JP4888643B2 - Conductive polymer fine particle dispersion and conductive paint using the same - Google Patents

Conductive polymer fine particle dispersion and conductive paint using the same Download PDF

Info

Publication number
JP4888643B2
JP4888643B2 JP2006126036A JP2006126036A JP4888643B2 JP 4888643 B2 JP4888643 B2 JP 4888643B2 JP 2006126036 A JP2006126036 A JP 2006126036A JP 2006126036 A JP2006126036 A JP 2006126036A JP 4888643 B2 JP4888643 B2 JP 4888643B2
Authority
JP
Japan
Prior art keywords
conductive polymer
conductive
fine particle
polymer fine
particle dispersion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006126036A
Other languages
Japanese (ja)
Other versions
JP2007297500A (en
Inventor
美加子 石塚
勝利 長井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Achilles Corp
Original Assignee
Achilles Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Achilles Corp filed Critical Achilles Corp
Priority to JP2006126036A priority Critical patent/JP4888643B2/en
Publication of JP2007297500A publication Critical patent/JP2007297500A/en
Application granted granted Critical
Publication of JP4888643B2 publication Critical patent/JP4888643B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/54Electrolytes
    • H01G11/56Solid electrolytes, e.g. gels; Additives therein

Abstract

<P>PROBLEM TO BE SOLVED: To provide a conductive polymer fine particle dispersion and a conductive paint using the same. <P>SOLUTION: The conductive polymer fine particle dispersion is obtained by polymerizing monomers for forming a conductive polymer by chemical oxidation in the water in the presence of a reactive emulsifier, and the surface of the polymer obtained by polymerizing the monomers for forming the conductive polymer is coated with a polymer of the reactive emulsifier, or coated with a polymer formed by copolymerization of the reactive emulsifier and radically polymerizing monomers copolymerizable with the reactive emulsifier; and the conductive paint contains the conductive polymer fine particle dispersion. <P>COPYRIGHT: (C)2008,JPO&amp;INPIT

Description

本発明は、導電性塗料の原料等として使用できる導電性高分子微粒子分散体及び該導電性高分子微粒子分散体を用いる、基材に塗布する事ができる導電性塗料に関するものである。更に詳しくは、
1)長期貯蔵安定に優れ、
2)基材に塗布し乾燥させることにより、容易に基材との密着性に優れた導電層を形成でき、
3)形成された導電層は、薄膜で高い透明性を保持することができ、
4)該導電層は、高い耐摩耗性を有し、
5)更に、塗布した状態で湿度に依存せず低い抵抗値を保持できる
等の優れた特徴を有する導電性塗料及び該導電性塗料に使用する導電性高分子微粒子分散体に関するものである。
The present invention relates to a conductive polymer fine particle dispersion that can be used as a raw material for a conductive paint, and a conductive paint that can be applied to a substrate using the conductive polymer fine particle dispersion. For more details,
1) Excellent long-term storage stability
2) By applying to a substrate and drying, a conductive layer with excellent adhesion to the substrate can be easily formed,
3) The formed conductive layer can maintain high transparency with a thin film,
4) The conductive layer has high wear resistance,
5) Further, the present invention relates to a conductive paint having excellent characteristics such as being able to maintain a low resistance value without depending on humidity in an applied state, and a conductive polymer fine particle dispersion used for the conductive paint.

ポリピロールは、高い導電性能を有し、かつ空気中で安定であるので、導電性塗料、防錆塗料、半導体材料、コンデンサ用電解質、有機EL素子の正孔輸送材、二次電池用電極材などへの活用が期待されている。例えば、ピロールモノマーを水中に分散させて塩化第二鉄を触媒として重合させると、塩素アニオンをドーパントとして取り込んだポリピロールが容易に得られることが知られている。しかしながら、このような方法で得られるポリピロールは、黒色の粉末状の凝集体となり、あらゆる溶媒、水にも不溶であり、取り扱いは困難を極めている。また、該ポリピロールは加熱によって融解させることも不可能である事から、加熱による射出成形等の加工ができないなど、その利用分野は極めて限られていた。   Polypyrrole has high conductive performance and is stable in the air, so conductive paint, rust preventive paint, semiconductor material, capacitor electrolyte, hole transport material for organic EL elements, secondary battery electrode material, etc. Expected to be used in For example, it is known that when a pyrrole monomer is dispersed in water and polymerized using ferric chloride as a catalyst, polypyrrole incorporating a chlorine anion as a dopant can be easily obtained. However, the polypyrrole obtained by such a method becomes a black powdery aggregate, is insoluble in any solvent and water, and is extremely difficult to handle. In addition, since the polypyrrole cannot be melted by heating, its application field is extremely limited, such as being unable to perform processing such as injection molding by heating.

これらの成形加工性を改良する目的として、ポリピロール類を水中に微分散させ、見かけ上均一な水分散液を作る方法が提案されており、この方法としては、水溶性高分子であるPVAや界面活性剤を一種の分散安定剤として用いるポリピロール類水分散液の製造方法(例えば、特許文献1参照。)などがある。また、親水性溶媒に分散したポリピロール類の微粒子に親水性バインダー樹脂を混合し、得られた樹脂組成物を基材上に塗布することで導電性シートを作る方法も提案されており、この方法としては、導電性シートおよびその製造方法(例えば、特許文献2参照。)などがある。
特公平7−78116号公報 特開2001−334598号公報
For the purpose of improving these moldability, a method of making polypyrrole finely dispersed in water and making an apparently uniform aqueous dispersion has been proposed. As this method, PVA which is a water-soluble polymer or an interface is proposed. There is a method for producing an aqueous dispersion of polypyrroles using an activator as a kind of dispersion stabilizer (for example, see Patent Document 1). In addition, a method of making a conductive sheet by mixing a hydrophilic binder resin with fine particles of polypyrroles dispersed in a hydrophilic solvent and coating the obtained resin composition on a substrate has also been proposed. As such, there are a conductive sheet and a manufacturing method thereof (for example, see Patent Document 2).
Japanese Patent Publication No. 7-78116 JP 2001-334598 A

しかしながら、これら従来技術には、未だ解決できない幾つかの課題が残されている。例えば、特許文献1には、ポリピロール類を水に分散させ、ピロール類をPVAまたはPVAとノニオン界面活性剤若しくはアニオン界面活性剤から選ばれる1種または2種以上の界面活性剤の存在下に重合することを特徴とするポリピロール類水分散液の製造方法が開示されているが、この方法は、水、溶媒に不溶なポリピロール類をPVAのような水溶性高分子の分散作用、または界面活性剤等による界面張力の低下により、重合されたピロール類を単純に微粒子化するといった考えに基づいている。   However, these conventional techniques still have some problems that cannot be solved. For example, in Patent Document 1, polypyrroles are dispersed in water, and pyrroles are polymerized in the presence of one or more surfactants selected from PVA or PVA and a nonionic surfactant or an anionic surfactant. There is disclosed a method for producing an aqueous dispersion of polypyrrole, which is characterized in that polypyrrole insoluble in water or a solvent is dispersed into a water-soluble polymer such as PVA, or a surfactant. This is based on the idea that the polymerized pyrroles are simply made into fine particles by reducing the interfacial tension due to the above.

ここで用いられる水溶性高分子としては、PVAが主に使われているが、PVAの量としては、ピロールに対して2〜500質量%、好ましくは10〜200質量%とされており、実施例では、50ないし200質量部のピロールに対して多くのPVAが用いられて
いる為に、ここで得られた導電性分散液は、PET等のフィルム上に薄膜で塗布した場合、ここで用いられるPVAが導通を妨げる事から、低い抵抗値を得る事ができない。
従って、ここでは、得られたポリピロール均一水分散液を、基板に塗布した後に乾燥してフィルム化してその抵抗値を測定しているが、ポリピロールーPVA複合の膜をフィルム化するには数10μm以上の厚さが必要であり、この厚みでの透明性は全くなく、単な
る黒色の複合フィルムの抵抗値を評価しているにすぎないのである。
さらには、水溶性高分子であるPVAや界面活性剤を大量に含むことで、空気中の水分の影響によるイオン導電性が発現するため、抵抗値が湿度に依存して変化するという欠点があった。
PVA is mainly used as the water-soluble polymer used here, but the amount of PVA is 2 to 500% by mass, preferably 10 to 200% by mass, based on pyrrole. In the example, since a large amount of PVA is used for 50 to 200 parts by mass of pyrrole, the conductive dispersion obtained here is used when a thin film is applied on a film such as PET. A low resistance value cannot be obtained because the PVA is prevented from conducting.
Therefore, here, the obtained polypyrrole uniform aqueous dispersion is applied to a substrate and then dried to form a film, and the resistance value is measured. In order to form a polypyrrole-PVA composite film, it is several tens of μm or more. Therefore, there is no transparency at this thickness, and the resistance value of the black composite film is merely evaluated.
Furthermore, since the ionic conductivity due to the influence of moisture in the air is expressed by containing a large amount of water-soluble polymer PVA and surfactant, there is a drawback that the resistance value changes depending on humidity. It was.

また、特許文献2には、樹脂シートを基材とし、該基材の少なくとも一方の面にポリピロール類微粒子を高分子分散剤および/またはドーパントを用いて親水性溶媒に分散し、更に親水性バインダー樹脂と混合した樹脂組成物を前記基材上に塗布後、溶媒を乾燥除去して導電性シートを形成する方法が開示されている。この方法は、ポリピロールおよび/またはポリピロール誘導体の微粒子を高分子分散剤および/またはドーパントを用いて親水性溶媒に分散させる工程、更に親水性バインダー樹脂を混合させる工程を経た後に、基材上に塗布し溶媒を乾燥除去させるため、塗工までの工程が多く、生産性に欠けるものである。   Patent Document 2 discloses that a resin sheet is used as a base material, polypyrrole fine particles are dispersed in a hydrophilic solvent using a polymer dispersant and / or a dopant on at least one surface of the base material, and a hydrophilic binder. A method of forming a conductive sheet by applying a resin composition mixed with a resin on the substrate and then removing the solvent by drying is disclosed. In this method, polypyrrole and / or polypyrrole derivative fine particles are dispersed in a hydrophilic solvent using a polymer dispersant and / or a dopant, and further mixed with a hydrophilic binder resin, and then applied onto a substrate. However, since the solvent is removed by drying, there are many steps up to coating, and productivity is lacking.

この様に、従来の導電性高分子微粒子分散体を得る技術では、導電性塗料とした場合において、長期分散安定性、透明性、薄膜コーティング時の低抵抗値化に関して、未だ満足すべきものがなかったのである。また、これらの分散液をコーティングする際の工程も多く、生産性に欠けるものであった。   As described above, in the conventional technology for obtaining a conductive polymer fine particle dispersion, there is not yet satisfactory in terms of long-term dispersion stability, transparency, and low resistance during thin film coating in the case of a conductive paint. It was. In addition, there are many steps when coating these dispersions, and productivity is lacking.

従って、本発明の目的としては、上記課題を解決しうる、基材に塗布する事ができる導電性塗料及び該導電性塗料に使用する導電性高分子微粒子分散体を提供する事にあり、特に、
1)長期貯蔵安定に優れ、
2)基材に塗布し乾燥させることにより、容易に基材との密着性に優れた導電層を形成でき、
3)形成された導電層は、薄膜で高い透明性を保持することができ、
4)該導電層は、高い耐摩耗性を有し、
5)更に、塗布した状態で湿度に依存せず低い抵抗値を保持できる
等の優れた特徴を有する導電性塗料及び該導電性塗料に使用する導電性高分子微粒子分散体を極めて経済的に提供する事にある。
Accordingly, an object of the present invention is to provide a conductive coating that can be applied to a substrate, which can solve the above-mentioned problems, and a conductive polymer fine particle dispersion used in the conductive coating. ,
1) Excellent long-term storage stability
2) By applying to a substrate and drying, a conductive layer with excellent adhesion to the substrate can be easily formed,
3) The formed conductive layer can maintain high transparency with a thin film,
4) The conductive layer has high wear resistance,
5) Furthermore, a conductive paint having excellent characteristics such as being able to maintain a low resistance value without depending on humidity when applied, and a conductive polymer fine particle dispersion used for the conductive paint are provided extremely economically. There is to do.

本発明者らは、上記課題を解決するために鋭意検討を行った結果、水系中において、反応性乳化剤の存在下で、導電性高分子を形成するモノマーを化学酸化重合する事で、さらには、該系内に反応性乳化剤と共重合可能な水溶性モノマー及び/又は親水性モノマーを加えて重合(化学酸化重合及びラジカル重合)を行う事で、上記課題を解決し得る導電性塗料に使用できる導電性高分子微粒子分散体が得られる事を見出し、本発明に至ったのである。
即ち、本発明は、水中において、導電性高分子を形成するモノマーを反応性乳化剤の存在下で化学酸化重合することにより得られる、導電性高分子微粒子分散体に関する。
また、本発明は、前記導電性高分子微粒子分散体を含有する導電性塗料に関する。
As a result of intensive studies to solve the above problems, the present inventors have conducted chemical oxidative polymerization of a monomer that forms a conductive polymer in the presence of a reactive emulsifier in an aqueous system. In addition, water-soluble monomers and / or hydrophilic monomers copolymerizable with reactive emulsifiers are added to the system to conduct polymerization (chemical oxidative polymerization and radical polymerization). The inventors have found that a conductive polymer fine particle dispersion that can be obtained is obtained, and have reached the present invention.
That is, the present invention relates to a conductive polymer fine particle dispersion obtained by chemical oxidative polymerization of a monomer that forms a conductive polymer in water in the presence of a reactive emulsifier.
The present invention also relates to a conductive paint containing the conductive polymer fine particle dispersion.

本発明の好ましい態様は、
前記化学酸化重合と同時にラジカル重合を行う前記導電性高分子微粒子分散体、
前記導電性高分子を形成するモノマーが、ピロール、アニリン、チオフェン及びそれらの
誘導体よりなる群から選択される1種もしくは2種以上を含む前記導電性高分子微粒子分散体、
反応性乳化剤と共重合可能な水溶性モノマーを更に添加して重合する前記導電性高分子微粒子分散体、
前記導電性高分子微粒子分散体であって、導電性高分子を形成するモノマーが重合したポリマー粒子の表面が、反応性乳化剤のポリマーで被覆されているか又は反応性乳化剤と反応性乳化剤と共重合可能な水溶性モノマー及び/又は親水性モノマーとで共重合したポリマーで被覆されている導電性高分子微粒子分散体、
である。
A preferred embodiment of the present invention is:
The conductive polymer fine particle dispersion that performs radical polymerization simultaneously with the chemical oxidative polymerization,
The conductive polymer fine particle dispersion, wherein the monomer that forms the conductive polymer includes one or more selected from the group consisting of pyrrole, aniline, thiophene, and derivatives thereof,
The conductive polymer fine particle dispersion which is polymerized by further adding a water-soluble monomer copolymerizable with a reactive emulsifier,
The conductive polymer fine particle dispersion, wherein the surface of the polymer particles polymerized with the monomer forming the conductive polymer is coated with a polymer of a reactive emulsifier or is copolymerized with a reactive emulsifier and a reactive emulsifier. Conductive polymer fine particle dispersion coated with a polymer copolymerized with possible water-soluble monomer and / or hydrophilic monomer,
It is.

本発明により得られる導電性高分子微粒子分散体は、粒径微小化、均一性、さらには水系中での長期安定性に大きな特徴が見られる。従来技術で得られた導電性複合粒子は、時間と共に重力による粒子の沈降などが生じ、分散安定性が極めて短時間で低下していた。また、見かけ微分散していると思われる粒子の場合、数時間の放置では安定であるものの、これ以上の時間放置しておくと、粒子同士が徐々に合一を始め、ある段階で急激に沈降してしまう現象が見られた。また、薄膜にコーティングする際に、新たにバインダー樹脂を添加する必要があり、透明性の低下、導電率の低下につながっていた。   The conductive polymer fine particle dispersion obtained by the present invention has significant characteristics in terms of particle size reduction, uniformity, and long-term stability in an aqueous system. In the conductive composite particles obtained by the conventional technique, particles settled due to gravity with time, and the dispersion stability decreased in a very short time. In addition, in the case of particles that seem to be finely dispersed, it is stable when left for several hours, but if left for longer than this, the particles gradually start to coalesce, and suddenly at a certain stage. A phenomenon of sedimentation was observed. Further, when coating a thin film, it is necessary to newly add a binder resin, leading to a decrease in transparency and a decrease in conductivity.

しかしながら、本発明の導電性高分子微粒子は、反応性乳化剤の導電性高分子を形成するモノマーが重合したポリマー粒子表面への強固な吸着により、粒子径が小さく、かつ均一な微粒子を形成することができ、また、反応性乳化剤が導電性高分子微粒子の表面を保護する形で被覆(付着)するため、少ない添加量にも関わらず、有効な立体安定化作用や静電安定化作用を示し、長期間分散安定性に優れた水分散体を得ることができるのである。また、前記のように反応性乳化剤がポリマー粒子表面に強固に吸着し、また、有効な立体安定化作用や静電安定化作用を示すことにより、得られた導電性高分子微粒子は、導電層として形成された際、高い耐摩耗性を示すことになる。
従って、本発明の導電性塗料は、上記の導電性高分子微粒子分散体を含有するので、所要の導電性及び基材との密着性の他、高い耐摩耗性を有する塗膜を形成することができる。
また、反応性乳化剤と共重合可能な水溶性モノマー及び/又は親水性モノマーを添加して重合(化学酸化重合及びラジカル重合)を行うと、導電性高分子の微粒子化と同時にポリマー粒子表面に被覆(付着)して形成された共重合体が、基材との密着性を向上させるバインダーとして作用するため、導電性を阻害し、また、透明性を低下させる成分となるバインダー樹脂を新たに添加する必要がなく、そのため、密着性、透明性に優れ、抵抗値の低い導電層が得られるのである。
また、上記導電層は、導電性微粒子の抵抗値の湿度依存性を引き起こす、過剰な水溶性高分子や界面活性剤を使用せず製造されるため、その抵抗値は湿度に依存しないものとなる。
更に、導電性微粒子の分散を損なわないバインダーの選定を新たに行う必要もなく、バインダーを加える工程もない事から、簡略化がはかれ生産性も向上するため、極めて経済的である。
However, the conductive polymer fine particles of the present invention form uniform fine particles with a small particle diameter by strong adsorption to the surface of polymer particles obtained by polymerization of the monomer that forms the conductive polymer of the reactive emulsifier. In addition, the reactive emulsifier coats (attaches) in a form that protects the surface of the conductive polymer fine particles, so that it exhibits effective steric stabilization and electrostatic stabilization, despite the small addition amount. Thus, an aqueous dispersion having excellent long-term dispersion stability can be obtained. In addition, as described above, the reactive emulsifier is firmly adsorbed on the surface of the polymer particles, and exhibits the effective steric stabilizing action and electrostatic stabilizing action. When formed as, it will show high wear resistance.
Therefore, since the conductive paint of the present invention contains the above-described conductive polymer fine particle dispersion, it forms a coating film having high wear resistance in addition to the required conductivity and adhesion to the substrate. Can do.
In addition, when water-soluble monomers and / or hydrophilic monomers copolymerizable with reactive emulsifiers are added and polymerization (chemical oxidation polymerization and radical polymerization) is performed, the surface of the polymer particles is coated simultaneously with the formation of fine conductive polymer particles. Since the copolymer formed by (adhesion) acts as a binder that improves the adhesion to the substrate, a new binder resin is added to inhibit conductivity and reduce transparency. Therefore, a conductive layer having excellent adhesion and transparency and a low resistance value can be obtained.
In addition, the conductive layer is manufactured without using an excessive water-soluble polymer or surfactant that causes the humidity dependency of the resistance value of the conductive fine particles, so that the resistance value does not depend on humidity. .
Furthermore, since it is not necessary to newly select a binder that does not impair the dispersion of the conductive fine particles and there is no step of adding the binder, it is simplified and the productivity is improved, which is extremely economical.

更に詳細に本発明を説明する。
本発明に使用する反応性乳化剤は、重合可能な置換基を有する乳化剤であり、重合可能な置換基としては、二重結合を有する置換基等が挙げられる。
本発明に使用する反応性乳化剤の具体例としては、以下に示す式(A)ないし式(F)で表される構造を有する化合物を含有するものが挙げられる。

Figure 0004888643
Figure 0004888643
好ましい化合物としては、nが10、MがSO3NH4である式(B)で表される化合物、m≒12である式(C)で表される化合物及び(E)で表される化合物が挙げられる。 The present invention will be described in more detail.
The reactive emulsifier used in the present invention is an emulsifier having a polymerizable substituent, and examples of the polymerizable substituent include a substituent having a double bond.
Specific examples of the reactive emulsifier used in the present invention include those containing a compound having a structure represented by the following formula (A) to formula (F).
Figure 0004888643
Figure 0004888643
Preferable compounds include a compound represented by the formula (B) in which n is 10 and M is SO 3 NH 4 , a compound represented by the formula (C) in which m≈12, and a compound represented by (E) Is mentioned.

反応性乳化剤の使用量は、導電性高分子を形成するモノマーの使用量に対して、1〜500質量%の範囲であり、好ましくは5〜300質量%の範囲である。   The usage-amount of a reactive emulsifier is the range of 1-500 mass% with respect to the usage-amount of the monomer which forms a conductive polymer, Preferably it is the range of 5-300 mass%.

