JP4887510B2 - Induction heating device with commutation failure detection. - Google Patents

Induction heating device with commutation failure detection. Download PDF

Info

Publication number
JP4887510B2
JP4887510B2 JP2006032827A JP2006032827A JP4887510B2 JP 4887510 B2 JP4887510 B2 JP 4887510B2 JP 2006032827 A JP2006032827 A JP 2006032827A JP 2006032827 A JP2006032827 A JP 2006032827A JP 4887510 B2 JP4887510 B2 JP 4887510B2
Authority
JP
Japan
Prior art keywords
detection signal
voltage
thyristor
commutation failure
converter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006032827A
Other languages
Japanese (ja)
Other versions
JP2007244003A (en
Inventor
辺 敏 之 渡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kitashiba Electric Co Ltd
Original Assignee
Kitashiba Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kitashiba Electric Co Ltd filed Critical Kitashiba Electric Co Ltd
Priority to JP2006032827A priority Critical patent/JP4887510B2/en
Publication of JP2007244003A publication Critical patent/JP2007244003A/en
Application granted granted Critical
Publication of JP4887510B2 publication Critical patent/JP4887510B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Inverter Devices (AREA)
  • General Induction Heating (AREA)

Description

本発明は、負荷転流型サイリスタ式インバータを用いた高周波インバータ誘導加熱装置において、転流余裕角不足による転流失敗により絶縁能力を回復しないまま短絡状態となって過電流が流れることによりサイリスタがダメージを受け永久故障となることを防止するため、その転流失敗を高速検出して対処処理ができる転流失敗検出付誘導加熱装置に関する。   The present invention relates to a high frequency inverter induction heating apparatus using a load commutation type thyristor type inverter, and a thyristor is caused by an overcurrent flowing in a short circuit state without recovering an insulation capacity due to a commutation failure due to a shortage of commutation margin angle. The present invention relates to an inductive heating apparatus with commutation failure detection that can detect the commutation failure at a high speed and can deal with it in order to prevent damage and permanent failure.

従来、誘導加熱装置に用いる高周波インバータは、電流型インバータであり、その主回路は順変換器、直流リアクトル、逆変換器とから構成されていた。これらの要素は以下のような動作を行う。   Conventionally, the high-frequency inverter used in the induction heating apparatus is a current-type inverter, and its main circuit is composed of a forward converter, a DC reactor, and an inverse converter. These elements perform the following operations.

順変換器は三相商用電源から直流電圧を生成する。直流リアクトルは順変換器で生成された直流電圧のリプルを除去し、逆変換器に電力を供給する。   The forward converter generates a DC voltage from a three-phase commercial power source. The DC reactor removes the ripple of the DC voltage generated by the forward converter and supplies power to the inverse converter.

逆変換器は負荷共振周波数に応じた高周波電力を加熱コイルに供給する。その逆変換器は負荷転流型サイリスタ式インバータであるため、サイリスタ素子で規定されるターンオフ時間以上に負電圧をこれまで点弧していたサイリスタに印加することで、サイリスタ内のストレージキャリアを除去して、サイリスタは絶縁能力を回復する。その際には転流用無効電力は高周波整合装置部に設置される力率改善コンデンサから供給されることとなる。   The inverse converter supplies high frequency power corresponding to the load resonance frequency to the heating coil. Since the reverse converter is a load commutated thyristor inverter, the storage carrier in the thyristor is removed by applying a negative voltage to the thyristor that has been ignited until the turn-off time specified by the thyristor element. Thus, the thyristor restores the insulation capability. In that case, the commutation reactive power is supplied from a power factor correction capacitor installed in the high-frequency matching unit.

従来、以上の構成におけるインバータの転流余裕時間不足で転流失敗検出は以下のようにしていた。すなわち、従来のインバータの逆変換器が転流失敗した場合、転流失敗したサイリスタは短絡状態となるので、不要な過電流が発生し、入力電流と出力電流の差電流が20%以下となった場合に転流失敗を検出していた。   Conventionally, the commutation failure detection due to the shortage of the commutation margin time of the inverter in the above configuration is performed as follows. That is, when the inverter reverse converter of the conventional inverter fails to commutate, the thyristor that has failed commutation is short-circuited, causing unnecessary overcurrent, and the difference between the input current and the output current is 20% or less. The commutation failure was detected.

しかし、直流リアクトルを介して順変換器と逆変換器を接続しているため、逆変換器が転流失敗しても電流の急激な過渡変動ができず、転流失敗してから保護処理動作に入るまで過大な電流が転流失敗したサイリスタに流れ続けることで、そのサイリスタがダメージを受け、永久故障となることが多かった。   However, since the forward converter and the reverse converter are connected via a DC reactor, even if the reverse converter fails in commutation, sudden transient fluctuations in current cannot be made, and protection processing is performed after the commutation fails. When an excessive current continues to flow through the failed thyristor until it enters the thyristor, the thyristor is often damaged, resulting in a permanent failure.

特許文献1は、逆変換器のサイリスタ式インバータを備えた高周波電源装置、或いは誘導加熱装置において、そのサイリスタインバータに異常があって停止した場合に自動的に再起動させる制御回路に関する発明である。   Patent Document 1 is an invention relating to a control circuit that automatically restarts a high-frequency power supply device or induction heating device having a thyristor inverter of an inverse converter when the thyristor inverter is abnormal and stops.

特許文献1の発明は、転流失敗故障検出回路と、ゲートパルスの位相制御回路とゲートパルス位置を転流余裕角の補正値に設定する補正量制御回路とからなる制御回路を設けて、そのゲートパルスにより再起動させるシステムである。   The invention of Patent Document 1 includes a control circuit including a commutation failure detection circuit, a gate pulse phase control circuit, and a correction amount control circuit that sets a gate pulse position to a correction value of a commutation margin angle. The system is restarted by a gate pulse.

しかしながら、その異常が検出されるまで時間がかかるので、再起動させる前にサイリスタが過電流により破損故障してしまうことが多かった。   However, since it takes time until the abnormality is detected, the thyristor often breaks down due to an overcurrent before restarting.

特開平11−113268号公報(第2、3頁、第1図)JP-A-11-113268 (pages 2, 3 and 1)

前述の問題点を解決するため、本発明はサイリスタ型インバータの転流失敗を高速検出してサイリスタ破損を防止することを課題とする。   In order to solve the above-mentioned problems, it is an object of the present invention to prevent failure of a thyristor by detecting a commutation failure of a thyristor type inverter at high speed.

詳しくは、順変換器と逆変換器間に設置した直流電圧検出回路による順圧と、制御回路内のPLL制御回路で生成する所定の電気角度或いは位相角度のタイミングで順圧(有・無)を検出し、順圧(有)で転流失敗を検出する手段を提供する。   Specifically, the forward pressure by the DC voltage detection circuit installed between the forward converter and the reverse converter and the forward pressure (presence / absence) at the timing of a predetermined electrical angle or phase angle generated by the PLL control circuit in the control circuit And a means for detecting a commutation failure with normal pressure (with).

前記課題を解決するため、本発明の転流失敗検出付誘導加熱装置は、三相商用電源から直流電圧を生成する順変換器と、その順変換器で生成された直流電圧のリプルを除去し逆変換器に電力供給する直流リアクトルと、負荷共振周波数に応じた高周波電力を加熱コイルに供給する電流型単相インバータ構成の逆変換器と、その加熱コイルの遅れ力率を進み方向に改善させると共に、前記逆変換器に転流用無効電力を供給する力率改善コンデンサと、を少なくとも備えた誘導加熱装置において、前記直流リアクトルと前記逆変換器とを接続する直流回路Pと、ゼロ点回路Nの電位差のP−N間直流電圧検出回路部と、前記順変換器、前記逆変換器をそれぞれ構成する各サイリスタを点弧させるタイミング制御を行うと共に、過電圧或いは過電流から前記サイリスタを保護する制御を行う制御回路部と、をさらに備え、前記制御回路部は、前記逆変換器が生成するインバータ出力電圧と同期を取り、正負交互に出力する各半サイクル(180度)毎に三角波PLL(Plase Locked Loop)信号を生成するPLL回路と、位相角度進行につれて前記三角波PLL信号値上昇中に予め定めた基準信号値Kに交叉したとき、逆変換器へのU相ペアサイリスタ、V相ペアサイリスタへ交互に次の半サイクルを点弧させるようにゲート電極へ前記交叉した位相角度で制御信号を送る点弧制御信号出力手段と、前記P−N間直流電圧検出回路が、前記P−N間電圧波形データを前記半サイクル(180度)毎に位相角度の関数として読込み、前記半サイクル間で、正電圧期間を正のパルス電圧波形として出力した順圧検出信号Aを受信する順圧検出信号A受信手段と、その順圧検出信号Aを反転して反転順圧検出信号Bを生成する反転手段と、前記PLL回路の生成する三角波PLL信号から前記半サイクルのさらに半分の1/4サイクル(90度)以内で、予め定められた位相角度における予め定められた角度幅の角度検出信号Cを生成する角度生成手段と、前記反転順圧検出信号Bと前記角度検出信号Cの論理積から転流失敗検出信号Dを生成し、前記転流失敗検出信号がオン状態あれば、転流失敗と判定し、結果を出力又は表示する転流失敗判定手段と、を備えることを特徴とする。 In order to solve the above problems, an inductive heating apparatus with commutation failure detection according to the present invention removes a forward converter that generates a DC voltage from a three-phase commercial power supply and a ripple of the DC voltage generated by the forward converter. A DC reactor that supplies power to the inverter, an inverter of a current type single-phase inverter that supplies high-frequency power corresponding to the load resonance frequency to the heating coil, and the delay power factor of the heating coil is improved in the forward direction. In addition, in an induction heating apparatus comprising at least a power factor correction capacitor for supplying reactive power for commutation to the inverse converter, a DC circuit P for connecting the DC reactor and the inverse converter, and a zero point circuit N And a timing control for starting each thyristor constituting each of the forward converter and the reverse converter, and an overvoltage or overcurrent. Further comprising a control circuit section for performing control to protect al the thyristor, wherein the control circuit unit takes the inverter output voltage and synchronizing said inverter generates, each half cycle of outputting alternately positive and negative (180 ° ), And a PLL circuit that generates a triangular wave PLL (Place Locked Loop) signal, and a U-phase pair to the inverse converter when crossing to a predetermined reference signal value K while the triangular wave PLL signal value increases as the phase angle progresses A firing control signal output means for sending a control signal at the crossed phase angle to the gate electrode so as to alternately fire the next half cycle to the thyristor and the V-phase pair thyristor; and the PN DC voltage detection circuit section but the read voltage waveform data between P-N as a function of the phase angle the every half cycle (180 degrees), the between half cycle, the positive voltage period positive Pas A forward pressure detection signal A receiving means for receiving a forward pressure detection signal A output as a pulse voltage waveform; an inversion means for inverting the forward pressure detection signal A to generate an inverted forward pressure detection signal B; and the PLL circuit An angle generating means for generating an angle detection signal C having a predetermined angular width at a predetermined phase angle within a quarter cycle (90 degrees) of a half of the half cycle from the generated triangular wave PLL signal; wherein the inverted order pressure detection signal B to generate a commutation failure detection signal D from the logical product of the angle detection signal C, the commutation failure detection signal D is equal in the on state, determines that commutation failure, the result And a commutation failure determination means for outputting or displaying the above.

本発明の転流失敗検出付誘導加熱装置は、以下の効果を奏する。すなわち、インバータ出力電圧の各正負のサイクル毎に(その電気角180度毎に)その電気角の任意の位置すなわち位相角に「角度検出信号」を設定することができるので、その「角度検出信号」を各サイクルの電気角で90度以前に、ある期間設定することで、転流失敗したサイリスタは次の相の最大順圧が印加される前に停止させて、サイリスタが破損しない状態で保護動作に入らせ、停止させることができる。   The induction heating device with commutation failure detection of the present invention has the following effects. That is, the “angle detection signal” can be set at an arbitrary position of the electrical angle, that is, the phase angle for each positive and negative cycle of the inverter output voltage (for every 180 degrees of the electrical angle). ”Is set to 90 degrees before the electrical angle of each cycle for a certain period, the thyristor that fails in commutation is stopped before the maximum forward pressure of the next phase is applied, and the thyristor is protected from damage. Can enter and stop operation.

本発明の転流失敗検出付誘導加熱装置の実施例を図に基づいて説明する。図1は転流失敗検出付誘導加熱装置の構成を示す図である。   An embodiment of the induction heating device with commutation failure detection according to the present invention will be described with reference to the drawings. FIG. 1 is a diagram showing a configuration of an induction heating device with commutation failure detection.

図1において、1は三相商用電源、2は順変換器であり、サイリスタ(21〜26)からなり、三相商用電源1を基に直流電圧を生成する。3は、直流リアクトルであり、順変換器2に生成された直流電圧のリプル分を除去する。   In FIG. 1, reference numeral 1 denotes a three-phase commercial power source, and 2 denotes a forward converter, which includes thyristors (21 to 26), and generates a DC voltage based on the three-phase commercial power source 1. Reference numeral 3 denotes a DC reactor, which removes a ripple component of the DC voltage generated in the forward converter 2.

逆変換器4はサイリスタ(41〜44)からなり、その逆変換器4や負荷破損時の過電流の急激な流出を前記直流リアクトル3により抑制する。   The reverse converter 4 is composed of thyristors (41 to 44), and the direct current reactor 3 suppresses a sudden outflow of overcurrent when the reverse converter 4 or a load is broken.

前記逆変換器4は単相インバータ構成であり、負荷周波数に応じて加熱コイル6に高周波電力を供給する。   The inverter 4 has a single-phase inverter configuration, and supplies high-frequency power to the heating coil 6 according to the load frequency.

5は、力率改善コンデンサであり、加熱コイル6の遅れ力率を進み方向に改善すると共に、逆変換器4のサイリスタ(41〜44)へ転流用無効電力を供給する。   A power factor improving capacitor 5 improves the delay power factor of the heating coil 6 in the forward direction and supplies commutation reactive power to the thyristors (41 to 44) of the inverse converter 4.

前記加熱コイル6は、例えば炉内に鉄等の金属材料が投入されたとき、逆変換器4構成のインバータから高周波電力を供給されることで、炉内の金属材料に「うず電流」を発生させ、金属材料間に流れる電流によるジュール熱によって金属材料を昇温・溶解させる。   For example, when a metal material such as iron is put into the furnace, the heating coil 6 generates “eddy current” in the metal material in the furnace by being supplied with high-frequency power from an inverter having a reverse converter 4 configuration. The metal material is heated and melted by Joule heat generated by the current flowing between the metal materials.

7は、直流電圧検出回路部であり、直流リアクトル3を介して整流された直流電圧が逆変換器4の両端P−N間(図1参照)に印加されるP−N間電圧を検出する。   Reference numeral 7 denotes a DC voltage detection circuit unit that detects a PN voltage applied to a DC voltage rectified via the DC reactor 3 between both ends PN of the inverter 4 (see FIG. 1). .

8は、制御回路部であり、順変換器2、逆変換器4のサイリスタを点弧させるタイミング制御や、過電圧・過電流からサイリスタ等を保護する。   Reference numeral 8 denotes a control circuit unit which protects the thyristor and the like from timing control for firing the thyristors of the forward converter 2 and the reverse converter 4 and overvoltage / overcurrent.

逆変換器4は単相インバータであり、構成するサイリスタ41と44のペア(U相ペア)及び42と43のペア(V相ペア)を所定の周波数で交互にオンオフを繰り返すことで高周波電力を出力する。   The inverse converter 4 is a single-phase inverter, and the high-frequency power is generated by alternately turning on and off the pair of thyristors 41 and 44 (U-phase pair) and the pair of 42 and 43 (V-phase pair) at a predetermined frequency. Output.

以上の逆変換器4はサイリスタインバータ構成であるため、例えばU相ペアをオフしてV相ペアをオンする転流の場合、所定の無効電力をオフするサイリスタ(41、44)に供給することで、これまでオンしていたサイリスタ内のストレージキャリアを吐き出すことにより次のV相ペアの順圧に耐える絶縁能力を回復させる。   Since the above inverter 4 has a thyristor inverter configuration, for example, in the case of commutation in which the U-phase pair is turned off and the V-phase pair is turned on, the predetermined reactive power is supplied to the thyristors (41, 44). Thus, by discharging the storage carrier in the thyristor that has been turned on so far, the insulation ability to withstand the forward pressure of the next V-phase pair is recovered.

その転流用の前記無効電力は、力率改善用コンデンサ5から供給されて転流しており、逆変換器4に使用する各サイリスタのターンオフ時間Tq以上の負電圧印加期間電気角γを、これまでオン状態であったサイリスタに印加することで、そのサイリスタはストレージキャリアを吐き出し、絶縁能力を回復する。   The reactive power for commutation is supplied from the power factor improving capacitor 5 and commutated, and the negative voltage application period electrical angle γ equal to or longer than the turn-off time Tq of each thyristor used in the inverter 4 is used so far. When applied to the thyristor that is in the on state, the thyristor discharges the storage carrier and restores the insulation capability.

前記負電圧印加期間電気角γに相当する負電圧印加時間がターンオフ時間Tqより長ければ正常動作できるが、ターンオフ時間Tqより短ければ、サイリスタは絶縁能力を回復することができずに、次にオンするU相ペア或いはV相ペアの順圧に耐えられずに転流失敗する。   If the negative voltage application time corresponding to the electrical angle γ is longer than the turn-off time Tq, the normal operation can be performed. However, if the turn-off time Tq is shorter, the thyristor cannot recover the insulation capability, and then turns on. The commutation fails without being able to withstand the forward pressure of the U-phase pair or V-phase pair.

図2は、逆変換器4の単相インバータとして動作させるサイリスタ(41〜44)をそれぞれ点弧するタイミングを示す図である。   FIG. 2 is a diagram illustrating timings at which the thyristors (41 to 44) operated as single-phase inverters of the inverter 4 are fired.

制御回路部8にはPLL(Phase Locked Loop)回路を設け、そのPLL回路によって主回路電圧と同期を取って三角波のPLL信号を生成する。そのPLL信号が予め定めた基準信号に達したときにU相ペア或いはV相ペアのサイリスタに対してゲート信号すなわち制御信号を出力する。それらのタイミングが図2に示されている。   The control circuit unit 8 is provided with a phase locked loop (PLL) circuit, which generates a triangular wave PLL signal in synchronization with the main circuit voltage. When the PLL signal reaches a predetermined reference signal, a gate signal, that is, a control signal is output to a U-phase pair or V-phase pair thyristor. Their timing is shown in FIG.

図2に示すように、PLL回路はインバータ出力電圧に同期して、正負の各半サイクル毎に電気角で180度の角度信号を生成している。   As shown in FIG. 2, the PLL circuit generates an angle signal of 180 degrees in electrical angle every positive and negative half cycles in synchronization with the inverter output voltage.

図3は、図2に示した単相インバータの動作を行う逆変換器4における各サイリスタ毎の転流失敗検出タイミングを示す図である。   FIG. 3 is a diagram showing the commutation failure detection timing for each thyristor in the inverter 4 that performs the operation of the single-phase inverter shown in FIG.

先ず、直流電圧検出回路部7は、図1に示した逆変換器4のP−N間の電圧波形を取り込む。そのP−N間電圧波形は図3に示すようになる。図においてuは転流重なり角であり、逆電圧が印加されてから0電位になるまでの時間を位相角で表した角度である。 First, the DC voltage detection circuit unit 7 takes in the voltage waveform between PN of the inverse converter 4 shown in FIG. The PN voltage waveform is as shown in FIG. In the figure, u is a commutation overlap angle, which is an angle expressed by a phase angle from when a reverse voltage is applied until it becomes zero potential.

叉γは逆電圧が印加されてから電圧が0に戻るまでの時間を位相角で表した転流余裕角である。   Fork γ is a commutation margin angle in which the time from when the reverse voltage is applied until the voltage returns to 0 is expressed by a phase angle.

直流電圧検出回路7は、さらに、取り込んだP−N間電圧波形のデータ値から、正電圧期間、すなわち正のパルス電圧を順圧検出信号(A)として出力する。   The direct-current voltage detection circuit 7 further outputs a positive voltage period, that is, a positive pulse voltage as a forward pressure detection signal (A) from the data value of the acquired PN voltage waveform.

制御回路部8は、その順圧検出信号(A)を直流電圧検出回路部7より受信し、その検出電圧を反転した順圧検出信号(B)を生成する。さらに、三角波のPLL信号を用いて予め定めた所定位相角における角度検出信号(C)を生成する。   The control circuit unit 8 receives the forward pressure detection signal (A) from the DC voltage detection circuit unit 7 and generates a forward pressure detection signal (B) obtained by inverting the detected voltage. Further, an angle detection signal (C) at a predetermined phase angle is generated using a triangular wave PLL signal.

制御回路部8は、その中で自動的に生成した順圧検出信号(B)と、角度検出信号(C)の論理積を算出し、さらに、その論理積を転流失敗検出信号(D)として、それがオン状態であればそのオン状態を検出した半サイクルに転流失敗があると判定する。   The control circuit unit 8 calculates a logical product of the forward pressure detection signal (B) automatically generated therein and the angle detection signal (C), and further calculates the logical product of the commutation failure detection signal (D). If it is in the on state, it is determined that there is a commutation failure in the half cycle in which the on state is detected.

図3は転流失敗検出タイミングを示す図である。図3には転流失敗の例が以下のように示されている。すなわち、第3番目の半サイクルに転流余裕角γが少なく、負電位印加期間が狭く、点弧が行われずP−N間電圧波形が立ち上がらず0電位となり、よって順圧検出信号(A)は0、順圧検出信号(B)は1となって、角度検出信号(C)の位相角で論理積から転流失敗検出信号(D)が1、つまりオン状態となる。   FIG. 3 is a diagram illustrating commutation failure detection timing. FIG. 3 shows an example of commutation failure as follows. That is, in the third half cycle, the commutation margin angle γ is small, the negative potential application period is narrow, ignition is not performed, the voltage waveform between PN does not rise to zero potential, and therefore the forward pressure detection signal (A) Is 0, and the barometric pressure detection signal (B) is 1, and the commutation failure detection signal (D) is 1 from the logical product at the phase angle of the angle detection signal (C), that is, the ON state.

すなわち、本発明は、直ちに転流失敗した1/4サイクル中で検出される特徴を有する。   That is, the present invention has a feature that it is detected in a quarter cycle in which commutation fails immediately.

尚、図3の角度検出信号の位相角の位置は任意に設定することができる。そこで、その角度検出信号は電気角90度以前(半サイクル180度の中の最大電圧値になる以前)に、ある幅の期間設定をすることで、転流失敗したサイリスタは次の相の最大順圧が印加される前に停止させて、サイリスタが破損しない状態でその保護動作に入り、停止させることができる。すなわちサイリスタの破損を確実に防止することができる。   Note that the position of the phase angle of the angle detection signal in FIG. 3 can be arbitrarily set. Therefore, the angle detection signal is set to a period of a certain width before the electrical angle of 90 degrees (before the maximum voltage value in the half cycle of 180 degrees), so that the thyristor that has failed to commutate becomes the maximum of the next phase. It can be stopped before the forward pressure is applied, and the protection operation can be started and stopped without the thyristor being damaged. That is, the thyristor can be reliably prevented from being damaged.

本発明の転流失敗検出付誘導加熱装置の構成を示す図である。It is a figure which shows the structure of the induction heating apparatus with a commutation failure detection of this invention. 本発明のインバータの点弧タイミングを示す図である。It is a figure which shows the ignition timing of the inverter of this invention. 本発明の転流失敗検出タイミングを示す図である。It is a figure which shows the commutation failure detection timing of this invention.

符号の説明Explanation of symbols

1 三相商用電源
2 順変換器
3 直流リアクトル
4 逆変換器
5 力率改善コンデンサ
6 加熱コイル
7 直流電圧検出回路部
8 制御回路部
DESCRIPTION OF SYMBOLS 1 Three-phase commercial power source 2 Forward converter 3 DC reactor 4 Reverse converter 5 Power factor improvement capacitor 6 Heating coil 7 DC voltage detection circuit part 8 Control circuit part

Claims (1)

三相商用電源から直流電圧を生成する順変換器と、その順変換器で生成された直流電圧のリプルを除去し逆変換器に電力供給する直流リアクトルと、負荷共振周波数に応じた高周波電力を加熱コイルに供給する電流型単相インバータ構成の逆変換器と、その加熱コイルの遅れ力率を進み方向に改善させると共に、前記逆変換器に転流用無効電力を供給する力率改善コンデンサと、を少なくとも備えた誘導加熱装置において、
前記直流リアクトルと前記逆変換器とを接続する直流回路Pと、ゼロ点回路Nの電位差のP−N間直流電圧検出回路部と、
前記順変換器、前記逆変換器をそれぞれ構成する各サイリスタを点弧させるタイミング制御を行うと共に、過電圧或いは過電流から前記サイリスタを保護する制御を行う制御回路部と、をさらに備え、
前記制御回路部は、前記逆変換器が生成するインバータ出力電圧と同期を取り、正負交互に出力する各半サイクル(180度)毎に三角波PLL(Plase Locked Loop)信号を生成するPLL回路と、
位相角度進行につれて前記三角波PLL信号値上昇中に予め定めた基準信号値Kに交叉したとき、逆変換器へのU相ペアサイリスタ、V相ペアサイリスタへ交互に次の半サイクルを点弧させるようにゲート電極へ前記交叉した位相角度で制御信号を送る点弧制御信号出力手段と、
前記P−N間直流電圧検出回路が、前記P−N間電圧波形データを前記半サイクル(180度)毎に位相角度の関数として読込み、前記半サイクル間で、正電圧期間を正のパルス電圧波形として出力した順圧検出信号Aを受信する順圧検出信号A受信手段と、
その順圧検出信号Aを反転して反転順圧検出信号Bを生成する反転手段と、
前記PLL回路の生成する三角波PLL信号から前記半サイクルのさらに半分の1/4サイクル(90度)以内で、予め定められた位相角度における予め定められた角度幅の角度検出信号Cを生成する角度生成手段と、
前記反転順圧検出信号Bと前記角度検出信号Cの論理積から転流失敗検出信号Dを生成し、前記転流失敗検出信号がオン状態あれば、転流失敗と判定し、結果を出力又は表示する転流失敗判定手段と、を備えることを特徴とする転流失敗検出付誘導加熱装置。
A forward converter that generates a DC voltage from a three-phase commercial power supply, a DC reactor that removes the ripple of the DC voltage generated by the forward converter and supplies power to the inverter, and high-frequency power corresponding to the load resonance frequency An inverse converter having a current type single-phase inverter configuration to be supplied to the heating coil, a power factor improving capacitor for improving the delay power factor of the heating coil in the forward direction and supplying reactive power for commutation to the inverse converter; In an induction heating apparatus comprising at least
A DC circuit P for connecting the DC reactor and the inverse converter, a P-N DC voltage detection circuit unit for a potential difference of the zero point circuit N, and
A control circuit unit that performs timing control for starting each thyristor that constitutes each of the forward converter and the reverse converter, and that performs control to protect the thyristor from overvoltage or overcurrent, and
The control circuit unit synchronizes with the inverter output voltage generated by the inverse converter, and generates a triangular wave PLL (Place Locked Loop) signal for each half cycle (180 degrees) that alternately outputs positive and negative; and
When the triangular wave PLL signal value rises as the phase angle progresses, the next half cycle is alternately fired to the U-phase pair thyristor and V-phase pair thyristor to the inverse converter when crossing to the predetermined reference signal value K. Firing control signal output means for sending a control signal to the gate electrode at the crossed phase angle;
The inter-P-N DC voltage detection circuit portion, the read voltage waveform data between P-N as a function of the phase angle the every half cycle (180 degrees), the between half cycle, the positive voltage period positive pulse A forward pressure detection signal A receiving means for receiving the forward pressure detection signal A output as a voltage waveform;
Inverting means for inverting the barometric pressure detection signal A to generate an inverted barometric pressure detection signal B;
An angle for generating an angle detection signal C having a predetermined angular width at a predetermined phase angle within a quarter cycle (90 degrees) of the half cycle of the triangular wave PLL signal generated by the PLL circuit. Generating means;
Wherein the inverted order pressure detection signal B to generate a commutation failure detection signal D from the logical product of the angle detection signal C, the commutation failure detection signal D is equal in the on state, determines that commutation failure, the result An induction heating apparatus with commutation failure detection, comprising: commutation failure determination means for outputting or displaying the commutation failure.
JP2006032827A 2006-02-09 2006-02-09 Induction heating device with commutation failure detection. Active JP4887510B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006032827A JP4887510B2 (en) 2006-02-09 2006-02-09 Induction heating device with commutation failure detection.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006032827A JP4887510B2 (en) 2006-02-09 2006-02-09 Induction heating device with commutation failure detection.

Publications (2)

Publication Number Publication Date
JP2007244003A JP2007244003A (en) 2007-09-20
JP4887510B2 true JP4887510B2 (en) 2012-02-29

Family

ID=38588980

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006032827A Active JP4887510B2 (en) 2006-02-09 2006-02-09 Induction heating device with commutation failure detection.

Country Status (1)

Country Link
JP (1) JP4887510B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009140708A (en) * 2007-12-05 2009-06-25 Meleagros Corp Induction heating device and heating container used in the same
JP5335312B2 (en) * 2008-08-01 2013-11-06 北芝電機株式会社 Current source inverter
JP6341514B2 (en) * 2015-01-15 2018-06-13 株式会社三井E&Sホールディングス Induction heating apparatus control method
KR102511389B1 (en) * 2016-03-23 2023-03-17 엘에스일렉트릭(주) Thyristor Protection device and Protection Method Thereof

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54157222A (en) * 1978-06-02 1979-12-12 Mitsubishi Electric Corp Trouble detecting circuit of current-type inverter

Also Published As

Publication number Publication date
JP2007244003A (en) 2007-09-20

Similar Documents

Publication Publication Date Title
TWI568139B (en) Uninterruptible power source device
JP6697181B2 (en) Electric motor drive
JP4887510B2 (en) Induction heating device with commutation failure detection.
EP3016274B1 (en) Apparatus for controlling inverter
JP2010183698A (en) Motor controller and compressor
JP2011229304A (en) Inverter device
JP6206093B2 (en) Motor drive device and motor device
JP5066693B2 (en) Induction heating device with power control for each heating coil
JP4729692B2 (en) Induction heating device for power harmonics
JPH04121060A (en) Semiconductor power conversion system
JP2010259313A (en) Power conversion system
JP7205176B2 (en) motor drive system
JP2009011111A (en) Instantaneous voltage drop compensation device
JP5071209B2 (en) Uninterruptible power system
US9564842B2 (en) DC voltage detector and power converter using the same
JP2003230275A (en) Protection method for pwm cycloconverter
JP2010074928A (en) Inverter apparatus
JP5192269B2 (en) Series circuit of thyristor with overvoltage protection function
JP2005168197A (en) Control unit for ac-ac direct conversion device
JP2007225316A (en) Detector and method for detecting fuse fusion and instantaneous interruption
US9742340B2 (en) Apparatus for controlling inverter
JP5335312B2 (en) Current source inverter
JP3533515B2 (en) Series compensator and switching element controller
JP5051639B2 (en) Induction heating device with automatic application control circuit for close-position heating coils
JPH07222434A (en) Phase control circuit

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081210

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110513

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110517

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110719

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111115

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111118

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4887510

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141222

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250