JP4889137B2 - Method for producing aluminum-plated steel sheet for fuel tank - Google Patents

Method for producing aluminum-plated steel sheet for fuel tank Download PDF

Info

Publication number
JP4889137B2
JP4889137B2 JP2000117357A JP2000117357A JP4889137B2 JP 4889137 B2 JP4889137 B2 JP 4889137B2 JP 2000117357 A JP2000117357 A JP 2000117357A JP 2000117357 A JP2000117357 A JP 2000117357A JP 4889137 B2 JP4889137 B2 JP 4889137B2
Authority
JP
Japan
Prior art keywords
plating layer
steel sheet
plated steel
fuel tank
aluminum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000117357A
Other languages
Japanese (ja)
Other versions
JP2001303231A (en
Inventor
隆 左織
泰三 松田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nippon Steel Nisshin Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Nisshin Co Ltd filed Critical Nippon Steel Nisshin Co Ltd
Priority to JP2000117357A priority Critical patent/JP4889137B2/en
Publication of JP2001303231A publication Critical patent/JP2001303231A/en
Application granted granted Critical
Publication of JP4889137B2 publication Critical patent/JP4889137B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【産業上の利用分野】
本発明は、深絞り等の加工を施しても加工割れが発生せず、また、めっき層のクラック発生を抑制することで、優れた耐食性を維持する燃料タンク用アルミ系めっき鋼板の製造方法に関する。
【0002】
【従来の技術】
自動車用燃料タンクは、鋼板をプレス加工して製造されるため、加工性を重視して溶融Pb−Snめっき鋼板が従来から使用されている。溶融Pb−Snめっき鋼板製の燃料タンクは、燃料による内面腐食や塩害等による外面腐食に対しても抵抗力がある。
しかし、近年、環境負荷物質軽減の観点から、Pbを使用しない材料が求められている。そこで、環境負荷物質を含まないAl又はAl−Siめっきを施したアルミめっき鋼板を燃料タンク用素材として使用され始めている。
【0003】
【発明が解決しようとする課題】
燃料タンクは、図1に示すような複雑形状に鋼板をプレス加工することにより製造されており、燃料タンク本体1にインレットパイプ2,フュエルパイプ3,フュエルリターンパイプ4,サブタンク5,ドレーンプラグ6等の各種部材が取り付けられる。このときのプレス加工は、伸び,圧縮等が複合された複雑な塑性変形を伴う加工である。溶融めっき時に硬質合金層が生成・成長しやすいアルミ系めっき鋼板では、加工時の応力集中に起因してめっき層にクラックが発生しがちである。発生したクラックが下地鋼に達すると、そこを起点として腐食が進行し、短期間に燃料タンクの穴開きに至る危険が高くなる。
【0004】
【課題を解決するための手段】
本発明は、このような問題を解消すべく案出されたものであり、Al−Siめっき層の有効厚み及び表面粗さを管理することにより、深絞り等の加工を施しても加工割れが発生せず、プレス加工時の応力集中を緩和してめっき層のクラック発生を抑制し、加工後にも優れた耐食性が維持される燃料タンク用アルミ系めっき鋼板の製造方法を提供することを目的とする。
本発明の燃料タンク用アルミ系めっき鋼板の製造方法は、その目的を達成するため、溶融めっきされたアルミ系めっき鋼板を表面粗度が調整された圧延ロールによって調質圧延し、鋼板表面に、Si含有量:13質量%以下,層厚5μm以上のAl−Siめっき層を、Al−Fe−Si系合金層を介し、該Al−Siめっき層の表面粗さがRaで0.3〜2.0μmの範囲にあり、かつAl−Fe−Si系合金層を含めためっき層の全厚みtに対する前記Al−Siめっき層の表面最大高さRmaxの比Rmax/tが0.8以下となるように形成することを特徴とする。
【0005】
【作用及び実施の形態】
