JP4884706B2 - Control device for fluid transfer system - Google Patents

Control device for fluid transfer system Download PDF

Info

Publication number
JP4884706B2
JP4884706B2 JP2005174948A JP2005174948A JP4884706B2 JP 4884706 B2 JP4884706 B2 JP 4884706B2 JP 2005174948 A JP2005174948 A JP 2005174948A JP 2005174948 A JP2005174948 A JP 2005174948A JP 4884706 B2 JP4884706 B2 JP 4884706B2
Authority
JP
Japan
Prior art keywords
fluid
filter
value
inverter device
inverter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005174948A
Other languages
Japanese (ja)
Other versions
JP2006352987A (en
Inventor
徹 合田
久士 斎藤
康明 八須
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Dai Dan Co Ltd
Original Assignee
Fuji Electric Co Ltd
Dai Dan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd, Dai Dan Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2005174948A priority Critical patent/JP4884706B2/en
Publication of JP2006352987A publication Critical patent/JP2006352987A/en
Application granted granted Critical
Publication of JP4884706B2 publication Critical patent/JP4884706B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Control Of Ac Motors In General (AREA)

Description

この発明は、流体搬送システムに備えるポンプやファンなどの流体搬送装置を駆動する交流電動機を所望の交流電圧を供給するインバータ装置により制御するようにした流体搬送システムの制御装置に関する。   The present invention relates to a control device for a fluid conveyance system in which an AC motor that drives a fluid conveyance device such as a pump and a fan provided in the fluid conveyance system is controlled by an inverter device that supplies a desired AC voltage.

以下では、流体搬送システムとして建物等の一次ポンプ方式の空調システムを具体例に挙げて説明する。   Hereinafter, a primary pump type air conditioning system such as a building will be described as a specific example of the fluid conveyance system.

図6は、この種の空調システムの代表的な構成例を示し、1は空調負荷を処理する空調機、2は冷温水を空調機1に供給するポンプ、3は前記冷温水を発生させる冷凍機、4は冷凍機3への冷却水を供給するポンプ、5は前記冷却水を発生させる冷却塔、10,20,30は空調機1,ポンプ2,冷凍機3,ポンプ4,冷却塔5などを所望の状態に制御するシステムコントローラである。また、6は負荷流量を測定する流量計、7は送水圧力を測定する圧力計、8は冷凍機3の冷却水の出口側温度を測定する出口側温度検出器、9は冷凍機3の冷却水の入口側温度を測定する入口側温度検出器、12はポンプ2を駆動する交流電動機に所望の交流電圧を供給するインバータ装置、14はポンプ4を駆動する交流電動機に所望の交流電圧を供給するインバータ装置である。   FIG. 6 shows a typical configuration example of this type of air conditioning system, where 1 is an air conditioner that processes an air conditioning load, 2 is a pump that supplies cold / hot water to the air conditioner 1, and 3 is a refrigeration that generates the cold / hot water. , 4 is a pump for supplying cooling water to the refrigerator 3, 5 is a cooling tower for generating the cooling water, 10, 20, 30 are air conditioners 1, pumps 2, refrigerator 3, pump 4, cooling tower 5 It is a system controller that controls a desired state. Further, 6 is a flow meter for measuring the load flow rate, 7 is a pressure gauge for measuring the water supply pressure, 8 is an outlet side temperature detector for measuring the outlet side temperature of the cooling water of the refrigerator 3, and 9 is for cooling the refrigerator 3. An inlet side temperature detector that measures the temperature of the inlet side of water, 12 is an inverter device that supplies a desired AC voltage to an AC motor that drives the pump 2, and 14 is a desired AC voltage that is supplied to the AC motor that drives the pump 4. This is an inverter device.

図7は、図6に示した空調システムにおけるシステムコントローラ10がポンプ2およびポンプ4を所望の状態に制御するのに関係する部分の回路構成図を示し、11は前記空調システム全体の動作状態の制御を行う上位コントローラである。インバータ装置12は流量計6および圧力計7から上位コントローラ11に入力される空調機1の冷温水の出口側水量すなわち負荷水量の検出値および前記冷温水の入口側圧力すなわち送水圧力の検出値に基づいてコントローラ11から発せられる周波数指令と、コントローラ11からの運転指令とに基づいてポンプ2を駆動する交流電動機(以下、単にモータとも称する)13に所望の交流電圧を供給し、また、インバータ装置14は出口側温度検出器8から上位コントローラ11に入力される冷凍機3への冷却水の出口側温度すなわち出口温度の検出値に基づいて上位コントローラ11から発せられる周波数指令と、コントローラ11からの運転指令とに基づいてポンプ4を駆動するモータ15に所望の交流電圧を供給する。
特開2002−98358号公報。
FIG. 7 shows a circuit configuration diagram of a portion related to the system controller 10 in the air conditioning system shown in FIG. 6 controlling the pump 2 and the pump 4 to a desired state, and 11 is an operation state of the entire air conditioning system. It is a host controller that performs control. The inverter device 12 converts the detected value of the cold / hot water outlet side water amount, that is, the load water amount, and the detected value of the cold / hot water inlet side pressure, ie, the water supply pressure, of the air conditioner 1 input from the flow meter 6 and the pressure gauge 7 to the host controller 11. Based on a frequency command issued from the controller 11 and an operation command from the controller 11, a desired AC voltage is supplied to an AC motor (hereinafter also simply referred to as a motor) 13 that drives the pump 2, and an inverter device Reference numeral 14 denotes a frequency command issued from the host controller 11 based on the detected value of the outlet temperature of the cooling water to the refrigerator 3 input to the refrigerator 3 from the outlet side temperature detector 8, that is, the detected value of the outlet temperature, A desired AC voltage is supplied to the motor 15 that drives the pump 4 based on the operation command.
JP 2002-98358 A.

図7に示した従来のシステムコントローラ10において、上位コントローラ11からインバータ装置12やインバータ装置14への信号線には図6に示した空調システムの構成機器それぞれから発するノイズ成分が重畳し易く、特に、前記ノイズ成分としてはインバータ装置12,インバータ装置14を構成する電力用半導体素子のスイッチングに伴うノイズが大きなウェイトを占めている。   In the conventional system controller 10 shown in FIG. 7, noise components emitted from the components of the air conditioning system shown in FIG. 6 are easily superimposed on the signal lines from the host controller 11 to the inverter device 12 and the inverter device 14. As the noise component, noise accompanying switching of power semiconductor elements constituting the inverter device 12 and the inverter device 14 occupies a large weight.

しかしながら、前記信号線を介して送出される前記周波数指令に重畳した前記ノイズ成分によるインバータ装置12,インバータ装置14の誤動作を防止するためには、前記ノイズ成分を除去するフィルタを前記インバータ装置側にそれぞれ備えることが行われているが、このフィルタによりインバータ装置12,インバータ装置14それぞれの入力−出力間の応答特性を損なう恐れがあり、前記ノイズ成分を十分に除去できる大きな減衰特性を有するフィルタを前記インバータ装置それぞれに備えることが困難であった。   However, in order to prevent malfunctions of the inverter device 12 and the inverter device 14 due to the noise component superimposed on the frequency command transmitted via the signal line, a filter for removing the noise component is provided on the inverter device side. Each filter is provided, but this filter may impair the response characteristics between the input and output of each of the inverter device 12 and the inverter device 14, and a filter having a large attenuation characteristic that can sufficiently remove the noise component. It was difficult to provide each of the inverter devices.

この発明の目的は、上記問題点を解決した流体搬送システムの制御装置を提供することにある。   The objective of this invention is providing the control apparatus of the fluid conveyance system which solved the said problem.

この第1の発明は、システム内の流体を搬送する流体搬送装置と、流体搬送装置を駆動する交流電動機に所望の交流電圧を供給するインバータ装置と、前記インバータ装置へ制御指令を与え、システム内の流体を制御する上位コントローラとを備えた流体搬送システムにおいて、
前記流体搬送システムの所定の部位の流体の第1の状態量の検出値に含まれるノイズ成分を除去する第1フィルタと、この第1フィルタの出力値から前記流体搬送システムの流体の第2の状態量を導出する変換演算部と、前記流体搬送システムの流体の第2の状態量の検出値に含まれるノイズ成分を除去する第2フィルタと、前記変換演算部の出力値と前記第2フィルタの出力値との偏差を求める加減算演算部と、前記偏差が零になる前記インバータ装置への周波数指令値を求めてインバータ部へ与える調節演算部とを前記インバータ装置内に設け、前記上位コントローラからは前記インバータ装置へ運転指令を与え、この運転指令にしたがって前記インバータ装置内で前記流体搬送装置の制御のための調節演算を行うことを特徴とする。
According to the first aspect of the present invention, a fluid conveyance device that conveys fluid in the system, an inverter device that supplies a desired AC voltage to an AC motor that drives the fluid conveyance device, and a control command is given to the inverter device, A fluid conveyance system including a host controller for controlling the fluid of
A first filter that removes a noise component included in a detection value of a first state quantity of a fluid at a predetermined portion of the fluid conveyance system; and a second filter of the fluid of the fluid conveyance system from an output value of the first filter. A conversion operation unit for deriving a state quantity; a second filter for removing a noise component contained in a detected value of a second state quantity of the fluid of the fluid transport system; an output value of the conversion operation unit; and the second filter An addition / subtraction operation unit for obtaining a deviation from the output value of the output signal, and an adjustment operation unit for obtaining a frequency command value to the inverter device for which the deviation becomes zero and providing the inverter unit to the inverter unit are provided in the inverter device. Provides an operation command to the inverter device, and performs an adjustment calculation for controlling the fluid conveyance device in the inverter device in accordance with the operation command.

第2の発明は、システム内の流体を搬送する流体搬送装置と、流体搬送装置を駆動する交流電動機に所望の交流電圧を供給するインバータ装置と、前記インバータ装置へ制御指令を与え、システム内の流体を制御する上位コントローラとを備えた流体搬送システムにおいて、
前記流体搬送システムの所定部位の流量の検出値に含まれるノイズ成分を除去する第1フィルタと、この第1フィルタの出力値から前記所定部位の流体圧力値を導出する変換演算部と、前記流体搬送システムの流体圧力の検出値に含まれるノイズ成分を除去する第2フィルタと、前記変換演算部の出力値と前記第2フィルタの出力値との偏差を求める加減算演算部と、前記偏差が零になる前記インバータ装置への周波数指令値を求めてインバータ部へ与える調節演算部とを前記インバータ装置内に設け、前記上位コントローラからは前記インバータ装置へ運転指令を与え、この運転指令にしたがって前記インバータ装置内で前記流体搬送装置の制御のための調節演算を行うことを特徴とする。
According to a second aspect of the present invention, there is provided a fluid conveyance device that conveys a fluid in the system, an inverter device that supplies a desired AC voltage to an AC electric motor that drives the fluid conveyance device, a control command to the inverter device, In a fluid conveyance system comprising a host controller for controlling fluid,
A first filter that removes a noise component included in a flow rate detection value at a predetermined part of the fluid conveyance system; a conversion calculation unit that derives a fluid pressure value at the predetermined part from an output value of the first filter; A second filter that removes a noise component contained in the fluid pressure detection value of the transfer system; an addition / subtraction operation unit that obtains a deviation between the output value of the conversion operation unit and the output value of the second filter; and the deviation is zero An adjustment calculation unit that obtains a frequency command value for the inverter device and gives it to the inverter unit is provided in the inverter device, an operation command is given from the host controller to the inverter device, and the inverter is operated according to the operation command. An adjustment calculation for controlling the fluid conveyance device is performed in the device.

この発明によれば、インバータ装置内で前記流体搬送装置の制御のための調節演算を行うようにしたため、インバータ装置の入力−出力間の応答特性を損なうこと無く、ノイズ成分を除去できるフィルタを該インバータ装置に備えることができると共に、前記インバータ装置の上位コントローラにおける高速処理を要する演算量も軽減することができ、その結果、流体搬送システムに備えるシステムコントローラを安価に具現することができる。   According to the present invention, since the adjustment calculation for controlling the fluid conveying device is performed in the inverter device, the filter capable of removing the noise component without impairing the response characteristic between the input and output of the inverter device is provided. In addition to being provided in the inverter device, it is possible to reduce the amount of calculation required for high-speed processing in the host controller of the inverter device, and as a result, it is possible to implement the system controller provided in the fluid conveyance system at low cost.

図1はこの発明の第1の実施の形態を示す回路構成図であり、この図において、図7に示した従来例回路と同一機能を有するものには同一符号を付している。   FIG. 1 is a circuit configuration diagram showing a first embodiment of the present invention. In this figure, components having the same functions as those of the conventional circuit shown in FIG.

すなわち図1は、図6に示した空調システムにおけるシステムコントローラ20がポンプ2およびポンプ4を所望の状態に制御するのに関係する部分の回路構成図を示し、21は前記空調システム全体の動作状態の制御を行う上位コントローラ、22は図6で示した流量計6および圧力計7それぞれの検出器から入力される空調機1の冷温水の出口側水量すなわち負荷水量の検出値および前記冷温水の入口側圧力すなわち送水圧力の検出値と、コントローラ21から発せられる運転指令とに基づいてポンプ2を駆動するモータ13に所望の交流電圧を供給するインバータ装置であり、また、23は図6で示した出口側温度検出器8および入口側温度検出器9それぞれから入力される冷凍機3への冷却水の出口側温度すなわち出口温度の検出値および前記冷却水の入口側温度すなわち入口温度の検出値
と、上位コントローラ21から発せられる運転指令とに基づいてポンプ4を駆動するモータ15に所望の交流電圧を供給するインバータ装置である。
That is, FIG. 1 shows a circuit configuration diagram of a portion related to the system controller 20 in the air conditioning system shown in FIG. 6 controlling the pump 2 and the pump 4 to a desired state, and 21 is an operation state of the entire air conditioning system. The upper controller 22 performs control of the above-described control, and 22 is an outlet-side water amount of cold / hot water of the air conditioner 1 input from the detectors of the flow meter 6 and pressure gauge 7 shown in FIG. This is an inverter device that supplies a desired AC voltage to the motor 13 that drives the pump 2 based on the detected value of the inlet side pressure, that is, the water supply pressure, and the operation command issued from the controller 21, and 23 is shown in FIG. The detected value of the outlet side temperature of the cooling water to the refrigerator 3 input from the outlet side temperature detector 8 and the inlet side temperature detector 9, ie, the outlet temperature. The detection value of the inlet side temperature or inlet temperature of the pre-said cooling water, an inverter device for supplying a desired AC voltage to the motor 15 which drives the pump 4 on the basis of operation command and emanating from the host controller 21.

なお、上記実施の形態では、流体搬送システムとして、図6で示した一次ポンプ方式の空調システムを具体例として説明したが、他の方式の空調システム,プラント等の熱源機器の冷却システム、給水設備等の可変給水システム、あるいは建物の換気を行う換気システム等であっても適用可能である。   In the above embodiment, the primary pump type air conditioning system shown in FIG. 6 has been described as a specific example of the fluid transfer system. However, other types of air conditioning systems, cooling systems for heat source equipment such as plants, water supply facilities, etc. It can be applied to a variable water supply system such as a ventilation system or a ventilation system for ventilating a building.

例えば、図8は、生産設備の冷却システムを示すものであり、生産設備(例えば発電機等の熱負荷)を熱交換器に冷水を通流して冷却するシステムである。   For example, FIG. 8 shows a cooling system for a production facility, which is a system that cools a production facility (for example, a heat load such as a generator) by passing cold water through a heat exchanger.

図において、81は熱負荷を処理する熱交換器、82は冷水を熱交換器81に供給するポンプ、83はポンプ82を駆動する交流電動機に所望の交流電圧を供給するインバータ装置、86は負荷流量を測定する流量計、87は送水圧力を測定する圧力計である。   In the figure, 81 is a heat exchanger that processes a heat load, 82 is a pump that supplies cold water to the heat exchanger 81, 83 is an inverter device that supplies a desired AC voltage to an AC motor that drives the pump 82, and 86 is a load. A flow meter 87 for measuring the flow rate is a pressure meter for measuring the water supply pressure.

また、図9は、給水設備を示すものであり、配管末端において所要の圧力,流量を得るために、ポンプの吐出圧力が一定圧力になるように制御するシステムである。   FIG. 9 shows a water supply facility, which is a system for controlling the discharge pressure of the pump to be a constant pressure in order to obtain the required pressure and flow rate at the end of the pipe.

図において、91は水源となる液体槽、92は液体槽91から水を各水栓に供給するポンプ、93はポンプ92の吐出圧力が一定になるようにポンプ92を駆動する交流電動機に所望の交流電圧を供給するインバータ装置、96は負荷流量を測定する流量計、97は送水圧力を測定する圧力計である。   In the figure, 91 is a liquid tank serving as a water source, 92 is a pump that supplies water from the liquid tank 91 to each faucet, and 93 is an AC motor that drives the pump 92 so that the discharge pressure of the pump 92 is constant. An inverter device for supplying an alternating voltage, 96 is a flow meter for measuring the load flow rate, and 97 is a pressure gauge for measuring the water supply pressure.

また、図10は、室内温度に応じて風量の調整を行なう可変風量空調システムを示し、101は給気口101aおよび還気口101bを有する空調対象である室、102は冷却コイル102a,給気用ファン102b等から構成される空調機、103は給気用ファン102bを駆動する交流電動機に所望の交流電圧を供給するインバータ装置、104は室内温度検出器108の計測値により室101が要求する風量と一致するように図示しないモータダンパを開閉駆動する可変風量装置(VAV)、105は還気用ファン、106は還気用ファン105を駆動する交流電動機に所望の交流電圧を供給するインバータ装置、107は空調機出口温度検出器、108は室内温度検出器、109aは外気を取り入れるための外気モータダンパ、109bは排気モータダンパ、109cは還気モータダンパである。   FIG. 10 shows a variable air volume air conditioning system that adjusts the air volume according to the room temperature, 101 is a room to be air-conditioned having an air supply port 101a and a return air port 101b, 102 is a cooling coil 102a, and air supply An air conditioner composed of a fan 102b and the like, 103 is an inverter device that supplies a desired AC voltage to an AC motor that drives the air supply fan 102b, and 104 is requested by the chamber 101 based on a measured value of the indoor temperature detector 108. A variable air volume device (VAV) that opens and closes a motor damper (not shown) so as to match the air volume, 105 is a return air fan, 106 is an inverter device that supplies a desired AC voltage to an AC motor that drives the return air fan 105, 107 is an air conditioner outlet temperature detector, 108 is an indoor temperature detector, 109a is an outside air motor damper for taking in outside air, 109 b is an exhaust motor damper, 109c is a return air motor damper.

以下に、上記システムの空気の流れを説明する。   Hereinafter, the air flow of the system will be described.

空調機102内の冷却コイル102aで温度および湿度が調整され、冷却された空気は、給気ファン102bを介して可変風量装置104に搬送され、可変風量装置104により風量が調節された空気を給気口101aを介して室内に供給する。室101に供給された空気は、室内で熱負荷を処理し、熱負荷の処理を終えた空気は還気口101bから吸い込まれ、還気ファン105を介して搬送され、モータダンパ109b,109cが開閉制御されて排気空気と戻り空気とに振り分けられる。戻り空気は外気と混合され再び空調機102内の冷却コイル102aに導かれる。以上の循環を繰り返し室内温度を所定値に制御している。   The temperature and humidity are adjusted by the cooling coil 102a in the air conditioner 102, and the cooled air is conveyed to the variable air volume device 104 through the air supply fan 102b, and the air whose air volume is adjusted by the variable air volume device 104 is supplied. The air is supplied into the room through the air vent 101a. The air supplied to the chamber 101 processes the heat load in the room, and the air that has finished the heat load is sucked from the return air port 101b and conveyed through the return air fan 105, and the motor dampers 109b and 109c are opened and closed. Controlled and distributed to exhaust air and return air. The return air is mixed with the outside air and is led to the cooling coil 102a in the air conditioner 102 again. The above circulation is repeated to control the room temperature to a predetermined value.

このような空調システムでは、空調機出口温度検出器107および室内温度検出器108の検出値に基づき、室内温度が所定の値となるようにPID演算により当該室101の要求風量を決定する。ここで、インバータ装置103は、可変風量装置104の図示しないダンパが全開となるまで給気ファン102bの回転数を減少させる。   In such an air conditioning system, based on the detected values of the air conditioner outlet temperature detector 107 and the indoor temperature detector 108, the required air volume of the room 101 is determined by PID calculation so that the indoor temperature becomes a predetermined value. Here, the inverter device 103 reduces the rotation speed of the air supply fan 102b until a damper (not shown) of the variable airflow device 104 is fully opened.

また、図11は、CO2濃度またはCO濃度に応じてファンの制御を行う室内換気システムを示すものであり、室内のCO2濃度またはCO濃度を予め定めた一定値以下となるように制御する換気システムである。 FIG. 11 shows an indoor ventilation system that controls the fan in accordance with the CO 2 concentration or the CO concentration, and controls the indoor CO 2 concentration or the CO concentration to be equal to or lower than a predetermined value. It is a ventilation system.

図において、111は給気口111aおよび還気口111bを有する換気対象である室、112は給気用ファン、113は給気用ファン112を駆動する交流電動機に所望の交流電圧を供給するインバータ装置、114は排気用ファン、115は排気用ファン114を駆動する交流電動機に所望の交流電圧を供給するインバータ装置、116は空気搬送路内のCO2の濃度を検出するCO2濃度検出器である。 In the figure, 111 is a room to be ventilated having an air supply port 111 a and a return air port 111 b, 112 is an air supply fan, 113 is an inverter that supplies a desired AC voltage to an AC motor that drives the air supply fan 112. Device, 114 is an exhaust fan, 115 is an inverter device that supplies a desired AC voltage to an AC motor that drives the exhaust fan 114, and 116 is a CO 2 concentration detector that detects the concentration of CO 2 in the air conveyance path. is there.

また、図12は、室内圧力に応じてファンの制御を行う室圧制御システムを示すものであり、互いに隣接する室の室圧を同一にし、隣接する室同士で圧力差がなくなるように制御するシステムである。   FIG. 12 shows a chamber pressure control system that controls the fan in accordance with the room pressure, and controls the chamber pressures of the adjacent chambers to be the same so that there is no pressure difference between the adjacent chambers. System.

図において、121は給気口121aおよび還気口121bを有する圧力制御対象である室、122は室121に隣接し、室121に連通するドア122aを有する室、123は給気用ファン、124は給気用ファン123を駆動する交流電動機に所望の交流電圧を供給するインバータ装置、125は図示しない風速検出器とモータダンパとを有し、風速検出器により検出された風速が予め定められた風速になるようにモータダンパの開度を調整する定風量装置、126は室圧制御用のモータダンパ、127は排気用ファン、128は排気用ファン127を駆動する交流電動機に所望の交流電圧を供給するインバータ装置、129aは室121内の圧力を検出する圧力検出器、129bは室122内の圧力を検出する圧力検出器である。   In the figure, 121 is a chamber that is a pressure control target having an air supply port 121a and a return air port 121b, 122 is a chamber adjacent to the chamber 121 and having a door 122a communicating with the chamber 121, 123 is an air supply fan, 124 Is an inverter that supplies a desired AC voltage to an AC motor that drives the air supply fan 123, 125 has a wind speed detector and a motor damper (not shown), and the wind speed detected by the wind speed detector is a predetermined wind speed. A constant air volume device that adjusts the opening degree of the motor damper so that the motor damper becomes 126, 126 is a motor damper for controlling the room pressure, 127 is an exhaust fan, and 128 is an inverter that supplies a desired AC voltage to an AC motor that drives the exhaust fan 127 The apparatus, 129a is a pressure detector that detects the pressure in the chamber 121, and 129b is a pressure detector that detects the pressure in the chamber 122.

図2はこの発明の第1の実施例の回路構成を示し、図1に示したインバータ装置22の詳細回路構成図である。   FIG. 2 shows a circuit configuration of the first embodiment of the present invention, and is a detailed circuit configuration diagram of the inverter device 22 shown in FIG.

すなわち図2において、22aは前記負荷水量の検出値に重畳したノイズ成分を除去するフィルタ、22bはノイズ成分が除去された前記負荷水量の検出値から目標圧力の設定値を導出するために前記水量に基づく周知の二次関数式を演算して前記設定値を求めるための変換演算部、22cは前記送水圧力の検出値に重畳したノイズ成分を除去するフィルタ、22dは前記設定値とノイズ成分が除去された前記送水圧力の検出値との偏差を求める加減算演算部、22eは前記偏差が零になるような調節演算値を出力する調節部、22fは前記調節演算値を周波数指令とし、この周波数指令に基づいた周波数と該周波数に対応した振幅の交流電圧を発生してモータ13に供給するインバータ部である。   That is, in FIG. 2, 22a is a filter for removing a noise component superimposed on the detected value of the load water amount, and 22b is the water amount for deriving a set value of the target pressure from the detected value of the load water amount from which the noise component has been removed. A conversion calculation unit for calculating a well-known quadratic function expression based on the above and obtaining the set value, 22c is a filter for removing a noise component superimposed on the detected value of the water supply pressure, and 22d is a filter for removing the set value and the noise component. An addition / subtraction calculation unit for obtaining a deviation from the detected value of the removed water supply pressure, 22e is an adjustment unit for outputting an adjustment calculation value such that the deviation becomes zero, and 22f uses the adjustment calculation value as a frequency command. It is an inverter unit that generates an AC voltage having a frequency based on a command and an amplitude corresponding to the frequency and supplies the AC voltage to the motor 13.

このインバータ装置22によれば、従来のインバータ装置にいわゆる送水圧制御の機能を付加することにより、比較的高速な動作を行う周波数指令はインバータ装置22の内部演算値となるので、この周波数指令が図6に示した空調システムの構成機器それぞれから発する前記ノイズ成分の影響を受けることが防止できると共に、比較的低速な動作を行うそれぞれの検出値に対しては前記ノイズ成分を除去するのに十分なフィルタ22a,フィルタ22cを設置することができる。また、上位コントローラ21では従来の上位コントローラ11に比して、高速処理を要する調節部22eなどの機能を削除することができ、その結果、該コントローラの演算量も軽減することができる。   According to this inverter device 22, by adding a so-called water supply pressure control function to the conventional inverter device, the frequency command for performing a relatively high speed operation becomes the internal calculation value of the inverter device 22. It is possible to prevent the influence of the noise component emitted from each of the components of the air conditioning system shown in FIG. 6 and to remove the noise component for each detection value that operates at a relatively low speed. A simple filter 22a and a filter 22c can be installed. Further, in the host controller 21, functions such as the adjusting unit 22e that require high-speed processing can be deleted as compared with the conventional host controller 11, and as a result, the calculation amount of the controller can be reduced.

なお、図8で示した生産設備の冷却システムおいては、流量計86からの負荷水量の検出値が図2のフィルタ22aに入力されて負荷水量の検出値に重畳したノイズ成分が除去され、変換演算部22bにより目標圧力の設定値が演算される。一方、圧力計87からの送水圧力の検出値がフィルタ22cに入力され、送水圧力の検出値に重畳したノイズ成分が除去される。   In the production system cooling system shown in FIG. 8, the detected value of the load water amount from the flow meter 86 is input to the filter 22a of FIG. 2, and the noise component superimposed on the detected value of the load water amount is removed. The set value of the target pressure is calculated by the conversion calculation unit 22b. On the other hand, the detected value of the water supply pressure from the pressure gauge 87 is input to the filter 22c, and the noise component superimposed on the detected value of the water supply pressure is removed.

そして、上述と同様に、前記設定値と送水圧力の検出値との偏差を求め、この偏差が零になるように調節演算を行ない、周波数指令に基づいた周波数と該周波数に対応した振幅の交流電圧を発生してモータ13に供給する。   Then, in the same manner as described above, the deviation between the set value and the detected value of the water supply pressure is obtained, the adjustment calculation is performed so that this deviation becomes zero, and the AC based on the frequency command and the amplitude corresponding to the frequency are exchanged. A voltage is generated and supplied to the motor 13.

また、図9で示した給水設備においては、流量計96からの負荷水量の検出値が図2のフィルタ22aに入力されて負荷水量の検出値に重畳したノイズ成分が除去され、変換演算部22bにより目標圧力の設定値が演算される。一方、圧力計97からの送水圧力の検出値がフィルタ22cに入力され、送水圧力の検出値に重畳したノイズ成分が除去される。   In the water supply facility shown in FIG. 9, the detected value of the load water amount from the flow meter 96 is input to the filter 22a of FIG. 2, and the noise component superimposed on the detected value of the load water amount is removed, and the conversion calculation unit 22b Thus, the set value of the target pressure is calculated. On the other hand, the detected value of the water supply pressure from the pressure gauge 97 is input to the filter 22c, and the noise component superimposed on the detected value of the water supply pressure is removed.

そして、上述と同様に、前記設定値と送水圧力の検出値との偏差を求め、この偏差が零になるように調節演算を行ない、周波数指令に基づいた周波数と該周波数に対応した振幅の交流電圧を発生してモータ13に供給する。   Then, in the same manner as described above, the deviation between the set value and the detected value of the water supply pressure is obtained, the adjustment calculation is performed so that this deviation becomes zero, and the AC based on the frequency command and the amplitude corresponding to the frequency are exchanged. A voltage is generated and supplied to the motor 13.

また、図12の室圧制御システムにおいては、フィルタ22aには、図2に示した負荷水量に代えて圧力検出器129bで検出した圧力の検出値が入力され、フィルタ22cには、図2に示した送水圧力に代えて圧力検出器129aで検出した圧力の検出値が入力されて、室121と室122との圧力が同じになるように制御される。なお、この室圧制御システムの場合は、図2の変換演算部22bは不要である。   In the room pressure control system of FIG. 12, the detected value of the pressure detected by the pressure detector 129b is input to the filter 22a instead of the load water amount shown in FIG. Instead of the water supply pressure shown, a detected value of pressure detected by the pressure detector 129a is input, and the pressure in the chamber 121 and the chamber 122 is controlled to be the same. In the case of this room pressure control system, the conversion calculation unit 22b in FIG. 2 is not necessary.

すなわち、室121の圧力センサ129aからの圧力の検出値が図2のフィルタ22cに入力されて圧力の検出値に重畳したノイズ成分が除去される。一方、室122の圧力センサ129bからの圧力の検出値が図2のフィルタ22aに入力されて圧力の検出値に重畳したノイズ成分が除去される。そして、加減算演算部22dではフィルタ22aの出力とフィルタ22cの出力との偏差を求め、調節部22eではこの偏差が零になるように調節演算を行ない、周波数指令に基づいた周波数と該周波数に対応した振幅の交流電圧を発生してモータ13に供給する。   That is, the detected pressure value from the pressure sensor 129a of the chamber 121 is input to the filter 22c in FIG. 2, and the noise component superimposed on the detected pressure value is removed. On the other hand, the detected pressure value from the pressure sensor 129b of the chamber 122 is input to the filter 22a of FIG. 2, and the noise component superimposed on the detected pressure value is removed. Then, the addition / subtraction calculation unit 22d calculates the deviation between the output of the filter 22a and the output of the filter 22c, and the adjustment unit 22e performs adjustment calculation so that this deviation becomes zero, and the frequency based on the frequency command and the frequency An AC voltage having the amplitude is generated and supplied to the motor 13.

図3はこの発明の第2の実施例の回路構成を示し、図1に示したインバータ装置23の詳細回路構成図である。   FIG. 3 shows a circuit configuration of the second embodiment of the present invention, and is a detailed circuit configuration diagram of the inverter device 23 shown in FIG.

すなわち図3において、23aは出口温度検出器8による出口温度の検出値に重畳したノイズ成分を除去するフィルタ、23bは入口温度検出器8による入口温度の検出値に重畳したノイズ成分を除去するフィルタ、23cはノイズ成分が除去された前記出口温度の検出値と入口温度の検出値との差である出入口の温度差を求める加減算演算部、23dは前記温度差の設定値を送出する設定器、23eは前記設定値と温度差との偏差を求める加減算演算部、23fは前記偏差が零になるような調節演算値を出力する調節部、23gは前記調節演算値を周波数指令とし、この周波数指令に基づいた周波数と該周波数に対応した振幅の交流電圧を発生してモータ15に供給するインバータ部である。   That is, in FIG. 3, a filter 23a removes a noise component superimposed on the detected value of the outlet temperature by the outlet temperature detector 8, and a filter 23b removes a noise component superimposed on the detected value of the inlet temperature by the inlet temperature detector 8. , 23c is an addition / subtraction operation unit for obtaining a temperature difference at the inlet / outlet which is a difference between the detected value of the outlet temperature and the detected value of the inlet temperature from which the noise component has been removed, 23e is an addition / subtraction calculation unit for obtaining a deviation between the set value and the temperature difference, 23f is an adjustment unit for outputting an adjustment calculation value such that the deviation becomes zero, and 23g has the adjustment calculation value as a frequency command. And an inverter unit that generates an AC voltage having an amplitude corresponding to the frequency and supplies the AC voltage to the motor 15.

このインバータ装置23によれば、従来のインバータ装置にいわゆる出入口温度差一定制御の機能を付加することにより、比較的高速な動作を行う周波数指令はインバータ装置23の内部演算値となるので、この周波数指令が図6に示した空調システムの構成機器それぞれから発する前記ノイズ成分の影響を受けることが防止できると共に、比較的低速な動作を行うそれぞれの検出値に対しては前記ノイズ成分を除去するのに十分なフィルタ23a,フィルタ23bを設置することができる。また、上位コントローラ21では従来の上位コントローラ11に比して、高速処理を要する調節部23fなどの機能を削除することができ、その結果、該コントローラの演算量も軽減することができる。   According to this inverter device 23, by adding a so-called inlet / outlet temperature difference constant control function to the conventional inverter device, a frequency command for performing a relatively high-speed operation becomes an internal operation value of the inverter device 23. It is possible to prevent the command from being affected by the noise component emitted from each of the components of the air conditioning system shown in FIG. 6, and to remove the noise component for each detection value that operates at a relatively low speed. It is possible to install sufficient filters 23a and 23b. Further, the host controller 21 can delete functions such as the adjustment unit 23f that requires high-speed processing as compared with the conventional host controller 11, and as a result, the calculation amount of the controller can be reduced.

また、図10の可変風量空調システムにおいては、室内温度検出器108からの温度の検出値が図3のフィルタ23aに入力されて温度検出値に重畳したノイズ成分が除去され、空調機出口温度検出器107からの温度の検出値がフィルタ23bに入力されて温度検出値に重畳したノイズ成分が除去され、加減算演算部23cによりノイズ成分が除去された前記室内温度の検出値と空調機出口温度の検出値との差である温度差を求める。   Further, in the variable air volume air conditioning system of FIG. 10, the detected value of the temperature from the indoor temperature detector 108 is input to the filter 23a of FIG. The detected temperature value from the condenser 107 is input to the filter 23b, the noise component superimposed on the detected temperature value is removed, and the detected value of the indoor temperature and the air conditioner outlet temperature from which the noise component has been removed by the addition / subtraction computing unit 23c. The temperature difference that is the difference from the detected value is obtained.

そして、上述と同様に、調節部23fは前記設定値と温度差との偏差が零になるように調節演算を行ない、周波数指令に基づいた周波数と該周波数に対応した振幅の交流電圧を発生してモータ13に供給する。   Similarly to the above, the adjusting unit 23f performs an adjustment calculation so that the deviation between the set value and the temperature difference becomes zero, and generates a frequency based on the frequency command and an AC voltage having an amplitude corresponding to the frequency. Supplied to the motor 13.

また、図12の室圧制御システムにおいては、フィルタ23aには、図3に示した出口温度に代えて圧力検出器129aで検出した圧力の検出値が入力され、フィルタ23bには、図3に示した出口温度に代えて圧力検出器129bで検出した圧力の検出値が入力される。   In the room pressure control system of FIG. 12, the detected value of the pressure detected by the pressure detector 129a is input to the filter 23a in place of the outlet temperature shown in FIG. Instead of the outlet temperature shown, the detected pressure value detected by the pressure detector 129b is input.

すなわち、圧力検出器129aからの圧力検出値が図3のフィルタ23aに入力されて温度検出値に重畳したノイズ成分が除去され、圧力検出器129bからの圧力検出値がフィルタ23bに入力されて温度検出値に重畳したノイズ成分が除去され、加減算演算部23cによりノイズ成分が除去された室121の圧力検出値と室122の圧力検出値との差である両室の圧力差を求める。   That is, the detected pressure value from the pressure detector 129a is input to the filter 23a of FIG. 3 to remove the noise component superimposed on the detected temperature value, and the detected pressure value from the pressure detector 129b is input to the filter 23b to detect the temperature. The noise component superimposed on the detection value is removed, and the pressure difference between the two chambers, which is the difference between the pressure detection value in the chamber 121 and the pressure detection value in the chamber 122 from which the noise component has been removed by the addition / subtraction calculation unit 23c, is obtained.

そして、上述と同様に、調節部23fは前記設定値と圧力差との偏差が零になるように調節演算を行ない、周波数指令に基づいた周波数と該周波数に対応した振幅の交流電圧を発生してモータ13に供給する。   Similarly to the above, the adjusting unit 23f performs an adjustment calculation so that the deviation between the set value and the pressure difference becomes zero, and generates a frequency based on the frequency command and an AC voltage having an amplitude corresponding to the frequency. Supplied to the motor 13.

図4はこの発明の第2の実施の形態を示す回路構成図であり、この図において、図1に示した回路構成と同一機能を有するものには同一符号を付している。   FIG. 4 is a circuit configuration diagram showing a second embodiment of the present invention. In this figure, components having the same functions as those of the circuit configuration shown in FIG.

すなわち図4は、図6に示した空調システムにおけるシステムコントローラ30がポンプ2およびポンプ4を所望の状態に制御するのに関係する部分の回路構成図を示し、上述の上位コントローラ21,インバータ装置22,モータ13の他に、図6で示した出口側温度検出器8から入力される冷凍機3への冷却水の出口側温度すなわち出口温度の検出値と、上位コントローラ21から発せられる運転指令とに基づいてポンプ4を駆動するモータ15に所望の交流電圧を供給するインバータ装置31を備えている。   That is, FIG. 4 shows a circuit configuration diagram of a portion related to the system controller 30 in the air conditioning system shown in FIG. 6 controlling the pump 2 and the pump 4 to a desired state, and the host controller 21 and the inverter device 22 described above. , In addition to the motor 13, the detected value of the outlet side temperature of the cooling water to the refrigerator 3 input from the outlet side temperature detector 8 shown in FIG. 6, that is, the detected value of the outlet temperature, and the operation command issued from the host controller 21 Is provided with an inverter device 31 that supplies a desired AC voltage to the motor 15 that drives the pump 4.

図5はこの発明の第3の実施例の回路構成を示し、図4に示したインバータ装置31の詳細回路構成図である。   FIG. 5 shows a circuit configuration of the third embodiment of the present invention, and is a detailed circuit configuration diagram of the inverter device 31 shown in FIG.

すなわち図5において、31aは前記出口温度の検出値に重畳したノイズ成分を除去するフィルタ、31bは前記出口温度の設定値を送出する設定器、31cは前記設定値とノイズ成分が除去された出口温度の検出値との偏差を求める加減算演算部、31dは前記偏差が零になるような調節演算値を出力する調節部、31eは前記調節演算値を周波数指令とし、この周波数指令に基づいた周波数と該周波数に対応した振幅の交流電圧を発生してモータ15に供給するインバータ部である。   That is, in FIG. 5, 31a is a filter that removes a noise component superimposed on the detected value of the outlet temperature, 31b is a setter that sends out the set value of the outlet temperature, and 31c is an outlet from which the set value and noise component have been removed. Addition / subtraction operation unit for obtaining a deviation from the detected temperature value, 31d is an adjustment unit for outputting an adjustment operation value such that the deviation becomes zero, and 31e has the adjustment operation value as a frequency command, and a frequency based on the frequency command. And an inverter unit that generates an AC voltage having an amplitude corresponding to the frequency and supplies the AC voltage to the motor 15.

このインバータ装置31によれば、従来のインバータ装置にいわゆる出口温度一定制御の機能を付加することにより、比較的高速な動作を行う周波数指令はインバータ装置31の内部演算値となるので、この周波数指令が図6に示した空調システムの構成機器それぞれから発する前記ノイズ成分の影響を受けることが防止されると共に、比較的低速な動作を行う検出値に対しては前記ノイズ成分を除去するのに十分なフィルタ31aを設置することができる。また、上位コントローラ21では従来の上位コントローラ11に比して、高速処理を要する調節部31dなどの機能を削除することができ、その結果、該コントローラの演算量も軽減することができる。   According to this inverter device 31, by adding a so-called outlet temperature constant control function to the conventional inverter device, a frequency command for performing a relatively high speed operation becomes an internal calculation value of the inverter device 31. Is prevented from being affected by the noise component emitted from each of the components of the air conditioning system shown in FIG. 6 and is sufficient to remove the noise component for a detection value that operates at a relatively low speed. A simple filter 31a can be installed. Further, the host controller 21 can delete functions such as the adjustment unit 31d that requires high-speed processing as compared with the conventional host controller 11, and as a result, the calculation amount of the controller can be reduced.

なお、図8で示した生産設備の冷却システムおいては、流量計86あるいは圧力計87の検出値が図5のフィルタ31aに入力されて流量あるいは圧力の検出値に重畳したノイズ成分が除去され、調節部31dは前記設定値と流量あるいは圧力の検出値との偏差が零になるように調節演算を行ない、周波数指令に基づいた周波数と該周波数に対応した振幅の交流電圧を発生してモータ13に供給する。   In the production facility cooling system shown in FIG. 8, the detected value of the flow meter 86 or pressure gauge 87 is input to the filter 31a of FIG. 5, and the noise component superimposed on the detected value of the flow rate or pressure is removed. The adjusting unit 31d performs an adjustment operation so that the deviation between the set value and the detected value of the flow rate or pressure becomes zero, and generates a frequency based on the frequency command and an AC voltage having an amplitude corresponding to the frequency. 13 is supplied.

また、図10の可変風量空調システムにおいては、室内温度検出器108からの温度の検出値が図5のフィルタ31aに入力されて室内温度の検出値に重畳したノイズ成分が除去され、調節部31dは前記設定値と室内温度の検出値との偏差が零になるように調節演算を行ない、周波数指令に基づいた周波数と該周波数に対応した振幅の交流電圧を発生してモータ13に供給する。   In the variable air volume air conditioning system of FIG. 10, the detected temperature value from the indoor temperature detector 108 is input to the filter 31a of FIG. 5, and the noise component superimposed on the detected value of the indoor temperature is removed, and the adjusting unit 31d. Performs an adjustment calculation so that the deviation between the set value and the detected value of the room temperature becomes zero, generates a frequency based on the frequency command and an AC voltage having an amplitude corresponding to the frequency, and supplies it to the motor 13.

また、図11の室内換気システムにおいては、フィルタ31aには、図5に示した出口温度に代えてCO2濃度の検出値が入力され、設定器31bで設定したCO2濃度の設定
値との比較が行なわれる。
In the indoor ventilation system of FIG. 11, the detected value of the CO 2 concentration is input to the filter 31a instead of the outlet temperature shown in FIG. 5, and the filter 31a is compared with the set value of the CO 2 concentration set by the setting device 31b. A comparison is made.

すなわち、CO2濃度検出器116からのCO2濃度の検出値が図5のフィルタ31aに入力されてCO2濃度の検出値に重畳したノイズ成分が除去され、調節部31dは前記設定値とCO2濃度の検出値との偏差が零になるように調節演算を行ない、周波数指令に基づいた周波数と該周波数に対応した振幅の交流電圧を発生してモータ13に供給する。 That is, the detection value of CO 2 concentration from the CO 2 concentration detector 116 is a noise component is inputted superimposed on the detection value of the CO 2 concentration in the filter 31a of FIG. 5 is removed, adjusted section 31d the set value and CO The adjustment calculation is performed so that the deviation from the detected value of the two concentrations becomes zero, and an AC voltage having a frequency based on the frequency command and an amplitude corresponding to the frequency is generated and supplied to the motor 13.

この発明の第1の実施の形態を示す回路構成図1 is a circuit configuration diagram showing a first embodiment of the present invention. この発明の第1の実施例を示す回路構成図1 is a circuit configuration diagram showing a first embodiment of the present invention. この発明の第2の実施例を示す回路構成図Circuit configuration diagram showing a second embodiment of the present invention. この発明の第2の実施の形態を示す回路構成図Circuit configuration diagram showing a second embodiment of the present invention この発明の第3の実施例を示す回路構成図Circuit configuration diagram showing a third embodiment of the present invention. 空調システムの構成図Air conditioning system configuration diagram 従来例を示す回路構成図Circuit configuration diagram showing a conventional example 生産設備の冷却システムの構成図Production equipment cooling system configuration diagram 給水設備の構成図Configuration diagram of water supply equipment 可変風量空調システムの構成図Configuration diagram of variable air volume air conditioning system 室内換気システムの構成図Configuration diagram of indoor ventilation system 室圧制御システムの構成図Configuration diagram of room pressure control system

1…空調機、2…ポンプ、3…冷凍機、4…ポンプ、5…冷却塔、10,20,30…システムコントローラ、11…上位コントローラ、12,14…インバータ装置、13,15…モータ、21…上位コントローラ、22,23,31…インバータ装置。   DESCRIPTION OF SYMBOLS 1 ... Air conditioner, 2 ... Pump, 3 ... Refrigerator, 4 ... Pump, 5 ... Cooling tower, 10, 20, 30 ... System controller, 11 ... Host controller, 12, 14 ... Inverter device, 13, 15 ... Motor, 21: High-order controller, 22, 23, 31 ... Inverter device.

Claims (2)

システム内の流体を搬送する流体搬送装置と、流体搬送装置を駆動する交流電動機に所望の交流電圧を供給するインバータ装置と、前記インバータ装置へ制御指令を与え、システム内の流体を制御する上位コントローラとを備えた流体搬送システムにおいて、
前記流体搬送システムの所定の部位の流体の第1の状態量の検出値に含まれるノイズ成分を除去する第1フィルタと、この第1フィルタの出力値から前記流体搬送システムの流体の第2の状態量を導出する変換演算部と、前記流体搬送システムの流体の第2の状態量の検出値に含まれるノイズ成分を除去する第2フィルタと、前記変換演算部の出力値と前記第2フィルタの出力値との偏差を求める加減算演算部と、前記偏差が零になる前記インバータ装置への周波数指令値を求めてインバータ部へ与える調節演算部とを前記インバータ装置内に設け、前記上位コントローラからは前記インバータ装置へ運転指令を与え、この運転指令にしたがって前記インバータ装置内で前記流体搬送装置の制御のための調節演算を行うことを特徴とする流体搬送システムの制御装置。
A fluid conveyance device that conveys fluid in the system, an inverter device that supplies a desired AC voltage to an AC motor that drives the fluid conveyance device, and a host controller that gives control commands to the inverter device and controls the fluid in the system In a fluid conveyance system comprising:
A first filter that removes a noise component included in a detection value of a first state quantity of a fluid at a predetermined portion of the fluid conveyance system; and a second filter of the fluid of the fluid conveyance system from an output value of the first filter. A conversion operation unit for deriving a state quantity; a second filter for removing a noise component contained in a detected value of a second state quantity of the fluid of the fluid transport system; an output value of the conversion operation unit; and the second filter An addition / subtraction operation unit for obtaining a deviation from the output value of the output signal, and an adjustment operation unit for obtaining a frequency command value to the inverter device for which the deviation becomes zero and providing the inverter unit to the inverter unit are provided in the inverter device. Gives an operation command to the inverter device, and performs an adjustment calculation for controlling the fluid transfer device in the inverter device in accordance with the operation command. The control device of the transmission system.
システム内の流体を搬送する流体搬送装置と、流体搬送装置を駆動する交流電動機に所望の交流電圧を供給するインバータ装置と、前記インバータ装置へ制御指令を与え、システム内の流体を制御する上位コントローラとを備えた流体搬送システムにおいて、
前記流体搬送システムの所定部位の流量の検出値に含まれるノイズ成分を除去する第1フィルタと、この第1フィルタの出力値から前記所定部位の流体圧力値を導出する変換演算部と、前記流体搬送システムの流体圧力の検出値に含まれるノイズ成分を除去する第2フィルタと、前記変換演算部の出力値と前記第2フィルタの出力値との偏差を求める加減算演算部と、前記偏差が零になる前記インバータ装置への周波数指令値を求めてインバータ部へ与える調節演算部とを前記インバータ装置内に設け、前記上位コントローラからは前記インバータ装置へ運転指令を与え、この運転指令にしたがって前記インバータ装置内で前記流体搬送装置の制御のための調節演算を行うことを特徴とする流体搬送システムの制御装置。
A fluid conveyance device that conveys fluid in the system, an inverter device that supplies a desired AC voltage to an AC motor that drives the fluid conveyance device, and a host controller that gives control commands to the inverter device and controls the fluid in the system In a fluid conveyance system comprising:
A first filter that removes a noise component included in a flow rate detection value at a predetermined part of the fluid conveyance system; a conversion calculation unit that derives a fluid pressure value at the predetermined part from an output value of the first filter; A second filter that removes a noise component contained in the fluid pressure detection value of the transfer system; an addition / subtraction operation unit that obtains a deviation between the output value of the conversion operation unit and the output value of the second filter; and the deviation is zero An adjustment calculation unit that obtains a frequency command value for the inverter device and gives it to the inverter unit is provided in the inverter device, an operation command is given from the host controller to the inverter device, and the inverter is operated according to the operation command. An apparatus for controlling a fluid conveyance system, wherein an adjustment calculation for controlling the fluid conveyance device is performed in the apparatus.
JP2005174948A 2005-06-15 2005-06-15 Control device for fluid transfer system Expired - Fee Related JP4884706B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005174948A JP4884706B2 (en) 2005-06-15 2005-06-15 Control device for fluid transfer system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005174948A JP4884706B2 (en) 2005-06-15 2005-06-15 Control device for fluid transfer system

Publications (2)

Publication Number Publication Date
JP2006352987A JP2006352987A (en) 2006-12-28
JP4884706B2 true JP4884706B2 (en) 2012-02-29

Family

ID=37648222

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005174948A Expired - Fee Related JP4884706B2 (en) 2005-06-15 2005-06-15 Control device for fluid transfer system

Country Status (1)

Country Link
JP (1) JP4884706B2 (en)

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61241495A (en) * 1985-04-17 1986-10-27 Hitachi Ltd Constant control device of pump terminal pressure
JPS63234197A (en) * 1987-03-23 1988-09-29 株式会社日立製作所 Nuclear-reactor protective device
JPH0329889A (en) * 1989-06-28 1991-02-07 Mitsubishi Atom Power Ind Inc Reactor output controlling method for fast breeder
JP3325997B2 (en) * 1994-03-11 2002-09-17 富士通株式会社 Motor control device and control method
JPH1089783A (en) * 1996-09-12 1998-04-10 Sanyo Electric Co Ltd Deep freezer
JP4852791B2 (en) * 2001-03-23 2012-01-11 三菱電機株式会社 Ventilation equipment
JP3669290B2 (en) * 2001-05-10 2005-07-06 サンケン電気株式会社 Constant pressure water supply controller
TW477420U (en) * 2001-07-06 2002-02-21 King Can Industry Corp Air quality regulator
JP2003146060A (en) * 2001-11-13 2003-05-21 Sanyo Electric Co Ltd Air-conditioning system for automobile
US20030121409A1 (en) * 2001-12-28 2003-07-03 Caterpillar Inc. System and method for controlling hydraulic flow

Also Published As

Publication number Publication date
JP2006352987A (en) 2006-12-28

Similar Documents

Publication Publication Date Title
US11187429B2 (en) Integrated heat and energy recovery ventilator system
US9857089B2 (en) Modular data center
US10426064B2 (en) Modular data center
AU742722B2 (en) Room temperature control apparatus having feedforward and feedback control and method
US8702482B2 (en) Ventilation controller
JP4134781B2 (en) Air conditioning equipment
AU743848B2 (en) Room pressure control apparatus having feedforward and feedback control and method
US8738185B2 (en) Altitude adjustment for heating, ventilating and air conditioning systems
KR980010210A (en) Automated Branch Flow Control in Heating Ventilation Air Conditioning (HVAC) Systems
AU2007317278A1 (en) Building, ventilation system, and recovery device control
JP6004228B2 (en) Air conditioner
US9091454B2 (en) Air change rate measurement and control
KR20090010889A (en) Flow control valve and flow control method
WO2016194190A1 (en) Control device for heat-pump-using system, and heat-pump-using system provided with same
JP2010242995A (en) Air conditioning system
JP4884706B2 (en) Control device for fluid transfer system
JP5360844B2 (en) Room pressure controller
KR20170039114A (en) Conveyance energy-saving control apparatus in HVAC equipment
JP6344018B2 (en) Temperature and humidity control system
JP4884707B2 (en) Control device for fluid transfer system
JP2010002080A (en) Air conditioning system
JP2005274103A (en) Air conditioning system
FI12412U1 (en) Ventilation system
JPWO2016120903A1 (en) Air conditioner
KR101263959B1 (en) Control method of inverter air-conditioner

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071109

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20080919

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20080919

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20080919

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100729

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100803

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101001

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110405

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20110422

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110603

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20110608

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111206

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111207

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141216

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4884706

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees