JP4884432B2 - Refrigeration cycle apparatus and method for operating refrigeration cycle apparatus - Google Patents

Refrigeration cycle apparatus and method for operating refrigeration cycle apparatus Download PDF

Info

Publication number
JP4884432B2
JP4884432B2 JP2008177975A JP2008177975A JP4884432B2 JP 4884432 B2 JP4884432 B2 JP 4884432B2 JP 2008177975 A JP2008177975 A JP 2008177975A JP 2008177975 A JP2008177975 A JP 2008177975A JP 4884432 B2 JP4884432 B2 JP 4884432B2
Authority
JP
Japan
Prior art keywords
refrigerant
compressor
refrigeration cycle
reservoir
cycle apparatus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008177975A
Other languages
Japanese (ja)
Other versions
JP2010019439A (en
Inventor
等 飯嶋
慎一 若本
威 倉持
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2008177975A priority Critical patent/JP4884432B2/en
Publication of JP2010019439A publication Critical patent/JP2010019439A/en
Application granted granted Critical
Publication of JP4884432B2 publication Critical patent/JP4884432B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Air Conditioning Control Device (AREA)

Description

この発明は冷凍サイクル装置および冷凍サイクル装置の運転方法、特に、地球温暖化係数の小さい冷媒を使用する冷凍サイクル装置、およびかかる冷凍サイクル装置の運転方法に関するものである。   The present invention relates to a refrigeration cycle apparatus and a method for operating the refrigeration cycle apparatus, and more particularly to a refrigeration cycle apparatus that uses a refrigerant having a low global warming potential and an operation method for such a refrigeration cycle apparatus.

従来、発明者等は、冷房運転時における適正冷媒量と暖房運転時の適正冷媒量との差(前者の方が後者より多い)を調整するレシーバ機能と圧縮機への液バックを防止するアキュムレータ機能とを、1台の冷媒貯蔵器および複数の電磁弁によって実行させることによって機器の小型化と低コスト化を図ると共に、冷媒貯蔵器に液面検知手段を設置して、その信号に基づいて適正量の冷媒が充填されたことを知ることができる、冷暖房運転可能な冷凍サイクル装置を開示している(例えば、特許文献1参照)。   Conventionally, the inventors have used a receiver function for adjusting the difference between the appropriate refrigerant amount during cooling operation and the appropriate refrigerant amount during heating operation (the former is more than the latter) and an accumulator that prevents liquid back to the compressor. The function is executed by one refrigerant reservoir and a plurality of solenoid valves, thereby reducing the size and cost of the device, and installing a liquid level detection means in the refrigerant reservoir, based on the signal A refrigerating cycle apparatus capable of cooling and heating operation that can be known to be filled with an appropriate amount of refrigerant is disclosed (for example, see Patent Document 1).

特許第3312330号公報(第3−6頁、図1)Japanese Patent No. 3312330 (page 3-6, FIG. 1)

ところで、従来の冷凍サイクル装置は、R410Aなどの不燃性のHFC(ハイドロフルオロカーボン)冷媒を利用しているため、冷媒の温室効果が二酸化炭素の2000倍程度と大きく、冷媒漏洩による地球温暖化を加速するため、温室効果が不燃性のHFC冷媒よりも小さい冷媒を使用したいという強い要請がある。
しかしながら、温室効果の小さい冷媒、たとえば、プロパン、ジクロロメタン、クロロメタン、ジフルオロエタンやテトラフルオロプロピレンなどを主成分とする冷媒は、可燃性を有している。そして、可燃性の冷媒を利用する場合、その可燃性の度合いに応じて、冷凍サイクル装置の空調面積や換気設備の仕様、あるいは換気設備の有無などの条件が定められている。たとえば、国際規格では設置上の制約がない場合、冷媒充填量(以下、「充填規制リミット値」という)は、
充填規制リミット値[kg]=燃焼下限界[kg/m3]×4[m3]
と定めている。
By the way, since the conventional refrigeration cycle apparatus uses a nonflammable HFC (hydrofluorocarbon) refrigerant such as R410A, the greenhouse effect of the refrigerant is about 2000 times that of carbon dioxide and accelerates global warming due to refrigerant leakage. Therefore, there is a strong demand to use a refrigerant whose greenhouse effect is smaller than that of an incombustible HFC refrigerant.
However, a refrigerant having a small greenhouse effect, for example, a refrigerant mainly composed of propane, dichloromethane, chloromethane, difluoroethane, tetrafluoropropylene, or the like has flammability. And when using a combustible refrigerant | coolant, conditions, such as the air-conditioning area of a refrigerating-cycle apparatus, the specification of ventilation equipment, or the presence or absence of ventilation equipment, are defined according to the degree of the combustibility. For example, if there are no installation restrictions in the international standards, the refrigerant charge amount (hereinafter referred to as the “filling regulation limit value”)
Filling regulation limit value [kg] = lower combustion limit [kg / m3] × 4 [m3]
It stipulates.

この充填規制リミット値は、たとえば、強燃性のプロパン(地球温暖化係数がR410Aの1/600程度)では約150g程度、弱燃性のジクロロメタンやテトラフルオロプロピレンでは約1200g程度である。
このため、可燃性冷媒を充填した冷凍サイクル装置では、
(あ)安全性の観点より充填量規制リミットに対応すべく、過剰な充填を防止すること、
(い)冷媒が漏洩した場合であっても、漏洩量を最少量に抑えること、
(う)また、機器信頼性上、修理等に際して冷媒を回収する時に、冷媒とともに冷凍機油が装置外へ必要以上に持ち出されることを防止すること、
が必要になる。
This filling regulation limit value is, for example, about 150 g for strong flammable propane (global warming potential is about 1/600 of R410A), and about 1200 g for weakly flammable dichloromethane or tetrafluoropropylene.
For this reason, in a refrigeration cycle apparatus filled with a combustible refrigerant,
(A) To prevent overfilling in order to comply with the filling amount regulation limit from the viewpoint of safety,
(Ii) Even if refrigerant leaks, keep the amount of leakage to a minimum,
(Iii) In addition, for the purpose of equipment reliability, when recovering the refrigerant for repair, etc., prevent the refrigerator oil from being taken out of the apparatus more than necessary together with the refrigerant,
Is required.

この発明は、前記必要性に応えるものであり、可燃性冷媒の漏洩を低減し安全性向上することを可能にした冷凍サイクル装置、およびかかる冷凍サイクル装置の運転方法を提供するものである。 The present invention is intended to meet the needs, there is provided flammable refrigerant reduces leakage refrigeration cycle apparatus capable that you improve safety, and the operation method of the refrigeration cycle apparatus .

この発明に係る冷凍サイクル装置の運転方法は、可燃性冷媒を圧縮する圧縮機と、
該圧縮機において圧縮された可燃性冷媒を凝縮する凝縮器と、
該凝縮器において凝縮した可燃性冷媒を膨張させる流量制御弁と、
該流量制御弁において膨張された可燃性冷媒を蒸発させる蒸発器と、
前記圧縮機、前記凝縮器、前記流量制御弁、前記蒸発器および前記圧縮機を順次接続して可燃性冷媒を循環させる循環回路を形成する冷媒配管と、
該冷媒配管に連通または遮断自在に接続された冷媒貯溜器と、
を備えた冷凍サイクル装置において、
前記圧縮機を運転させ前記冷媒を循環させて冷凍サイクルからの冷媒漏れを検出するステップと、前記冷媒漏れを検出した際に前記冷媒貯留器に冷媒を貯留させる運転を行うステップと、前記冷媒を前記冷媒貯留器に貯留した後で前記圧縮機を停止させ前記冷凍サイクルの室内側又は室外側を低圧に維持するステップと、を備え、
前記冷媒漏れを検出するステップが、可燃性冷媒を前記冷媒貯溜器から排出して、前記循環回路を循環させながら、前記蒸発器の出口における過熱度が一定値になるように運転したとき、前回の同様の運転のときよりも前記凝縮器の出口における過冷却度が小さい場合、可燃性冷媒が漏れていると判断するものであることを特徴とする。
The operation method of the refrigeration cycle apparatus according to the present invention includes a compressor that compresses a combustible refrigerant,
A condenser for condensing the combustible refrigerant compressed in the compressor;
A flow control valve for expanding the combustible refrigerant condensed in the condenser;
An evaporator for evaporating the combustible refrigerant expanded in the flow control valve;
A refrigerant pipe that forms a circulation circuit for circulating the combustible refrigerant by sequentially connecting the compressor, the condenser, the flow rate control valve, the evaporator, and the compressor;
A refrigerant reservoir connected to the refrigerant pipe so as to communicate with or cut off;
In the refrigeration cycle apparatus comprising
Operating the compressor to circulate the refrigerant to detect a refrigerant leak from a refrigeration cycle; performing an operation to store the refrigerant in the refrigerant reservoir when detecting the refrigerant leak; and And, after storing in the refrigerant reservoir, to stop the compressor and maintain the indoor side or the outdoor side of the refrigeration cycle at a low pressure, and
The step of detecting the refrigerant leakage is performed when the superheat degree at the outlet of the evaporator becomes a constant value while discharging the combustible refrigerant from the refrigerant reservoir and circulating the circulation circuit. In the case where the degree of supercooling at the outlet of the condenser is smaller than that in the similar operation, it is determined that the combustible refrigerant is leaking .

この発明によれば、蒸発器の出口における過熱度が一定値になるように運転したとき、前回の同様の運転のときよりも凝縮器の出口における過冷却度が小さい場合、可燃性冷媒が漏れていると判断するから、可燃性冷媒の漏洩を低減し安全性向上を図ることができる。
According to the present invention, when the superheat degree at the outlet of the evaporator is operated so as to become a constant value, the combustible refrigerant leaks when the supercooling degree at the outlet of the condenser is smaller than that in the previous similar operation. Therefore, it is possible to reduce the leakage of the combustible refrigerant and improve the safety.

[実施の形態1]
(循環回路)
図1〜図5は本発明の実施形態1に係る冷凍サイクル装置であって、図1は構成を説明する冷媒回路図、図2〜図5はそれぞれ動作を説明するフロー図である。
図1において、冷凍サイクル装置100は、循環回路と、冷媒貯溜器9と、冷媒充填流路8と、を有している。
循環回路は、可燃性冷媒(以下、単に「冷媒」と称す)を圧縮して高温高圧のガス冷媒にする圧縮機1と、冷媒の流れる方向を変換して冷房運転と暖房運転の切換えを行う四方弁2と、凝縮器或いは蒸発器として機能する室外熱交換器3と、冷媒流量をコントロールして圧力を下げる室外電気式流量制御弁(以下、「室外制御弁」と称す)4aおよび室内電気式流量制御弁(以下、「室内制御弁」と称す)4bと、蒸発器或いは凝縮器として機能する室内熱交換器5と、これらを連結する冷媒配管と、から形成され、冷媒が循環する。
また、冷媒貯溜器9は、高圧側流路切換手段11と、低圧側流路切換手段12と、バイパス流路30と、によって循環回路に接続され、冷媒からガスを分離して液を貯溜する。そして、冷媒充填流路8は、循環回路の低圧側に接続され、系外から冷媒を充填するためのものである。
[Embodiment 1]
(Circulation circuit)
1 to 5 show a refrigeration cycle apparatus according to Embodiment 1 of the present invention. FIG. 1 is a refrigerant circuit diagram illustrating the configuration, and FIGS. 2 to 5 are flowcharts illustrating the operation.
In FIG. 1, the refrigeration cycle apparatus 100 includes a circulation circuit, a refrigerant reservoir 9, and a refrigerant charging channel 8.
The circulation circuit compresses a combustible refrigerant (hereinafter simply referred to as “refrigerant”) into a high-temperature and high-pressure gas refrigerant, and switches between a cooling operation and a heating operation by changing the flow direction of the refrigerant. A four-way valve 2, an outdoor heat exchanger 3 that functions as a condenser or an evaporator, an outdoor electric flow control valve (hereinafter referred to as an “outdoor control valve”) 4a that controls the refrigerant flow rate to reduce the pressure, and indoor electric The flow rate control valve (hereinafter referred to as “indoor control valve”) 4b, the indoor heat exchanger 5 functioning as an evaporator or a condenser, and a refrigerant pipe connecting them are circulated, and the refrigerant circulates.
The refrigerant reservoir 9 is connected to the circulation circuit by the high pressure side flow path switching means 11, the low pressure side flow path switching means 12, and the bypass flow path 30, and separates the gas from the refrigerant and stores the liquid. . And the refrigerant | coolant filling flow path 8 is connected to the low voltage | pressure side of a circulation circuit, and is for charging a refrigerant | coolant from the outside of the system.