アルミ系めっき鋼板の表面には、図2で模式的に示すように、下地鋼の上にAl−Fe−Si系合金層を介してAl−Siめっき層が形成されている。また、めっき層は、凹凸のある表面をもち、大きな窪みもある。このようなAl−Siめっき層が形成されためっき鋼板を燃料タンク形状にプレス加工すると、大きな窪みがある部分に応力が集中し、下地鋼に達するクラックが発生しやすい。下地鋼に達したクラックのあるアルミ系めっき鋼板が腐食環境に曝されると、欠陥部を起点とする腐食が進行し、早期に穴開きに至る。
そこで、本発明者等は、クラックの発生状況とAl−Siめっき層の表面形態との関係を調査した。その結果、Al−Siめっき層の表面粗さをRaで0.3〜2.0μmの範囲に調整し、Al−Fe−Si系合金層を含めためっき層の全厚みtに対する前記Al−Siめっき層の表面最大高さRmaxの比Rmax/tを0.8以下に抑えるとき、プレス加工時の応力集中が緩和され、加工用潤滑剤の保持能力が高められ、下地鋼に達するクラックの発生が抑えられることを見出した。
【0006】
通常の溶融アルミめっきラインで製造されるアルミ系めっき鋼板では、平均厚み2〜5μmのAl−Fe−Si系合金層を介して層厚5〜25μmのAl−Siめっき層が形成される。燃料タンク用途に要求される耐食性を満足させるためには、Al−Siめっき層の層厚を若干厚めの6μm以上(好ましくは、8〜16μm)に調整することが必要である。層厚は、たとえば溶融めっき浴から引き上げられためっき原板に付着している溶融めっき金属をガスワイピングする方法等により容易に調整できる。
【0007】
Al−Siめっき層は、Al−Fe−Si系合金層に比較して軟質で展延性に富む。このAl−Siめっき層の層厚を5μm以上とするとき、プレス加工時の塑性変形に追従するAl−Siめっき層のメタルフローが確保され、加工後の製品表面もAl−Siめっき層で覆われる。しかし、一般的にめっき層が厚くなると耐食性は向上するが、溶接性,耐めっき剥離性は低下する。そのため、用途にもよるが、Al−Siめっき層は25μm以下にすることが好ましい。
Al−Siめっき層の表面凹凸は、アルミ系めっき鋼板のプレス成形に使用される潤滑油を保持するミクロプールとして機能する。潤滑油保持機能は、Al−Siめっき層の表面粗さがRa≧0.3μmで顕著になる。しかし、Raで2μmを超える表面粗さでは、Al−Siめっき層の表層凹部に過剰に潤滑油を保持するため、潤滑油の効果が低下してしまう。
【0008】
Al−Siめっき層の表面粗さは、更にめっき層の全厚みtに対する表面最大高さRmaxの比Rmax/tが0.8以下となるように調整することが必要である。比Rmax/tを0.8以下にすることにより、プレス成形時に応力が集中しやすい窪みが浅くなり、その分だけ応力集中が緩和され、下地鋼に達するクラックの生成が抑制される。比Rmax/t≦0.8は展延性のあるAl−Siめっき層の有効厚みが確保されることも意味し、プレス成形後に下地鋼の露出を防止する上でも有効である。Al−Siめっき層表面の凹凸は、溶融めっき後の調質圧延時に圧延ロール表面の凹凸を転写することにより形成されるため、調質圧延ロールの表面粗度によってAl−Siめっき層の表面粗度を調整できる。
【0009】
【実施例】
めっき原板として板厚0.8mmの普通鋼板を使用し、還元焼鈍した後、ライン速度90m/分で浴温660℃,Si:3〜13質量%の溶融アルミめっき浴に導入し、ガスワイピングによって付着量を片面当り20〜60g/m2に調整したアルミめっき鋼板を製造した。溶融めっき後の調質圧延で使用する調質圧延ロールの表面粗度及びめっき層の全厚みtを変えることにより、表面粗さRa及び比Rmax/tが種々異なるAl−Siめっき層をもつアルミ系めっき鋼板を製造した。
【0010】
得られた各アルミ系めっき鋼板から平板状の試験片を切り出し、加工性試験によって加工割れが発生する限界絞り比から加工性を調査した。また、燃料タンク用途を想定した内面腐食試験及び外面腐食試験により、加工後の試験片の耐食性を調査した。
〔加工性試験〕
半径20mm,肩アール5mmのポンチを用い、ブランク径84mmの試験片を平底円筒状に絞り加工し、加工割れが発生する限界絞り比を求めた。
〔内面腐食試験〕
半径20mm,肩アール5mmのポンチを用い、ブランク径84mmの試験片を絞り比2で平底円筒状に絞り加工した後、蟻酸350ppmを含む水を等量のガソリンと混合することにより調製した腐食試験液に浸漬した。1週間ごとに腐食試験液を取り替えながら、試験片を10週間継続して浸漬した。10週間経過した時点で試験片を引き上げ、腐食部の板厚減少率で内面耐食性を評価した。
〔外面腐食試験〕
同じく絞り比2で平底円筒状に絞り加工した試験片に濃度5質量%の塩水を継続噴霧し、噴霧開始から240時間経過した時点で試験片の表面を観察した。試験片の表面に発生した赤錆の面積率で外面耐食性を評価した。
【0011】
表1の調査結果にみられるように、Al−Siめっき層の表面粗さをRa=0.3〜2.0μmの範囲に調整し、比Rmax/tを0.8以下に抑えた本発明例では、何れも良好な加工性を示し、加工後にもAl−Siめっき層で下地鋼が覆われているため内面耐食性及び外面耐食性共に良好であった。また、表面粗さをRa=0.3〜2.0μmの範囲に維持するとき、図3に示すように限界絞り比が高い値を示した。
これに対し、表面粗さRaが本発明で規定した範囲を外れる比較例では、1.7以下の低い限界絞り比を示し、比Rmax/tが本発明で規定した範囲を外れる比較例ではプレス成形によってめっき層が剥離した部分を起点とする腐食が発生した。
【0012】

