JP4888432B2 - Method for producing 4H-SiC single crystal - Google Patents

Method for producing 4H-SiC single crystal Download PDF

Info

Publication number
JP4888432B2
JP4888432B2 JP2008095336A JP2008095336A JP4888432B2 JP 4888432 B2 JP4888432 B2 JP 4888432B2 JP 2008095336 A JP2008095336 A JP 2008095336A JP 2008095336 A JP2008095336 A JP 2008095336A JP 4888432 B2 JP4888432 B2 JP 4888432B2
Authority
JP
Japan
Prior art keywords
growth
crystal
sic single
single crystal
sic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008095336A
Other languages
Japanese (ja)
Other versions
JP2009249192A (en
Inventor
秀光 坂元
靖幸 藤原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2008095336A priority Critical patent/JP4888432B2/en
Publication of JP2009249192A publication Critical patent/JP2009249192A/en
Application granted granted Critical
Publication of JP4888432B2 publication Critical patent/JP4888432B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、溶液法により4H−SiC単結晶を製造する方法に関する。   The present invention relates to a method for producing a 4H—SiC single crystal by a solution method.

これまでに、溶液法によりSiC単結晶を成長させる方法が種々提案されている。SiC単結晶の成長において重要なポイントは、成長速度と平坦成長である。   Up to now, various methods for growing SiC single crystals by a solution method have been proposed. Important points in the growth of the SiC single crystal are the growth rate and flat growth.

特許文献1には、Si融液にTiまたはMnを添加した溶媒を用いて高速成長させることが提案されている。しかし、本発明者の実験によれば、平坦成長が確保できない。TiまたはMnの単独添加では、確かにCの溶解量が増加し、析出するSiC量は増加するが、多結晶化状態であり、平坦成長すなわち単結晶成長は得られない。また、特許文献1は実施例において6H−SiC単結晶の成長を行なっており、4H−SiC単結晶の成長については特に配慮されていない。   Patent Document 1 proposes high-speed growth using a solvent obtained by adding Ti or Mn to a Si melt. However, according to the inventors' experiments, flat growth cannot be ensured. When Ti or Mn is added alone, the amount of C dissolved increases and the amount of precipitated SiC increases, but it is in a polycrystallized state, and flat growth, that is, single crystal growth cannot be obtained. Further, Patent Document 1 grows a 6H—SiC single crystal in Examples, and does not particularly take into consideration the growth of 4H—SiC single crystal.

特許文献2にも同様に速度向上を目的とし、コスト低減のためにTiに代えてFe、Coを添加することが提案されている。高温度では平坦成長が維持できないため低温度での実施例しか示されていない。本発明者の実験によれば、Feを添加するとC溶解量は増加するが、Ti添加の場合と同様に平坦成長を維持できない。Co添加では、C溶解量の増加も平坦性も得られなかった。   Similarly, Patent Document 2 proposes adding Fe and Co in place of Ti for the purpose of improving speed and reducing cost. Since flat growth cannot be maintained at high temperatures, only examples at low temperatures are shown. According to the experiment of the present inventor, the amount of dissolved C increases when Fe is added, but flat growth cannot be maintained as in the case of adding Ti. When Co was added, neither an increase in the amount of dissolved C nor flatness was obtained.

Si融液に2種以上の元素を複合添加する方法も提案されている。特許文献3にはVとTiとを添加すること、特許文献4にはTiとCo、Mn、Alのいずれかとを添加すること、特許文献5にはTi、Fe、Mn、Coのいずれか1種以上を添加することが、それぞれ提案されている。これらはいずれも実施例において6H−SiC単結晶の成長を行なっており、4H−SiC単結晶の成長については特に配慮されていない。   There has also been proposed a method of adding two or more elements to the Si melt. Patent Document 3 adds V and Ti, Patent Document 4 adds Ti and any one of Co, Mn, and Al. Patent Document 5 describes any one of Ti, Fe, Mn, and Co. Each has been proposed to add more than seeds. All of these grow 6H—SiC single crystals in the examples, and no particular consideration is given to the growth of 4H—SiC single crystals.