(制御系)
室外熱交換器3を挟んで、循環回路の四方弁2側(正確には、伝熱管の冷媒流入口または冷媒流出口の壁面)に温度センサ21が、循環回路の室外制御弁4a側(正確には、伝熱管の冷媒流入口または冷媒流出口の壁面)に温度センサ23が、室外熱交換器3の内部(正確には、伝熱管の冷媒流入口から出口にかけてのほぼ中間部分の壁面)に温度センサ22が、それぞれ設置されている。
同様に、室内熱交換器5を挟んで、循環回路の室内制御弁4b側に温度センサ24が、循環回路の四方弁2側に温度センサ26が、室内熱交換器5の内部に温度センサ25が、それぞれ設置されている。
さらに、制御手段100cはマイクロコンピュータ等であって、循環回路、バイパス流路30或いは冷媒充填流路8における冷媒の流し方や、循環回路と冷媒貯溜器9との接続または隔絶を制御する。
(Control system)
The temperature sensor 21 is placed on the four-way valve 2 side of the circulation circuit (more precisely, the wall surface of the refrigerant inlet or outlet of the heat transfer tube) across the outdoor heat exchanger 3, and the outdoor control valve 4a side (exactly) of the circulation circuit. The temperature sensor 23 is provided inside the outdoor heat exchanger 3 (more precisely, the wall surface of the substantially intermediate portion from the refrigerant inlet to the outlet of the heat transfer tube) at the wall of the refrigerant inlet or outlet of the heat transfer tube. Each of the temperature sensors 22 is installed.
Similarly, across the indoor heat exchanger 5, the temperature sensor 24 is located on the indoor control valve 4 b side of the circulation circuit, the temperature sensor 26 is located on the four-way valve 2 side of the circulation circuit, and the temperature sensor 25 is located inside the indoor heat exchanger 5. Are installed.
Further, the control means 100c is a microcomputer or the like, and controls the flow of the refrigerant in the circulation circuit, the bypass flow path 30 or the refrigerant filling flow path 8, and the connection or isolation between the circulation circuit and the refrigerant reservoir 9.

(高圧側流路切換手段)
高圧側流路切換手段11は、室外制御弁4aと室内制御弁4bとの間において、冷媒貯溜器9と循環回路とを接続するものであって、一対の高圧側貯溜流路91、92と、高圧側貯溜流路91、92のそれぞれに設置された高圧側貯溜流路開閉弁(以下、「高圧側貯溜弁」と称す)91v、92vと、高圧側貯溜流路91の循環回路からの分岐点と高圧側貯溜流路92の循環回路からの分岐点とに挟まれて、循環回路に設置された高圧側循環流路開閉弁(以下、「高圧側循環弁」と称す)6と、を有している。
(High-pressure side channel switching means)
The high pressure side flow path switching means 11 connects the refrigerant reservoir 9 and the circulation circuit between the outdoor control valve 4a and the indoor control valve 4b, and includes a pair of high pressure side storage flow paths 91 and 92, , High pressure side storage flow paths 91 and 92 installed in the high pressure side storage flow paths 91 and 92 (hereinafter referred to as “high pressure side storage valves”) 91v and 92v, A high pressure side circulation flow path opening / closing valve (hereinafter referred to as “high pressure side circulation valve”) 6 installed in the circulation circuit, sandwiched between the branch point and the branch point from the circulation circuit of the high pressure side storage flow path 92; have.

(低圧側流路切換手段)
低圧側流路切換手段12は、圧縮機1の吸入側(四方弁2と圧縮機1との間)において、冷媒貯溜器9と循環回路とを接続するものであって、一対の低圧側貯溜流路93、94と、低圧側貯溜流路93、94のそれぞれに設置された低圧側貯溜流路開閉弁(以下、「低圧側貯溜弁」と称す)93v、94vと、低圧側貯溜流路93の循環回路からの分岐点と低圧側貯溜流路94の循環回路からの分岐点とに挟まれて、循環回路に設置された低圧側循環流路開閉弁(以下、「低圧側循環弁」と称す)7と、を有している。
(Low pressure side channel switching means)
The low-pressure side channel switching means 12 connects the refrigerant reservoir 9 and the circulation circuit on the suction side (between the four-way valve 2 and the compressor 1) of the compressor 1, and is a pair of low-pressure side reservoirs. Low-pressure side storage flow path open / close valves (hereinafter referred to as “low-pressure side storage valves”) 93v, 94v and low-pressure side storage flow paths installed in the flow paths 93, 94 and the low-pressure side storage flow paths 93, 94, respectively. A low-pressure side circulation passage opening / closing valve (hereinafter, “low-pressure side circulation valve”) installed between the branch point from the circulation circuit 93 and the branch point from the circulation circuit of the low-pressure side storage passage 94. 7).

(バイパス流路)
バイパス流路30は、冷媒貯溜器9の所定の高さ位置と、循環回路の圧縮機1吸入側とを連通するものであって、冷媒貯溜器9寄りにバイパス毛細管31が、圧縮機1寄りにバイパス開閉弁32が、バイパス毛細管31とバイパス開閉弁32との間にバイパス温度センサ33が、それぞれ設置されている。
冷媒貯溜器9は、冷凍サイクル装置100に充填規制リミット値に同じ量の冷媒が貯溜されるようにするため、冷凍サイクル装置100に充填規制リミット値を越える量の冷媒が充填された場合には、冷媒がバイパス流路30に流出するようになっている。すなわち、バイパス流路30が貯溜冷媒量検知手段としての機能を有する。
(Bypass channel)
The bypass flow path 30 communicates a predetermined height position of the refrigerant reservoir 9 and the compressor 1 suction side of the circulation circuit, and a bypass capillary 31 is disposed closer to the refrigerant reservoir 9 and closer to the compressor 1. A bypass temperature sensor 33 is provided between the bypass capillary 31 and the bypass on / off valve 32.
The refrigerant reservoir 9 is configured so that the same amount of refrigerant is stored in the refrigeration cycle apparatus 100 as the charging regulation limit value, so that when the refrigeration cycle apparatus 100 is filled with an amount of refrigerant exceeding the charging regulation limit value, The refrigerant flows out to the bypass channel 30. That is, the bypass flow path 30 has a function as a stored refrigerant amount detection means.

なお、図1において、バイパス流路30は1本だけ示しているが、本発明はこれに限定するものではなく、延長配管の長さに応じて複数本のバイパス流路を設けてもよい。延長配管がない場合のバイパス流路30に対し、延長配管が設置された場合用に、バイパス流路30の下方に第2のバイパス流路(あるいは、第3のバイパス流路等)を設置してもよい。このとき、複数本のバイパス流路をバイパス開閉弁の上流側において集約して、バイパス開閉弁を1台にすることができる。   In FIG. 1, only one bypass channel 30 is shown, but the present invention is not limited to this, and a plurality of bypass channels may be provided according to the length of the extension pipe. A second bypass channel (or a third bypass channel, etc.) is installed below the bypass channel 30 for the case where the extension channel is installed with respect to the bypass channel 30 when there is no extension piping. May be. At this time, a plurality of bypass flow paths can be aggregated on the upstream side of the bypass opening / closing valve, so that one bypass opening / closing valve can be provided.

(冷媒充填流路)
冷媒充填流路8は、圧縮機1の吸入側(低圧側循環弁7と圧縮機1との間)において循環回路に接続され、冷媒充填流路開閉弁(以下、「冷媒充填弁」と称す)8vが設置され、先端には、冷媒充填口8aが形成されている。
(Refrigerant filling channel)
The refrigerant filling flow path 8 is connected to a circulation circuit on the suction side of the compressor 1 (between the low pressure side circulation valve 7 and the compressor 1), and is referred to as a refrigerant filling flow path opening / closing valve (hereinafter referred to as “refrigerant filling valve”). ) 8v is installed, and a refrigerant filling port 8a is formed at the tip.

(冷媒)
冷凍サイクル装置100に使用される冷媒(可燃性冷媒に同じ)は、地球温暖化係数の小さい冷媒であって、HFC冷媒よりも温室効果が小さい可燃性の冷媒、たとえば、プロパン、ジクロロメタン、クロロメタン、ジフルオロエタンやテトラフルオロプロピレンなどを主成分とする冷媒である。なお、前記「テトラフルオロプロピレン」とは、各種異性体を含む全てのテトラフルオロプロピレンを指すものである。
(Refrigerant)
The refrigerant used in the refrigeration cycle apparatus 100 (the same as the flammable refrigerant) is a refrigerant having a small global warming potential and having a greenhouse effect smaller than that of the HFC refrigerant, such as propane, dichloromethane, and chloromethane. , A refrigerant mainly composed of difluoroethane or tetrafluoropropylene. The “tetrafluoropropylene” refers to all tetrafluoropropylene including various isomers.

(通常暖房運転−起動時の動作)
次に、本発明の実施の形態1を示す冷凍サイクル装置の動作について図2〜図4に基づき説明するが、冷凍サイクル装置100の冷房運転時の動作は、特許文献1における冷房運転の動作に同じであるため簡単に説明し、冷媒を充填する際の動作について詳細に説明する。
暖房運転のとき、冷媒は循環回路を、圧縮機1、四方弁2、凝縮器として機能する室内熱交換器5、室内制御弁4b、室外制御弁4a、蒸発器として機能する室外熱交換器3、四方弁2、低圧側循環弁7、を順番に通過して再び圧縮機1に戻る循環をする。
(Normal heating operation-starting operation)
Next, the operation of the refrigeration cycle apparatus showing the first embodiment of the present invention will be described with reference to FIGS. 2 to 4. The operation of the refrigeration cycle apparatus 100 during the cooling operation is the same as the operation of the cooling operation in Patent Document 1. Since it is the same, it will be briefly described, and the operation when charging the refrigerant will be described in detail.
During the heating operation, the refrigerant circulates through the circulation circuit, the compressor 1, the four-way valve 2, the indoor heat exchanger 5 that functions as a condenser, the indoor control valve 4b, the outdoor control valve 4a, and the outdoor heat exchanger 3 that functions as an evaporator. The four-way valve 2 and the low-pressure side circulation valve 7 are sequentially circulated to return to the compressor 1 again.

そして、起動時には、低圧側流路切換手段12を経由して低温低圧の気液二相状態の冷媒が冷媒貯溜器9に流入し、分離されたガス冷媒が圧縮機1に送られ、分離された液冷媒が冷媒貯溜器9に溜められる(図2のS2)。したがって、圧縮機1への液バックが防止される。
このとき、低圧側流路切換手段12においては、低圧側循環弁7が閉じ、低圧側貯溜弁93v、94vが開いている。一方、高圧側流路切換手段11においては、高圧側循環弁6が開き、高圧側貯溜弁91v、92vが閉じているから、高圧側流路切換手段11を経由して冷媒が冷媒貯溜器9に流入することはない。また、バイパス流路30のバイパス開閉弁32および冷媒充填流路8の冷媒充填弁8vも閉じている(図2のS1)。
At the time of start-up, low-temperature and low-pressure gas-liquid two-phase refrigerant flows into the refrigerant reservoir 9 via the low-pressure side channel switching means 12, and the separated gas refrigerant is sent to the compressor 1 and separated. The liquid refrigerant is stored in the refrigerant reservoir 9 (S2 in FIG. 2). Therefore, liquid back to the compressor 1 is prevented.
At this time, in the low-pressure side flow path switching means 12, the low-pressure side circulation valve 7 is closed and the low-pressure side storage valves 93v and 94v are open. On the other hand, in the high-pressure side flow switching means 11, the high-pressure side circulation valve 6 is open and the high-pressure side storage valves 91 v and 92 v are closed. Will not flow into. Further, the bypass opening / closing valve 32 of the bypass passage 30 and the refrigerant filling valve 8v of the refrigerant filling passage 8 are also closed (S1 in FIG. 2).