Figure 0004889137
【0013】
【発明の効果】
以上に説明したように、本発明の燃料タンク用アルミ系めっき鋼板は、AlーSiめっき層の表面粗さをRa0.3〜2.0μmの範囲に調整すると共に大きな窪みのある個所での比Rmax/tを0.8以下に規制することにより、潤滑油を保持するミクロプールとして機能させながら、Al−Siめっき層の有効厚みを確保している。これにより、プレス成形時の加工割れが抑制され、めっき層への応力集中が緩和されるため、伸び,圧縮等が複合した塑性変形を伴う燃料タンク形状への加工に際してもめっき層にクラックが生じることなく、アルミ系めっき鋼鈑本来の優れた耐食性が維持される。よって、深絞り等の加工を施しても加工割れが発生せず、また、めっき層のクラック発生を抑制することで腐食が長期にわたって生じない耐食性に優れた燃料タンクが得られる。
【図面の簡単な説明】
【図1】 自動車用燃料タンクの概略斜視図
【図2】 アルミ系めっき鋼板の断面図
【図3】 めっき層の表面粗さが限界絞り比に及ぼす影響を示したグラフ[0001]
[Industrial application fields]
The present invention relates to a method for producing an aluminum-plated steel sheet for a fuel tank that maintains excellent corrosion resistance by preventing cracking of a plating layer even when processing such as deep drawing is performed. .
[0002]
[Prior art]
Since the fuel tank for automobiles is manufactured by pressing a steel plate, a molten Pb-Sn plated steel plate has been conventionally used with emphasis on workability. A fuel tank made of a molten Pb—Sn plated steel sheet is resistant to internal corrosion caused by fuel or external corrosion caused by salt damage.
However, in recent years, materials that do not use Pb have been demanded from the viewpoint of reducing environmentally hazardous substances. Therefore, an aluminum-plated steel sheet that has been subjected to Al or Al-Si plating that does not contain environmentally hazardous substances has begun to be used as a fuel tank material.
[0003]
[Problems to be solved by the invention]
The fuel tank is manufactured by pressing a steel plate into a complicated shape as shown in FIG. 1, and the fuel tank body 1 has an inlet pipe 2, a fuel pipe 3, a fuel return pipe 4, a sub tank 5, a drain plug 6, and the like. Various members are attached. The press work at this time is a process involving complicated plastic deformation in which elongation, compression, and the like are combined. In an aluminum-based plated steel sheet in which a hard alloy layer is likely to be generated and grown during hot dip plating, cracks tend to occur in the plated layer due to stress concentration during processing. When the generated crack reaches the base steel, the corrosion proceeds from there and the risk of opening the fuel tank in a short time increases.
[0004]
[Means for Solving the Problems]
The present invention has been devised to solve such problems, and by controlling the effective thickness and surface roughness of the Al-Si plating layer, processing cracks can occur even when processing such as deep drawing is performed. An object of the present invention is to provide a method for producing an aluminum-plated steel sheet for a fuel tank that does not occur, relieves stress concentration during press processing, suppresses cracking of the plating layer, and maintains excellent corrosion resistance after processing. To do.
In order to achieve the object of the method for producing an aluminum-plated steel sheet for fuel tanks of the present invention, the hot-plated aluminum-plated steel sheet is temper-rolled by a rolling roll whose surface roughness is adjusted , Si content: 13% by mass or less and an Al—Si plating layer having a thickness of 5 μm or more is passed through an Al—Fe—Si alloy layer, and the surface roughness of the Al—Si plating layer is 0.3 to 2 in terms of Ra. in the range of .0Myuemu, and Al-Fe-Si-based ratio Rmax / t of the surface maximum height Rmax of the Al-Si plating layer to the total thickness t of the alloy layer a plating layer including becomes 0.8 or less It is formed as follows.
[0005]
[Operation and embodiment]
On the surface of the aluminum-plated steel sheet, as schematically shown in FIG. 2, an Al—Si plating layer is formed on the base steel via an Al—Fe—Si alloy layer. Moreover, the plating layer has an uneven surface and has a large depression. When a plated steel sheet having such an Al—Si plating layer is pressed into a fuel tank shape, stress concentrates on a portion having a large depression, and cracks reaching the base steel tend to occur. When an aluminum-plated steel sheet with cracks that reaches the base steel is exposed to a corrosive environment, corrosion starts from the defective part and leads to early opening.