反応性乳化剤は、これを単独で用いる事もできるが、より好ましくは、反応系に反応性乳化剤と共重合可能な水溶性モノマー及び/又は親水性モノマーを共存させ、かつラジカル開始剤を共存させると、反応性乳化剤と前記水溶性モノマー及び/又は親水性モノマーとで共重合することも知られており、この共重合体が導電性高分子微粒子の分散性を安定に保つと同時に、バインダーとして作用し、これにより基材との密着性を向上させる事が可能となる。
尚、反応性乳化剤と共重合可能なモノマーとしては、水溶性、親水性のラジカル重合性モノマーであれば特に制限はなく、アクリル系モノマーやビニル系モノマーなどが挙げられ、特に好ましくはアクリロニトリル、アクリル酸、メタクリル酸、N−ビニルピロリドン、アクリルアミド、メタクリルアミド、アクリル酸メチル、アクリル酸エチル、メタクリル酸メチル等が挙げられる。
The reactive emulsifier can be used alone, but more preferably, a water-soluble monomer and / or a hydrophilic monomer copolymerizable with the reactive emulsifier and a radical initiator are allowed to coexist in the reaction system. And a reactive emulsifier and the water-soluble monomer and / or hydrophilic monomer are also known. The copolymer keeps the dispersibility of the conductive polymer fine particles stable and at the same time serves as a binder. This makes it possible to improve the adhesion to the substrate.
The monomer copolymerizable with the reactive emulsifier is not particularly limited as long as it is a water-soluble and hydrophilic radically polymerizable monomer, and examples thereof include acrylic monomers and vinyl monomers, and acrylonitrile and acrylic monomers are particularly preferable. Examples include acid, methacrylic acid, N-vinylpyrrolidone, acrylamide, methacrylamide, methyl acrylate, ethyl acrylate, and methyl methacrylate.

本発明で使用可能な導電性高分子を形成するモノマーとしては、ピロール、アニリン、
チオフェンおよびそれらの誘導体よりなる群から選択される1種もしくは2種以上である。
As a monomer that forms a conductive polymer that can be used in the present invention, pyrrole, aniline,
One or more selected from the group consisting of thiophene and derivatives thereof.

例えば、ピロール誘導体としては、N−メチルピロール、N−エチルピロール、N−フ
ェニルピロール、N−ナフチルピロール、N−メチル−3−メチルピロール、N−メチル−3−エチルピロール、N−フェニル−3−メチルピロール、N−フェニル−3−エチルピロール、3−メチルピロール、3−エチルピロール、3−n−ブチルピロール、3−メトキシピロール、3−エトキシピロール、3−n−プロポキシピロール、3−n−ブトキシピロール、3−フェニルピロール、3−トルイルピロール、3−ナフチルピロール、3−フェノキシピロール、3−メチルフェノキシピロール、3−アミノピロール、3−ジメチルアミノピロール、3−ジエチルアミノピロール、3−ジフェニルアミノピロール、3−メチルフェニルアミノピロール、3−フェニルナフチルアミノピロール等が挙げられる。また、アニリン誘導体としては、o−メチルアニリン、m−メチルアニリン、o−エチルアニリン、m−エチルアニリン、o−エトキシアニリン、m−ブチルアニリン、m−ヘキシルアニリン、m−オクチルアニリン、2,3−ジメチルアニリン、2,5−ジメチルアニリン、2,5−ジメトキシアニリン、o−シアノアニリン、2,5−ジクロロアニリン、2−ブロモアニリン、5−クロロ−2−メトキシアニリン、3−フェノキシアニリン等が上げられる。また、チオフェン誘導体としては、3−メチルチオフェン、3,4−ジメチルチオフェン、3−ヘキシルチオフェン、3−ステアリルチオフェン、3−ブロモチオフェン、3−メトキシジエトキシメチルチオフェン、3−フェニルチオフェン、3−ベンジルチオフェン、3−メチル−4−フェニルチオフェン等が挙げられる。好ましくは、ピロール、チオフェン及びアニリンが挙げられ、特に好ましくは、ピロールが挙げられる。
For example, as pyrrole derivatives, N-methylpyrrole, N-ethylpyrrole, N-phenylpyrrole, N-naphthylpyrrole, N-methyl-3-methylpyrrole, N-methyl-3-ethylpyrrole, N-phenyl-3 -Methylpyrrole, N-phenyl-3-ethylpyrrole, 3-methylpyrrole, 3-ethylpyrrole, 3-n-butylpyrrole, 3-methoxypyrrole, 3-ethoxypyrrole, 3-n-propoxypyrrole, 3-n -Butoxypyrrole, 3-phenylpyrrole, 3-toluylpyrrole, 3-naphthylpyrrole, 3-phenoxypyrrole, 3-methylphenoxypyrrole, 3-aminopyrrole, 3-dimethylaminopyrrole, 3-diethylaminopyrrole, 3-diphenylamino Pyrrole, 3-methylphenylaminopyrrole , 3-phenylnaphthylaminopyrrole and the like. As aniline derivatives, o-methylaniline, m-methylaniline, o-ethylaniline, m-ethylaniline, o-ethoxyaniline, m-butylaniline, m-hexylaniline, m-octylaniline, 2,3 -Dimethylaniline, 2,5-dimethylaniline, 2,5-dimethoxyaniline, o-cyanoaniline, 2,5-dichloroaniline, 2-bromoaniline, 5-chloro-2-methoxyaniline, 3-phenoxyaniline, etc. Raised. As thiophene derivatives, 3-methylthiophene, 3,4-dimethylthiophene, 3-hexylthiophene, 3-stearylthiophene, 3-bromothiophene, 3-methoxydiethoxymethylthiophene, 3-phenylthiophene, 3-benzyl Examples include thiophene and 3-methyl-4-phenylthiophene. Preferable examples include pyrrole, thiophene, and aniline, and particularly preferable examples include pyrrole.

また、導電性高分子を形成するモノマーの化学酸化重合時に用いられる水溶液中の導電性高分子を形成するモノマーの濃度は、0.01から5質量%の範囲が好ましく、さらに好ましくは0.1から2質量%の範囲が挙げられる。   Further, the concentration of the monomer that forms the conductive polymer in the aqueous solution used during the chemical oxidative polymerization of the monomer that forms the conductive polymer is preferably in the range of 0.01 to 5% by mass, and more preferably 0.1%. To 2% by mass.

本発明で用いられる、化学酸化重合の触媒となる酸化剤としては、ピロール、アニリン、チオフェンおよびそれらの誘導体を化学酸化重合し得るものであれば特に制限はなく、例えば、硫酸、塩酸、硝酸およびクロロスルホン酸のような無機酸、アルキルベンゼンスルホン酸およびアルキルナフタレンスルホン酸のような有機酸、過硫酸カリウム、過硫酸アンモニウム、過硫酸ナトリウムおよび過酸化水素のような過酸化物、塩化第二鉄、塩化アルミニウムなどの金属ハロゲン化物、沃素酸、過塩素酸カリウムなどのハロゲン酸及びその塩、過マンガン酸カリウムなどの遷移金属化合物などが使用できる。これらは、単独または混合して用いてもよい。   The oxidizing agent used in the present invention as a catalyst for chemical oxidative polymerization is not particularly limited as long as it can chemically oxidize pyrrole, aniline, thiophene and their derivatives. For example, sulfuric acid, hydrochloric acid, nitric acid and Inorganic acids such as chlorosulfonic acid, organic acids such as alkylbenzenesulfonic acid and alkylnaphthalenesulfonic acid, peroxides such as potassium persulfate, ammonium persulfate, sodium persulfate and hydrogen peroxide, ferric chloride, chloride Metal halides such as aluminum, halogen acids such as iodic acid and potassium perchlorate and salts thereof, transition metal compounds such as potassium permanganate, and the like can be used. These may be used alone or in combination.

好ましい酸化剤としては、ラジカル開始剤としての活性を併せ持ち、そのため、導電性高分子を形成するモノマーを酸化重合すると同時に、反応性乳化剤と該反応性乳化剤と共重合可能な水溶性モノマー及び/又は親水性モノマーを共重合(ラジカル重合)することができる、過硫酸カリウム、過硫酸アンモニウム、過硫酸ナトリウム等の過硫酸塩が挙げられる。   Preferred oxidizing agents also have activity as radical initiators, so that a monomer that forms a conductive polymer is oxidatively polymerized, and at the same time, a reactive emulsifier and a water-soluble monomer copolymerizable with the reactive emulsifier and / or Examples thereof include persulfates such as potassium persulfate, ammonium persulfate and sodium persulfate, which can copolymerize (radical polymerization) a hydrophilic monomer.

また、上記で挙げられた酸化剤に加えてラジカル開始剤を添加することもでき、該ラジカル開始剤としては、例えば、2,2´−アゾビス(2−アミジノプロパン)二塩酸塩、4,4´−アゾビス(4−シアノ吉草酸)、アゾビスイソブチロニトリル(AIBN)、ベンゾイルパーオキシド(BPO)等が挙げられる。   Moreover, in addition to the oxidizing agent mentioned above, a radical initiator can also be added. Examples of the radical initiator include 2,2′-azobis (2-amidinopropane) dihydrochloride, 4,4 '-Azobis (4-cyanovaleric acid), azobisisobutyronitrile (AIBN), benzoyl peroxide (BPO) and the like can be mentioned.

使用する酸化剤の量は、導電性高分子を形成するモノマー1モルに対して0.01から7モル程度、好ましくは0.1から4モル程度である。
ラジカル開始剤を使用する際の使用量としては、上記酸化剤の使用量と同様の使用量が挙げられる。
The amount of the oxidizing agent to be used is about 0.01 to 7 mol, preferably about 0.1 to 4 mol, with respect to 1 mol of the monomer forming the conductive polymer.
Examples of the usage amount when using the radical initiator include the same usage amount as that of the oxidizing agent.

上記の他に、重合に際して、ドーピング剤(ドーパント)を共存させることによってドーピングされた重合体を得る事ができる。本発明では、酸化剤の一部が導電性高分子微粒子に取り込まれて、該導電性高分子微粒子をより低抵抗とするドーパントとしての役割を果たす場合もあるが、積極的にドーパントを入れる事も可能である。用いられるドーパントとしては、一般に使用されるアクセプター性のドーパントなら全て使用できる。アクセプタ−性のドーパントとしては、塩素、臭素、ヨウ素等のハロゲン類、五フッ化リン等のルイス酸、塩化水素、硫酸等のプロトン酸、塩化第二鉄等の遷移金属塩化物、過塩素酸銀、フッ化ホウ素銀等の遷移金属化合物等が挙げられる。   In addition to the above, a doped polymer can be obtained by allowing a doping agent (dopant) to coexist during polymerization. In the present invention, a part of the oxidizing agent may be taken into the conductive polymer fine particles to serve as a dopant that makes the conductive polymer fine particles have a lower resistance. Is also possible. As a dopant to be used, all acceptor dopants generally used can be used. Acceptable dopants include halogens such as chlorine, bromine and iodine, Lewis acids such as phosphorus pentafluoride, proton acids such as hydrogen chloride and sulfuric acid, transition metal chlorides such as ferric chloride, and perchloric acid Examples thereof include transition metal compounds such as silver and silver boron fluoride.

導電性高分子微粒子分散体の製造方法は、例えば以下のような工程で行われる:
(a)水(例えばイオン交換水)に導電性高分子を形成するモノマー、反応性乳化剤及び所望により反応性乳化剤と共重合可能な水溶性モノマー及び/又は親水性モノマー、また、所望によりドーパントを添加して混合攪拌する工程、
(b)上記で調製した水溶液に、酸化剤及び所望によりラジカル開始剤を添加し、所望により加熱することにより化学酸化重合(場合により、化学酸化重合及びラジカル重合)し、導電性高分子微粒子分散体を製造する工程。
The method for producing a conductive polymer fine particle dispersion is performed, for example, in the following steps:
(A) a monomer that forms a conductive polymer in water (for example, ion-exchanged water), a reactive emulsifier, and optionally a water-soluble monomer and / or hydrophilic monomer copolymerizable with the reactive emulsifier, and optionally a dopant. Adding and mixing and stirring,
(B) Addition of an oxidizing agent and, if desired, a radical initiator to the aqueous solution prepared as described above, and heating, if desired, chemical oxidative polymerization (in some cases, chemical oxidative polymerization and radical polymerization) to disperse conductive polymer fine particles The process of manufacturing the body.

前記各工程は、当業者に既知である手段を利用して行うことができる。例えば、混合攪拌は、特に限定されないが、例えばマグネットスターラー、攪拌機、ホモジナイザー等を適宜選択して行うことができ、また、化学酸化重合は超音波照射下で行うこともできる。   Each of the above steps can be performed using means known to those skilled in the art. For example, the mixing and stirring is not particularly limited. For example, a magnetic stirrer, a stirrer, a homogenizer, or the like can be selected as appropriate, and chemical oxidation polymerization can be performed under ultrasonic irradiation.

上記の製造法により得られる導電性高分子微粒子は、主として導電性高分子を形成するモノマーが重合したポリマー粒子の表面上が、反応性乳化剤のポリマーにより被覆されるか又は反応性乳化剤と反応性乳化剤と共重合可能な水溶性モノマー及び/又は親水性モノマーとで共重合したポリマーにより被覆された微粒子である。そしてその特徴は、微細な粒径(平均粒子径が0.5μm未満)と、水中で長期間安定に分散可能であり、導電層として形成された際に、優れた密着性及び高い耐摩耗性を示すことである。   The conductive polymer fine particles obtained by the above production method are mainly coated with the polymer of the reactive emulsifier on the surface of the polymer particle obtained by polymerizing the monomer forming the conductive polymer, or reactive with the reactive emulsifier. Fine particles coated with a polymer copolymerized with a water-soluble monomer and / or a hydrophilic monomer copolymerizable with an emulsifier. And its features are fine particle size (average particle size is less than 0.5μm), dispersible stably in water for a long time, and excellent adhesion and high wear resistance when formed as a conductive layer It is to show.

上記で得られた導電性高分子微粒子分散体は、そのまま導電性塗料として使用することができる。
また、必要に応じてバインダー等を加えて、導電性塗料として使用することもできる。尚、使用するバインダーとしては、例えば、ポリ塩化ビニル、ポリカーボネート、ポリスチレン、ポリメチルメタクリレート、ポリエステル、ポリスルホン、ポリフェニレンオキシド、ポリブタジエン、ポリ(N−ビニルカルバゾール)、炭化水素樹脂、ケトン樹脂、フ
ェノキシ樹脂、ポリアミド、エチルセルロース、酢酸ビニル、ABS樹脂、ポリウレタン樹
脂、メラミン樹脂、不飽和ポリエステル樹脂、アルキド樹脂、エポキシ樹脂、シリコン樹脂等が挙げられる。
上記に記載した方法により得られた導電性塗料は、慣用の方法で基材上にコーティングし、必要に応じて加熱を行って、乾燥させることによって容易に基材上に導電層を形成させることができる。
従って、本発明の製造方法により得られた導電性高分子微粒子分散体は、導電性塗料、防錆塗料、半導体材料、コンデンサ用電解質、有機EL素子の正孔輸送材、二次電池用電極材として有用である。
The conductive polymer fine particle dispersion obtained above can be used as a conductive paint as it is.
Moreover, a binder etc. can be added as needed and it can also be used as an electroconductive coating material. Examples of the binder used include polyvinyl chloride, polycarbonate, polystyrene, polymethyl methacrylate, polyester, polysulfone, polyphenylene oxide, polybutadiene, poly (N-vinylcarbazole), hydrocarbon resin, ketone resin, phenoxy resin, and polyamide. , Ethyl cellulose, vinyl acetate, ABS resin, polyurethane resin, melamine resin, unsaturated polyester resin, alkyd resin, epoxy resin, silicon resin and the like.
The conductive paint obtained by the method described above is coated on a base material by a conventional method, heated as necessary, and dried to easily form a conductive layer on the base material. Can do.
Therefore, the conductive polymer fine particle dispersion obtained by the production method of the present invention includes a conductive paint, a rust preventive paint, a semiconductor material, an electrolyte for a capacitor, a hole transport material for an organic EL element, and an electrode material for a secondary battery. Useful as.

本発明で得られる導電性高分子微粒子水分散体は、長期間安定して分散状態を保持することが可能であり、経時により粒径が変化することはない。そして、導電層として形成された際に、高い耐摩耗性を示す。また、化学酸化重合(場合により、化学酸化重合及びラ
ジカル重合)に際し、ドーパントを共存させることによって、更なる導電性能の向上も可能である。更には、導電性高分子微粒子水分散体を基材上にコーティングした際、反応性乳化剤と共重合したポリマーが基材との密着性を向上させるバインダーとして作用し、それにより、別途バインダーを添加する必要がなく、そのため、密着性、透明性に優れた、抵抗値の低い導電性薄膜が得られるものである。
The conductive polymer fine particle aqueous dispersion obtained in the present invention can stably maintain a dispersed state for a long period of time, and the particle size does not change with time. And when formed as a conductive layer, it exhibits high wear resistance. Further, in the case of chemical oxidative polymerization (in some cases, chemical oxidative polymerization and radical polymerization), it is possible to further improve the conductive performance by allowing a dopant to coexist. Furthermore, when the conductive polymer fine particle aqueous dispersion is coated on the base material, the polymer copolymerized with the reactive emulsifier acts as a binder for improving the adhesion to the base material, thereby adding a separate binder. Therefore, it is possible to obtain a conductive thin film having excellent adhesion and transparency and having a low resistance value.

以下、実施例を挙げて本発明を説明するが、本発明はこれら実施例により何ら限定されるものではない。
尚、実施例で使用した反応性乳化剤(反応性乳化剤AないしC)の商品名及び化学構造を表1に示した。
表1

Figure 0004888643
EXAMPLES Hereinafter, although an Example is given and this invention is demonstrated, this invention is not limited at all by these Examples.
The trade names and chemical structures of the reactive emulsifiers (reactive emulsifiers A to C) used in the examples are shown in Table 1.
Table 1
Figure 0004888643

実施例1
イオン交換水40gにピロール65mgと反応性乳化剤A 0.15gを加えて10分撹拌し、過硫酸アンモニウム(0.19M)10mLを添加して、反応温度60℃で24時間重合反応を行った。黒色の導電性高分子微粒子の水分散体を得た。
Example 1
To 40 g of ion-exchanged water, 65 mg of pyrrole and 0.15 g of reactive emulsifier A were added and stirred for 10 minutes, 10 mL of ammonium persulfate (0.19M) was added, and a polymerization reaction was performed at a reaction temperature of 60 ° C. for 24 hours. An aqueous dispersion of black conductive polymer fine particles was obtained.

実施例2
イオン交換水20gにアクリロニトリル40mgを溶解させ、これに、イオン交換水10gにピロール65mgと反応性乳化剤A 0.15gをそれぞれ溶解させたものを加え、過硫酸アンモニウム(0.19M)10mLを添加して、反応温度60℃で24時間重合反応を行った。黒色の導電性高分子微粒子の水分散体を得た。
Example 2
40 mg of acrylonitrile is dissolved in 20 g of ion-exchanged water, 65 mg of pyrrole and 0.15 g of reactive emulsifier A are dissolved in 10 g of ion-exchanged water, and 10 mL of ammonium persulfate (0.19M) is added. The polymerization reaction was carried out at a reaction temperature of 60 ° C. for 24 hours. An aqueous dispersion of black conductive polymer fine particles was obtained.

実施例3
イオン交換水40gにピロール65mgと反応性乳化剤B 0.375g(有効成分0.15g)を加えて10分撹拌し、過硫酸アンモニウム(0.19M)10mLを添加して、反応温度60℃で24時間重合反応を行った。黒色の導電性高分子微粒子の水分散体を得た。
Example 3
Add 65 mg of pyrrole and 0.375 g of reactive emulsifier B (active ingredient 0.15 g) to 40 g of ion-exchanged water, stir for 10 minutes, add 10 mL of ammonium persulfate (0.19M), and react at a reaction temperature of 60 ° C. for 24 hours. A polymerization reaction was performed. An aqueous dispersion of black conductive polymer fine particles was obtained.

実施例4
イオン交換水40gにピロール65mgと反応性乳化剤A 0.15gを加えて10分
撹拌し、過硫酸アンモニウム(0.19M)10mLを添加して、反応温度25℃で24時間重合反応を行った。黒色の導電性高分子微粒子の水分散体を得た。
Example 4
65 mg of pyrrole and 0.15 g of reactive emulsifier A were added to 40 g of ion-exchanged water, stirred for 10 minutes, 10 mL of ammonium persulfate (0.19M) was added, and a polymerization reaction was performed at a reaction temperature of 25 ° C. for 24 hours. An aqueous dispersion of black conductive polymer fine particles was obtained.

実施例5
導電性高分子を形成するモノマーとして、アニリンを用いた以外は、実施例1と同様に行った。
Example 5
The same procedure as in Example 1 was performed except that aniline was used as the monomer for forming the conductive polymer.

実施例6
イオン交換水20gにアクリロニトリル40mgを溶解させ、これに、イオン交換水10gにピロール65mgと反応性乳化剤C 0.167g(有効成分0.15g)をそれぞれ溶解させたものを加え、過硫酸アンモニウム(0.19M)10mLを添加して、反応温度60℃で24時間重合反応を行った。黒色の導電性微粒子水分散体を得た。
Example 6
40 mg of acrylonitrile is dissolved in 20 g of ion-exchanged water, and 65 mg of pyrrole and 0.167 g of reactive emulsifier C (active ingredient 0.15 g) are added to 10 g of ion-exchanged water, and ammonium persulfate (0. 19M) 10 mL was added, and a polymerization reaction was performed at a reaction temperature of 60 ° C. for 24 hours. A black conductive fine particle aqueous dispersion was obtained.

比較例1
反応性乳化剤を添加しなかった以外は、実施例1と同様に行った。ポリピロールの凝集体が得られ、水溶液中に分散せず、導電性薄膜は作成できなかった。
Comparative Example 1
The same procedure as in Example 1 was conducted except that no reactive emulsifier was added. An aggregate of polypyrrole was obtained and was not dispersed in an aqueous solution, and a conductive thin film could not be prepared.

比較例2
反応性乳化剤の代わりに、ドデシル硫酸ナトリウム0.15gを使用した以外は、実施例1と同様に行った。
Comparative Example 2
The same procedure as in Example 1 was performed except that 0.15 g of sodium dodecyl sulfate was used instead of the reactive emulsifier.

比較例3
反応性乳化剤の代わりに、ポリビニルアルコール(完全ケン化タイプ、重合度1700、5%水溶液)を0.65g(固形分32.5mg)使用した以外は、実施例1と同様に行った。ポリピロールの凝集体が得られ、水溶液中に分散せず、導電性薄膜は作成できなかった。
Comparative Example 3
It carried out similarly to Example 1 except having used 0.65g (solid content 32.5mg) of polyvinyl alcohol (complete saponification type, polymerization degree 1700, 5% aqueous solution) instead of the reactive emulsifier. An aggregate of polypyrrole was obtained and was not dispersed in an aqueous solution, and a conductive thin film could not be prepared.

試験例1
実施例1〜6および比較例1〜3で得た導電性高分子微粒子について、平均粒子径および全均一係数を、Microtrac Nanotrac UPA−EX150(日機装株式会社製)による粒度分布測定(モノディスパースモード)から求めた。この粒度分布から、全体積を100%として累積曲線を求め、その累積曲線が50%となる点の粒子径を平均粒子径とした。また、60%の粒子径(d60%)を10%の粒子径(d10%)で除した値(d60%/d10%)と、90%の粒子径(d90%)を40%の粒子径(d40%)で除した値(d90%/d40%)を加えた値((d60%/d10%)+(d90%/d40%))を全均一係数とした。従って、(d60%/d10%)および(d90%/d40%)がそれぞれ1.0に近いほど、また((d60%/d10%)+(d90%/d40%))が2.0に近いほど、粒子径分布幅が狭くなることを示す。結果を表2に表した。
Test example 1
For the conductive polymer fine particles obtained in Examples 1 to 6 and Comparative Examples 1 to 3, the average particle size and the total uniformity coefficient were measured for particle size distribution by Microtrac Nanotrac UPA-EX150 (manufactured by Nikkiso Co., Ltd.) (monodisperse mode) ) From this particle size distribution, the cumulative curve was determined with the total volume being 100%, and the particle size at which the cumulative curve was 50% was taken as the average particle size. Further, a value obtained by dividing 60% particle size (d60%) by 10% particle size (d10%) (d60% / d10%) and 90% particle size (d90%) are 40% particle size ( The value obtained by adding (d90% / d40%) divided by (d40%) ((d60% / d10%) + (d90% / d40%)) was defined as the total uniformity coefficient. Therefore, as (d60% / d10%) and (d90% / d40%) are closer to 1.0, respectively, ((d60% / d10%) + (d90% / d40%)) is closer to 2.0. It shows that the particle size distribution width becomes narrower. The results are shown in Table 2.

試験例2
実施例1〜6および比較例1〜3で得た導電性高分子微粒子分散液の分散安定性の評価は、遠心式自動粒度分布測定装置CAPA−500(株式会社堀場製作所製)を用いて、5000rpmの遠心下での相対吸光度の経時変化から評価した。10分間遠心後の相対吸光度を表2に表した。
表2

Figure 0004888643
Test example 2
Evaluation of the dispersion stability of the conductive polymer fine particle dispersions obtained in Examples 1 to 6 and Comparative Examples 1 to 3 was performed using a centrifugal automatic particle size distribution analyzer CAPA-500 (manufactured by Horiba, Ltd.). Evaluation was made from the change in relative absorbance with time under centrifugation at 5000 rpm. Table 2 shows the relative absorbance after centrifugation for 10 minutes.
Table 2
Figure 0004888643

試験例3
実施例1〜6および比較例1〜3で得た導電性高分子微粒子分散液をバーコーター#8を用いて均一に塗布し、乾燥させて得られた導電性薄膜の表面抵抗値(Ω)をハイレスタ抵抗計およびローレスタ抵抗計(それぞれ三菱化学株式会社製)を用いて測定した。湿度50%における測定結果を表3に表した。
Test example 3
The surface resistance value (Ω) of the conductive thin film obtained by uniformly applying the conductive polymer fine particle dispersions obtained in Examples 1 to 6 and Comparative Examples 1 to 3 using a bar coater # 8 and drying them. Was measured using a Hiresta resistance meter and a Loresta resistance meter (each manufactured by Mitsubishi Chemical Corporation). The measurement results at a humidity of 50% are shown in Table 3.

試験例4
実施例1〜6および比較例1〜3の導電性薄膜の光線透過率(透明性、%)は、分光光度計(日本分光株式会社製)を用いて、ベースの基材をリファレンスとして550nmで測定した。結果を表3に表した。
Test example 4
The light transmittance (transparency,%) of the conductive thin films of Examples 1 to 6 and Comparative Examples 1 to 3 was 550 nm using a spectrophotometer (manufactured by JASCO Corporation) as a reference with the base substrate as a reference. It was measured. The results are shown in Table 3.

試験例5
実施例1〜6および比較例1〜3の導電性薄膜の密着性の評価は、JISK5600−5−6により行った。評価の基準は、0〜5に分類した。結果を表3に表した。
Test Example 5
Evaluation of adhesion of the conductive thin films of Examples 1 to 6 and Comparative Examples 1 to 3 was performed according to JISK5600-5-6. Evaluation criteria were classified into 0-5. The results are shown in Table 3.

試験例6
実施例1〜6および比較例1〜3の導電性薄膜の耐摩耗性の評価は、JISL0849による摩擦試験を行い、乾燥及び湿潤条件における耐摩耗性について、JISL0801に基づき、良好な順に5級から1級まで分類した。結果を表3に表した。
Test Example 6
The abrasion resistance of the conductive thin films of Examples 1 to 6 and Comparative Examples 1 to 3 was evaluated by conducting a friction test according to JISL0849, and regarding abrasion resistance under dry and wet conditions based on JISL0801, starting from grade 5 in order of goodness. Classified to the first grade. The results are shown in Table 3.

試験例7
実施例1〜6および比較例1〜3の導電性薄膜の湿度依存性については、湿度10、50、90%の環境下で表面抵抗値の測定を行い、表面抵抗値の変化を調べた。湿度10%〜90%の時の抵抗値の変化が1桁未満を「なし」、1桁以上を「あり」とした。その結果を表3に表した。
表3

Figure 0004888643
Test Example 7
About the humidity dependence of the electroconductive thin film of Examples 1-6 and Comparative Examples 1-3, the surface resistance value was measured in the environment of humidity 10, 50, and 90%, and the change of the surface resistance value was investigated. When the humidity was 10% to 90%, the change in resistance value was “none” when less than one digit, and “yes” when more than one digit. The results are shown in Table 3.
Table 3
Figure 0004888643

Claims (6)

水中において、導電性高分子を形成するモノマーを反応性乳化剤の存在下で化学酸化重合することにより得られる、導電性高分子微粒子分散体。 A conductive polymer fine particle dispersion obtained by chemical oxidative polymerization of a monomer that forms a conductive polymer in water in the presence of a reactive emulsifier. 前記化学酸化重合と同時にラジカル重合を行う請求項1記載の導電性高分子微粒子分散体。 The conductive polymer fine particle dispersion according to claim 1, wherein radical polymerization is performed simultaneously with the chemical oxidative polymerization. 前記導電性高分子を形成するモノマーが、ピロール、アニリン、チオフェン及びそれらの誘導体よりなる群から選択される1種もしくは2種以上を含む請求項1記載の導電性高分子微粒子分散体。 The conductive polymer fine particle dispersion according to claim 1, wherein the monomer that forms the conductive polymer includes one or more selected from the group consisting of pyrrole, aniline, thiophene, and derivatives thereof. 反応性乳化剤と共重合可能な水溶性モノマー及び/又は親水性モノマーを更に添加して重合する請求項1ないし3の何れか1項に記載の導電性高分子微粒子分散体。 The conductive polymer fine particle dispersion according to any one of claims 1 to 3, which is polymerized by further adding a water-soluble monomer and / or a hydrophilic monomer copolymerizable with a reactive emulsifier. 請求項1ないし4の何れか1項に記載の導電性高分子微粒子分散体であって、導電性高分子を形成するモノマーが重合したポリマー粒子の表面が、反応性乳化剤のポリマーで被覆されているか又は反応性乳化剤と反応性乳化剤と共重合可能な水溶性モノマー及び/又は親水性モノマーとで共重合したポリマーで被覆されている導電性高分子微粒子分散体。 The conductive polymer fine particle dispersion according to any one of claims 1 to 4, wherein the surface of the polymer particle obtained by polymerizing the monomer forming the conductive polymer is coated with a polymer of a reactive emulsifier. A conductive polymer fine particle dispersion coated with a polymer copolymerized with a water-soluble monomer and / or a hydrophilic monomer copolymerizable with a reactive emulsifier and a reactive emulsifier. 請求項1ないし5の何れか1項に記載の導電性高分子微粒子分散体を含有する導電性塗料。

A conductive paint containing the conductive polymer fine particle dispersion according to any one of claims 1 to 5.

JP2006126036A 2006-04-28 2006-04-28 Conductive polymer fine particle dispersion and conductive paint using the same Active JP4888643B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006126036A JP4888643B2 (en) 2006-04-28 2006-04-28 Conductive polymer fine particle dispersion and conductive paint using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006126036A JP4888643B2 (en) 2006-04-28 2006-04-28 Conductive polymer fine particle dispersion and conductive paint using the same

Publications (2)

Publication Number Publication Date
JP2007297500A JP2007297500A (en) 2007-11-15
JP4888643B2 true JP4888643B2 (en) 2012-02-29

Family

ID=38767269

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006126036A Active JP4888643B2 (en) 2006-04-28 2006-04-28 Conductive polymer fine particle dispersion and conductive paint using the same

Country Status (1)

Country Link
JP (1) JP4888643B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007314606A (en) * 2006-05-23 2007-12-06 Tokai Rubber Ind Ltd Method for producing conductive polymer and conductive polymer obtained by the same
JP5465025B2 (en) 2010-01-27 2014-04-09 Necトーキン株式会社 Conductive polymer suspension and manufacturing method thereof, conductive polymer material, solid electrolytic capacitor and manufacturing method thereof
US8927683B2 (en) 2010-03-01 2015-01-06 Nippon Chemi-Con Corporation Polymerization fluid, method for producing the polymerization fluid, transparent film and transparent electrode made from the polymerization fluid
JP2011224835A (en) * 2010-04-16 2011-11-10 Achilles Corp Method for manufacturing thermal transfer medium
WO2014141367A1 (en) * 2013-03-11 2014-09-18 昭和電工株式会社 Method for producing conductive polymer-containing dispersion
KR101559202B1 (en) * 2013-07-23 2015-10-15 연세대학교 산학협력단 Method of preparing for water soluble conductive polymer nanoparticle
GB201317966D0 (en) * 2013-10-10 2013-11-27 Univ Manchester Nanoparticles
JP7455027B2 (en) 2020-08-28 2024-03-25 信越ポリマー株式会社 Conductive polymer dispersion and method for producing the same, and method for producing conductive film

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4731408A (en) * 1985-12-20 1988-03-15 Polaroid Corporation Processable conductive polymers
JPH0778116B2 (en) * 1987-02-09 1995-08-23 住友化学工業株式会社 Method for producing aqueous dispersion of polypyrrole
JP3736275B2 (en) * 2000-03-31 2006-01-18 松下電器産業株式会社 Conductive composition and method for producing the same
JP2004307722A (en) * 2003-04-09 2004-11-04 Nippon Shokubai Co Ltd Emulsion-type electrically conductive polymer composition and manufacturing method thereof
TW200624461A (en) * 2004-10-13 2006-07-16 Tokyo Inst Tech The manufacturing method of conductive polymer

Also Published As

Publication number Publication date
JP2007297500A (en) 2007-11-15

Similar Documents

Publication Publication Date Title
JP4888643B2 (en) Conductive polymer fine particle dispersion and conductive paint using the same
JP5374841B2 (en) Conductive polymer / dopant complex organic solvent dispersion, method for producing the same, and composition containing conductive polymer / dopant complex organic solvent dispersion
JP5316000B2 (en) Conductive polymer / dopant organic solvent dispersion and composition containing the dispersion
JP4829328B2 (en) Water-dispersible polythiophene produced with polymeric acid colloids
EP2947126B1 (en) Conductive polymer composite and substrate
JP6225135B2 (en) Conductive material and substrate
JP2011193002A (en) Device for including buffer layer containing electrically conductive organic polymer and a plurality of nanoparticles
JP2005536595A (en) Direct process for producing stable aqueous dispersions of conductive polyaniline
JP6294254B2 (en) Conductive material and substrate
JP5340731B2 (en) Conductive nanocomposite particles with polyalkylacrylate core and polyaniline coating
JP5429652B2 (en) Process for producing conductive polymer / dopant complex organic solvent dispersion
KR101050523B1 (en) Method for preparing core-shell structured nanoparticles comprising vinyl or acrylic polymer core and conductive polymer shell
JP5984054B2 (en) Organic conductive film
KR20200098402A (en) Conductive polymer complex and conductive polymer composition
JP4300468B2 (en) Conductive composite fine particle dispersion
KR102090832B1 (en) Organic conductive film
JP4385254B2 (en) Conductive fine particles and method for producing the same
Riaz et al. Conductive polymer composites and blends: recent trends
JP4470175B2 (en) Conductive fine particle aqueous dispersion and process for producing the same
JP5105409B2 (en) Antistatic sheet for molding
JP4501030B2 (en) Conductive fine particles and method for producing the same
KR100481665B1 (en) Electrical conductive poly(thiophene) non-aqueous dispersion, method for preparing thereof, and its use
KR100793319B1 (en) Method for preparing water-dispersable polyaniline nanoparticles by dispersion polymerization
WO2021205873A1 (en) Conductive polymer composition, substrate, and method for producing substrate
JP4816875B2 (en) Conductive composite film

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090417

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111109

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111124

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111129

R150 Certificate of patent or registration of utility model

Ref document number: 4888643

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141222

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250