また、特許文献6には炭化水素を含むガスを添加すること、特許文献7には遷移金属を添加することが、それぞれ提案されているが、いずれも成長速度の向上が得られたとしても平坦成長を確保することができない。   In addition, Patent Document 6 proposes adding a gas containing hydrocarbons, and Patent Document 7 proposes adding a transition metal. However, even if an improvement in the growth rate is obtained, both are flat. We cannot secure growth.

更に、非特許文献1には、希土類元素の添加によりCの溶解量が増加することが報告されている。確かにCの溶解量が増加すると、小さな温度勾配でも成長が可能になるが、C濃度が高くなり過ぎて3次元成長が助長されて成長表面が荒れてしまい、平坦成長が得られない。   Furthermore, Non-Patent Document 1 reports that the amount of C dissolved increases with the addition of rare earth elements. Certainly, if the amount of dissolved C is increased, growth is possible even with a small temperature gradient, but the C concentration becomes too high, and the three-dimensional growth is promoted to roughen the growth surface, so that flat growth cannot be obtained.

このように従来は、4H−SiC単結晶を安定に平坦成長させることができなかった。一方、SiC半導体としてパワーデバイス等に適用した際のデバイス特性は、結晶多形4HのSiC単結晶が最も優れている。そのため、溶液法により4H−SiC単結晶を安定して平坦成長させる方法が求められていた。   Thus, conventionally, a 4H—SiC single crystal could not be stably grown on a flat surface. On the other hand, when applied to a power device or the like as a SiC semiconductor, device characteristics of the polymorph 4H SiC single crystal are the best. Therefore, a method for stably flatly growing 4H—SiC single crystals by a solution method has been demanded.

特開2004−002173号公報JP 2004-002173 A 特開2006−143555号公報JP 2006-143555 A 特開2007−261843号公報JP 2007-261843 A 特開2007−076986号公報JP 2007-076986 A 特開2006−069861号公報JP 2006-069861 A 特開2002−356397号公報JP 2002356563 A 特開2000−264790号公報JP 2000-264790 A Dieter H. Hofman, "Prospect of the use of liquid phase techniques for the growth of bulk silicon carbide crystals", Material Science and Engineering, B61-62 (1999) 29-39.Dieter H. Hofman, "Prospect of the use of liquid phase techniques for the growth of bulk silicon carbide crystals", Material Science and Engineering, B61-62 (1999) 29-39.

本発明は、溶液法により4H−SiC単結晶を安定して平坦成長させることができる4H−SiC単結晶の製造方法を提供することを目的とする。   An object of this invention is to provide the manufacturing method of 4H-SiC single crystal which can carry out the stable flat growth of 4H-SiC single crystal by a solution method.

上記の目的を達成するために、本発明によれば、Si融液を溶媒とし、これにCを溶解させた溶液から4H−SiC種結晶上に4H−SiC単結晶を成長させる方法において、
上記溶媒として、Si融液にTiとAl、Sn、Geのいずれか1種である元素Xとを添加したSi−Ti−X3元溶媒を用い、4H−SiC種結晶のSi面上に、1780℃以上の成長温度で4H−SiC単結晶を成長させることを特徴とする4H−SiC単結晶の製造方法が提供される。
In order to achieve the above object, according to the present invention, in a method of growing a 4H-SiC single crystal on a 4H-SiC seed crystal from a solution in which Si melt is used as a solvent and C is dissolved therein,
As the solvent, a Si—Ti—X ternary solvent in which Ti and an element X that is one of Al, Sn, and Ge are added to a Si melt, and 1780 is formed on the Si surface of the 4H—SiC seed crystal. A method for producing a 4H—SiC single crystal, characterized by growing a 4H—SiC single crystal at a growth temperature of at least ° C. is provided.

本発明の方法によれば、以下に詳述するように、(1)溶媒組成、(2)種結晶の成長面ポラリティー、(3)成長温度の3条件を同時に限定したことにより、4H−SiC単結晶を安定に平坦成長させることができる。   According to the method of the present invention, as detailed below, (1) the solvent composition, (2) the growth surface polarity of the seed crystal, and (3) the three conditions of the growth temperature are simultaneously limited, so that 4H-SiC A single crystal can be stably grown on a flat surface.