Therefore, the present inventors investigated the relationship between the occurrence of cracks and the surface morphology of the Al—Si plating layer. As a result, the surface roughness of the Al—Si plating layer is adjusted to a range of 0.3 to 2.0 μm with Ra, and the Al—Si with respect to the total thickness t of the plating layer including the Al—Fe—Si based alloy layer. When the ratio Rmax / t of the maximum surface height Rmax of the plating layer is suppressed to 0.8 or less, the stress concentration during press working is relaxed, the holding capability of the processing lubricant is increased, and cracks reaching the base steel are generated. Has been found to be suppressed.
[0006]
In an aluminum-plated steel sheet manufactured by a normal hot-dip aluminum plating line, an Al—Si plating layer having a thickness of 5 to 25 μm is formed through an Al—Fe—Si alloy layer having an average thickness of 2 to 5 μm. In order to satisfy the corrosion resistance required for the fuel tank application, it is necessary to adjust the thickness of the Al—Si plating layer to be slightly larger than 6 μm (preferably 8 to 16 μm). The layer thickness can be easily adjusted by, for example, a method of gas wiping a hot-dip metal adhering to the original plating plate pulled up from the hot-dip plating bath.
[0007]
The Al—Si plating layer is softer and more malleable than the Al—Fe—Si alloy layer. When the thickness of the Al-Si plating layer is 5 μm or more, the metal flow of the Al-Si plating layer following the plastic deformation during the press working is ensured, and the processed product surface is covered with the Al-Si plating layer. Is called. However, generally, as the plating layer becomes thicker, the corrosion resistance is improved, but the weldability and plating peel resistance are lowered. Therefore, although depending on the application, the Al—Si plating layer is preferably 25 μm or less.
The surface unevenness of the Al—Si plating layer functions as a micropool that holds lubricating oil used for press forming of an aluminum-based plated steel sheet. The lubricating oil retention function becomes significant when the surface roughness of the Al—Si plating layer is Ra ≧ 0.3 μm. However, when the surface roughness Ra exceeds 2 μm, the lubricating oil is excessively retained in the surface layer recesses of the Al—Si plating layer, so that the effect of the lubricating oil is reduced.
[0008]
It is necessary to adjust the surface roughness of the Al—Si plating layer so that the ratio Rmax / t of the maximum surface height Rmax to the total thickness t of the plating layer is 0.8 or less. By setting the ratio Rmax / t to be 0.8 or less, the depression where stress is likely to concentrate during press forming becomes shallow, and the stress concentration is relaxed accordingly, and the generation of cracks reaching the base steel is suppressed. The ratio Rmax / t ≦ 0.8 also means that an effective thickness of the malleable Al—Si plating layer is secured, and is effective in preventing exposure of the base steel after press forming. Since the unevenness on the surface of the Al-Si plating layer is formed by transferring the unevenness on the surface of the rolling roll during temper rolling after hot dipping, the surface roughness of the Al-Si plating layer depends on the surface roughness of the temper rolling roll. You can adjust the degree.
[0009]
【Example】
A normal steel plate with a thickness of 0.8 mm is used as the plating base plate, and after reduction annealing, it is introduced into a molten aluminum plating bath having a bath temperature of 660 ° C. and Si: 3 to 13 mass% at a line speed of 90 m / min. An aluminized steel sheet with an adhesion amount adjusted to 20 to 60 g / m 2 per side was produced. Aluminum having Al-Si plating layers with different surface roughness Ra and ratio Rmax / t by changing the surface roughness of the temper rolling roll used in temper rolling after hot dipping and the total thickness t of the plating layer A galvanized steel sheet was produced.
[0010]