(通常暖房運転−起動から所定時間経過後の動作)
暖房の起動から所定時間が経過したところで(図2のS3)、高圧側流路切換手段11を経由して高温高圧の気液二相状態の冷媒が冷媒貯溜器9に流入して、冷媒貯溜器9を経由して冷媒は循環回路を循環する(図2のS5)。このとき、高圧側流路切換手段11においては、高圧側循環弁6が開き、高圧側貯溜弁91v、92vが閉じる。一方、低圧側流路切換手段12においては、低圧側循環弁7が開き、低圧側貯溜弁93v、94vが閉じるから、低圧側流路切換手段12を経由して冷媒が冷媒貯溜器9に流入することはない(図2のS4)。
(Normal heating operation-operation after a predetermined time has elapsed since startup)
When a predetermined time has elapsed since the start of heating (S3 in FIG. 2), the high-temperature and high-pressure gas-liquid two-phase refrigerant flows into the refrigerant reservoir 9 via the high-pressure side flow path switching means 11 to store the refrigerant. The refrigerant circulates in the circulation circuit via the vessel 9 (S5 in FIG. 2). At this time, in the high-pressure side flow path switching means 11, the high-pressure side circulation valve 6 is opened, and the high-pressure side storage valves 91v and 92v are closed. On the other hand, in the low pressure side flow switching means 12, the low pressure side circulation valve 7 is opened and the low pressure side storage valves 93v, 94v are closed, so that the refrigerant flows into the refrigerant reservoir 9 via the low pressure side flow switching means 12. There is nothing to do (S4 in FIG. 2).

そして、室内熱交換器5(凝縮器と機能している)の出口における冷媒液の過冷却度は、室内熱交換器5の内部の温度センサ25の検知した温度と室内熱交換器5の出口における温度センサ24の検知した温度との差(以下、「検知温度差」と称す)によって知ることができる。したがって、所定の過冷却度が得られるように、検知温度差が、所定の過冷却度に対応して予め決められた温度差(以下、「設定温度差」と称す)になるように、室内制御弁4bを制御する。たとえば、検知温度差が設定温度差よりも大きい場合には、室内制御弁4bを大きい程度に応じて開き、反対に、検知温度差が設定温度差よりも小さい場合には、室内制御弁4bを小さい程度に応じて閉じる。   The degree of supercooling of the refrigerant liquid at the outlet of the indoor heat exchanger 5 (functioning as a condenser) depends on the temperature detected by the temperature sensor 25 inside the indoor heat exchanger 5 and the outlet of the indoor heat exchanger 5. Can be known from the difference from the temperature detected by the temperature sensor 24 (hereinafter referred to as “detected temperature difference”). Therefore, in order to obtain a predetermined degree of supercooling, the detected temperature difference is set to a predetermined temperature difference corresponding to the predetermined degree of supercooling (hereinafter referred to as “set temperature difference”). The control valve 4b is controlled. For example, when the detected temperature difference is larger than the set temperature difference, the indoor control valve 4b is opened in accordance with the degree of increase, and conversely, when the detected temperature difference is smaller than the set temperature difference, the indoor control valve 4b is opened. Close according to small degree.

一方、室外熱交換器3(蒸発器と機能している)の出口における冷媒液の過熱度は、室外熱交換器3の内部の温度センサ22の検知した温度と室外熱交換器3の出口における温度センサ21の検知した温度との差(以下、「検知温度差」と称す)によって知ることができる。したがって、所定の過熱度が得られるように、検知温度差が、所定の過熱度に対応して予め決められた温度差(以下、「設定温度差」と称す)になるように、室外制御弁4aを制御する。たとえば、検知温度差が設定温度差よりも大きい場合には、室外制御弁4aを大きい程度に応じて開き、反対に、検知温度差が設定温度差よりも小さい場合には、室外制御弁4aを小さい程度に応じて閉じる。
そして、かかる制御は、圧縮機1が停止するまで継続実施される(図2のS6)。
On the other hand, the degree of superheat of the refrigerant liquid at the outlet of the outdoor heat exchanger 3 (functioning as an evaporator) depends on the temperature detected by the temperature sensor 22 inside the outdoor heat exchanger 3 and the outlet of the outdoor heat exchanger 3. This can be known from the difference from the temperature detected by the temperature sensor 21 (hereinafter referred to as “detected temperature difference”). Therefore, the outdoor control valve is set so that the detected temperature difference becomes a predetermined temperature difference corresponding to the predetermined degree of superheat (hereinafter referred to as “set temperature difference”) so that a predetermined degree of superheat is obtained. 4a is controlled. For example, when the detected temperature difference is larger than the set temperature difference, the outdoor control valve 4a is opened according to the degree of largeness. Conversely, when the detected temperature difference is smaller than the set temperature difference, the outdoor control valve 4a is opened. Close according to small degree.
Such control is continued until the compressor 1 is stopped (S6 in FIG. 2).

(通常冷房運転−起動時の動作)
冷房運転のとき、冷媒は循環回路を、圧縮機1、四方弁2、凝縮器として機能する室外熱交換器3、室外制御弁4a、室内制御弁4b、蒸発器として機能する室内熱交換器5、四方弁2、低圧側循環弁7、を順番に通過して再び圧縮機1に戻る循環をする。
そして、起動時には、低圧側流路切換手段12を経由して低温低圧の気液二相状態の冷媒が冷媒貯溜器9に流入し、分離されたガス冷媒が圧縮機1に送られ、分離された液冷媒が冷媒貯溜器9に溜められる。したがって、圧縮機1への液バックが防止される。
このとき、低圧側流路切換手段12においては、低圧側循環弁7が閉じ、低圧側貯溜弁93v、94vが開いている。一方、高圧側流路切換手段11においては、高圧側循環弁6が開き、高圧側貯溜弁91v、92vが閉じているから、高圧側流路切換手段11を経由して冷媒が冷媒貯溜器9に流入することはない。また、バイパス流路30のバイパス開閉弁32および冷媒充填流路8の冷媒充填弁8vも閉じている(通常暖房運転−起動時に同じ)。
(Normal cooling operation-starting operation)
During the cooling operation, the refrigerant circulates in the circulation circuit, the compressor 1, the four-way valve 2, the outdoor heat exchanger 3 that functions as a condenser, the outdoor control valve 4a, the indoor control valve 4b, and the indoor heat exchanger 5 that functions as an evaporator. The four-way valve 2 and the low-pressure side circulation valve 7 are sequentially circulated to return to the compressor 1 again.
At the time of start-up, low-temperature and low-pressure gas-liquid two-phase refrigerant flows into the refrigerant reservoir 9 via the low-pressure side channel switching means 12, and the separated gas refrigerant is sent to the compressor 1 and separated. The liquid refrigerant is stored in the refrigerant reservoir 9. Therefore, liquid back to the compressor 1 is prevented.
At this time, in the low-pressure side flow path switching means 12, the low-pressure side circulation valve 7 is closed and the low-pressure side storage valves 93v and 94v are open. On the other hand, in the high-pressure side flow switching means 11, the high-pressure side circulation valve 6 is open and the high-pressure side storage valves 91 v and 92 v are closed. Will not flow into. Further, the bypass opening / closing valve 32 of the bypass passage 30 and the refrigerant filling valve 8v of the refrigerant filling passage 8 are also closed (same as normal heating operation-startup).

(通常冷房運転−起動から所定時間経過後の動作)
冷房の起動から所定時間が経過したところで、高圧側流路切換手段11を経由して高温高圧の気液二相状態の冷媒が冷媒貯溜器9に流入して、冷媒貯溜器9を経由して冷媒は循環回路を循環する。このとき、高圧側流路切換手段11においては、高圧側循環弁6が開き、高圧側貯溜弁91v、92vが閉じる。一方、低圧側流路切換手段12においては、低圧側循環弁7が開き、低圧側貯溜弁93v、94vが閉じるから、低圧側流路切換手段12を経由して冷媒が冷媒貯溜器9に流入することはない(通常暖房運転−起動から所定時間経過後に同じ)。
(Normal cooling operation-operation after elapse of a predetermined time from startup)
When a predetermined time has elapsed since the start of cooling, the high-temperature and high-pressure gas-liquid two-phase refrigerant flows into the refrigerant reservoir 9 via the high-pressure side channel switching means 11, and passes through the refrigerant reservoir 9. The refrigerant circulates in the circulation circuit. At this time, in the high-pressure side flow path switching means 11, the high-pressure side circulation valve 6 is opened, and the high-pressure side storage valves 91v and 92v are closed. On the other hand, in the low pressure side flow switching means 12, the low pressure side circulation valve 7 is opened and the low pressure side storage valves 93v, 94v are closed, so that the refrigerant flows into the refrigerant reservoir 9 via the low pressure side flow switching means 12. (Normal heating operation-the same after a predetermined time has elapsed since startup).

そして、室外熱交換器3(凝縮器と機能している)の出口における冷媒液の過冷却度は、室外熱交換器3の内部の温度センサ22の検知した温度と室外熱交換器3の出口における温度センサ23の検知した温度との差(以下、「検知温度差」と称す)によって知ることができる。したがって、所定の過冷却度が得られるように、検知温度差が、所定の過冷却度に対応して予め決められた温度差(以下、「設定温度差」と称す)になるように、室外制御弁4aを制御する。たとえば、検知温度差が設定温度差よりも大きい場合には、室外制御弁4aを大きい程度に応じて開き、反対に、検知温度差が設定温度差よりも小さい場合には、室外制御弁4aを小さい程度に応じて閉じる。   The degree of supercooling of the refrigerant liquid at the outlet of the outdoor heat exchanger 3 (functioning as a condenser) depends on the temperature detected by the temperature sensor 22 inside the outdoor heat exchanger 3 and the outlet of the outdoor heat exchanger 3. The difference between the temperature and the temperature detected by the temperature sensor 23 (hereinafter referred to as “detected temperature difference”) can be known. Therefore, the outdoor temperature is set so that the detected temperature difference becomes a predetermined temperature difference corresponding to the predetermined degree of supercooling (hereinafter referred to as “set temperature difference”) so that a predetermined degree of subcooling can be obtained. The control valve 4a is controlled. For example, when the detected temperature difference is larger than the set temperature difference, the outdoor control valve 4a is opened according to the degree of largeness. Conversely, when the detected temperature difference is smaller than the set temperature difference, the outdoor control valve 4a is opened. Close according to small degree.

一方、室内熱交換器5(蒸発器と機能している)の出口における冷媒液の過熱度は、室内熱交換器5の内部の温度センサ25の検知した温度と室内熱交換器5の出口における温度センサ26の検知した温度との差(以下、「検知温度差」と称す)によって知ることができる。したがって、所定の過熱度が得られるように、検知温度差が、所定の過熱度に対応して予め決められた温度差(以下、「設定温度差」と称す)になるように、室内制御弁4bを制御する。たとえば、検知温度差が設定温度差よりも大きい場合には、室内制御弁4bを大きい程度に応じて開き、反対に、検知温度差が設定温度差よりも小さい場合には、室内制御弁4bを小さい程度に応じて閉じる。   On the other hand, the degree of superheat of the refrigerant liquid at the outlet of the indoor heat exchanger 5 (functioning as an evaporator) depends on the temperature detected by the temperature sensor 25 inside the indoor heat exchanger 5 and the outlet of the indoor heat exchanger 5. This can be known from the difference from the temperature detected by the temperature sensor 26 (hereinafter referred to as “detected temperature difference”). Therefore, the indoor control valve is set so that the detected temperature difference becomes a predetermined temperature difference corresponding to the predetermined degree of superheat (hereinafter referred to as “set temperature difference”) so that a predetermined degree of superheat is obtained. 4b is controlled. For example, when the detected temperature difference is larger than the set temperature difference, the indoor control valve 4b is opened in accordance with the degree of increase, and conversely, when the detected temperature difference is smaller than the set temperature difference, the indoor control valve 4b is opened. Close according to small degree.

このように暖房運転および冷房運転において、起動から所定時間経過後には、それぞれ、室外制御弁4aまたは室内制御弁4bを制御することにより、過冷却度および過熱度が適正になっている。すなわち、暖房運転に好適な冷媒量および冷房運転に好適な冷媒量が、循環回路(冷凍サイクル経路)に供給され、冷媒貯溜器9は高圧のレシーバとして機能している。   In this way, in the heating operation and the cooling operation, after a predetermined time has elapsed from the start, the degree of supercooling and the degree of superheat are appropriate by controlling the outdoor control valve 4a or the indoor control valve 4b, respectively. That is, a refrigerant quantity suitable for heating operation and a refrigerant quantity suitable for cooling operation are supplied to the circulation circuit (refrigeration cycle path), and the refrigerant reservoir 9 functions as a high-pressure receiver.

(冷媒充填時の動作)
次に、本発明の実施の形態1を示す冷凍サイクル装置における冷媒充填時の動作について図3に基づき説明する。冷媒充填は、暖房運転また冷房運転のいずれの運転モードにおいても実行可能である。
前記「暖房運転(または冷房運転)−起動から所定時間経過後の動作」における運転において(図3のS11)、冷媒充填流路8の冷媒充填口8aに充填用冷媒が封入された冷媒ボンベ(図示しない)を接続して、冷媒ボンベ自体の開閉弁を開くと共に冷媒充填弁8vを開き(図3のS12)、併せてバイパス流路30のバイパス開閉弁32も開く(図3のS13)。
そうすると、バイパス流路30にはバイパス毛細管31が設置されているから、冷媒ボンベから供給された冷媒は、バイパス流路30に直接流入することはなく、既に充填されている冷媒と混ざり合って圧縮機1に吸引され、冷媒貯溜器9を経由して循環回路を循環する。このとき、かかる供給によって冷媒量は増すため、冷媒貯溜器9における冷媒の液面は除々に上昇する。
(Operation when charging refrigerant)
Next, the operation | movement at the time of refrigerant | coolant filling in the refrigerating-cycle apparatus which shows Embodiment 1 of this invention is demonstrated based on FIG. Refrigerant charging can be performed in any operation mode of heating operation or cooling operation.
In the operation in the “heating operation (or cooling operation) —operation after a predetermined time has elapsed since start-up” (S11 in FIG. 3), a refrigerant cylinder in which a charging refrigerant is sealed in the refrigerant charging port 8a of the refrigerant charging channel 8 ( (Not shown) is connected, and the opening / closing valve of the refrigerant cylinder itself is opened and the refrigerant filling valve 8v is opened (S12 in FIG. 3), and the bypass opening / closing valve 32 of the bypass channel 30 is also opened (S13 in FIG. 3).
Then, since the bypass capillary 31 is installed in the bypass channel 30, the refrigerant supplied from the refrigerant cylinder does not flow directly into the bypass channel 30, but is mixed with the already filled refrigerant and compressed. It is sucked into the machine 1 and circulates in the circulation circuit via the refrigerant reservoir 9. At this time, since the amount of refrigerant increases due to such supply, the liquid level of the refrigerant in the refrigerant reservoir 9 gradually rises.

なお、前記のように室外制御弁4aまたは室内制御弁4bが冷媒流量を制御することにより、循環回路(冷媒貯溜器9以外の冷凍サイクル経路に同じ)の冷媒量は一定値とされ、充填される冷媒量が所定量に達すると充填作業が停止されるため、それ以上に冷媒貯溜器9内に貯溜する冷媒の液面は上昇することがない。
しかし、秤等を用いずに所定充填量を過ぎても充填作業が続けられた場合には、液面がさらに上昇し、ついには冷媒貯溜器9のバイパス流路30の接続位置にまで達すると、冷媒は、バイパス流路30内に気液二相状態で流入する。そうすると、バイパス温度センサ33の検知温度は低下するため、冷媒の量が充填規制リミット値に達したことが検知される(図3のS14)。バイパス温度センサ33の検知信号は制御手段100cに入力され、これを受けた制御手段100cは冷媒充填弁8vを閉じる(図3のS15)から、過剰な充填は回避されて安全性を確保することができる。
なお、冷媒充填弁8vを閉じる制御に並行して、音声や表示による報知手段(図示しない)によってその旨を、冷媒充填者に知らせる。
As described above, the outdoor control valve 4a or the indoor control valve 4b controls the flow rate of the refrigerant, so that the amount of refrigerant in the circulation circuit (the same as the refrigeration cycle path other than the refrigerant reservoir 9) is set to a constant value and charged. Since the filling operation is stopped when the amount of refrigerant reaches a predetermined amount, the liquid level of the refrigerant stored in the refrigerant reservoir 9 does not rise any further.
However, when the filling operation is continued even after a predetermined filling amount without using a scale or the like, the liquid level further rises and finally reaches the connection position of the bypass flow path 30 of the refrigerant reservoir 9. The refrigerant flows into the bypass channel 30 in a gas-liquid two-phase state. As a result, the temperature detected by the bypass temperature sensor 33 decreases, and it is detected that the amount of refrigerant has reached the charging regulation limit value (S14 in FIG. 3). The detection signal of the bypass temperature sensor 33 is input to the control means 100c, and the control means 100c receiving this closes the refrigerant charging valve 8v (S15 in FIG. 3), so that excessive charging is avoided to ensure safety. Can do.
In parallel with the control for closing the refrigerant charging valve 8v, a notification means (not shown) by voice or display informs the refrigerant filler to that effect.

(冷媒量検知運転−暖房運転時)
次に冷媒漏洩時の冷媒量検知運転につき図4に基づいて説明する。
暖房運転のとき、冷媒は循環回路を、圧縮機1、四方弁2、凝縮器として機能する室内熱交換器5、室内制御弁4b、室外制御弁4a、蒸発器として機能する室外熱交換器3、四方弁2、低圧側循環弁7、を順番に通過して再び圧縮機1に戻る循環をする(図4のS21)。
まず、冷媒貯溜器9を空に(全冷媒を排出)する。すなわち、高圧側循環弁6は閉じているから、上流側の高圧側貯溜弁92vを閉じて(図4のS22)、冷媒貯溜器9内の冷媒を吸引排出し(図4のS23)、所定時間後に、下流側の高圧側貯溜弁91vを閉じる(図4のS24)。そして、高圧側循環弁6を開く。そうすると、冷媒は冷媒貯溜器9をバイパスして、循環回路を循環する(図4のS25)。
(Refrigerant amount detection operation-during heating operation)
Next, the refrigerant amount detection operation when the refrigerant leaks will be described with reference to FIG.
During the heating operation, the refrigerant circulates through the circulation circuit, the compressor 1, the four-way valve 2, the indoor heat exchanger 5 that functions as a condenser, the indoor control valve 4b, the outdoor control valve 4a, and the outdoor heat exchanger 3 that functions as an evaporator. The four-way valve 2 and the low-pressure side circulation valve 7 are sequentially circulated to return to the compressor 1 (S21 in FIG. 4).
First, the refrigerant reservoir 9 is emptied (all refrigerant is discharged). That is, since the high pressure side circulation valve 6 is closed, the high pressure side storage valve 92v on the upstream side is closed (S22 in FIG. 4), and the refrigerant in the refrigerant reservoir 9 is sucked and discharged (S23 in FIG. 4). After the time, the high pressure side storage valve 91v on the downstream side is closed (S24 in FIG. 4). Then, the high pressure side circulation valve 6 is opened. Then, the refrigerant bypasses the refrigerant reservoir 9 and circulates in the circulation circuit (S25 in FIG. 4).

このとき、室外制御弁4aの制御によって、室外熱交換器3の出口における過熱度が一定値になるよう制御される(図4のS26)。これにより、室外制御弁4aから室外熱交換器3を含む、圧縮機1の吸入口までの経路に存在する冷媒量が一定値となり、その他の冷媒は圧縮機1の吐出口から室内熱交換器5を含む、室内制御弁4bの流入側までの経路に存在することとなる。
次に、温度センサ25および温度センサ24の検知温度から、室内熱交換器5の出口における「過冷却度」を検知する(図4のS27)。
そして、今回の冷媒量検知運転(暖房運転時)より以前に、同様な冷媒量検知運転(暖房運転時)を行った時の「先の過冷却度」と、今回の過冷却度とを比較する(図4のS28)。すなわち、今回の過冷却度が先の過冷却度より小さい場合(悪化している場合)、冷媒が漏洩していると判断する(図4のS29)。
At this time, the degree of superheat at the outlet of the outdoor heat exchanger 3 is controlled to be a constant value by the control of the outdoor control valve 4a (S26 in FIG. 4). As a result, the amount of refrigerant existing in the path from the outdoor control valve 4a to the intake port of the compressor 1 including the outdoor heat exchanger 3 becomes a constant value, and other refrigerant flows from the discharge port of the compressor 1 to the indoor heat exchanger. 5 in the path to the inflow side of the indoor control valve 4b.
Next, the “supercooling degree” at the outlet of the indoor heat exchanger 5 is detected from the detected temperatures of the temperature sensor 25 and the temperature sensor 24 (S27 in FIG. 4).
Then, compare the previous degree of subcooling with the previous degree of subcooling when the same refrigerant amount detection operation (during heating operation) was performed prior to the current refrigerant amount detection operation (during heating operation). (S28 in FIG. 4). That is, when the current degree of supercooling is smaller than the previous degree of supercooling (when it has deteriorated), it is determined that the refrigerant is leaking (S29 in FIG. 4).

(冷媒量検知運転−冷房運転時)
冷房運転のとき、冷媒は循環回路を、圧縮機1、四方弁2、凝縮器として機能する室外熱交換器3、室外制御弁4a、室内制御弁4b、蒸発器として機能する室内熱交換器5、四方弁2、低圧側循環弁7、を順番に通過して再び圧縮機1に戻る循環をする。
まず、冷媒貯溜器9を空(全冷媒を排出)にする。すなわち、高圧側循環弁6は閉じているから、上流側の高圧側貯溜弁91vを閉じて、冷媒貯溜器9内の冷媒を吸引排出し、所定時間後に、下流側の高圧側貯溜弁92vを閉じる。そして、高圧側循環弁6を開く。そうすると、冷媒は冷媒貯溜器9をバイパスして、循環回路を循環する。
(Refrigerant amount detection operation-cooling operation)
During the cooling operation, the refrigerant circulates in the circulation circuit, the compressor 1, the four-way valve 2, the outdoor heat exchanger 3 that functions as a condenser, the outdoor control valve 4a, the indoor control valve 4b, and the indoor heat exchanger 5 that functions as an evaporator. The four-way valve 2 and the low-pressure side circulation valve 7 are sequentially circulated to return to the compressor 1 again.
First, the refrigerant reservoir 9 is emptied (all refrigerant is discharged). That is, since the high-pressure side circulation valve 6 is closed, the upstream high-pressure side storage valve 91v is closed, the refrigerant in the refrigerant reservoir 9 is sucked and discharged, and after a predetermined time, the downstream high-pressure side storage valve 92v is opened. close. Then, the high pressure side circulation valve 6 is opened. Then, the refrigerant bypasses the refrigerant reservoir 9 and circulates in the circulation circuit.

このとき、室内制御弁4bの制御によって室内熱交換器5の出口における過熱度が一定値になるよう制御される。これにより、室内制御弁4bから室内熱交換器5を含む、圧縮機1の吸入口までの経路に存在する冷媒量が一定値となり、その他の冷媒は圧縮機1の吐出口から室外熱交換器3を含む、室外制御弁4aの流入側までの経路に存在することとなる。
次に、温度センサ22および温度センサ23の検知温度から、室外熱交換器3の出口における「過冷却度」を検知する。
そして、今回の冷媒量検知運転(暖房運転時)より以前に、同様な冷媒量検知運転(冷房運転時)を行った時の「先の過冷却度」と、今回の過冷却度とを比較する。すなわち、今回の過冷却度が先の過冷却度より小さい場合(悪化している場合)、冷媒が漏洩していると判断する。
At this time, the degree of superheat at the outlet of the indoor heat exchanger 5 is controlled to be a constant value by the control of the indoor control valve 4b. As a result, the amount of refrigerant present in the path from the indoor control valve 4b to the intake port of the compressor 1 including the indoor heat exchanger 5 becomes a constant value, and other refrigerant flows from the discharge port of the compressor 1 to the outdoor heat exchanger. 3 in the path to the inflow side of the outdoor control valve 4a.
Next, the “supercooling degree” at the outlet of the outdoor heat exchanger 3 is detected from the detected temperatures of the temperature sensor 22 and the temperature sensor 23.
Then, compare the previous subcooling degree with the previous subcooling degree when the same refrigerant amount detection operation (cooling operation) was performed before the current refrigerant amount detection operation (heating operation) To do. In other words, if the current degree of supercooling is smaller than the previous degree of supercooling (deteriorating), it is determined that the refrigerant is leaking.

(冷媒貯溜運転−冷房運転モード)
次に冷媒貯溜運転につき図5に基づいて説明する。
前記冷媒量検知運転において、冷媒の漏洩が検知されると、冷房運転モードにおいて冷媒貯溜運転を行う。すなわち、前記冷媒量検知運転において、循環路(循環回路)は高圧側循環弁6が閉じられているから分断され、冷媒貯溜器9(全冷媒が排出され、空の状態)は高圧側貯溜弁91vおよび高圧側貯溜弁92vが閉じられて循環回路から遮断されていたもの(図5の(a)のS31)を、冷媒貯溜運転では、高圧側貯溜弁91vを全開にして冷媒貯溜器9を循環回路に連通させる(図5の(a)のS32)。
そうすると、圧縮機1の起動によって冷凍サイクル装置100内の冷媒は、冷媒貯溜器9内に溜め込まれる(図5の(a)のS33)。そして、圧縮機1が所定時間稼働したところで、冷凍サイクル装置100内の冷媒は冷媒貯溜器9に十分貯溜されたと判断し、高圧側貯溜弁91vを閉じて冷媒貯溜器9を循環回路から遮断し(図5の(a)のS34)、さらに、圧縮機1を停止する(図5の(a)のS35)。
このように、冷媒を冷媒貯溜器9に貯溜することにより、循環回路から冷媒が排除され、室内側(室内熱交換器5側)が低圧となるため、仮に室内側で漏れが発生している場合には、冷媒の漏れ量を少なく抑えることができ冷凍サイクル装置100の室内側における安全性が向上する。
(Refrigerant storage operation-cooling operation mode)
Next, the refrigerant storage operation will be described with reference to FIG.
In the refrigerant amount detection operation, when refrigerant leakage is detected, the refrigerant storage operation is performed in the cooling operation mode. That is, in the refrigerant amount detection operation, the circulation path (circulation circuit) is divided because the high-pressure side circulation valve 6 is closed, and the refrigerant reservoir 9 (all refrigerant is discharged and empty) is divided into the high-pressure side storage valve. 91v and the high-pressure side storage valve 92v are closed and disconnected from the circulation circuit (S31 in FIG. 5A), in the refrigerant storage operation, the high-pressure side storage valve 91v is fully opened and the refrigerant reservoir 9 is opened. The circuit is communicated with the circulation circuit (S32 in FIG. 5A).
If it does so, the refrigerant | coolant in the refrigerating-cycle apparatus 100 will be stored in the refrigerant | coolant reservoir 9 by starting of the compressor 1 (S33 of (a) of FIG. 5). When the compressor 1 is operated for a predetermined time, it is determined that the refrigerant in the refrigeration cycle apparatus 100 is sufficiently stored in the refrigerant reservoir 9, and the high-pressure side storage valve 91v is closed to shut off the refrigerant reservoir 9 from the circulation circuit. (S34 in FIG. 5A) and the compressor 1 is further stopped (S35 in FIG. 5A).
In this way, by storing the refrigerant in the refrigerant reservoir 9, the refrigerant is removed from the circulation circuit, and the indoor side (the indoor heat exchanger 5 side) has a low pressure. Therefore, there is a leak on the indoor side. In this case, the amount of refrigerant leakage can be reduced, and the safety of the refrigeration cycle apparatus 100 on the indoor side is improved.

(冷媒貯溜運転−暖房運転モード)
前記のように冷媒貯溜運転は、通常冷房運転モードにおいて実行され、冷凍サイクル装置100の室内側における安全性を向上するものであるが、暖房運転モードにおいて実行して、冷凍サイクル装置100の室外側における安全性を向上するようにしてもよい。
すなわち、前記冷媒量検知運転において、循環路(循環回路)は高圧側循環弁6が閉じられているから分断された状態で(図5の(b)のS41)、高圧側貯溜弁92vを全開にして冷媒貯溜器9を循環回路に連通させる(図5の(b)のS42)。そして、圧縮機1を起動して冷凍サイクル装置100内の冷媒を冷媒貯溜器9内に溜め込み、圧縮機1が所定時間稼働したところで、所定の圧力値にまで低下したとき、冷凍サイクル装置100内の冷媒は冷媒貯溜器9に十分貯溜されたと判断する(図5の(b)のS43)。そこで、高圧側貯溜弁92vを閉じて冷媒貯溜器9を循環回路から遮断し(図5の(b)のS44)、さらに、圧縮機1を停止する(図5の(b)のS45)。
このように、冷媒を冷媒貯溜器9に貯溜することにより、循環回路から冷媒が排除され、室外側(室外熱交換器3側)が低圧となるため、仮に室外側で漏れが発生している場合には、冷媒の漏れ量を少なく抑えることができ冷凍サイクル装置100の室外側の安全性が向上する。
(Refrigerant storage operation-heating operation mode)
As described above, the refrigerant storage operation is performed in the normal cooling operation mode and improves safety on the indoor side of the refrigeration cycle apparatus 100. However, the refrigerant storage operation is performed in the heating operation mode and is performed on the outdoor side of the refrigeration cycle apparatus 100. You may make it improve the safety | security in.
That is, in the refrigerant amount detection operation, the circulation path (circulation circuit) is disconnected because the high pressure side circulation valve 6 is closed (S41 in FIG. 5B), and the high pressure side storage valve 92v is fully opened. Thus, the refrigerant reservoir 9 is communicated with the circulation circuit (S42 in FIG. 5B). Then, the compressor 1 is started and the refrigerant in the refrigeration cycle apparatus 100 is stored in the refrigerant reservoir 9, and when the compressor 1 is operated for a predetermined time and when the pressure drops to a predetermined pressure value, It is determined that the refrigerant is sufficiently stored in the refrigerant reservoir 9 (S43 in FIG. 5B). Therefore, the high-pressure side storage valve 92v is closed to shut off the refrigerant reservoir 9 from the circulation circuit (S44 in FIG. 5B), and the compressor 1 is stopped (S45 in FIG. 5B).
By storing the refrigerant in the refrigerant reservoir 9 in this way, the refrigerant is removed from the circulation circuit, and the outdoor side (outdoor heat exchanger 3 side) has a low pressure, so that leakage occurs temporarily on the outdoor side. In this case, the amount of refrigerant leakage can be reduced, and the safety of the outdoor side of the refrigeration cycle apparatus 100 is improved.

[実施の形態2]
(循環回路)
図6は本発明の実施形態2に係る冷凍サイクル装置の構成を説明する冷媒回路図である。図6において、冷凍サイクル装置200は、冷凍サイクル装置100(実施の形態1)の圧縮機1の吸入側(低圧側循環弁7と圧縮機1との間に同じ)に圧力センサ40および制御手段200cが設置されたものである、これを除く構成は冷凍サイクル装置100に同じである。制御手段200cはマイクロコンピュータ等であって、圧力センサ40が検知した圧力情報に基づいて、循環回路、バイパス流路30或いは冷媒充填流路8における冷媒の流し方や、循環回路と冷媒貯溜器9との接続または隔絶を制御する。
したがって、冷凍サイクル装置200は、冷媒貯溜運転において圧力センサ40を用いて冷凍サイクル装置200内の冷媒が冷媒貯溜器9に十分貯溜されたことを判断する点を除き、その他の運転は冷凍サイクル装置100に同じである。
[Embodiment 2]
(Circulation circuit)
FIG. 6 is a refrigerant circuit diagram illustrating the configuration of the refrigeration cycle apparatus according to Embodiment 2 of the present invention. In FIG. 6, the refrigeration cycle apparatus 200 includes a pressure sensor 40 and a control unit on the suction side of the refrigeration cycle apparatus 100 (Embodiment 1) (same between the low-pressure side circulation valve 7 and the compressor 1). The configuration excluding this, in which 200c is installed, is the same as that of the refrigeration cycle apparatus 100. The control means 200c is a microcomputer or the like, and based on the pressure information detected by the pressure sensor 40, the flow of the refrigerant in the circulation circuit, the bypass flow path 30 or the refrigerant charging flow path 8, and the circulation circuit and the refrigerant reservoir 9 Control connection or isolation with
Accordingly, the refrigeration cycle apparatus 200 uses the pressure sensor 40 in the refrigerant storage operation to determine that the refrigerant in the refrigeration cycle apparatus 200 has been sufficiently stored in the refrigerant reservoir 9, and the other operations are the refrigeration cycle apparatus. The same as 100.

(冷媒貯溜運転−冷房運転モード)
冷媒の漏洩が検知されると、冷房運転モードにおいて冷媒貯溜運転を行う。すなわち、前記冷媒量検知運転(実施の形態1)において、循環路(循環回路)は高圧側循環弁6が閉じられているから分断され、冷媒貯溜器9(全冷媒が排出され、空の状態)は高圧側貯溜弁91vおよび高圧側貯溜弁92vが閉じられているから循環回路から遮断されていたものを、冷媒貯溜運転では、高圧側貯溜弁91vを全開にして冷媒貯溜器9を循環回路に連通させる。
そうすると、圧縮機1の起動によって冷凍サイクル装置200内の冷媒は、冷媒貯溜器9内に溜め込まれる。そして、圧力センサ40の検知した圧力が、所定の圧力値にまで低下したとき、冷凍サイクル装置200内の冷媒は冷媒貯溜器9に十分貯溜されたと判断し、高圧側貯溜弁91vを閉じて冷媒貯溜器9を循環回路から遮断し、さらに、圧縮機1を停止する。
このように、冷媒を冷媒貯溜器9に貯溜することにより、循環回路から冷媒が排出され、室内側(室内熱交換器5側)が低圧になるため、仮に室内側で漏れが発生している場合には、冷媒の漏れ量を少なく抑えることができ冷凍サイクル装置200の室内側における安全性が向上する。
(Refrigerant storage operation-cooling operation mode)
When leakage of the refrigerant is detected, the refrigerant storage operation is performed in the cooling operation mode. That is, in the refrigerant amount detection operation (Embodiment 1), the circulation path (circulation circuit) is divided because the high-pressure side circulation valve 6 is closed, and the refrigerant reservoir 9 (all refrigerant is discharged and empty) ) Is closed from the circulation circuit because the high-pressure side storage valve 91v and the high-pressure side storage valve 92v are closed. In the refrigerant storage operation, the high-pressure side storage valve 91v is fully opened and the refrigerant reservoir 9 is circulated through the circulation circuit. Communicate with.
Then, the refrigerant in the refrigeration cycle apparatus 200 is stored in the refrigerant reservoir 9 by starting the compressor 1. When the pressure detected by the pressure sensor 40 decreases to a predetermined pressure value, it is determined that the refrigerant in the refrigeration cycle apparatus 200 has been sufficiently stored in the refrigerant reservoir 9, and the high-pressure side storage valve 91v is closed to generate a refrigerant. The reservoir 9 is disconnected from the circulation circuit, and the compressor 1 is stopped.
In this way, by storing the refrigerant in the refrigerant reservoir 9, the refrigerant is discharged from the circulation circuit, and the indoor side (the indoor heat exchanger 5 side) becomes a low pressure, so that a leak occurs temporarily on the indoor side. In this case, the amount of refrigerant leakage can be reduced, and the safety of the refrigeration cycle apparatus 200 on the indoor side is improved.

(冷媒貯溜運転−暖房運転モード)
前記のように冷媒貯溜運転は、通常冷房運転モードにおいて実行され、冷凍サイクル装置200の室内側における安全性を向上するものであるが、暖房運転モードにおいて実行して、冷凍サイクル装置200の室外側における安全性を向上するようにしてもよい。
すなわち、前記冷媒量検知運転において、循環路(循環回路)は高圧側循環弁6が閉じられているから分断された状態で、高圧側貯溜弁92vを全開にして冷媒貯溜器9を循環回路に連通させる。そして、圧縮機1を起動して冷凍サイクル装置200内の冷媒を冷媒貯溜器9内に溜め込め、圧力センサ40の検知した圧力が、所定の圧力値にまで低下したとき、所定の圧力値にまで低下したとき、冷凍サイクル装置200内の冷媒は冷媒貯溜器9に十分貯溜されたと判断する。そこで、高圧側貯溜弁92vを閉じて冷媒貯溜器9を循環回路から遮断し、さらに、圧縮機1を停止する。
このように、冷媒を冷媒貯溜器9に貯溜することにより、循環回路から冷媒が排除され、室外側(室外熱交換器3側)が低圧となるため、仮に室外側で漏れが発生している場合には、冷媒の漏れ量を少なく抑えることができ冷凍サイクル装置200の室外側の安全性が向上する。
(Refrigerant storage operation-heating operation mode)
As described above, the refrigerant storage operation is performed in the normal cooling operation mode and improves the safety on the indoor side of the refrigeration cycle apparatus 200. However, the refrigerant storage operation is performed in the heating operation mode and is performed on the outdoor side of the refrigeration cycle apparatus 200. You may make it improve the safety | security in.
That is, in the refrigerant amount detection operation, the circulation path (circulation circuit) is separated because the high-pressure side circulation valve 6 is closed, and the high-pressure side storage valve 92v is fully opened to make the refrigerant reservoir 9 into the circulation circuit. Communicate. Then, the compressor 1 is started to store the refrigerant in the refrigeration cycle apparatus 200 in the refrigerant reservoir 9, and when the pressure detected by the pressure sensor 40 is reduced to a predetermined pressure value, the predetermined pressure value is obtained. It is determined that the refrigerant in the refrigeration cycle apparatus 200 has been sufficiently stored in the refrigerant reservoir 9. Therefore, the high-pressure side storage valve 92v is closed to shut off the refrigerant reservoir 9 from the circulation circuit, and the compressor 1 is stopped.
By storing the refrigerant in the refrigerant reservoir 9 in this way, the refrigerant is removed from the circulation circuit, and the outdoor side (outdoor heat exchanger 3 side) has a low pressure, so that leakage occurs temporarily on the outdoor side. In this case, the amount of refrigerant leakage can be reduced, and the safety of the outdoor side of the refrigeration cycle apparatus 200 is improved.

[実施の形態3]
(循環回路)
図7は本発明の実施形態3に係る冷凍サイクル装置の構成を説明する冷媒回路図である。図7において、冷凍サイクル装置300は、冷媒貯溜器9の上部に冷媒回収管50が設置されている点を除き、冷凍サイクル装置100(実施の形態1)に同じである。
冷媒回収管50には冷媒回収管開閉弁(以下、「回収弁」と称す)51が設置され、先端には、冷媒回収装置の回収ホース(図示しない)が接続される接続手段(以下、「回収継手」と称す)52が設けられている。
[Embodiment 3]
(Circulation circuit)
FIG. 7 is a refrigerant circuit diagram illustrating the configuration of the refrigeration cycle apparatus according to Embodiment 3 of the present invention. In FIG. 7, the refrigeration cycle apparatus 300 is the same as the refrigeration cycle apparatus 100 (Embodiment 1) except that a refrigerant recovery pipe 50 is installed above the refrigerant reservoir 9.
The refrigerant recovery pipe 50 is provided with a refrigerant recovery pipe opening / closing valve (hereinafter referred to as “recovery valve”) 51, and a connecting means (hereinafter “ 52) (referred to as "recovery joint").

(冷媒回収運転)
冷媒回収運転は、冷媒貯溜器9内に貯溜された冷媒を、系外(冷凍サイクル装置300以外)の冷媒回収装置に回収して、冷凍サイクル装置300内を空(正確には冷媒がほとんどない状態)にするものである。
すなわち、冷媒の漏洩が検知されるか否かに関わらず、前記冷媒貯溜運転(冷房運転モードまたは暖房運転モード、実施の形態1参照)に準じて、冷媒貯溜器9内に冷媒を貯溜しておく。
そこで、冷媒回収管50の冷媒回収継手52に回収ホースを接続する。
そして、冷媒回収弁51を開き冷媒回収管50を経由して回収装置(図示せず)に冷媒を流入させる。冷媒回収管50は冷媒貯溜器9の上部空間に接続されているためそのほとんどはガス状態となり冷媒回収管50を通り、回収装置に設置された吸入込ポンプによって回収装置に吸入される。
このとき、冷凍機油は冷媒貯溜器9内においてガス冷媒から分離しているため、系外に持ち出されることがない。したがって、圧縮機1の信頼性を向上することができる。
(Refrigerant recovery operation)
In the refrigerant recovery operation, the refrigerant stored in the refrigerant reservoir 9 is recovered to a refrigerant recovery apparatus outside the system (other than the refrigeration cycle apparatus 300), and the interior of the refrigeration cycle apparatus 300 is empty (exactly, there is almost no refrigerant). State).
That is, regardless of whether or not refrigerant leakage is detected, the refrigerant is stored in the refrigerant reservoir 9 according to the refrigerant storage operation (cooling operation mode or heating operation mode, see Embodiment 1). deep.
Therefore, a recovery hose is connected to the coolant recovery joint 52 of the coolant recovery pipe 50.
Then, the refrigerant recovery valve 51 is opened, and the refrigerant flows into the recovery device (not shown) via the refrigerant recovery pipe 50. Since the refrigerant recovery pipe 50 is connected to the upper space of the refrigerant reservoir 9, most of it enters a gas state, passes through the refrigerant recovery pipe 50, and is sucked into the recovery apparatus by a suction pump installed in the recovery apparatus.
At this time, since the refrigeration oil is separated from the gas refrigerant in the refrigerant reservoir 9, it is not taken out of the system. Therefore, the reliability of the compressor 1 can be improved.

[実施の形態4]
(循環回路)
図8は本発明の実施形態4に係る冷凍サイクル装置の構成を説明する冷媒回路図である。図8において、冷凍サイクル装置400は、冷凍サイクル装置100(実施の形態1)から低圧側流路切換手段12を撤去したものである。
そして、制御手段400cはマイクロコンピュータ等であって、循環回路、バイパス流路30或いは冷媒充填流路8における冷媒の流し方や、高圧側流路切換手段11と冷媒貯溜器9との接続または隔絶を制御する。
したがって、通常冷房運転または通常暖房運転の起動時に、低温低圧の気液二相状態の冷媒を冷媒貯溜器9に流入させ、分離されたガス冷媒を圧縮機1に送るような低圧のアキュムレータ機能を有しない点を除き、冷凍サイクル装置100に同じである。
すなわち、冷凍サイクル装置100(実施の形態1)と同様に、通常暖房運転−起動時の動作、通常暖房運転−起動から所定時間経過後の動作、通常冷房運転−起動時の動作、通常冷房運転−起動から所定時間経過後の動作、冷媒充填時の動作、冷媒量検知運転−暖房運転時、冷媒量検知運転−冷房運転時、冷媒貯溜運転−冷房運転モード、冷媒貯溜運転−暖房運転モード、を実行することができるものである。したがって、起動時に圧縮機1への液バックの心配がない冷媒を用いた場合や、別途アキュムレータが設置される場合などに好適である。
[Embodiment 4]
(Circulation circuit)
FIG. 8 is a refrigerant circuit diagram illustrating a configuration of a refrigeration cycle apparatus according to Embodiment 4 of the present invention. In FIG. 8, the refrigeration cycle apparatus 400 is obtained by removing the low-pressure side flow path switching means 12 from the refrigeration cycle apparatus 100 (Embodiment 1).
The control means 400c is a microcomputer or the like, and the flow of the refrigerant in the circulation circuit, the bypass flow path 30 or the refrigerant filling flow path 8, and the connection or isolation between the high pressure side flow path switching means 11 and the refrigerant reservoir 9 To control.
Therefore, at the start of normal cooling operation or normal heating operation, a low-pressure accumulator function is provided such that a low-temperature low-pressure gas-liquid two-phase refrigerant flows into the refrigerant reservoir 9 and the separated gas refrigerant is sent to the compressor 1. It is the same as the refrigeration cycle apparatus 100 except that it does not have.
That is, as in the refrigeration cycle apparatus 100 (Embodiment 1), normal heating operation—operation during startup, normal heating operation—operation after a predetermined time has elapsed, normal cooling operation—operation during startup, normal cooling operation -Operation after a predetermined time has elapsed since start-up, operation when refrigerant is charged, refrigerant amount detection operation-heating operation, refrigerant amount detection operation-cooling operation, refrigerant storage operation-cooling operation mode, refrigerant storage operation-heating operation mode, Is something that can be performed. Therefore, it is suitable when a refrigerant that does not cause a liquid back to the compressor 1 at the time of start-up is used, or when a separate accumulator is installed.

[実施の形態5]
(循環回路)
図9は本発明の実施形態5に係る冷凍サイクル装置の構成を説明する冷媒回路図である。図9において、冷凍サイクル装置500は、冷凍サイクル装置100(実施の形態1)から四方弁2を撤去して、室外熱交換器3を暖房専用(凝縮器)に、室内熱交換器5を冷房専用(蒸発器)にしたものである。
そして、制御手段500cはマイクロコンピュータ等であって、バイパス流路30或いは冷媒充填流路8における冷媒の流し方や、循環回路と冷媒貯溜器9との接続または隔絶を制御する。
すなわち、冷凍サイクル装置500は、冷凍サイクル装置100(実施の形態1)における暖房運転にかかわる動作を除く、通常冷房運転−起動時の動作、通常冷房運転−起動から所定時間経過後の動作、冷媒充填時の動作、冷媒量検知運転−冷房運転時、冷媒貯溜運転−冷房運転モード、を実行することができるものである。
このとき、循環流路の上流側に位置する室外制御弁4aを毛細管に、循環流路の下流側に位置する室外制御弁4aを電子膨張弁にすることができる。したがって、構成部材や配管が簡素になるから、前記動作が可能でありながら、製造コストを抑えた冷房専用機が得られる。なお、室外熱交換器3を室内に、室内熱交換器5を室外に配置すれば、室内を暖房する暖房専用機が得られる。
[Embodiment 5]
(Circulation circuit)
FIG. 9 is a refrigerant circuit diagram illustrating a configuration of a refrigeration cycle apparatus according to Embodiment 5 of the present invention. In FIG. 9, the refrigeration cycle apparatus 500 removes the four-way valve 2 from the refrigeration cycle apparatus 100 (Embodiment 1), the outdoor heat exchanger 3 is dedicated to heating (condenser), and the indoor heat exchanger 5 is cooled. Dedicated (evaporator).
The control means 500c is a microcomputer or the like, and controls the flow of the refrigerant in the bypass flow path 30 or the refrigerant filling flow path 8, and the connection or isolation between the circulation circuit and the refrigerant reservoir 9.
In other words, the refrigeration cycle apparatus 500 excludes operations related to the heating operation in the refrigeration cycle apparatus 100 (Embodiment 1), operation during normal cooling operation-startup, operation after a predetermined time has elapsed since normal cooling operation-startup, refrigerant The operation at the time of filling, the refrigerant amount detection operation-cooling operation, and the refrigerant storage operation-cooling operation mode can be executed.
At this time, the outdoor control valve 4a located on the upstream side of the circulation channel can be a capillary tube, and the outdoor control valve 4a located on the downstream side of the circulation channel can be an electronic expansion valve. Therefore, since the constituent members and the piping are simplified, a cooling-only machine that can reduce the manufacturing cost while allowing the operation can be obtained. In addition, if the outdoor heat exchanger 3 is disposed indoors and the indoor heat exchanger 5 is disposed outdoors, a dedicated heating device for heating the interior can be obtained.

[実施の形態6]
(循環回路)
図10は本発明の実施形態6に係る冷凍サイクル装置の構成を説明する冷媒回路図である。図10において、冷凍サイクル装置600は、冷凍サイクル装置300(実施の形態3)から四方弁4と低圧側流路切換手段12と室内制御弁4bとを撤去したものである。したがって、冷凍サイクル装置600は冷凍専用機であって、起動時に分離されたガス冷媒を圧縮機1に送るような低圧のアキュムレータ機能を有しないものである。
そして、制御手段600cはマイクロコンピュータ等であって、バイパス流路30或いは冷媒充填流路8における冷媒の流し方や、高圧側流路切換手段11と冷媒貯溜器9との接続または隔絶を制御する。
すなわち、冷凍サイクル装置600は、可燃性冷媒の過剰な充填が防止され、可燃性冷媒を冷媒貯溜器に貯溜することによる安全性の向上が図られ、さらに、冷凍機油の系外への持ち出しが防止され、圧縮機の信頼性が向上することを、簡素な構成によって安価に可能にするものである。なお、室内制御弁4bの撤去に替えて、室内制御弁4bを残して室外制御弁4aを撤去してもよい。
[Embodiment 6]
(Circulation circuit)
FIG. 10 is a refrigerant circuit diagram illustrating a configuration of a refrigeration cycle apparatus according to Embodiment 6 of the present invention. In FIG. 10, the refrigeration cycle apparatus 600 is obtained by removing the four-way valve 4, the low-pressure side flow path switching means 12, and the indoor control valve 4b from the refrigeration cycle apparatus 300 (Embodiment 3). Therefore, the refrigeration cycle apparatus 600 is a dedicated refrigeration machine and does not have a low-pressure accumulator function that sends the gas refrigerant separated at the time of startup to the compressor 1.
The control means 600c is a microcomputer or the like, and controls the flow of the refrigerant in the bypass flow path 30 or the refrigerant filling flow path 8, and the connection or isolation between the high-pressure side flow path switching means 11 and the refrigerant reservoir 9. .
That is, in the refrigeration cycle apparatus 600, excessive filling of the flammable refrigerant is prevented, safety is improved by storing the flammable refrigerant in the refrigerant reservoir, and further, the refrigerating machine oil can be taken out of the system. It is possible to prevent and improve the reliability of the compressor at a low cost with a simple configuration. Instead of removing the indoor control valve 4b, the outdoor control valve 4a may be removed while leaving the indoor control valve 4b.

なお、冷凍サイクル装置600では、バイパス流路30を3本のバイパス流路30a、30b、30cに分岐して、それぞれに、バイパス毛細管31a、31b、31cと、バイパス温度センサ33a、33b、33cと、が設置されている。
すなわち、最上段のバイパス流路30aが設置された高さは、延長配管がない冷凍サイクル装置600内に、充填規制リミット値の冷媒が充填されたときの冷媒の液面高さに相当し、中段のバイパス流路30bが設置された高さは、たとえば、5mの延長配管を具備する冷凍サイクル装置600内に、充填規制リミット値の冷媒が充填されたときの冷媒の液面高さに相当し、最下段のバイパス流路30cが設置された高さは、たとえば、10mの延長配管を具備する冷凍サイクル装置600内に、充填規制リミット値の冷媒が充填されたときの冷媒の液面高さに相当する。したがって、延長配管の設置にかかわらず、冷媒の過剰な充填を回避することができる。
In the refrigeration cycle apparatus 600, the bypass passage 30 is branched into three bypass passages 30a, 30b, and 30c, and each of the bypass capillaries 31a, 31b, and 31c, and the bypass temperature sensors 33a, 33b, and 33c, and , Is installed.
That is, the height at which the uppermost bypass flow path 30a is installed corresponds to the liquid level height of the refrigerant when the refrigerant of the filling regulation limit value is filled in the refrigeration cycle apparatus 600 having no extension pipe, The height at which the middle bypass flow path 30b is installed corresponds to, for example, the liquid level of the refrigerant when the refrigerant of the charging regulation limit value is filled in the refrigeration cycle apparatus 600 having a 5 m extension pipe. The height at which the lowermost bypass flow path 30c is installed is, for example, the liquid level of the refrigerant when the refrigerant of the charging regulation limit value is filled in the refrigeration cycle apparatus 600 having a 10 m extension pipe. It corresponds to. Therefore, it is possible to avoid excessive charging of the refrigerant regardless of the installation of the extension pipe.

上記で説明した本発明の実施の形態の冷凍サイクル装置では、膨張弁である室外制御弁4aと室内制御弁4bとの間に、高圧側循環弁6を挟んで両側から高圧側貯留通路91、92を接続し冷媒貯留器9に冷凍サイクル運転中に冷媒を貯留できるようにしている。更に、この高圧側貯留通路91、92にそれぞれ高圧側貯留弁91v、92vを接続し、冷媒貯留器9への冷媒の貯留を制御できるようにしている。
例えば、暖房時であろうと冷房時であろうと蒸発器出口にて過熱度を一定に制御し、凝縮器出口にて過冷却度を検出し、その後で、高圧側循環弁6、高圧側貯留弁91v、92vを操作して冷媒貯留器9から貯留した冷媒を空にする運転を行い、蒸発器出口にて過熱度を一定に制御し、凝縮器出口にて過冷却度を検出する。
冷媒貯留器9内の冷媒を空にした運転時、過冷却度がその運転前の暖房時または冷房時に検出した過冷却度より小さくなった場合には、冷媒が冷凍サイクルの何処からか漏れていると判断できる。
In the refrigeration cycle apparatus according to the embodiment of the present invention described above, the high-pressure side storage passage 91 from both sides sandwiching the high-pressure side circulation valve 6 between the outdoor control valve 4a and the indoor control valve 4b, which are expansion valves, 92 is connected so that the refrigerant can be stored in the refrigerant reservoir 9 during the refrigeration cycle operation. Further, high pressure side storage valves 91v and 92v are connected to the high pressure side storage passages 91 and 92, respectively, so that the storage of the refrigerant in the refrigerant reservoir 9 can be controlled.
For example, whether heating or cooling, the superheat degree is controlled to be constant at the evaporator outlet, the supercooling degree is detected at the condenser outlet, and then the high pressure side circulation valve 6 and the high pressure side storage valve are detected. 91v and 92v are operated and the refrigerant | coolant stored from the refrigerant | coolant storage device 9 is emptied, superheat degree is controlled uniformly at an evaporator exit, and supercooling degree is detected at a condenser exit.
During the operation in which the refrigerant in the refrigerant reservoir 9 is emptied, if the degree of supercooling becomes smaller than the degree of supercooling detected during heating or cooling before the operation, the refrigerant leaks from somewhere in the refrigeration cycle. Can be judged.

冷媒漏れが室内側からと判断された場合、あるいは室内側に漏れを発生させたくない場合、すなわち、室内に漏れた可燃性冷媒が溜まりやすい場合や発火源が存在するなどの場合には、四方弁2を冷房運転回路として高圧側循環弁6、高圧側貯留弁91v、92vを操作して冷媒貯留器9に冷媒を貯留する運転を行った後で圧縮機1を停止する。
これにより室内側を低圧として冷媒漏れを防ぐことが出来、冷媒貯留器9から貯留した冷媒を回収しても良いし、貯留したままでも冷媒漏れの対策を行うことができる。
If it is determined that the refrigerant leaks from the indoor side, or if you do not want the leak to occur inside the room, that is, if the flammable refrigerant leaking into the room tends to accumulate or there is an ignition source, After operating the high pressure side circulation valve 6 and the high pressure side storage valves 91v and 92v with the valve 2 as a cooling operation circuit to perform an operation of storing the refrigerant in the refrigerant reservoir 9, the compressor 1 is stopped.
Thereby, the refrigerant can be prevented from leaking by setting the indoor side to a low pressure, and the refrigerant stored from the refrigerant reservoir 9 may be recovered, or countermeasures against refrigerant leakage can be taken even if the refrigerant is stored.

一方室外側に漏れていると判断できる場合や室外側に冷媒漏れを発生させたくない場合は、四方弁2を暖房運転回路として高圧側循環弁6、高圧側貯留弁91v、92vを操作して冷媒貯留器9に冷媒を貯留する運転を行った後で圧縮機1を停止する。これにより室外側を低圧にして冷媒漏れを防ぐことができる。
このような冷媒漏れ対策に対しては可燃性冷媒を使用した場合が特に有効であり、低圧側貯留弁93v、94vの有無、アキュムレータの有無に関係なく行うことができる。
On the other hand, when it can be determined that the refrigerant is leaking to the outside of the room or when it is not desired to cause the refrigerant to leak outside the room, the high-pressure side circulation valve 6 and the high-pressure side storage valves 91v and 92v are operated using the four-way valve 2 as a heating operation circuit. After the operation of storing the refrigerant in the refrigerant reservoir 9 is performed, the compressor 1 is stopped. Thereby, a refrigerant | coolant leak can be prevented by making an outdoor side into a low pressure.
The use of a flammable refrigerant is particularly effective for countermeasures against such refrigerant leakage, and can be performed regardless of the presence or absence of the low-pressure side storage valves 93v and 94v and the presence or absence of an accumulator.

この発明に係る冷凍サイクル装置は、充填規制リミット値以上の冷媒充填を防止したり、可燃性冷媒の漏洩を低減したり、冷凍機油の装置外への持出量を低減したりすることができるから、様々な低GMP冷媒を使用する各種冷凍サイクル装置として広く利用することができる。   The refrigeration cycle apparatus according to the present invention can prevent refrigerant charging exceeding the charging regulation limit value, reduce leakage of flammable refrigerant, and reduce the amount of refrigerating machine oil taken out of the apparatus. Therefore, it can be widely used as various refrigeration cycle apparatuses using various low GMP refrigerants.

本発明の実施形態1に係る冷凍サイクル装置の構成を説明する冷媒回路図。The refrigerant circuit figure explaining the structure of the refrigerating-cycle apparatus which concerns on Embodiment 1 of this invention. 図1に説明する冷凍サイクル装置における通常暖房運転の動作のフロー図。The flowchart of the operation | movement of the normal heating operation in the refrigerating-cycle apparatus demonstrated in FIG. 図1に説明する冷凍サイクル装置における冷媒充填時の動作のフロー図。The flowchart of the operation | movement at the time of refrigerant | coolant filling in the refrigeration cycle apparatus demonstrated in FIG. 図1に説明する冷凍サイクル装置における冷媒量検知運転の動作のフロー図。The flowchart of the operation | movement of the refrigerant | coolant amount detection driving | operation in the refrigerating-cycle apparatus demonstrated in FIG. 図1に説明する冷凍サイクル装置における冷媒貯蔵運転の動作のフロー図。The flowchart of the operation | movement of the refrigerant | coolant storage driving | operation in the refrigerating-cycle apparatus demonstrated in FIG. 本発明の実施形態2に係る冷凍サイクル装置の構成を説明する冷媒回路図。The refrigerant circuit figure explaining the structure of the refrigeration cycle apparatus which concerns on Embodiment 2 of this invention. 本発明の実施形態3に係る冷凍サイクル装置の構成を説明する冷媒回路図。The refrigerant circuit figure explaining the structure of the refrigerating-cycle apparatus which concerns on Embodiment 3 of this invention. 本発明の実施形態4に係る冷凍サイクル装置の構成を説明する冷媒回路図。The refrigerant circuit figure explaining the structure of the refrigerating-cycle apparatus which concerns on Embodiment 4 of this invention. 本発明の実施形態5に係る冷凍サイクル装置の構成を説明する冷媒回路図。The refrigerant circuit figure explaining the structure of the refrigerating-cycle apparatus which concerns on Embodiment 5 of this invention. 本発明の実施形態6に係る冷凍サイクル装置の構成を説明する冷媒回路図。The refrigerant circuit figure explaining the structure of the refrigerating-cycle apparatus which concerns on Embodiment 6 of this invention.

符号の説明Explanation of symbols

1:圧縮機、2:四方弁、3:室外熱交換器、4a:室外制御弁、4b:室内制御弁、5:室内熱交換器、6:高圧側循環弁、7:低圧側循環弁、8:冷媒充填流路、8a:冷媒充填口、8v:冷媒充填弁、9:冷媒貯溜器、11:高圧側流路切換手段、12:低圧側流路切換手段、21:温度センサ、22:温度センサ、23:温度センサ、24:温度センサ、25:温度センサ、26:温度センサ、30:バイパス流路、31:バイパス毛細管、32:バイパス開閉弁、33:バイパス温度センサ、40:圧力センサ、50:冷媒回収管、51:冷媒回収弁、52:冷媒回収継手、91:高圧側貯溜流路、91v:高圧側貯溜弁、92:高圧側貯溜流路、92v:高圧側貯溜弁、93:低圧側貯溜流路、93v:低圧側貯溜弁、94:低圧側貯溜流路、94v:低圧側貯溜弁、100:冷凍サイクル装置(実施の形態1)、200:冷凍サイクル装置(実施の形態2)、300:冷凍サイクル装置(実施の形態3)、400:冷凍サイクル装置(実施の形態4)、500:冷凍サイクル装置(実施の形態5)、600:冷凍サイクル装置(実施の形態6)。   1: compressor, 2: four-way valve, 3: outdoor heat exchanger, 4a: outdoor control valve, 4b: indoor control valve, 5: indoor heat exchanger, 6: high pressure side circulation valve, 7: low pressure side circulation valve, 8: Refrigerant filling flow path, 8a: Refrigerant filling port, 8v: Refrigerant filling valve, 9: Refrigerant reservoir, 11: High pressure side flow path switching means, 12: Low pressure side flow path switching means, 21: Temperature sensor, 22: Temperature sensor, 23: Temperature sensor, 24: Temperature sensor, 25: Temperature sensor, 26: Temperature sensor, 30: Bypass flow path, 31: Bypass capillary tube, 32: Bypass on-off valve, 33: Bypass temperature sensor, 40: Pressure sensor 50: Refrigerant recovery pipe, 51: Refrigerant recovery valve, 52: Refrigerant recovery joint, 91: High pressure side storage flow path, 91v: High pressure side storage valve, 92: High pressure side storage flow path, 92v: High pressure side storage flow path, 93 : Low pressure side storage flow path, 93v: Low pressure side storage valve, 94: Low Side storage flow path, 94v: low pressure side storage valve, 100: refrigeration cycle apparatus (Embodiment 1), 200: refrigeration cycle apparatus (Embodiment 2), 300: refrigeration cycle apparatus (Embodiment 3), 400: Refrigeration cycle apparatus (Embodiment 4), 500: Refrigeration cycle apparatus (Embodiment 5), 600: Refrigeration cycle apparatus (Embodiment 6).

Claims (2)

可燃性冷媒を圧縮する圧縮機と、
該圧縮機において圧縮された可燃性冷媒を凝縮する凝縮器と、
該凝縮器において凝縮した可燃性冷媒を膨張させる流量制御弁と、
該流量制御弁において膨張された可燃性冷媒を蒸発させる蒸発器と、
前記圧縮機、前記凝縮器、前記流量制御弁、前記蒸発器および前記圧縮機を順次接続して可燃性冷媒を循環させる循環回路を形成する冷媒配管と、
該冷媒配管に連通または遮断自在に接続された冷媒貯溜器と、
を備えた冷凍サイクル装置の運転方法において、
前記圧縮機を運転させ前記冷媒を循環させて冷凍サイクルからの冷媒漏れを検出するステップと、前記冷媒漏れを検出した際に前記冷媒貯留器に冷媒を貯留させる運転を行うステップと、前記冷媒を前記冷媒貯留器に貯留した後で前記圧縮機を停止させ前記冷凍サイクルの室内側又は室外側を低圧に維持するステップと、を備え、
前記冷媒漏れを検出するステップが、可燃性冷媒を前記冷媒貯溜器から排出して、前記循環回路を循環させながら、前記蒸発器の出口における過熱度が一定値になるように運転したとき、前回の同様の運転のときよりも前記凝縮器の出口における過冷却度が小さい場合、可燃性冷媒が漏れていると判断するものであることを特徴とする冷凍サイクル装置の運転方法。
A compressor for compressing the combustible refrigerant;
A condenser for condensing the combustible refrigerant compressed in the compressor;
A flow control valve for expanding the combustible refrigerant condensed in the condenser;
An evaporator for evaporating the combustible refrigerant expanded in the flow control valve;
A refrigerant pipe that forms a circulation circuit for circulating the combustible refrigerant by sequentially connecting the compressor, the condenser, the flow rate control valve, the evaporator, and the compressor;
A refrigerant reservoir connected to the refrigerant pipe so as to communicate with or cut off;
In the operation method of the refrigeration cycle apparatus comprising:
Operating the compressor to circulate the refrigerant to detect a refrigerant leak from a refrigeration cycle; performing an operation to store the refrigerant in the refrigerant reservoir when detecting the refrigerant leak; and And, after storing in the refrigerant reservoir, to stop the compressor and maintain the indoor side or the outdoor side of the refrigeration cycle at a low pressure, and
The step of detecting the refrigerant leakage is performed when the superheat degree at the outlet of the evaporator becomes a constant value while discharging the combustible refrigerant from the refrigerant reservoir and circulating the circulation circuit. The operation method of the refrigerating cycle apparatus characterized by determining that the combustible refrigerant | coolant has leaked when the supercooling degree in the exit of the said condenser is smaller than the time of the same driving | operation.
可燃性冷媒を圧縮する圧縮機と、A compressor for compressing the combustible refrigerant;
該圧縮機において圧縮された可燃性冷媒を凝縮する凝縮器と、  A condenser for condensing the combustible refrigerant compressed in the compressor;
該凝縮器の内部および出口にそれぞれ設置された温度センサと、  Temperature sensors respectively installed inside and at the outlet of the condenser;
該凝縮器において凝縮した可燃性冷媒を膨張させる流量制御弁と、  A flow control valve for expanding the combustible refrigerant condensed in the condenser;
該流量制御弁において膨張された可燃性冷媒を蒸発させる蒸発器と、  An evaporator for evaporating the combustible refrigerant expanded in the flow control valve;
前記圧縮機、前記凝縮器、前記流量制御弁、前記蒸発器および前記圧縮機を順次接続して可燃性冷媒を循環させる循環回路を形成する冷媒配管と、  A refrigerant pipe that forms a circulation circuit for circulating the combustible refrigerant by sequentially connecting the compressor, the condenser, the flow rate control valve, the evaporator, and the compressor;
該冷媒配管に連通または遮断自在に接続された冷媒貯溜器と、  A refrigerant reservoir connected to the refrigerant pipe so as to communicate with or cut off;
前記圧縮機を運転させ前記冷媒を循環させて冷凍サイクルからの冷媒漏れを検出するステップと、前記冷媒漏れを検出した際に前記冷媒貯留器に冷媒を貯留させる運転を行うステップと、前記冷媒を前記冷媒貯留器に貯留した後で前記圧縮機を停止させ前記冷凍サイクルの室内側又は室外側を低圧に維持するステップと、を実行させる制御手段とを備え、  Operating the compressor to circulate the refrigerant to detect a refrigerant leak from a refrigeration cycle; performing an operation to store the refrigerant in the refrigerant reservoir when detecting the refrigerant leak; and A step of stopping the compressor after being stored in the refrigerant reservoir and maintaining the indoor side or the outdoor side of the refrigeration cycle at a low pressure, and
該制御手段は、可燃性冷媒を前記冷媒貯溜器から排出して、前記循環回路を循環させながら、前記温度センサが検知した温度の差によって検知される前記蒸発器の出口における過熱度が一定値になるように運転したとき、前回の同様の運転のときよりも前記凝縮器の出口における過冷却度が小さい場合、可燃性冷媒が漏れていると判断することを特徴とする冷凍サイクル装置。  The control means discharges combustible refrigerant from the refrigerant reservoir and circulates in the circulation circuit, and the degree of superheat at the outlet of the evaporator detected by the temperature difference detected by the temperature sensor is a constant value. When the operation is performed so that the degree of supercooling at the outlet of the condenser is smaller than that in the previous similar operation, it is determined that the flammable refrigerant is leaking.
JP2008177975A 2008-07-08 2008-07-08 Refrigeration cycle apparatus and method for operating refrigeration cycle apparatus Active JP4884432B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008177975A JP4884432B2 (en) 2008-07-08 2008-07-08 Refrigeration cycle apparatus and method for operating refrigeration cycle apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008177975A JP4884432B2 (en) 2008-07-08 2008-07-08 Refrigeration cycle apparatus and method for operating refrigeration cycle apparatus

Publications (2)

Publication Number Publication Date
JP2010019439A JP2010019439A (en) 2010-01-28
JP4884432B2 true JP4884432B2 (en) 2012-02-29

Family

ID=41704534

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008177975A Active JP4884432B2 (en) 2008-07-08 2008-07-08 Refrigeration cycle apparatus and method for operating refrigeration cycle apparatus

Country Status (1)

Country Link
JP (1) JP4884432B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103940158B (en) * 2014-04-22 2017-01-11 珠海格力电器股份有限公司 Air conditioner outdoor unit, air conditioner system and operation method of air conditioner system
JP6417750B2 (en) * 2014-06-27 2018-11-07 ダイキン工業株式会社 Cooling and heating simultaneous operation type air conditioner
US10088210B2 (en) 2014-09-30 2018-10-02 Mitsubishi Electric Corporation Refrigeration cycle apparatus
JP6550859B2 (en) * 2015-03-31 2019-07-31 ダイキン工業株式会社 Refrigeration system
JP7325542B2 (en) * 2020-01-09 2023-08-14 三菱電機株式会社 refrigeration cycle equipment
JP7489817B2 (en) 2020-04-17 2024-05-24 東芝ライフスタイル株式会社 Air conditioners

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3312330B2 (en) * 1997-03-19 2002-08-05 三菱電機株式会社 Refrigeration cycle device and air conditioner
JPH11211293A (en) * 1998-01-26 1999-08-06 Sanyo Electric Co Ltd Refrigerator
JP2000028237A (en) * 1998-07-14 2000-01-28 Matsushita Electric Ind Co Ltd Separation type refrigerating cycle apparatus
JP2000249434A (en) * 1999-02-24 2000-09-14 Daikin Ind Ltd Freezing apparatus
JP2003214734A (en) * 2002-01-18 2003-07-30 Toshiba Corp Control device of refrigerator and refrigerant leakage determination method for refrigerator
JP2004353895A (en) * 2003-05-27 2004-12-16 Sanden Corp Vehicular air-conditioner
JP2005090925A (en) * 2003-09-19 2005-04-07 Toshiba Corp Refrigerant leakage detecting device and refrigerator using the same
JP2006234239A (en) * 2005-02-23 2006-09-07 Mitsubishi Heavy Ind Ltd Accumulator liquid refrigerant detecting method for air conditioning system, receiver liquid refrigerant detecting method, refrigerant amount adjusting method and air conditioning system

Also Published As

Publication number Publication date
JP2010019439A (en) 2010-01-28

Similar Documents

Publication Publication Date Title
US11415345B2 (en) Refrigeration apparatus
KR101634483B1 (en) Freezer
JP6366742B2 (en) Air conditioner
US8899058B2 (en) Air conditioner heat pump with injection circuit and automatic control thereof
JP4884432B2 (en) Refrigeration cycle apparatus and method for operating refrigeration cycle apparatus
JP2002277078A (en) Refrigerating cycle
US20100192607A1 (en) Air conditioner/heat pump with injection circuit and automatic control thereof
KR20130134348A (en) Air conditional and method for controlling the same
JP5783783B2 (en) Heat source side unit and refrigeration cycle apparatus
JP2014119221A (en) Refrigeration device
CN108954501B (en) Air conditioner
JP6080939B2 (en) Air conditioner
JP2012180945A (en) Water heater system
JP6206787B2 (en) Refrigeration equipment
JP2005083704A (en) Refrigerating cycle and air conditioner
US20190301778A1 (en) Refrigeration cycle apparatus
WO2017056394A1 (en) Refrigeration device
JP4420871B2 (en) Refrigeration air conditioner
US11761697B2 (en) Multi-air conditioner for heating and cooling operations
JP2012149834A (en) Heat pump
JP6094859B2 (en) Refrigeration equipment
JP2015087020A (en) Refrigeration cycle device
WO2021033426A1 (en) Heat source unit and freezing apparatus
JP6003616B2 (en) Refrigeration equipment
JP2008232564A (en) Refrigerating device and control method for refrigerating device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110317

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110405

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110603

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111108

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111206

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141216

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4884432

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250