(1)溶媒組成
Si−Ti−X(X=Al、Sn、Geのいずれか1種)の3元溶媒を用いたことにより、Ti添加によるC溶解量の増加により実用的な成長速度を得ると同時に、Al、Sn、Geの界面活性化作用により多結晶化や混晶化を防止して平坦成長を助長する。
(1) Solvent composition By using a ternary solvent of Si-Ti-X (X = any one of Al, Sn, and Ge), a practical growth rate is obtained by increasing the amount of C dissolved by adding Ti. At the same time, the surface activation action of Al, Sn, and Ge prevents polycrystallization and mixed crystal formation and promotes flat growth.

すなわち、Ti単独添加では結晶の析出量は増加するが、成長表面の平坦性は確保できない。溶媒中のC濃度が高くなっても、そのCを取り込んで均一な単結晶を成長させるには、界面活性化作用が必須である。この界面活性化作用を発揮できる元素がAl、Sn、Geである。これら元素の界面活性化作用により固/液界面エネルギーが低下し(あるいは溶媒表面エネルギーも低下)、更に成長中の結晶のテラス表面での原子のマイグレーションも活性化され、高い成長速度を維持しつつ平坦成長(2次元成長)が確保できる。   That is, when Ti alone is added, the amount of crystal precipitation increases, but the flatness of the growth surface cannot be ensured. Even if the concentration of C in the solvent increases, an interface activation action is essential in order to incorporate the C and grow a uniform single crystal. Elements that can exhibit this interface activation action are Al, Sn, and Ge. The interfacial activation of these elements reduces the solid / liquid interface energy (or the solvent surface energy), and further activates atom migration on the terrace surface of the growing crystal while maintaining a high growth rate. Flat growth (two-dimensional growth) can be ensured.

(2)種結晶の成長面ポラリティー
しかし、本発明者は種々の実験を行なった結果、本発明の溶媒のようにTiを添加した溶媒組成では、種結晶であるSiC種結晶の成長面ポラリティーも平坦成長に大きく影響することを新規に見出した。SiC単結晶はSi面とC面とが交互に繰返し積層した結晶構造を持っていることは良く知られている。4H−SiC単結晶を種結晶として4H−SiC単結晶を成長させる場合に特有の現象として、成長面のポラリティーがSi面でないと平坦成長が確保できない。この現象は、4H−SiC単結晶を種結晶とする場合に特有であり、他の結晶多形、例えば6H−SiC単結晶を種結晶とする場合には、成長面のポラリティーの影響はなく、本発明の溶媒組成を用いて、Si面でもC面でも平坦成長を確保することが可能である。
(2) Seed crystal growth surface polarity However, as a result of various experiments, the present inventors have found that the growth surface polarity of the SiC seed crystal, which is the seed crystal, is also increased in the solvent composition in which Ti is added like the solvent of the present invention. It was newly found that it greatly affects the flat growth. It is well known that a SiC single crystal has a crystal structure in which Si and C planes are alternately and repeatedly stacked. As a phenomenon peculiar when 4H-SiC single crystal is grown using 4H-SiC single crystal as a seed crystal, flat growth cannot be secured unless the polarity of the growth surface is Si surface. This phenomenon is peculiar when 4H-SiC single crystal is used as a seed crystal, and when other crystal polymorphs, for example, 6H-SiC single crystal is used as a seed crystal, there is no influence of the polarity of the growth surface. Using the solvent composition of the present invention, it is possible to ensure flat growth on both the Si and C planes.

種結晶としての4H−SiC種結晶の結晶成長面をSi面に限定することは、多結晶化を防止して4H−SiC単結晶の平坦成長を確保するために必須である。   Limiting the crystal growth surface of the 4H—SiC seed crystal as a seed crystal to the Si surface is essential to prevent polycrystallization and ensure flat growth of the 4H—SiC single crystal.