A flat test piece was cut out from each of the obtained aluminum-based plated steel sheets, and the workability was investigated from the limit drawing ratio at which a work crack occurred by a workability test. Moreover, the corrosion resistance of the test piece after processing was investigated by an inner surface corrosion test and an outer surface corrosion test assuming a fuel tank application.
[Workability test]
Using a punch with a radius of 20 mm and a shoulder radius of 5 mm, a test piece with a blank diameter of 84 mm was drawn into a flat bottom cylindrical shape, and a limit drawing ratio at which a working crack would occur was determined.
[Internal corrosion test]
Corrosion test prepared by using a punch with a radius of 20 mm and a shoulder radius of 5 mm, drawing a test piece with a blank diameter of 84 mm into a flat bottom cylindrical shape with a drawing ratio of 2, and then mixing water containing 350 ppm of formic acid with an equal amount of gasoline. Immerse in the liquid. The test piece was continuously immersed for 10 weeks while changing the corrosion test solution every week. At the time when 10 weeks passed, the test piece was pulled up and the inner surface corrosion resistance was evaluated by the thickness reduction rate of the corroded portion.
[External corrosion test]
Similarly, salt water having a concentration of 5% by mass was continuously sprayed on a test piece drawn into a flat bottom cylindrical shape with a drawing ratio of 2, and the surface of the test piece was observed after 240 hours had elapsed from the start of spraying. The outer surface corrosion resistance was evaluated by the area ratio of red rust generated on the surface of the test piece.
[0011]
As can be seen from the investigation results in Table 1, the surface roughness of the Al—Si plating layer was adjusted to Ra = 0.3 to 2.0 μm, and the ratio Rmax / t was suppressed to 0.8 or less. In each of the examples, good workability was exhibited, and both the inner surface corrosion resistance and the outer surface corrosion resistance were good because the base steel was covered with the Al—Si plating layer even after the processing. Further, when the surface roughness was maintained in the range of Ra = 0.3 to 2.0 μm, the limit drawing ratio showed a high value as shown in FIG.
On the other hand, in the comparative example in which the surface roughness Ra is out of the range specified in the present invention, a low limit drawing ratio of 1.7 or less is shown, and in the comparative example in which the ratio Rmax / t is out of the range specified in the present invention Corrosion occurred starting from the part where the plating layer was peeled off by molding.
[0012]
Figure 0004889137
[0013]
【Effect of the invention】
As described above, the aluminum-based plated steel sheet for fuel tanks of the present invention has a surface roughness of the Al-Si plating layer adjusted to a range of Ra 0.3 to 2.0 [mu] m and a ratio at a portion having a large depression. By regulating Rmax / t to 0.8 or less, the effective thickness of the Al—Si plating layer is ensured while functioning as a micropool that holds the lubricating oil. As a result, processing cracks during press forming are suppressed, and stress concentration on the plating layer is alleviated, so cracks occur in the plating layer even when processing into a fuel tank shape with plastic deformation combined with elongation, compression, etc. Therefore, the original excellent corrosion resistance of the aluminum-based plated steel sheet is maintained. Therefore, even if processing such as deep drawing is performed, a processing tank does not occur, and by suppressing the generation of cracks in the plating layer, a fuel tank excellent in corrosion resistance that does not cause corrosion over a long period of time can be obtained.
[Brief description of the drawings]
1 is a schematic perspective view of a fuel tank for automobiles. FIG. 2 is a cross-sectional view of an aluminum-based plated steel sheet. FIG. 3 is a graph showing the influence of the surface roughness of a plating layer on the limit drawing ratio.

Claims (1)

溶融めっきされたアルミ系めっき鋼板を表面粗度が調整された圧延ロールによって調質圧延し、鋼板表面に、Si含有量:13質量%以下,層厚5μm以上のAl−Siめっき層を、Al−Fe−Si系合金層を介し、該Al−Siめっき層の表面粗さがRaで0.3〜2.0μmの範囲にあり、かつAl−Fe−Si系合金層を含めためっき層の全厚みtに対する前記Al−Siめっき層の表面最大高さRmaxの比Rmax/tが0.8以下となるように形成することを特徴とする燃料タンク用アルミ系めっき鋼板の製造方法 The hot-plated aluminum-based plated steel sheet is temper-rolled with a rolling roll whose surface roughness is adjusted, and an Al-Si plated layer having a Si content of 13 mass% or less and a layer thickness of 5 μm or more is formed on the steel sheet surface. The surface roughness of the Al—Si plating layer is in the range of 0.3 to 2.0 μm in Ra through the Fe—Si alloy layer, and the plating layer including the Al—Fe—Si alloy layer method for manufacturing a fuel tank for an aluminum-plated steel sheet, characterized in that the ratio Rmax / t of the surface maximum height Rmax of the Al-Si plating layer to the total thickness t is formed so as to 0.8.
JP2000117357A 2000-04-19 2000-04-19 Method for producing aluminum-plated steel sheet for fuel tank Expired - Lifetime JP4889137B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000117357A JP4889137B2 (en) 2000-04-19 2000-04-19 Method for producing aluminum-plated steel sheet for fuel tank

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000117357A JP4889137B2 (en) 2000-04-19 2000-04-19 Method for producing aluminum-plated steel sheet for fuel tank

Publications (2)

Publication Number Publication Date
JP2001303231A JP2001303231A (en) 2001-10-31
JP4889137B2 true JP4889137B2 (en) 2012-03-07

Family

ID=18628682

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000117357A Expired - Lifetime JP4889137B2 (en) 2000-04-19 2000-04-19 Method for producing aluminum-plated steel sheet for fuel tank

Country Status (1)

Country Link
JP (1) JP4889137B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4830742B2 (en) * 2006-09-13 2011-12-07 住友金属工業株式会社 Al-plated heat-treated steel and method for producing the same
EP2025771A1 (en) * 2007-08-15 2009-02-18 Corus Staal BV Method for producing a coated steel strip for producing taylored blanks suitable for thermomechanical shaping, strip thus produced, and use of such a coated strip
CN113106394B (en) * 2021-04-08 2022-09-27 北航成都航空动力创新研究院有限公司 Composite coating resistant to corrosion of high-temperature liquid lead-bismuth alloy and preparation method thereof

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5891535A (en) * 1981-11-26 1983-05-31 Hitachi Ltd Magnetic recording and reproducing device
JP3133235B2 (en) * 1995-09-01 2001-02-05 新日本製鐵株式会社 Steel plate for fuel tank with excellent workability
JP3399729B2 (en) * 1995-06-05 2003-04-21 新日本製鐵株式会社 Manufacturing method of rustproof steel plate for fuel tank with excellent press workability and corrosion resistance
JP2938402B2 (en) * 1996-12-11 1999-08-23 新日本製鐵株式会社 Rust-proof steel plate for fuel tanks with excellent press moldability and corrosion resistance after molding
JPH10245666A (en) * 1997-03-07 1998-09-14 Toyota Motor Corp Plated steel sheet for fuel tank excellent in press formability, corrosion resistance, and weldability, and the fuel tank
JPH10265928A (en) * 1997-03-27 1998-10-06 Nisshin Steel Co Ltd Hot dip aluminum coated steel sheet excellent in corrosion resistance, and its production

Also Published As

Publication number Publication date
JP2001303231A (en) 2001-10-31

Similar Documents

Publication Publication Date Title
EP2746422B1 (en) Aluminum plated steel sheet having excellent corrosion resistance with respect to alcohol or mixed gasoline of same and appearance and method of production of same
JP4551268B2 (en) Method for producing alloyed hot-dip galvanized steel sheet
JP6529710B2 (en) Hot press-formed member having high strength and high corrosion resistance
JP4889137B2 (en) Method for producing aluminum-plated steel sheet for fuel tank
KR102649501B1 (en) hot stamp molding body
JP5532086B2 (en) Hot-dip galvanized steel pipe
JP4836308B2 (en) Aluminum plated steel sheet for fuel tank
JP4344074B2 (en) Anti-rust steel sheet for fuel tank with excellent secondary workability and press workability, and its manufacturing method
JPS648704B2 (en)
CN114901853B (en) Zn-Al-Mg-based hot dip alloy steel product excellent in corrosion resistance of working part and method for producing same
JP3931859B2 (en) Galvanized steel for hot forming and hot forming method
JP4299591B2 (en) Molten Sn-Zn plated steel sheet with excellent bonding characteristics
JP2002317233A (en) Hot dip tin-zinc based plated steel sheet
JP3859941B2 (en) Automotive fuel tank with excellent corrosion resistance
JP3126622B2 (en) Rustproof steel plate for fuel tank
JP3135818B2 (en) Manufacturing method of zinc-tin alloy plated steel sheet
JP3133235B2 (en) Steel plate for fuel tank with excellent workability
JP2003268521A (en) HOT DIP Sn-Zn PLATED STEEL SHEET
CN1287008C (en) Zinc-based coated steel sheet having excellent anti-peeling property, frictional property., and anti-galling property rnd method of manufacturing the same
JP3637702B2 (en) Method for producing hot-dip galvanized steel sheet with excellent workability
JP2011021279A (en) Steel sheet for fuel tank and method for manufacturing the same
JPH06293978A (en) Double layer cold rolled steel sheet for automotive fuel tank excellent in corrosion resistance, deep drawability and soldering property
JP3129628B2 (en) Rustproof steel plate for fuel tank
JPH0681099A (en) Galvannealed steel sheet
JPH07286240A (en) High corrosion resistant surface treated steel sheet excellent in workability and its production

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070419

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20070313

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100203

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100402

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20100402

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100427

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111115

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111213

R150 Certificate of patent or registration of utility model

Ref document number: 4889137

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141222

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term