
JP3771608B2 (en) Diesel engine exhaust gas purification catalyst and diesel engine exhaust gas purification method using the same
JPH08229350A (en) Catalyst for decomposing nitrogen oxide and purifying method of diesel engine exhaust gas using the same
CA2245970C (en) Exhaust emission control catalyst and method for controlling exhaust emission

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080803

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080803

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090803

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090803

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100803

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100803

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110803

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120803

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130803

Year of fee payment: 12

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130803

Year of fee payment: 12

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130803

Year of fee payment: 12

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250