(3)成長温度
成長温度を1780℃以上の高温としたことにより複数の結晶多形が混在する混晶化を防止する。種結晶の結晶多形4Hを引き継いで4H−SiC単結晶を成長させるには、成長温度を1780℃以上とする必要がある。1780℃より低い温度で成長させると、種結晶の結晶多形4Hは引き継がれず、4H−SiC以外の結晶多形(3Cや15Rなど)との混晶が発生する。
(3) Growth temperature The growth temperature is set to a high temperature of 1780 ° C. or higher, thereby preventing mixed crystal formation in which a plurality of crystal polymorphs are mixed. In order to grow the 4H—SiC single crystal by taking over the crystal polymorph 4H of the seed crystal, the growth temperature needs to be 1780 ° C. or higher. When grown at a temperature lower than 1780 ° C., the crystal polymorph 4H of the seed crystal is not inherited, and a mixed crystal with a crystal polymorph other than 4H—SiC (3C, 15R, etc.) is generated.

溶媒組成として、Si−20at%Ti−10at%Al、Si−20at%Ti−5at%Sn、Si−20at%Ti−5at%Geの3種類の3元組成を用いた。すなわち、これら溶媒組成に対応する配合組成でSi、Ti、X(X=Al、Sn、Geのいずれか)の各原料を黒鉛坩堝に挿入し、加熱溶解して3元溶媒を生成させ、この溶媒中に黒鉛坩堝からCを溶解させてSi−C−Ti−Xの4元溶液を形成した。   As the solvent composition, three kinds of ternary compositions of Si-20 at% Ti-10 at% Al, Si-20 at% Ti-5 at% Sn, and Si-20 at% Ti-5 at% Ge were used. That is, each raw material of Si, Ti, and X (X = Al, Sn, or Ge) having a blending composition corresponding to these solvent compositions is inserted into a graphite crucible and heated and dissolved to generate a ternary solvent. C was dissolved from a graphite crucible in a solvent to form a quaternary solution of Si-C-Ti-X.

本発明により、種結晶として4H−SiC単結晶を用い、そのSi面を結晶成長面として上記4元溶液の表面に接触させた。   According to the present invention, a 4H—SiC single crystal was used as a seed crystal, and its Si surface was brought into contact with the surface of the quaternary solution as a crystal growth surface.

4H−SiC種結晶の溶液接触面の裏側の温度を成長温度として管理し、本発明により1780℃以上に制御した。   The temperature on the back side of the solution contact surface of the 4H—SiC seed crystal was controlled as the growth temperature, and controlled to 1780 ° C. or higher according to the present invention.

比較のために、4H−SiC種結晶の結晶成長面をC面とした場合、結晶成長面をSi面として成長温度を1780℃未満とした場合、種結晶として6H−SiC種結晶を用い、そのC面、Si面を結晶成長面とした場合についても、結晶成長を行なった。   For comparison, when the crystal growth surface of the 4H—SiC seed crystal is the C plane, when the crystal growth surface is the Si surface and the growth temperature is less than 1780 ° C., the 6H—SiC seed crystal is used as the seed crystal. Crystal growth was also performed when the C-plane and Si-plane were used as crystal growth planes.

結果を表1にまとめて示す。   The results are summarized in Table 1.

本発明においては、種結晶として4H−SiC単結晶を用いた上で、下記(1)(2)(3)の条件を満たすことが必須である。   In the present invention, it is essential to satisfy the following conditions (1), (2), and (3) after using a 4H—SiC single crystal as a seed crystal.

(1)溶媒組成:Si−Ti−X(X=Al、Sn、Geのいずれか1種)
(2)種結晶の結晶成長面のポラリティー:Si面
(3)成長温度:1780℃以上
表1に示すように、本発明の上記要件を満たす実施例(試料No.1〜5)は、いずれも良好な平坦成長により4H−SiC単結晶が得られた。
(1) Solvent composition: Si—Ti—X (X = any one of Al, Sn, Ge)
(2) Polarity of crystal growth surface of seed crystal: Si surface (3) Growth temperature: 1780 ° C. or higher As shown in Table 1, Examples (sample Nos. 1 to 5) satisfying the above requirements of the present invention 4H-SiC single crystal was obtained by good flat growth.

これに対して、上記要件のうちすくなくとも1つを満たさない比較例(試料No.C1〜C7)は、4H−SiC単結晶を平坦成長させることができなかった。   On the other hand, the comparative example (sample Nos. C1 to C7) that does not satisfy at least one of the above requirements could not flatly grow the 4H—SiC single crystal.

比較例C1は、種結晶、溶媒組成、成長温度は本発明の要件を満たすが、成長面のポラリティーがC面であったため、多結晶化が発生した。   In Comparative Example C1, the seed crystal, the solvent composition, and the growth temperature satisfy the requirements of the present invention, but the crystallinity occurred because the polarity of the growth surface was the C surface.

比較例C2は、種結晶、溶媒組成、成長面のポラリティー、は本発明の要件を満たすが、成長温度が1750℃と本発明の規定範囲より低温であったため、平坦成長ではあったが、種結晶の結晶多形4H−SiC以外の結晶多形(3C−SiC、15R−SiCなどの混晶となってしまった。   In Comparative Example C2, the seed crystal, the solvent composition, and the polarity of the growth surface satisfy the requirements of the present invention, but the growth temperature was 1750 ° C., which was lower than the specified range of the present invention. A crystal polymorph other than the crystal polymorph 4H-SiC (3C-SiC, 15R-SiC, etc.) was formed as a mixed crystal.

比較例C3、C4は、種結晶として本発明の規定外の6H−SiC単結晶を用いた場合であり、溶媒組成および成長温度を本発明の規定範囲内とすることにより、成長面のポラリティーが本発明の規定によるSi面であっても本発明の規定外のC面であっても、良好な平坦成長により6H−SiC単結晶が得られた。このように6H−SiCは結晶成長面のポラリティーによらず良好な平坦成長が可能である。結晶成長面ポラリティーをSi面に限定する必要があるのは4H−SiCに特有の現象である。   Comparative Examples C3 and C4 are cases where 6H-SiC single crystals outside the scope of the present invention were used as seed crystals, and by setting the solvent composition and the growth temperature within the scope of the present invention, the polarity of the growth surface was increased. A 6H—SiC single crystal was obtained by good flat growth regardless of whether it was a Si plane according to the present invention or a C plane outside the present invention. Thus, 6H—SiC can be satisfactorily grown flat regardless of the polarity of the crystal growth surface. It is a phenomenon peculiar to 4H-SiC that the crystal growth plane polarity needs to be limited to the Si plane.

比較例C5は、種結晶、成長面のポラリティー、成長温度は本発明の規定に従ったが、溶媒組成として本発明の規定外のSi−Ti2元組成を用いたため、多結晶化が発生した。   In Comparative Example C5, the seed crystal, the polarity of the growth surface, and the growth temperature were in accordance with the provisions of the present invention, but polycrystallization occurred because the Si—Ti binary composition outside the scope of the present invention was used as the solvent composition.

比較例C6、C7は、種結晶、溶媒組成、成長温度は本発明の規定に従ったが、成長面のポラリティーが本発明の規定外であるC面であったため、多結晶化が発生した。   In Comparative Examples C6 and C7, the seed crystal, the solvent composition, and the growth temperature were in accordance with the provisions of the present invention, but polycrystallization occurred because the polarity of the growth surface was a C-plane that was outside the provisions of the present invention.

図1(A)に、本発明により種結晶の結晶成長面のポラリティーをSi面とした実施例の試料No.1の成長表面の顕微鏡写真を示し、図1(B)に、種結晶の結晶成長面のポラリティーを本発明の規定外のC面とした比較例の試料No.C1の成長表面の顕微鏡写真を示す。いずれも(2)は(1)の破線で囲んだ部分の高倍率の写真である。図1(A)に示した本発明によるSi面を成長面として用いた場合には高い平坦性が得られているのに対して、図1(B)に示した本発明の規定外のC面を成長面として用いた場合には多結晶化している。   FIG. 1 (A) shows a micrograph of the growth surface of sample No. 1 of the example in which the polarity of the crystal growth surface of the seed crystal according to the present invention is Si surface, and FIG. 1 (B) shows the crystal of the seed crystal. The microscope picture of the growth surface of sample No. C1 of the comparative example which made the growth surface polarity the C surface outside the regulation of the present invention is shown. In both cases, (2) is a high-magnification photograph of the portion surrounded by the broken line in (1). When the Si surface according to the present invention shown in FIG. 1 (A) is used as a growth surface, high flatness is obtained, whereas C outside the specified range shown in FIG. 1 (B) is obtained. When the surface is used as a growth surface, it is polycrystallized.

本発明によれば、溶液法により4H−SiC単結晶を安定して平坦成長させることができる4H−SiC単結晶の製造方法が提供される。   ADVANTAGE OF THE INVENTION According to this invention, the manufacturing method of 4H-SiC single crystal which can carry out the flat growth of 4H-SiC single crystal stably by the solution method is provided.

図1(A)は、本発明により種結晶の結晶成長面のポラリティーをSi面とした実施例の試料No.1の成長表面の顕微鏡写真であり、図1(B)は、種結晶の結晶成長面のポラリティーを本発明の規定外のC面とした比較例の試料No.C1の成長表面の顕微鏡写真である。FIG. 1A is a photomicrograph of the growth surface of sample No. 1 in the example in which the polarity of the crystal growth surface of the seed crystal according to the present invention is Si surface, and FIG. 1B is the crystal of the seed crystal. It is a microscope picture of the growth surface of sample No. C1 of the comparative example which made the growth surface polarity the C surface outside the specification of the present invention.

Claims (1)

Si融液を溶媒とし、これにCを溶解させた溶液から4H−SiC種結晶上に4H−SiC単結晶を成長させる方法において、
上記溶媒として、Si融液にTiとAl、Sn、Geのいずれか1種である元素Xとを添加したSi−Ti−X3元溶媒を用い、4H−SiC種結晶のSi面上に、1780℃以上の成長温度で4H−SiC単結晶を成長させることを特徴とする4H−SiC単結晶の製造方法。
In a method of growing a 4H—SiC single crystal on a 4H—SiC seed crystal from a solution in which Si melt is used as a solvent and C is dissolved therein,
As the solvent, a Si—Ti—X ternary solvent in which Ti and an element X that is one of Al, Sn, and Ge are added to a Si melt, and 1780 is formed on the Si surface of the 4H—SiC seed crystal. A method for producing a 4H-SiC single crystal, comprising growing a 4H-SiC single crystal at a growth temperature of at least ° C.
JP2008095336A 2008-04-01 2008-04-01 Method for producing 4H-SiC single crystal Expired - Fee Related JP4888432B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008095336A JP4888432B2 (en) 2008-04-01 2008-04-01 Method for producing 4H-SiC single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008095336A JP4888432B2 (en) 2008-04-01 2008-04-01 Method for producing 4H-SiC single crystal

Publications (2)

Publication Number Publication Date
JP2009249192A JP2009249192A (en) 2009-10-29
JP4888432B2 true JP4888432B2 (en) 2012-02-29

Family

ID=41310239

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008095336A Expired - Fee Related JP4888432B2 (en) 2008-04-01 2008-04-01 Method for producing 4H-SiC single crystal

Country Status (1)

Country Link
JP (1) JP4888432B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103088426A (en) * 2013-01-23 2013-05-08 保定科瑞晶体有限公司 Method for reducing seed crystal growth face defects of silicon carbide crystals

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5167947B2 (en) * 2008-05-21 2013-03-21 トヨタ自動車株式会社 Method for producing silicon carbide single crystal thin film
WO2014034080A1 (en) * 2012-08-26 2014-03-06 国立大学法人名古屋大学 3c-sic single crystal and production method therefor
JP6249494B2 (en) * 2013-03-08 2017-12-20 国立研究開発法人産業技術総合研究所 Method for producing silicon carbide single crystal
JP6380267B2 (en) * 2015-07-09 2018-08-29 トヨタ自動車株式会社 SiC single crystal and method for producing the same
JP2017095311A (en) * 2015-11-25 2017-06-01 トヨタ自動車株式会社 PRODUCTION METHOD OF SiC SINGLE CRYSTAL
KR102091629B1 (en) * 2016-09-29 2020-03-20 주식회사 엘지화학 Silicon based melting composition and manufacturing method for silicon carbide single crystal using the same
WO2018062689A1 (en) * 2016-09-29 2018-04-05 주식회사 엘지화학 Silicon-based melt composition and method for manufacturing silicon carbide single crystal using same

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4561000B2 (en) * 2001-05-31 2010-10-13 住友金属工業株式会社 Method for producing silicon carbide (SiC) single crystal
JP4270034B2 (en) * 2004-06-14 2009-05-27 トヨタ自動車株式会社 Method for producing SiC single crystal
JP4225296B2 (en) * 2005-06-20 2009-02-18 トヨタ自動車株式会社 Method for producing silicon carbide single crystal
JP4423247B2 (en) * 2005-08-02 2010-03-03 親夫 木村 Liquid phase growth method
JP4419937B2 (en) * 2005-09-16 2010-02-24 住友金属工業株式会社 Method for producing silicon carbide single crystal
JP2007131504A (en) * 2005-11-14 2007-05-31 Shikusuon:Kk SiC EPITAXIAL WAFER AND SEMICONDUCTOR DEVICE USING THE SAME
JP4661571B2 (en) * 2005-12-08 2011-03-30 トヨタ自動車株式会社 Method for producing silicon carbide single crystal
JP4179331B2 (en) * 2006-04-07 2008-11-12 トヨタ自動車株式会社 Method for producing SiC single crystal

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103088426A (en) * 2013-01-23 2013-05-08 保定科瑞晶体有限公司 Method for reducing seed crystal growth face defects of silicon carbide crystals

Also Published As

Publication number Publication date
JP2009249192A (en) 2009-10-29

Similar Documents

Publication Publication Date Title
JP4888432B2 (en) Method for producing 4H-SiC single crystal
JP4811354B2 (en) Method for producing SiC single crystal
KR102313257B1 (en) Crystal growth method of silicon carbide
JP4419937B2 (en) Method for producing silicon carbide single crystal
JP4450074B2 (en) Method for growing silicon carbide single crystal
JP5273130B2 (en) Method for producing SiC single crystal
KR101666596B1 (en) Sic single crystal and method for producing same
JP2004002173A (en) Silicon carbide single crystal and its manufacturing method
TW201621099A (en) Method for producing silicon carbide crystals and crystal production device
KR101152857B1 (en) Method for growing silicon carbide single crystal
TW201250071A (en) Method of producing SiC single crystal
WO2017022535A1 (en) METHOD OF PRODUCING SiC SINGLE CRYSTAL
JP4661571B2 (en) Method for producing silicon carbide single crystal
WO2015137439A1 (en) METHOD FOR PRODUCING MONOCRYSTALLINE SiC
JP2007261844A (en) Manufacturing method of silicon carbide single crystal
JP5850490B2 (en) Method for producing SiC single crystal
JP6725096B2 (en) Silicon-based molten composition and method for producing SiC single crystal using the same
JP6845418B2 (en) Silicon Carbide Single Crystal Wafers, Ingots and Their Manufacturing Methods
Mitani et al. 4H-SiC growth from Si-Cr-C solution under Al and N Co-doping conditions
JP2015110495A (en) Silicon carbide crystal growth method
JP2015110496A (en) Silicon carbide crystal growth method
JP5913403B2 (en) Magnesium alloy exhibiting pseudoelasticity, magnesium alloy part exhibiting pseudoelasticity, and method for producing the same
JP2005082439A (en) PRODUCTION METHOD OF AlN SINGLE CRYSTAL
JP2015110501A (en) Silicon carbide crystal growth method
WO2003087440A1 (en) Silicon carbide single crystal and method for preparation thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100901

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111108

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111115

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111128

R151 Written notification of patent or utility model registration

Ref document number: 4888432

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141222

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees