JP4884707B2 - Control device for fluid transfer system - Google Patents

Control device for fluid transfer system Download PDF

Info

Publication number
JP4884707B2
JP4884707B2 JP2005174949A JP2005174949A JP4884707B2 JP 4884707 B2 JP4884707 B2 JP 4884707B2 JP 2005174949 A JP2005174949 A JP 2005174949A JP 2005174949 A JP2005174949 A JP 2005174949A JP 4884707 B2 JP4884707 B2 JP 4884707B2
Authority
JP
Japan
Prior art keywords
value
frequency
inverter
motor
filter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005174949A
Other languages
Japanese (ja)
Other versions
JP2006352988A (en
Inventor
徹 合田
久士 斎藤
康明 八須
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Dai Dan Co Ltd
Original Assignee
Fuji Electric Co Ltd
Dai Dan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd, Dai Dan Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2005174949A priority Critical patent/JP4884707B2/en
Publication of JP2006352988A publication Critical patent/JP2006352988A/en
Application granted granted Critical
Publication of JP4884707B2 publication Critical patent/JP4884707B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Control Of Ac Motors In General (AREA)

Description

この発明は、流体搬送システムに備えるポンプやファンなどの流体搬送装置を駆動する交流電動機所望の交流電圧を供給するインバータ装置により制御するようにした流体搬送システムの制御装置に関し、特に、建物等の空調システムに備えるポンプを駆動する交流電動機所望の交流電圧を供給するインバータ装置により制御するようにした流体搬送システムの制御装置に関する。 The present invention relates to a control device of the fluid delivery system where the AC motor for driving the fluid delivery device such as a pump or a fan so as to control the supply inverter of the desired AC voltage provided to the fluid delivery system, in particular, the building relates to a control device of the fluid delivery system the alternating current motor for driving a pump comprising an air conditioning system so as to control the supply inverter of the desired AC voltage and the like.

以下では、流体搬送システムとして建物等の一次ポンプ方式の空調システムを具体例に挙げて説明する。   Hereinafter, a primary pump type air conditioning system such as a building will be described as a specific example of the fluid conveyance system.

図4は、この種の空調システムの代表的な構成例を示し、1は空調負荷を処理する空調機、2は冷温水を空調機1に供給するポンプ、3は前記冷温水を発生させる冷凍機、4は冷凍機3への冷却水を供給するポンプ、5は前記冷却水を発生させる冷却塔、10,20は空調機1,ポンプ2,冷凍機3,ポンプ4,冷却塔5などを所望の状態に制御するシステムコントローラである。また、6は負荷流量を測定する流量計、7は送水圧力を測定する圧力計、8は冷凍機3の冷却水の出口側温度を測定する出口側温度検出器、9は冷凍機3の冷却水の入口側温度を測定する入口側温度検出器、12はポンプ2を駆動する交流電動機に所望の交流電圧を供給するインバータ装置、14はポンプ4を駆動する交流電動機に所望の交流電圧を供給するインバータ装置である。   FIG. 4 shows a typical configuration example of this type of air conditioning system, where 1 is an air conditioner that processes an air conditioning load, 2 is a pump that supplies cold / hot water to the air conditioner 1, and 3 is a refrigeration that generates the cold / hot water. , 4 is a pump for supplying cooling water to the refrigerator 3, 5 is a cooling tower for generating the cooling water, 10 and 20 are an air conditioner 1, a pump 2, a refrigerator 3, a pump 4, a cooling tower 5, etc. It is a system controller that controls to a desired state. Further, 6 is a flow meter for measuring the load flow rate, 7 is a pressure gauge for measuring the water supply pressure, 8 is an outlet side temperature detector for measuring the outlet side temperature of the cooling water of the refrigerator 3, and 9 is for cooling the refrigerator 3. An inlet side temperature detector that measures the temperature of the inlet side of water, 12 is an inverter device that supplies a desired AC voltage to an AC motor that drives the pump 2, and 14 is a desired AC voltage that is supplied to the AC motor that drives the pump 4. This is an inverter device.

図5は、図4に示した空調システムにおけるシステムコントローラ10がポンプ2およびポンプ4を所望の状態に制御するのに関係する部分の回路構成図を示し、11は前記空調システム全体の動作状態の制御を行う上位コントローラである。インバータ装置12は流量計6および圧力計7から上位コントローラ11に入力される空調機1の冷温水の出口側水量すなわち負荷水量の検出値および前記冷温水の入口側圧力すなわち送水圧力の検出値に基づいてコントローラ11から発せられる周波数指令または切替指令と、コントローラ11からの運転指令とに基づいてポンプ2を駆動する交流電動機(以下、単にモータとも称する)13に所望の交流電圧を供給し、また、インバータ装置14は出口側温度検出器8から上位コントローラ11に入力される冷凍機3への冷却水の出口側温度すなわち出口温度の検出値に基づいて上位コントローラ11から発せられる周波数指令または切替指令と、コントローラ11からの運転指令とに基づいてポンプ4を駆動するモータ15に所望の交流電圧を供給する。   FIG. 5 shows a circuit configuration diagram of a portion related to the system controller 10 in the air conditioning system shown in FIG. 4 controlling the pump 2 and the pump 4 to a desired state, and 11 is an operation state of the entire air conditioning system. It is a host controller that performs control. The inverter device 12 converts the detected value of the cold / hot water outlet side water amount, that is, the load water amount, and the detected value of the cold / hot water inlet side pressure, ie, the water supply pressure, of the air conditioner 1 input from the flow meter 6 and pressure gauge 7 to the host controller 11. Based on the frequency command or switching command issued from the controller 11 and the operation command from the controller 11, a desired AC voltage is supplied to an AC motor (hereinafter also simply referred to as a motor) 13 that drives the pump 2. The inverter device 14 receives a frequency command or a switching command issued from the upper controller 11 based on the detected value of the outlet temperature of the cooling water to the refrigerator 3 input to the upper controller 11 from the outlet temperature detector 8, that is, the detected value of the outlet temperature. And a motor 15 that drives the pump 4 based on the operation command from the controller 11 and a desired exchange. It supplies a voltage.

このシステムコントローラ10では、通常時は、上位コントローラ11からインバータ装置12およびインバータ装置14それぞれへ発せられた前記周波数指令と運転指令とに基づいてモータ13およびモータ15それぞれへ所望の交流電圧を供給しているが、この通常運転中に、フィードバック制御回路に故障が発生すると、上位コントローラ11を中心としたフィードバック制御を停止してポンプの運転を停止させた後、上位コントローラ11からの最高周波数固定で運転する周波数指令をインバータ装置12またはインバータ装置14に出力し、インバータ装置12またはインバータ装置14では前記最高周波数でこの周波数に対応した振幅を有する交流電圧をモータ13またはモータ15に供給するようにしている(例えば下記特許文献1)。
特開平11−117874号公報、段落0021。
In the system controller 10, normally, a desired AC voltage is supplied to the motor 13 and the motor 15 based on the frequency command and the operation command issued from the host controller 11 to the inverter device 12 and the inverter device 14, respectively. However, if a failure occurs in the feedback control circuit during this normal operation, the feedback control centered on the host controller 11 is stopped to stop the pump operation, and then the maximum frequency from the host controller 11 is fixed. A frequency command for operation is output to the inverter device 12 or the inverter device 14, and the inverter device 12 or the inverter device 14 supplies an AC voltage having an amplitude corresponding to this frequency to the motor 13 or the motor 15 at the highest frequency. (For example, the following patents Document 1).
JP-A-11-117874, paragraph 0021.

図5に示した従来のシステムコントローラ10において、上位コントローラ11からインバータ装置12やインバータ装置14への信号線には図4に示した空調システムの構成機器それぞれから発するノイズ成分が重畳し易く、特に、前記ノイズ成分としてはインバータ装置12,インバータ装置14を構成する電力用半導体素子のスイッチングに伴うノイズが大きなウェイトを占めている。   In the conventional system controller 10 shown in FIG. 5, noise components emitted from the components of the air conditioning system shown in FIG. 4 are easily superimposed on the signal lines from the host controller 11 to the inverter device 12 and the inverter device 14. As the noise component, noise accompanying switching of power semiconductor elements constituting the inverter device 12 and the inverter device 14 occupies a large weight.

しかしながら、前記信号線を介して送出される前記周波数指令や切替指令に重畳した前記ノイズ成分によるインバータ装置12,インバータ装置14の誤動作を防止するためには、前記ノイズ成分を十分に除去できる大きな減衰特性を有するフィルタを前記インバータ装置側それぞれに備えると、このフィルタによりインバータ装置12,インバータ装置14それぞれの入力−出力間の応答特性を損なう恐れがあった。   However, in order to prevent malfunction of the inverter device 12 and the inverter device 14 due to the noise component superimposed on the frequency command and switching command transmitted via the signal line, the attenuation is sufficiently large to remove the noise component. If a filter having characteristics is provided on each of the inverter devices, the response characteristics between the input and output of each of the inverter device 12 and the inverter device 14 may be impaired by the filter.

この発明の目的は、上記問題点を解決したインバータ装置を用いた流体搬送システムの制御装置を提供することにある。 The objective of this invention is providing the control apparatus of the fluid conveyance system using the inverter apparatus which solved the said problem.

この発明は、システム内の流体を搬送する流体搬送装置と、流体搬送装置を駆動する交流電動機に所望の交流電圧を供給するインバータ装置と、前記インバータ装置へ制御指令を与え、システム内の流体を制御する上位コントローラとを備えた流体搬送システムにおいて、
前記流体搬送システムの各部の動作状態を検出する検出器それぞれからの検出値に含まれるノイズ成分を除去するそれぞれのフィルタと、前記それぞれのフィルタの出力値に基づく調節演算を行い、インバータ装置への周波数指令値を出力する調節演算部と、予め所望の周波数指令値を設定する周波数設定器と、通常時は前記調節演算部からインバータ部へ与えられている周波数指令値を、前記それぞれのフィルタの出力値から前記検出器のそれぞれの内のいずれかに異常が検出されたときに前記周波数設定器に設定されている周波数指令値に切り替えてインバータ部へ与える切替指令を発生する異常検出部とを前記インバータ装置に設け、前記上位コントローラからは前記インバータ装置へ運転指令を与え、前記インバータ装置内で前記流体搬送装置の制御のための調節演算を行うことを特徴とする
The present invention relates to a fluid conveyance device that conveys fluid in a system, an inverter device that supplies a desired AC voltage to an AC motor that drives the fluid conveyance device, a control command to the inverter device, and the fluid in the system In a fluid conveyance system including a host controller for controlling,
Each filter for removing a noise component included in a detection value from each detector that detects an operation state of each part of the fluid conveyance system, and an adjustment calculation based on the output value of each filter are performed. An adjustment calculation unit that outputs a frequency command value, a frequency setter that sets a desired frequency command value in advance, and a frequency command value that is normally given from the adjustment calculation unit to the inverter unit are sent to each filter. An abnormality detection unit that generates a switching command to be applied to the inverter unit by switching to a frequency command value set in the frequency setter when an abnormality is detected in any of the detectors from an output value; Provided in the inverter device, an operation command is given from the host controller to the inverter device, and the flow is performed in the inverter device. And performing an adjustment operation for the control of the transport apparatus.

この発明のインバータ装置によれば、インバータ装置の入力−出力間の応答特性を損なうこと無く、ノイズ成分を除去できるフィルタを該インバータ装置に備えることができると共に、前記インバータ装置の上位コントローラにおける高速処理を要する演算量も軽減することができ、その結果、流体搬送システムに備えるシステムコントローラを安価に具現することができる。   According to the inverter device of the present invention, the inverter device can be provided with a filter capable of removing noise components without impairing the response characteristics between the input and output of the inverter device, and the high-speed processing in the host controller of the inverter device. As a result, the system controller provided in the fluid conveyance system can be realized at low cost.

図1はこの発明の実施の形態を示す回路構成図であり、この図において、図5に示した従来例回路と同一機能を有するものには同一符号を付している。   FIG. 1 is a circuit configuration diagram showing an embodiment of the present invention. In this figure, components having the same functions as those of the conventional circuit shown in FIG.

すなわち図1は、図4に示した空調システムにおけるシステムコントローラ20がポンプ2およびポンプ4を所望の状態に制御するのに関係する部分の回路構成図を示し、21は前記空調システム全体の動作状態の制御を行う上位コントローラ、22は図4示した流量計6および圧力計7それぞれの検出器から入力される空調機1の冷温水の出口側水量すなわち負荷水量の検出値および前記冷温水の入口側圧力すなわち送水圧力の検出値と、コントローラ21から発せられる運転指令とに基づいてポンプ2を駆動するモータ13に所望の交流電圧を供給するインバータ装置、23は図4で示した出口側温度検出器8から入力される冷凍機3への冷却水の出口側温度すなわち出口温度の検出値と、上位コントローラ21から発せられる運転指令とに基づいてポンプ4を駆動するモータ15に所望の交流電圧を供給するインバータ装置である。   That is, FIG. 1 shows a circuit configuration diagram of a portion related to the system controller 20 in the air conditioning system shown in FIG. 4 controlling the pump 2 and the pump 4 to a desired state, and 21 is an operation state of the entire air conditioning system. The upper controller 22 controls the flow rate of the cold / hot water of the air conditioner 1 input from the detectors of the flow meter 6 and the pressure gauge 7 shown in FIG. An inverter device that supplies a desired AC voltage to the motor 13 that drives the pump 2 based on the detected value of the side pressure, that is, the water supply pressure, and the operation command issued from the controller 21, and 23 is the outlet side temperature detection shown in FIG. The detected value of the outlet side temperature of the cooling water to the refrigerator 3 input from the refrigerator 8, that is, the detected temperature of the outlet, and the operation command issued from the host controller 21 An inverter device for supplying a desired AC voltage to the motor 15 which drives the pump 4 based on.

なお、上記実施の形態では、流体搬送システムとして、図4で示した一次ポンプ方式の空調システムを具体例として説明したが、他の方式の空調システム,プラント等の熱源機器の冷却システム、給水設備等の可変給水システム、あるいは建物の換気を行う換気システム等であっても適用可能である。   In the above embodiment, the primary pump type air conditioning system shown in FIG. 4 has been described as a specific example of the fluid transfer system. However, other types of air conditioning systems, cooling systems for heat source equipment such as plants, water supply facilities, etc. It can be applied to a variable water supply system such as a ventilation system or a ventilation system for ventilating a building.

例えば、図6は、生産設備の冷却システムを示すものであり、生産設備(例えば発電機等の熱負荷)を熱交換器に冷水を通流して冷却するシステムである。   For example, FIG. 6 shows a cooling system for a production facility, which is a system that cools a production facility (for example, a heat load such as a generator) by passing cold water through a heat exchanger.

図において、81は熱負荷を処理する熱交換器、82は冷水を熱交換器81に供給するポンプ、83はポンプ82を駆動する交流電動機に所望の交流電圧を供給するインバータ装置、86は負荷流量を測定する流量計、87は送水圧力を測定する圧力計である。   In the figure, 81 is a heat exchanger that processes a heat load, 82 is a pump that supplies cold water to the heat exchanger 81, 83 is an inverter device that supplies a desired AC voltage to an AC motor that drives the pump 82, and 86 is a load. A flow meter 87 for measuring the flow rate is a pressure meter for measuring the water supply pressure.

また、図7は、給水設備を示すものであり、配管末端において所要の圧力,流量を得るために、ポンプの吐出圧力が一定圧力になるように制御するシステムである。   FIG. 7 shows a water supply facility, which is a system for controlling the discharge pressure of the pump to be a constant pressure in order to obtain the required pressure and flow rate at the end of the pipe.

図において、91は水源となる液体槽、92は液体槽91から水を各水栓に供給するポンプ、93はポンプ92の吐出圧力が一定になるようにポンプ92を駆動する交流電動機に所望の交流電圧を供給するインバータ装置、96は負荷流量を測定する流量計、97は送水圧力を測定する圧力計である。   In the figure, 91 is a liquid tank serving as a water source, 92 is a pump that supplies water from the liquid tank 91 to each faucet, and 93 is an AC motor that drives the pump 92 so that the discharge pressure of the pump 92 is constant. An inverter device for supplying an alternating voltage, 96 is a flow meter for measuring the load flow rate, and 97 is a pressure gauge for measuring the water supply pressure.

また、図8は、室内温度に応じて風量の調整を行なう可変風量空調システムを示し、101は給気口101aおよび還気口101bを有する空調対象である室、102は冷却コイル102a,給気用ファン102b等から構成される空調機、103は給気用ファン102bを駆動する交流電動機に所望の交流電圧を供給するインバータ装置、104は室内温度検出器108の計測値により室101が要求する風量と一致するように図示しないモータダンパを開閉駆動する可変風量装置(VAV)、105は還気用ファン、106は還気用ファン105を駆動する交流電動機に所望の交流電圧を供給するインバータ装置、107は空調機出口温度検出器、108は室内温度検出器、109aは外気を取り入れるための外気モータダンパ、109bは排気モータダンパ、109cは還気モータダンパである。   FIG. 8 shows a variable air volume air-conditioning system that adjusts the air volume according to the room temperature. 101 is a room to be air-conditioned having an air supply port 101a and a return air port 101b, 102 is a cooling coil 102a, and air supply An air conditioner composed of a fan 102b and the like, 103 is an inverter device that supplies a desired AC voltage to an AC motor that drives the air supply fan 102b, and 104 is requested by the chamber 101 based on a measured value of the indoor temperature detector 108. A variable air volume device (VAV) that opens and closes a motor damper (not shown) so as to match the air volume, 105 is a return air fan, 106 is an inverter device that supplies a desired AC voltage to an AC motor that drives the return air fan 105, 107 is an air conditioner outlet temperature detector, 108 is an indoor temperature detector, 109a is an outside air motor damper for taking in outside air, 109b Is an exhaust motor damper, and 109c is a return air motor damper.

以下に、上記システムの空気の流れを説明する。   Hereinafter, the air flow of the system will be described.

空調機102内の冷却コイル102aで温度および湿度が調整され、冷却された空気は、給気ファン102bを介して可変風量装置104に搬送され、可変風量装置104により風量が調節された空気を給気口101aを介して室内に供給する。室101に供給された空気は、室内で熱負荷を処理し、熱負荷の処理を終えた空気は還気口101bから吸い込まれ、還気ファン105を介して搬送され、モータダンパ109b,109cが開閉制御されて排気空気と戻り空気とに振り分けられる。戻り空気は外気と混合され再び空調機102内の冷却コイル102aに導かれる。以上の循環を繰り返し室内温度を所定値に制御している。   The temperature and humidity are adjusted by the cooling coil 102a in the air conditioner 102, and the cooled air is conveyed to the variable air volume device 104 through the air supply fan 102b, and the air whose air volume is adjusted by the variable air volume device 104 is supplied. The air is supplied into the room through the air vent 101a. The air supplied to the chamber 101 processes the heat load in the room, and the air that has finished the heat load is sucked from the return air port 101b and conveyed through the return air fan 105, and the motor dampers 109b and 109c are opened and closed. Controlled and distributed to exhaust air and return air. The return air is mixed with the outside air and is led to the cooling coil 102a in the air conditioner 102 again. The above circulation is repeated to control the room temperature to a predetermined value.

このような空調システムでは、空調機出口温度検出器107および室内温度検出器108の検出値に基づき、室内温度が所定の値となるようにPID演算により当該室101の要求風量を決定する。ここで、インバータ装置103は、可変風量装置104の図示しないダンパが全開となるまで給気ファン102bの回転数を減少させる。   In such an air conditioning system, based on the detected values of the air conditioner outlet temperature detector 107 and the indoor temperature detector 108, the required air volume of the room 101 is determined by PID calculation so that the indoor temperature becomes a predetermined value. Here, the inverter device 103 reduces the rotation speed of the air supply fan 102b until a damper (not shown) of the variable airflow device 104 is fully opened.

また、図9は、CO2濃度またはCO濃度に応じてファンの制御を行う室内換気システムを示すものであり、室内のCO2濃度またはCO濃度を予め定めた一定値以下となるように制御する換気システムである。 FIG. 9 shows an indoor ventilation system that controls the fan in accordance with the CO 2 concentration or the CO concentration, and controls the indoor CO 2 concentration or the CO concentration to be a predetermined value or less. It is a ventilation system.

図において、111は給気口111aおよび還気口111bを有する換気対象である室、112は給気用ファン、113は給気用ファン112を駆動する交流電動機に所望の交流電圧を供給するインバータ装置、114は排気用ファン、115は排気用ファン114を駆動する交流電動機に所望の交流電圧を供給するインバータ装置、116は空気搬送路内のCO2の濃度を検出するCO2濃度検出器である。 In the figure, 111 is a room to be ventilated having an air supply port 111 a and a return air port 111 b, 112 is an air supply fan, 113 is an inverter that supplies a desired AC voltage to an AC motor that drives the air supply fan 112. Device, 114 is an exhaust fan, 115 is an inverter device that supplies a desired AC voltage to an AC motor that drives the exhaust fan 114, and 116 is a CO 2 concentration detector that detects the concentration of CO 2 in the air conveyance path. is there.

また、図10は、室内圧力に応じてファンの制御を行う室圧制御システムを示すものであり、互いに隣接する室の室圧を同一にし、隣接する室同士で圧力差がなくなるように制御するシステムである。   FIG. 10 shows a chamber pressure control system that controls the fan in accordance with the room pressure, and controls the chamber pressures of the adjacent chambers to be the same so that there is no pressure difference between the adjacent chambers. System.

図において、121は給気口121aおよび還気口121bを有する圧力制御対象である室、122は室121に隣接し、室121に連通するドア122aを有する室、123は給気用ファン、124は給気用ファン123を駆動する交流電動機に所望の交流電圧を供給するインバータ装置、125は図示しない風速検出器とモータダンパとを有し、風速検出器により検出された風速が予め定められた風速になるようにモータダンパの開度を調整する定風量装置、126は室圧制御用のモータダンパ、127は排気用ファン、128は排気用ファン127を駆動する交流電動機に所望の交流電圧を供給するインバータ装置、129aは室121内の圧力を検出する圧力検出器、129bは室122内の圧力を検出する圧力検出器である。   In the figure, 121 is a chamber that is a pressure control target having an air supply port 121a and a return air port 121b, 122 is a chamber adjacent to the chamber 121 and having a door 122a communicating with the chamber 121, 123 is an air supply fan, 124 Is an inverter that supplies a desired AC voltage to an AC motor that drives the air supply fan 123, 125 has a wind speed detector and a motor damper (not shown), and the wind speed detected by the wind speed detector is a predetermined wind speed. A constant air volume device that adjusts the opening degree of the motor damper so that the motor damper becomes 126, 126 is a motor damper for controlling the room pressure, 127 is an exhaust fan, and 128 is an inverter that supplies a desired AC voltage to an AC motor that drives the exhaust fan 127 The apparatus, 129a is a pressure detector that detects the pressure in the chamber 121, and 129b is a pressure detector that detects the pressure in the chamber 122.

図2はこの発明の第1の実施例の回路構成を示し、図1に示したインバータ装置22の詳細回路構成図である。   FIG. 2 shows a circuit configuration of the first embodiment of the present invention, and is a detailed circuit configuration diagram of the inverter device 22 shown in FIG.

すなわち図2において、22aは前記負荷水量の検出値に重畳したノイズ成分を除去するフィルタ、22bはノイズ成分が除去された前記負荷水量の検出値から目標圧力の設定値を導出するために前記水量に基づく周知の二次関数式を演算して前記設定値を求めるための変換演算部、22cは前記送水圧力の検出値に重畳したノイズ成分を除去するフィルタ、22dは前記設定値とノイズ成分が除去された前記送水圧力の検出値との偏差を求める加減算演算部、22eは前記偏差が零になるような調節演算値を出力する調節部、22fは後述の異常検出部22hから切替指令が発せられていないとき、すなわち、通常時には前記調節演算値をインバータ部22gに伝達する切替器、このときのインバータ部22gは前記調節演算値を周波数指令とし、この周波数指令に基づいた周波数と該周波数に対応した振幅の交流電圧を発生してモータ13に供給する。   That is, in FIG. 2, 22a is a filter for removing a noise component superimposed on the detected value of the load water amount, and 22b is the water amount for deriving a set value of the target pressure from the detected value of the load water amount from which the noise component has been removed. A conversion calculation unit for calculating a well-known quadratic function expression based on the above and obtaining the set value, 22c is a filter for removing a noise component superimposed on the detected value of the water supply pressure, and 22d is a filter for removing the set value and the noise component. Addition / subtraction calculation unit for obtaining a deviation from the detected value of the removed water supply pressure, 22e is an adjustment unit for outputting an adjustment calculation value so that the deviation becomes zero, and 22f is a switching command issued from an abnormality detection unit 22h described later. A switch that transmits the adjustment calculation value to the inverter unit 22g during normal operation, that is, the inverter unit 22g at this time sets the adjustment calculation value as a frequency indicator. And then, supplied to the motor 13 an alternating voltage with an amplitude corresponding to the frequency and the frequency based on the frequency command is generated.

また、異常検出部22hはフィルタ22aを介した前記負荷水量の検出値とフィルタ22cを介した前記送水圧力の検出値とが入力され、何れかの検出値がそれぞれの定格検出値の例えば5%以下になったときには、対応する検出器が故障などの異常状態になったと判断して切替信号を発し、この切替指令により切替器22fでは周波数設定器22jが出力する所望の周波数設定値がインバータ部22gに入力され、インバータ部22gでは前記周波数設定値に基づいた周波数でこの周波数に対応した振幅を有する交流電圧をモータ13に供給するようにしている。   The abnormality detection unit 22h receives the detection value of the load water amount via the filter 22a and the detection value of the water supply pressure via the filter 22c, and any detection value is, for example, 5% of the rated detection value. When the following occurs, it is determined that the corresponding detector is in an abnormal state such as a failure, and a switching signal is issued. By this switching command, the switching unit 22f outputs the desired frequency setting value output from the frequency setting unit 22j to the inverter unit. The inverter unit 22g supplies an AC voltage having an amplitude corresponding to the frequency to the motor 13 at a frequency based on the frequency setting value.

ここで、空調システムによっては、検出器の異常時にこのモータ13を停止するほうが安全なものもあれば、所定の回転数でモータ13を運転するほうが安全なものもある。この発明では、周波数設定器22jにより検出器異常時の周波数を設定することができるので、モータ13を停止する場合と、任意の回転数でモータ13を運転する場合とのどちらにも対応可能である。   Here, depending on the air conditioning system, it is safer to stop the motor 13 when the detector is abnormal, and it is safer to operate the motor 13 at a predetermined rotational speed. In the present invention, since the frequency when the detector is abnormal can be set by the frequency setting unit 22j, it is possible to cope with both the case where the motor 13 is stopped and the case where the motor 13 is operated at an arbitrary rotational speed. is there.

このインバータ装置22によれば、従来のインバータ装置にいわゆる送水圧制御の機能を付加することにより、比較的高速な動作を行う周波数指令はインバータ装置22の内部演算値となるので、この周波数指令が図6に示した空調システムの構成機器それぞれから発する前記ノイズ成分の影響を受けることが防止できると共に、比較的低速な動作を行うそれぞれの検出値に対しては前記ノイズ成分を除去するのに十分なフィルタ22a,フィルタ22cを設置することができ、従って、前記検出器に故障などの異常が発生したことを確実に検知でき、この検知に伴って、インバータ部22gの動作状態を速やかに切り替えることができる。また、上位コントローラ21では従来の上位コントローラ11に比して、高速処理を要する調節部22eなどの機能を削除することができ、その結果、該コントローラの演算量も軽減することができる。   According to this inverter device 22, by adding a so-called water supply pressure control function to the conventional inverter device, the frequency command for performing a relatively high speed operation becomes the internal calculation value of the inverter device 22. It is possible to prevent the influence of the noise component emitted from each of the components of the air conditioning system shown in FIG. 6 and to remove the noise component for each detection value that operates at a relatively low speed. Filter 22a and filter 22c can be installed. Therefore, it is possible to reliably detect that an abnormality such as a failure has occurred in the detector, and to quickly switch the operating state of the inverter 22g with this detection. Can do. Further, in the host controller 21, functions such as the adjusting unit 22e that require high-speed processing can be deleted as compared with the conventional host controller 11, and as a result, the calculation amount of the controller can be reduced.

なお、図6で示した生産設備の冷却システムおいては、流量計86からの負荷水量の検出値が図2のフィルタ22aに入力されて負荷水量の検出値に重畳したノイズ成分が除去され、変換演算部22bにより目標圧力の設定値が演算される。一方、圧力計87からの送水圧力の検出値がフィルタ22cに入力され、送水圧力の検出値に重畳したノイズ成分が除去される。   In the production equipment cooling system shown in FIG. 6, the detected value of the load water amount from the flow meter 86 is input to the filter 22a of FIG. 2, and the noise component superimposed on the detected value of the load water amount is removed. The set value of the target pressure is calculated by the conversion calculation unit 22b. On the other hand, the detected value of the water supply pressure from the pressure gauge 87 is input to the filter 22c, and the noise component superimposed on the detected value of the water supply pressure is removed.

そして、上述と同様に、前記設定値と送水圧力の検出値との偏差を求め、この偏差が零になるように調節演算を行ない、周波数指令に基づいた周波数と該周波数に対応した振幅の交流電圧を発生してモータ13に供給する。   Then, in the same manner as described above, the deviation between the set value and the detected value of the water supply pressure is obtained, the adjustment calculation is performed so that this deviation becomes zero, and the AC based on the frequency command and the amplitude corresponding to the frequency are exchanged. A voltage is generated and supplied to the motor 13.

ここで、異常検出部22hはフィルタ22aを介した負荷水量の検出値とフィルタ22cを介した目標圧力の検出値とが入力され、何れかの検出値がそれぞれの定格検出値の例えば5%以下になったときには、対応する検出器が故障などの異常状態になったと判断して切替信号を発し、この切替指令により切替器22fでは周波数設定器22jが出力する所望の周波数設定値がインバータ部22gに入力され、インバータ部22gでは前記周波数設定値に基づいた周波数でこの周波数に対応した振幅を有する交流電圧をモータ13に供給するようにしている。   Here, the abnormality detection unit 22h receives the detection value of the load water amount via the filter 22a and the detection value of the target pressure via the filter 22c, and one of the detection values is, for example, 5% or less of each rated detection value. When it is, it is determined that the corresponding detector is in an abnormal state such as a failure, and a switching signal is issued. In response to this switching command, the switching unit 22f outputs the desired frequency setting value output from the frequency setting unit 22j to the inverter unit 22g. In the inverter unit 22g, an AC voltage having an amplitude corresponding to this frequency is supplied to the motor 13 at a frequency based on the frequency setting value.

また、図7で示した給水設備においては、流量計96からの負荷水量の検出値が図2のフィルタ22aに入力されて負荷水量の検出値に重畳したノイズ成分が除去され、変換演算部22bにより目標圧力の設定値が演算される。一方、圧力計97からの送水圧力の検出値がフィルタ22cに入力され、送水圧力の検出値に重畳したノイズ成分が除去される。   In addition, in the water supply facility shown in FIG. 7, the detected value of the load water amount from the flow meter 96 is input to the filter 22a of FIG. 2, and the noise component superimposed on the detected value of the load water amount is removed, and the conversion calculation unit 22b Thus, the set value of the target pressure is calculated. On the other hand, the detected value of the water supply pressure from the pressure gauge 97 is input to the filter 22c, and the noise component superimposed on the detected value of the water supply pressure is removed.

そして、上述と同様に、前記設定値と送水圧力の検出値との偏差を求め、この偏差が零になるように調節演算を行ない、周波数指令に基づいた周波数と該周波数に対応した振幅の交流電圧を発生してモータ13に供給する。   Then, in the same manner as described above, the deviation between the set value and the detected value of the water supply pressure is obtained, the adjustment calculation is performed so that this deviation becomes zero, and the AC based on the frequency command and the amplitude corresponding to the frequency are exchanged. A voltage is generated and supplied to the motor 13.

ここで、異常検出部22hはフィルタ22aを介した負荷水量の検出値とフィルタ22cを介した目標圧力の検出値とが入力され、何れかの検出値がそれぞれの定格検出値の例えば5%以下になったときには、対応する検出器が故障などの異常状態になったと判断して切替信号を発し、この切替指令により切替器22fでは周波数設定器22jが出力する所望の周波数設定値がインバータ部22gに入力され、インバータ部22gでは前記周波数設定値に基づいた周波数でこの周波数に対応した振幅を有する交流電圧をモータ13に供給するようにしている。   Here, the abnormality detection unit 22h receives the detection value of the load water amount via the filter 22a and the detection value of the target pressure via the filter 22c, and one of the detection values is, for example, 5% or less of each rated detection value. When it is, it is determined that the corresponding detector is in an abnormal state such as a failure, and a switching signal is issued. In response to this switching command, the switching unit 22f outputs the desired frequency setting value output from the frequency setting unit 22j to the inverter unit 22g. In the inverter unit 22g, an AC voltage having an amplitude corresponding to this frequency is supplied to the motor 13 at a frequency based on the frequency setting value.

また、図10の室圧制御システムにおいては、フィルタ22aには、図2に示した負荷水量に代えて圧力検出器129bで検出した圧力の検出値が入力され、フィルタ22cには、図2に示した送水圧力に代えて圧力検出器129aで検出した圧力の検出値が入力されて、室121と室122との圧力が同じになるように制御される。なお、この室圧制御システムの場合は、図2の変換演算部22bは不要である。   In the room pressure control system of FIG. 10, the detected value of the pressure detected by the pressure detector 129b is input to the filter 22a instead of the load water amount shown in FIG. Instead of the water supply pressure shown, a detected value of pressure detected by the pressure detector 129a is input, and the pressure in the chamber 121 and the chamber 122 is controlled to be the same. In the case of this room pressure control system, the conversion calculation unit 22b in FIG. 2 is not necessary.

すなわち、室121の圧力センサ129aからの圧力の検出値が図2のフィルタ22cに入力されて圧力の検出値に重畳したノイズ成分が除去される。一方、室122の圧力センサ129bからの圧力の検出値が図2のフィルタ22aに入力されて圧力の検出値に重畳したノイズ成分が除去される。そして、加減算演算部22dではフィルタ22aの出力とフィルタ22cの出力との偏差を求め、調節部22eではこの偏差が零になるように調節演算を行ない、周波数指令に基づいた周波数と該周波数に対応した振幅の交流電圧を発生してモータ13に供給する。   That is, the detected pressure value from the pressure sensor 129a of the chamber 121 is input to the filter 22c in FIG. 2, and the noise component superimposed on the detected pressure value is removed. On the other hand, the detected pressure value from the pressure sensor 129b of the chamber 122 is input to the filter 22a of FIG. 2, and the noise component superimposed on the detected pressure value is removed. Then, the addition / subtraction calculation unit 22d calculates the deviation between the output of the filter 22a and the output of the filter 22c, and the adjustment unit 22e performs adjustment calculation so that this deviation becomes zero, and the frequency based on the frequency command and the frequency An AC voltage having the amplitude is generated and supplied to the motor 13.

ここで、異常検出部22hはフィルタ22aを介した圧力の検出値とフィルタ22cを介した圧力の検出値とが入力され、何れかの検出値がそれぞれの定格検出値の例えば5%以下になったときには、対応する検出器が故障などの異常状態になったと判断して切替信号を発し、この切替指令により切替器22fでは周波数設定器22jが出力する所望の周波数設定値がインバータ部22gに入力され、インバータ部22gでは前記周波数設定値に基づいた周波数でこの周波数に対応した振幅を有する交流電圧をモータ13に供給するようにしている。   Here, the abnormality detection unit 22h receives the pressure detection value via the filter 22a and the pressure detection value via the filter 22c, and one of the detection values is, for example, 5% or less of the rated detection value. When it is determined that the corresponding detector is in an abnormal state such as a failure, a switching signal is issued, and in response to this switching command, the switching unit 22f inputs the desired frequency setting value output from the frequency setting unit 22j to the inverter 22g. In the inverter unit 22g, an AC voltage having an amplitude corresponding to the frequency is supplied to the motor 13 at a frequency based on the frequency setting value.

図3はこの発明の第2の実施例の回路構成を示し、図1に示したインバータ装置23の詳細回路構成図である。   FIG. 3 shows a circuit configuration of the second embodiment of the present invention, and is a detailed circuit configuration diagram of the inverter device 23 shown in FIG.

すなわち図3において、23aは前記出口温度の検出値に重畳したノイズ成分を除去するフィルタ、23bは前記出口温度の設定値を送出する設定器、23cは前記設定値とノイズ成分が除去された出口温度の検出値との偏差を求める加減算演算部、23dは前記偏差が零になるような調節演算値を出力する調節部、23eは後述の異常検出部23gから切替指令が発せられていないとき、すなわち、通常時には前記調節演算値をインバータ部23fに伝達する切替器、このときのインバータ部23fは前記調節演算値を周波数指令とし、この周波数指令に基づいた周波数と該周波数に対応した振幅の交流電圧を発生してモータ15に供給する。   That is, in FIG. 3, 23a is a filter for removing a noise component superimposed on the detected value of the outlet temperature, 23b is a setter for sending the set value of the outlet temperature, and 23c is an outlet from which the set value and the noise component have been removed. Addition / subtraction operation unit for obtaining a deviation from the detected temperature value, 23d is an adjustment unit for outputting an adjustment operation value such that the deviation becomes zero, and 23e is a switching command from an abnormality detection unit 23g described later, In other words, the switch that normally transmits the adjustment calculation value to the inverter unit 23f, and the inverter unit 23f at this time uses the adjustment calculation value as a frequency command, and the frequency based on the frequency command and the alternating current of the amplitude corresponding to the frequency command. A voltage is generated and supplied to the motor 15.

また、異常検出部23gはフィルタ23aを介した前記出口温度の検出値が入力され、この検出値が定格検出値の例えば5%以下になったときには、対応する検出器が故障などの異常状態になったと判断して切替信号を発し、この切替指令により切替器23eでは周波数設定器23hが出力する所望の周波数設定値がインバータ部23fに入力され、インバータ部23fでは前記周波数設定値に基づいた周波数でこの周波数に対応した振幅を有する交流電圧をモータ15に供給するようにしている。   The abnormality detection unit 23g receives the detected value of the outlet temperature via the filter 23a, and when the detected value becomes, for example, 5% or less of the rated detection value, the corresponding detector enters an abnormal state such as a failure. In response to this switching command, the switching device 23e inputs a desired frequency setting value output from the frequency setting device 23h to the inverter unit 23f, and the inverter unit 23f outputs a frequency based on the frequency setting value. Thus, an AC voltage having an amplitude corresponding to this frequency is supplied to the motor 15.

ここで、空調システムによっては、検出器の異常時にこのモータ15を停止するほうが安全なものもあれば、所定の回転数でモータ15を運転するほうが安全なものもある。この発明では、周波数設定器23hにより検出器異常時の周波数を設定することができるので、モータ15を停止する場合と、任意の回転数でモータ15を運転する場合とのどちらにも対応可能である。   Here, depending on the air conditioning system, it is safer to stop the motor 15 when the detector is abnormal, and it is safer to operate the motor 15 at a predetermined rotational speed. In the present invention, since the frequency when the detector is abnormal can be set by the frequency setter 23h, it is possible to cope with both the case where the motor 15 is stopped and the case where the motor 15 is operated at an arbitrary rotational speed. is there.

このインバータ装置23によれば、従来のインバータ装置にいわゆる出口温度一定制御の機能を付加することにより、比較的高速な動作を行う周波数指令はインバータ装置23の内部演算値となるので、この周波数指令が図4に示した空調システムの構成機器それぞれから発する前記ノイズ成分の影響を受けることが防止されると共に、比較的低速な動作を行う検出値に対しては前記ノイズ成分を除去するのに十分なフィルタ23aを設置することができ、従って、前記検出器に故障などの異常が発生したことを確実に検知でき、この検知に伴って、インバータ部23fの動作状態を速やかに切り替えることができる。また、上位コントローラ21では従来の上位コントローラ11に比して、高速処理を要する調節部23dなどの機能を削除することができ、その結果、該コントローラの演算量も軽減することができる。   According to this inverter device 23, by adding a so-called outlet temperature constant control function to the conventional inverter device, a frequency command for performing a relatively high speed operation becomes an internal operation value of the inverter device 23. 4 is prevented from being affected by the noise component emitted from each of the components of the air conditioning system shown in FIG. 4, and is sufficient to remove the noise component for a detection value that operates at a relatively low speed. Therefore, it is possible to reliably detect that an abnormality such as a failure has occurred in the detector, and in accordance with this detection, the operating state of the inverter unit 23f can be quickly switched. Further, the host controller 21 can delete functions such as the adjustment unit 23d that requires high-speed processing as compared with the conventional host controller 11, and as a result, the calculation amount of the controller can be reduced.

さらに上位コントローラ21とインバータ装置22,23との間の配線を少なくすることができ、設置工事の簡素化が図れる。   Furthermore, the wiring between the host controller 21 and the inverter devices 22 and 23 can be reduced, and the installation work can be simplified.

なお、図6で示した生産設備の冷却システムおいては、流量計86あるいは圧力計87の検出値が図3のフィルタ23aに入力されて流量あるいは圧力の検出値に重畳したノイズ成分が除去され、調節部23dは前記設定値と流量あるいは圧力の検出値との偏差が零になるように調節演算を行ない、周波数指令に基づいた周波数と該周波数に対応した振幅の交流電圧を発生してモータ13に供給する。   In the production system cooling system shown in FIG. 6, the detected value of the flow meter 86 or the pressure gauge 87 is input to the filter 23a of FIG. 3, and the noise component superimposed on the detected value of the flow rate or pressure is removed. The adjusting unit 23d performs an adjustment operation so that a deviation between the set value and the detected value of the flow rate or pressure becomes zero, and generates a frequency based on the frequency command and an AC voltage having an amplitude corresponding to the frequency. 13 is supplied.

ここで、異常検出部23gはフィルタ23aを介した流量あるいは圧力の検出値が入力され、この検出値がそれぞれの定格検出値の例えば5%以下になったときには、対応する検出器が故障などの異常状態になったと判断して切替信号を発し、この切替指令により切替器23eでは周波数設定器23hが出力する所望の周波数設定値がインバータ部23fに入力され、インバータ部23fでは前記周波数設定値に基づいた周波数でこの周波数に対応した振幅を有する交流電圧をモータ13に供給するようにしている。   Here, the abnormality detection unit 23g receives a detection value of the flow rate or pressure through the filter 23a, and when this detection value becomes, for example, 5% or less of the respective rated detection value, the corresponding detector is in trouble. It is determined that an abnormal state has occurred, and a switching signal is issued. In response to this switching command, a desired frequency setting value output from the frequency setting device 23h is input to the inverter 23f in the switching device 23e, and the frequency setting value is set to the inverter 23f. An alternating voltage having an amplitude corresponding to this frequency is supplied to the motor 13 at the base frequency.

また、図8の可変風量空調システムにおいては、室内温度検出器108からの温度の検出値が図3のフィルタ23aに入力されて室内温度の検出値に重畳したノイズ成分が除去され、調節部23dは前記設定値と室内温度の検出値との偏差が零になるように調節演算を行ない、周波数指令に基づいた周波数と該周波数に対応した振幅の交流電圧を発生してモータ13に供給する。   Further, in the variable air volume air conditioning system of FIG. 8, the detected value of the temperature from the indoor temperature detector 108 is input to the filter 23a of FIG. 3, and the noise component superimposed on the detected value of the indoor temperature is removed, and the adjusting unit 23d. Performs an adjustment calculation so that the deviation between the set value and the detected value of the room temperature becomes zero, generates a frequency based on the frequency command and an AC voltage having an amplitude corresponding to the frequency, and supplies it to the motor 13.

ここで、異常検出部23gはフィルタ23aを介した室内温度の検出値が入力され、この検出値がそれぞれの定格検出値の例えば5%以下になったときには、対応する検出器が故障などの異常状態になったと判断して切替信号を発し、この切替指令により切替器23eでは周波数設定器23hが出力する所望の周波数設定値がインバータ部23fに入力され、インバータ部23fでは前記周波数設定値に基づいた周波数でこの周波数に対応した振幅を有する交流電圧をモータ13に供給するようにしている。   Here, when the detected value of the room temperature through the filter 23a is input to the abnormality detecting unit 23g and this detected value becomes, for example, 5% or less of the respective rated detected value, the corresponding detector is abnormal such as a failure. It is determined that the state has been reached, and a switching signal is issued. In response to this switching command, the switching unit 23e inputs a desired frequency setting value output from the frequency setting unit 23h to the inverter unit 23f, and the inverter unit 23f is based on the frequency setting value. AC voltage having an amplitude corresponding to this frequency is supplied to the motor 13.

また、図9の室内換気システムにおいては、フィルタ23aには、図3に示した出口温度に代えてCO2濃度の検出値が入力され、設定器23bで設定したCO2濃度の設定値との比較が行なわれる。 In the indoor ventilation system of FIG. 9, the detected value of the CO 2 concentration is input to the filter 23a instead of the outlet temperature shown in FIG. 3, and the filter 23a is compared with the set value of the CO 2 concentration set by the setting device 23b. A comparison is made.

すなわち、CO2濃度検出器116からのCO2濃度の検出値が図3のフィルタ23aに入力されてCO2濃度の検出値に重畳したノイズ成分が除去され、調節部23dは前記設定値とCO2濃度の検出値との偏差が零になるように調節演算を行ない、周波数指令に基づいた周波数と該周波数に対応した振幅の交流電圧を発生してモータ13に供給する。 That is, the detection value of CO 2 concentration from the CO 2 concentration detector 116 is a noise component is inputted superimposed on the detection value of the CO 2 concentration in the filter 23a of FIG. 3 is removed, adjusted unit 23d the set value and CO The adjustment calculation is performed so that the deviation from the detected value of the two concentrations becomes zero, and an AC voltage having a frequency based on the frequency command and an amplitude corresponding to the frequency is generated and supplied to the motor 13.

ここで、異常検出部23gはフィルタ23aを介したCO2濃度の検出値が入力され、この検出値がそれぞれの定格検出値の例えば5%以下になったときには、対応する検出器が故障などの異常状態になったと判断して切替信号を発し、この切替指令により切替器23eでは周波数設定器23hが出力する所望の周波数設定値がインバータ部23fに入力され、インバータ部23fでは前記周波数設定値に基づいた周波数でこの周波数に対応した振幅を有する交流電圧をモータ13に供給するようにしている。 Here, the abnormality detection unit 23g receives the detection value of the CO 2 concentration through the filter 23a, and when this detection value becomes, for example, 5% or less of the respective rated detection value, the corresponding detector is in trouble. It is determined that an abnormal state has occurred, and a switching signal is issued. In response to this switching command, a desired frequency setting value output from the frequency setting device 23h is input to the inverter 23f in the switching device 23e, and the frequency setting value is set to the inverter 23f. An alternating voltage having an amplitude corresponding to this frequency is supplied to the motor 13 at the base frequency.

この発明の実施の形態を示す回路構成図Circuit configuration diagram showing an embodiment of the present invention この発明の第1の実施例を示す回路構成図1 is a circuit configuration diagram showing a first embodiment of the present invention. この発明の第2の実施例を示す回路構成図Circuit configuration diagram showing a second embodiment of the present invention. 空調システムの構成図Air conditioning system configuration diagram 従来例を示す回路構成図Circuit configuration diagram showing a conventional example 生産設備の冷却システムの構成図Production equipment cooling system configuration diagram 給水設備の構成図Configuration diagram of water supply equipment 可変風量空調システムの構成図Configuration diagram of variable air volume air conditioning system 室内換気システムの構成図Configuration diagram of indoor ventilation system 室圧制御システムの構成図Configuration diagram of room pressure control system

1…空調機、2…ポンプ、3…冷凍機、4…ポンプ、5…冷却塔、10,20…システムコントローラ、11…上位コントローラ、12,14…インバータ装置、13,15…モータ、21…上位コントローラ、22,23…インバータ装置。
DESCRIPTION OF SYMBOLS 1 ... Air conditioner, 2 ... Pump, 3 ... Refrigerator, 4 ... Pump, 5 ... Cooling tower, 10, 20 ... System controller, 11 ... High-order controller, 12, 14 ... Inverter device, 13, 15 ... Motor, 21 ... Upper controller, 22, 23... Inverter device.

Claims (1)

システム内の流体を搬送する流体搬送装置と、流体搬送装置を駆動する交流電動機に所望の交流電圧を供給するインバータ装置と、前記インバータ装置へ制御指令を与え、システム内の流体を制御する上位コントローラとを備えた流体搬送システムにおいて、
前記流体搬送システムの各部の動作状態を検出する検出器それぞれからの検出値に含まれるノイズ成分を除去するそれぞれのフィルタと、前記それぞれのフィルタの出力値に基づく調節演算を行い、インバータ装置への周波数指令値を出力する調節演算部と、予め所望の周波数指令値を設定する周波数設定器と、通常時は前記調節演算部からインバータ部へ与えられている周波数指令値を、前記それぞれのフィルタの出力値から前記検出器のそれぞれの内のいずれかに異常が検出されたときに前記周波数設定器に設定されている周波数指令値に切り替えてインバータ部へ与える切替指令を発生する異常検出部とを前記インバータ装置に設け、前記上位コントローラからは前記インバータ装置へ運転指令を与え、前記インバータ装置内で前記流体搬送装置の制御のための調節演算を行うことを特徴とする流体搬送システムの制御装置
A fluid conveyance device that conveys fluid in the system, an inverter device that supplies a desired AC voltage to an AC motor that drives the fluid conveyance device, and a host controller that gives control commands to the inverter device and controls the fluid in the system In a fluid conveyance system comprising:
Each filter for removing a noise component included in a detection value from each detector that detects an operation state of each part of the fluid conveyance system, and an adjustment calculation based on the output value of each filter are performed. An adjustment calculation unit that outputs a frequency command value, a frequency setter that sets a desired frequency command value in advance, and a frequency command value that is normally given from the adjustment calculation unit to the inverter unit are sent to each filter. An abnormality detection unit that generates a switching command to be applied to the inverter unit by switching to a frequency command value set in the frequency setter when an abnormality is detected in any of the detectors from an output value; Provided in the inverter device, an operation command is given from the host controller to the inverter device, and the flow is performed in the inverter device. Control device for a fluid delivery system and performing an adjustment operation for the control of the transport apparatus.
JP2005174949A 2005-06-15 2005-06-15 Control device for fluid transfer system Expired - Fee Related JP4884707B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005174949A JP4884707B2 (en) 2005-06-15 2005-06-15 Control device for fluid transfer system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005174949A JP4884707B2 (en) 2005-06-15 2005-06-15 Control device for fluid transfer system

Publications (2)

Publication Number Publication Date
JP2006352988A JP2006352988A (en) 2006-12-28
JP4884707B2 true JP4884707B2 (en) 2012-02-29

Family

ID=37648223

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005174949A Expired - Fee Related JP4884707B2 (en) 2005-06-15 2005-06-15 Control device for fluid transfer system

Country Status (1)

Country Link
JP (1) JP4884707B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017141411A1 (en) * 2016-02-19 2017-08-24 株式会社日立製作所 Motor control system

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06193945A (en) * 1992-12-24 1994-07-15 Matsushita Electric Ind Co Ltd Control device for air conditioner
JP3325997B2 (en) * 1994-03-11 2002-09-17 富士通株式会社 Motor control device and control method
JP3975809B2 (en) * 2002-04-03 2007-09-12 国産電機株式会社 Temperature detection device

Also Published As

Publication number Publication date
JP2006352988A (en) 2006-12-28

Similar Documents

Publication Publication Date Title
US11953216B2 (en) Ventilation controller
US11187429B2 (en) Integrated heat and energy recovery ventilator system
US10113757B2 (en) Ventilation device for clean room applications
WO2009116160A1 (en) Indoor unit and air conditioning apparatus including the same
JP2004293844A (en) Air conditioning equipment
KR20190009833A (en) Method for improving working efficiency of a cooling system by improving a building with a master controller
US12007134B2 (en) Avoiding coil freeze in HVAC systems
JP2006329440A (en) Pressure control unit
WO2003081140A1 (en) Air conditioner, and method of controlling air conditioner
JP4884707B2 (en) Control device for fluid transfer system
KR20170039114A (en) Conveyance energy-saving control apparatus in HVAC equipment
JP2011191016A (en) Temperature control system for direct expansion type air conditioner
JP2010002080A (en) Air conditioning system
JP4884706B2 (en) Control device for fluid transfer system
WO2021200478A1 (en) Air conditioning system
US20220146124A1 (en) Air conditioning system
TW201804115A (en) Method for improving operational efficiency of a cooling system through retrofitting a building with a master controller
WO2005073639A1 (en) Facility control device
US20090134233A1 (en) Steam Control System
CN110226070B (en) Air conditioner
US20240044543A1 (en) Method, system and computer program product for controlling an hvac system
JP3459332B2 (en) Air conditioner
JP2005172284A (en) Air conditioning system, air conditioning control device and control method of air conditioning system
JP2024140670A (en) Air conditioning system and control method thereof
CN115614890A (en) Indoor air quality for variable air volume systems

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071109

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20080919

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20080919

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20080919

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080919

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100729

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100803

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101001

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110405

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20110422

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20110608

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111206

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111207

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141216

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4884707

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees