JP4881068B2 - Water quality meter - Google Patents

Water quality meter Download PDF

Info

Publication number
JP4881068B2
JP4881068B2 JP2006145801A JP2006145801A JP4881068B2 JP 4881068 B2 JP4881068 B2 JP 4881068B2 JP 2006145801 A JP2006145801 A JP 2006145801A JP 2006145801 A JP2006145801 A JP 2006145801A JP 4881068 B2 JP4881068 B2 JP 4881068B2
Authority
JP
Japan
Prior art keywords
voltage
connection terminal
electrode pair
electrode
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006145801A
Other languages
Japanese (ja)
Other versions
JP2007315913A (en
Inventor
一夫 翁長
信一 播摩
清志 佐川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tanita Corp
FIS Inc
Original Assignee
Tanita Corp
FIS Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tanita Corp, FIS Inc filed Critical Tanita Corp
Priority to JP2006145801A priority Critical patent/JP4881068B2/en
Publication of JP2007315913A publication Critical patent/JP2007315913A/en
Application granted granted Critical
Publication of JP4881068B2 publication Critical patent/JP4881068B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Description

本発明は、測定対象の液体の水質、特に水道水に含まれる残留塩素の濃度や、液体のpH、ORP(酸化還元電位)などの測定用として好適に用いられる水質計に関するものである。   The present invention relates to a water quality meter suitably used for measuring the water quality of a liquid to be measured, in particular, the concentration of residual chlorine contained in tap water, the pH of the liquid, the ORP (oxidation-reduction potential), and the like.

この種の水質計として、例えば水道水中の残留塩素濃度を測定するためのものが従来より提供されている(例えば特許文献1参照)。この水質計は、異種の金属で形成された一対の電極を有し、これら一対の電極を測定対象の液に浸けて、電極間に発生する起電圧から液中の塩素濃度を測定する。一対の電極の内の一方は白金線、他方は銀線にて形成され、銀線からなる電極は液中に浸けられる部位に塩化銀被膜が形成されており、これら一対の電極でセンサヘッドを構成する。そして、このセンサヘッドを測定対象の液中、例えば水道水に浸けると、一対の電極間に液中の塩素濃度に応じた起電圧が発生するので、電極間に発生した起電圧から塩素濃度を測定することができるのである。   As this type of water quality meter, for example, a device for measuring the residual chlorine concentration in tap water has been conventionally provided (see, for example, Patent Document 1). This water quality meter has a pair of electrodes formed of different kinds of metals, immerses the pair of electrodes in the liquid to be measured, and measures the chlorine concentration in the liquid from the electromotive voltage generated between the electrodes. One of the pair of electrodes is formed of a platinum wire and the other is formed of a silver wire, and the electrode made of the silver wire has a silver chloride film formed at a portion immersed in the liquid. Constitute. And when this sensor head is immersed in the liquid to be measured, for example, tap water, an electromotive voltage corresponding to the chlorine concentration in the liquid is generated between the pair of electrodes, so the chlorine concentration is calculated from the electromotive voltage generated between the electrodes. It can be measured.

ところで、このような水質計では電極に使用する金属を変更することで、塩素以外の不純物濃度やpH或いは酸化還元電位を測定することができるので、液中の塩素濃度に加えて、測定対象の液のpH或いは酸化還元電位を同時に測定したいという要望があり、複数の測定項目を測定可能な水質計が従来より提案されている。図3は、塩素濃度とpHの両方を測定可能な従来の水質計のブロック図であり、測定対象の液100に浸けると液中の塩素濃度に対応した大きさの起電圧を発生する一対の電極21a,21bからなるセンサ部と、両電極21a,21bがそれぞれ接続される接続端子t1,t2と、ガラス薄膜101の両面に測定対象の液100とpHが既知の比較溶液102とを接触させ、液100と比較溶液102の間に発生する電圧を液100および比較溶液102にそれぞれ接触する電極22a、電極22bから取り出すセンサ部と、両電極22a,22bがそれぞれ接続される接続端子t3,t4と、接続端子t1,t2を介して入力される電極21a,21b間の電圧を増幅する増幅回路23と、接続端子t3,t4を介して入力される電極22a,22b間の電圧を増幅する増幅回路24と、増幅回路23,24の出力から塩素濃度およびpHを測定する測定回路25とを備えている。 By the way, in such a water quality meter, by changing the metal used for the electrode, it is possible to measure the impurity concentration, pH or oxidation-reduction potential other than chlorine, so in addition to the chlorine concentration in the liquid, There is a desire to simultaneously measure the pH or redox potential of a liquid, and water quality meters capable of measuring a plurality of measurement items have been proposed. FIG. 3 is a block diagram of a conventional water quality meter capable of measuring both chlorine concentration and pH. When immersed in the liquid 100 to be measured, a pair of electromotive voltages that generate a magnitude corresponding to the chlorine concentration in the liquid is generated. A sensor unit composed of electrodes 21a and 21b, connection terminals t1 and t2 to which both electrodes 21a and 21b are connected, and a solution 100 to be measured and a comparative solution 102 having a known pH are brought into contact with both surfaces of the glass thin film 101. , connection terminals and the sensor unit for taking out a voltage generated between control solution 102 and the liquid 100 respectively contact to that electrodes 22a in the liquid 100 and the comparative solution 102, the electrodes 22b, the electrodes 22a, 22b are connected, respectively An amplifier circuit 23 that amplifies the voltage between the electrodes 21a and 21b inputted through t3 and t4 and the connection terminals t1 and t2, and an electrode 2 inputted through the connection terminals t3 and t4 An amplifying circuit 24 that amplifies the voltage between 2a and 22b, and a measuring circuit 25 that measures the chlorine concentration and pH from the outputs of the amplifying circuits 23 and 24 are provided.

この水質計では、塩素濃度測定用の電極21a,21bと、pH測定用の電極22aとを測定対象の液100に浸けると、電極21a,21b間に液100中の塩素濃度に対応した起電圧が発生するとともに、電極22a,22b間に液100のpHに対応した起電圧が発生するので、増幅回路23,24により増幅された電圧値をもとに測定回路25において液中の塩素濃度やpHを同時に測定することができる。また、互いに異なる金属により形成された一対の電極を具備し、両電極を測定対象の液に浸けると、測定液のORPに応じた起電圧を両電極間に発生させるセンサ部を具備し、センサ部の出力からORPを測定するようにした水質計も従来より提供されている。 In this water meter, chlorine concentration measurement electrodes 21a, and 21b, when immersed and electrodes 22a for pH measurement to the measurement object liquid 100, electrodes 21a, force corresponding to the concentration of chlorine in the liquid 100 between 21b Since a voltage is generated and an electromotive voltage corresponding to the pH of the liquid 100 is generated between the electrodes 22a and 22b, the chlorine concentration in the liquid is measured in the measurement circuit 25 based on the voltage value amplified by the amplifier circuits 23 and 24. And pH can be measured simultaneously. In addition, the sensor includes a pair of electrodes formed of different metals, and includes a sensor unit that generates an electromotive voltage between the electrodes according to the ORP of the measurement liquid when both electrodes are immersed in the liquid to be measured. A water quality meter that measures ORP from the output of the unit has also been provided.

ところで、上述した塩素濃度、pHおよびORPの測定用の電極は何れも起電圧方式のセンサ部であり、電極21a,21b間に発生する起電圧や、電極22a,22b間に発生する電圧を、同一電源で動作する増幅回路(すなわち互いに絶縁されていない増幅回路)23,24を用いて同時に測定した場合、両増幅回路22,23の間にコモンライン(共通線)があると、両センサ部の半電池同士が互いに接続されることになり、両センサ部の間に電流が流れて測定誤差が発生する可能性があった。このような問題を解決するには、各々のセンサ部毎に増幅回路や測定回路が互いに絶縁されたものを使用すれば良いが、各センサ部毎に動作電源を供給する電源部も必要になるため、水質計のコストアップを招くという問題があった。   By the way, the electrodes for measuring the chlorine concentration, pH and ORP described above are all electromotive force sensor units, and the electromotive voltage generated between the electrodes 21a and 21b and the voltage generated between the electrodes 22a and 22b are When measurement is performed simultaneously using amplifier circuits (that is, amplifier circuits that are not insulated from each other) 23 and 24 that operate with the same power source, if there is a common line (common line) between the amplifier circuits 22 and 23, both sensor units Thus, there is a possibility that a measurement error may occur due to a current flowing between the two sensor parts. In order to solve such a problem, it is sufficient to use an amplifier circuit and a measurement circuit that are insulated from each other for each sensor unit. However, a power supply unit that supplies operating power to each sensor unit is also required. Therefore, there was a problem that the cost of the water quality meter was increased.

本発明は上記問題点に鑑みて為されたものであり、その目的とするところは、コストアップを招くことなく、複数の測定項目を精度良く測定可能な水質計を提供することにある。   The present invention has been made in view of the above problems, and an object thereof is to provide a water quality meter capable of measuring a plurality of measurement items with high accuracy without causing an increase in cost.

上記目的を達成するために、請求項1の発明は、互いに異なる金属で形成された第1の電極対を有し、前記第1の電極対の両方の電極が測定対象の液に浸漬されると、前記測定対象の液に含まれる測定対象の不純物濃度に応じた大きさの起電圧が、前記第1の電極対間に発生する濃度測定用の第1センサと、pHが既知の比較溶液が入った容器に設けられ一方の面が前記比較溶液に接触したガラス薄膜および前記比較溶液に浸漬された内部電極を備えるガラス電極と前記測定対象の液に浸漬される電極とを備える第2の電極対を有し、前記第2の電極対が前記測定対象の液に浸漬されると、前記測定対象の液のpH値に応じた起電圧が、前記第2の電極対間に発生するpHセンサである第2センサと、前記第1の電極対のそれぞれの電極に接続される第1及び第2の接続端子と、前記第2の電極対のそれぞれの電極に接続される第3及び第4の接続端子と、前記第1の接続端子の電圧と前記第2の接続端子の電圧との差電圧を増幅する差動増幅回路と、前記第3の接続端子及び前記第4の接続端子のうちの一方に、一定のバイアス電圧を印加するバイアス回路と、前記第1の電極対間に発生する起電圧と不純物濃度との関係、前記第2の電極対間に発生する起電圧とpH値との関係をそれぞれ示した検量線データを記憶するメモリと、前記差動増幅回路の出力と前記検量線データとに基づいて不純物濃度を求めるとともに、前記第3の接続端子及び前記第4の接続端子のうちの他方の電圧から前記バイアス電圧を減算した電圧と前記検量線データとに基づいてpH値を求める測定回路とを備え、前記第3の接続端子及び前記第4の接続端子のうちの一方の接続端子と、前記第1の接続端子及び前記第2の接続端子のうちで低圧側となる接続端子との間が、抵抗値が10MΩ以上且つ100MΩ以下のインピーダンス要素を介して電気的に接続されたことを特徴とする。
請求項2の発明は、互いに異なる金属で形成された第1の電極対を有し、前記第1の電極対の両方の電極が測定対象の液に浸漬されると、前記測定対象の液に含まれる測定対象の不純物濃度に応じた大きさの起電圧が、前記第1の電極対間に発生する濃度測定用の第1センサと、互いに異なる金属で形成された第2の電極対を有し、前記第2の電極対が前記測定対象の液に浸漬されると、前記測定対象の液の酸化還元電位に応じた大きさの起電圧が、前記第2の電極対間に発生するORPセンサである第2センサと、前記第1の電極対のそれぞれの電極に接続される第1及び第2の接続端子と、前記第2の電極対のそれぞれの電極に接続される第3及び第4の接続端子と、前記第1の接続端子の電圧と前記第2の接続端子の電圧との差電圧を増幅する差動増幅回路と、前記第3の接続端子及び前記第4の接続端子のうちの一方に、一定のバイアス電圧を印加するバイアス回路と、前記第1の電極対間に発生する起電圧と不純物濃度との関係、前記第2の電極対間に発生する起電圧と酸化還元電位との関係をそれぞれ示した検量線データを記憶するメモリと、前記差動増幅回路の出力と前記検量線データとに基づいて不純物濃度を求めるとともに、前記第3の接続端子及び前記第4の接続端子のうちの他方の電圧から前記バイアス電圧を減算した電圧と前記検量線データとに基づいて酸化還元電位を求める測定回路とを備え、前記第3の接続端子及び前記第4の接続端子のうちの一方の接続端子と、前記第1の接続端子及び前記第2の接続端子のうちで低圧側となる接続端子との間が、抵抗値が10MΩ以上且つ100MΩ以下のインピーダンス要素を介して電気的に接続されたことを特徴とする
In order to achieve the above object, the invention of claim 1 has a first electrode pair formed of different metals, and both electrodes of the first electrode pair are immersed in the liquid to be measured. A first sensor for concentration measurement in which an electromotive voltage having a magnitude corresponding to the impurity concentration of the measurement target contained in the measurement target liquid is generated between the first electrode pair, and a comparison solution having a known pH A glass thin film in which one surface is in contact with the comparison solution and a glass electrode including an internal electrode immersed in the comparison solution and an electrode immersed in the liquid to be measured . an electrode pair, the the second electrode pair is immersed in the liquid of the measurement target, electromotive force corresponding to the pH value of the measurement target liquid is generated between the second electrode pair pH A second sensor, which is a sensor, and a first electrode pair; The first and second connection terminals connected, the third and fourth connection terminals connected to the respective electrodes of the second electrode pair, the voltage of the first connection terminal, and the second A differential amplifier circuit that amplifies a voltage difference from a voltage at a connection terminal; a bias circuit that applies a constant bias voltage to one of the third connection terminal and the fourth connection terminal; a memory for the relationship between the electromotive voltage and the impurity concentration is generated between the electrode pairs, stores calibration data showing respective relationships between the previous SL electromotive voltage and pH value generated between the second electrode pair, the difference together determine the impurity concentration based on the output of the dynamic amplification circuit wherein the calibration curve data, the voltage obtained by subtracting the bias voltage from the other of the voltage of said third connection terminal and the fourth connection terminal calibration measurement times to determine the pH value on the basis of the line data A connection terminal that is one of the third connection terminal and the fourth connection terminal, and a connection terminal that is on a low voltage side among the first connection terminal and the second connection terminal. The space is electrically connected through an impedance element having a resistance value of 10 MΩ or more and 100 MΩ or less.
The invention of claim 2 has a first electrode pair formed of different metals, and when both electrodes of the first electrode pair are immersed in the liquid to be measured, the liquid to be measured An electromotive voltage having a magnitude corresponding to the concentration of impurities contained in the measurement target includes a first sensor for concentration measurement generated between the first electrode pair and a second electrode pair formed of different metals. When the second electrode pair is immersed in the liquid to be measured, an electromotive voltage having a magnitude corresponding to the oxidation-reduction potential of the liquid to be measured is generated between the second electrode pair. A second sensor which is a sensor; first and second connection terminals connected to the respective electrodes of the first electrode pair; and third and second connected to the respective electrodes of the second electrode pair. 4 and the difference voltage between the voltage of the first connection terminal and the voltage of the second connection terminal. A differential amplifier circuit that widens, a bias circuit that applies a constant bias voltage to one of the third connection terminal and the fourth connection terminal, and an electromotive voltage generated between the first electrode pair Memory for storing calibration curve data showing the relationship between the impurity concentration and the relationship between the electromotive voltage generated between the second electrode pair and the oxidation-reduction potential, the output of the differential amplifier circuit and the calibration curve The impurity concentration is obtained based on the data, and the redox potential is obtained based on the calibration curve data and the voltage obtained by subtracting the bias voltage from the other voltage of the third connection terminal and the fourth connection terminal. A measuring circuit for obtaining a low-pressure side of one of the third connection terminal and the fourth connection terminal and the first connection terminal and the second connection terminal. Between the connection terminals Resistance is characterized by being electrically connected through and 100MΩ following impedance element than 10 M.OMEGA.

本発明によれば、信号処理部では、第1センサが備える第1の電極対のそれぞれの電極が接続された第1の接続端子の電圧と第2の接続端子の電圧との差電圧を、入力インピーダンスの高い差動増幅回路で増幅して得た電圧から、検量線データに基づいて不純物濃度を求めている。さらに、pHセンサ又はORPセンサが備える第2の電極対のそれぞれの電極が接続される第3の接続端子及び第4の接続端子のうちの一方にバイアス回路からバイアス電圧を印加しており、他方の接続端子の電圧からバイアス電圧を除算した電圧から検量線データに基づいてpH又は酸化還元電位を求めており、第1の接続端子及び第2の接続端子のうちで低圧側となる接続端子と、第3の接続端子及び第4の接続端子のうちでバイアス電圧が印加された接続端子との間に抵抗値が10MΩ以上且つ100MΩ以下のインピーダンス要素が接続されている。すなわち、第1の電極対のそれぞれの電極が接続される第1及び第2の接続端子の電圧は入力インピーダンスの高い差動増幅回路を用いて測定し、第2の電極対のそれぞれの電極が接続される第3及び第4の接続端子間の電圧には、一定のバイアス電圧が加算されており、第1及び第2の接続端子のうちで低圧側となる接続端子と、第3及び第4の接続端子のうちでバイアス電圧が印加された接続端子の間にインピーダンス要素が接続されているので、両接続端子間に流れる電流を抑制して、測定の誤差を低減できるという効果がある。しかも濃度測定用の回路と、pH又は酸化還元電位を測定する回路とに、互いに絶縁された回路を用いていないので、測定回路を安価に製造することができるという効果もある。 According to the present invention, in the signal processing unit, the voltage difference between the voltage of the first connection terminal to which each electrode of the first electrode pair included in the first sensor is connected and the voltage of the second connection terminal is calculated. The impurity concentration is obtained based on the calibration curve data from the voltage obtained by amplification with a differential amplifier circuit having a high input impedance. Further, a bias voltage is applied from one of the third connection terminal and the fourth connection terminal to which each electrode of the second electrode pair included in the pH sensor or the ORP sensor is connected, from the bias circuit, A pH or oxidation-reduction potential is obtained based on calibration curve data from a voltage obtained by dividing the bias voltage from the voltage of the connection terminal of the first connection terminal and the connection terminal on the low voltage side among the first connection terminal and the second connection terminal; Between the third connection terminal and the fourth connection terminal, an impedance element having a resistance value of 10 MΩ or more and 100 MΩ or less is connected between the connection terminal to which the bias voltage is applied. That is, the voltages of the first and second connection terminals to which the respective electrodes of the first electrode pair are connected are measured using a differential amplifier circuit having a high input impedance, and the respective electrodes of the second electrode pair are A constant bias voltage is added to the voltage between the third and fourth connection terminals to be connected, the connection terminal on the low voltage side among the first and second connection terminals, and the third and fourth connection terminals. Since the impedance element is connected between the connection terminals to which the bias voltage is applied among the four connection terminals, the current flowing between the two connection terminals can be suppressed, and the measurement error can be reduced. In addition, since the circuit for measuring the concentration and the circuit for measuring the pH or oxidation-reduction potential are not used, the measurement circuit can be manufactured at low cost.

以下に本発明の実施の形態を図面に基づいて説明する。   Embodiments of the present invention will be described below with reference to the drawings.

図2(a)は本実施形態の水質計Aの正面図であり、手で把持可能な大きさに形成された把持本体20を備え、把持本体20の正面には、測定値などを表示する液晶表示器12が長手方向の一端側に配置されるとともに、長手方向の略中央には複数のスイッチSW1〜SW7の操作釦が配置されている。ここにスイッチSW1は電源のオン/オフを行うためのスイッチ、スイッチSW2は測定開始などの操作を行うためのスイッチ、スイッチSW3は動作モードの切り替え操作を行うためのスイッチ、スイッチSW4は各種操作の決定操作を行うためのスイッチ、スイッチSW5,SW6は設定値の変更や数値入力などの操作を行うためのスイッチ、スイッチSW7は塩素濃度又はpH測定時にpHの較正モードに動作モードを切り替えるためのスイッチである。   FIG. 2A is a front view of the water quality meter A of the present embodiment, which includes a grip body 20 formed in a size that can be gripped by a hand, and displays measurement values and the like on the front surface of the grip body 20. The liquid crystal display 12 is disposed on one end side in the longitudinal direction, and operation buttons of a plurality of switches SW1 to SW7 are disposed at substantially the center in the longitudinal direction. Here, the switch SW1 is a switch for turning on / off the power, the switch SW2 is a switch for performing an operation such as a measurement start, the switch SW3 is a switch for performing an operation mode switching operation, and the switch SW4 is various operations. Switches for performing a determination operation, switches SW5 and SW6 are switches for changing a set value, inputting numerical values, and the like. Switch SW7 is a switch for switching the operation mode to a pH calibration mode at the time of measuring a chlorine concentration or pH. It is.

また把持本体20の長手方向一端側(液晶表示器12が配置された側)の端面には、例えば液中の塩素濃度を測定するためのプローブ21(同図(b)参照)が接続されるコネクタCN1と、pH検出用のプローブ又はORP検出用のプローブ22(同図(c)参照)の何れか一方が選択的に接続されるコネクタCN2とが左右に並べて配設されている。またコネクタCN1は、後述する濃度測定用電極1a,1bの信号を取り込むためのコネクタCN1aと、サーミスタからの信号を取り込むためのコネクタCN1bとで構成されている。またコネクタCN2は、後述する電極2a,2b又は電極3a,3b間の電圧を取り込むためのコネクタCN2aと、サーミスタからの信号を取り込むためのコネクタCN21bとで構成されている。   Further, for example, a probe 21 (see FIG. 5B) for measuring the chlorine concentration in the liquid is connected to the end surface of one end in the longitudinal direction of the grip body 20 (the side where the liquid crystal display 12 is disposed). A connector CN1 and a connector CN2 to which either one of a pH detection probe or an ORP detection probe 22 (see FIG. 5C) is selectively connected are arranged side by side. The connector CN1 includes a connector CN1a for capturing signals from concentration measuring electrodes 1a and 1b, which will be described later, and a connector CN1b for capturing signals from the thermistor. The connector CN2 includes a connector CN2a for taking in a voltage between electrodes 2a and 2b or electrodes 3a and 3b, which will be described later, and a connector CN21b for taking in a signal from the thermistor.

濃度センサたる濃度測定用のプローブ21は、丸棒状であって先端に一対の濃度測定用電極1a,1bとサーミスタ(図示せず)が配設された電極部23と、濃度測定用電極1a,1bの信号を取り出すためのコネクタ24aと、サーミスタの信号を取り出すためのコネクタ24bとを備え、電極部23と各コネクタ24a,24bの間はケーブル25を介して電気的に接続されている。一対の濃度測定用電極1a,1bは互いに異なる金属(例えばプラス側が電極部23の先端面に取着された白金板、マイナス側が電極部23先端の凹部内に配置された銀線)により形成され、測定対象の液に浸けられたときに液中の塩素濃度に応じた大きさの起電圧を発生する。なお非測定時には、一端側が閉塞された円筒状の保護キャップ26を電極部23に装着してあり、電極部23の汚れや破損を防止している。ここにおいて、上記の濃度測定用電極1a,1bから第1の電極対が構成され、第1の電極対たる濃度測定用電極1a,1bを備えた濃度センサで第1センサが構成される。 The concentration measurement probe 21 serving as a concentration sensor has a round bar shape, a pair of concentration measurement electrodes 1a, 1b and a thermistor (not shown) disposed at the tip, a concentration measurement electrode 1a, A connector 24a for taking out the signal 1b and a connector 24b for taking out the signal of the thermistor are provided, and the electrode portion 23 and each of the connectors 24a, 24b are electrically connected via a cable 25. The pair of concentration measuring electrodes 1a and 1b is formed of different metals (for example, a platinum plate with the plus side attached to the front end surface of the electrode portion 23, and a negative side with a silver wire disposed in the recess at the front end of the electrode portion 23). When it is immersed in the liquid to be measured, an electromotive voltage having a magnitude corresponding to the chlorine concentration in the liquid is generated. At the time of non-measurement, a cylindrical protective cap 26 whose one end is closed is attached to the electrode portion 23 to prevent the electrode portion 23 from being stained or damaged. Here, a first electrode pair is constituted by the above-described concentration measuring electrodes 1a and 1b, and a first sensor is constituted by a concentration sensor provided with the concentration measuring electrodes 1a and 1b as the first electrode pair.

pHセンサたるpH測定用のプローブ(図示せず)は、濃度測定用のプローブ21と略同様の構造を有しているので、共通する構成要素には同一の符号を付して、その説明は省略する。このプローブ21の電極部23には、両方の面が測定対象の液とpH値が既知の比較溶液とにそれぞれ接するガラス薄膜が設けられ、測定対象の液と比較溶液との間に発生する電圧を検出するために、測定対象の液に接する電極2aと、比較溶液に接する電極2bとを備えている。また電極部23には温度測定用のサーミスタが配設されており、コネクタ24aから両電極2a,2b間の電圧を取り出すとともに、コネクタ24bからサーミスタの信号を取り出すようになっている。ここにおいて、pHが既知の比較溶液が入った容器に設けられ、一方の面が上記比較溶液に接触した上記のガラス薄膜と、上記比較溶液に浸漬された電極2b(内部電極)とでガラス電極が構成され、このガラス電極と、測定対象の液に浸漬される電極2aとで第2の電極対が構成され、これら第2の電極対を備えたpHセンサにより第2センサが構成される。 Since a pH measurement probe (not shown) as a pH sensor has substantially the same structure as the concentration measurement probe 21, common constituent elements are denoted by the same reference numerals, and the description thereof is as follows. Omitted. The electrode portion 23 of the probe 21 is provided with a glass thin film whose both surfaces are in contact with a liquid to be measured and a comparative solution having a known pH value, and a voltage generated between the liquid to be measured and the comparative solution. in order to detect, and includes a conductive electrode 2a that Sessu the liquid to be measured, and that electrodes 2b Sessu the comparison solution. The electrode section 23 is provided with a thermistor for temperature measurement. The voltage between the electrodes 2a and 2b is taken out from the connector 24a and the signal of the thermistor is taken out from the connector 24b. Here, a glass electrode is provided by the glass thin film provided in a container containing a comparative solution having a known pH and having one surface in contact with the comparative solution and the electrode 2b (internal electrode) immersed in the comparative solution. The glass electrode and the electrode 2a immersed in the liquid to be measured constitute a second electrode pair, and the pH sensor provided with the second electrode pair constitutes the second sensor.

またORPセンサたるORP測定用のプローブ22は、丸棒状であって先端に一対のORP測定用電極3a,3bが配設された電極部27と、ORP測定用電極3a,3bの信号を取り出すためのコネクタ28とを備え、電極部27とコネクタ248の間はケーブル29を介して電気的に接続されている。一対のORP測定用電3a,3bは互いに異なる金属(例えばプラス側が電極部23の先端面に取着された白金板、マイナス側が電極部23先端の凹部内に配置された銀線)により形成され、測定対象の液に浸けられたときに液の酸化還元電位に応じた大きさの起電圧を発生する。なお非測定時には、一端側が閉塞された円筒状の保護キャップ30を電極部27に装着してあり、電極部23の汚れや破損を防止している。ここにおいて、ORP測定用電極3a,3bから第2の電極対が構成され、第2の電極対たるORP測定用電極3a,3bを備えたORPセンサで第2センサが構成される。 Further, the ORP measuring probe 22 as an ORP sensor has a round bar shape and takes out signals from the electrode part 27 having a pair of ORP measuring electrodes 3a and 3b disposed at the tip and the ORP measuring electrodes 3a and 3b. The connector 28 is electrically connected via the cable 29 between the electrode portion 27 and the connector 248. A pair of ORP measuring electrodes 3a, 3b are formed by different metals (e.g. positive side attached platinum plate on the distal end surface of the electrode portion 23, a silver wire minus side is disposed in the recess of the electrode portions 23 tip) When it is immersed in the liquid to be measured, an electromotive voltage having a magnitude corresponding to the oxidation-reduction potential of the liquid is generated. At the time of non-measurement, a cylindrical protective cap 30 whose one end is closed is attached to the electrode portion 27 to prevent the electrode portion 23 from being stained or damaged. Here, the ORP measurement electrodes 3a and 3b constitute a second electrode pair, and the ORP sensor including the ORP measurement electrodes 3a and 3b as the second electrode pair constitutes a second sensor.

図1は水質計Aの回路図を示しており、この水質計Aは、濃度測定用プローブ21のコネクタ24a,24bがそれぞれ接続されるコネクタCN1を備え、コネクタCN1には、一対の濃度測定用電極1a,1bがそれぞれ接続される第1及び第2の接続端子(以下接続端子と略称す)t1,t2と、サーミスタが接続される接続端子t5,t6とが設けられている。また水質計Aは、pH測定用プローブ或いはORP測定用プローブ22の何れかが接続されるコネクタCN2を備えており、コネクタCN2には、ガラス電極2a及び比較電極2b或いはORP測定用電極3a,3bの何れかが接続される第3及び第4の接続端子(以下接続端子と略称す)t3,t4と、サーミスタが接続される接続端子t7,t8とが設けられている。また水質計Aは、接続端子t1の電圧と接続端子t2の電圧との差電圧を増幅する差動増幅回路4と、逐次比較回路5と、測定回路を構成する信号処理部6と、電源回路7と、バイアス回路8、ブザー回路9と、スイッチ入力回路10と、信号処理部6をリセットするリセット回路11と、液晶表示器12とを備えている。   FIG. 1 shows a circuit diagram of a water quality meter A. The water quality meter A includes connectors CN1 to which connectors 24a and 24b of a concentration measurement probe 21 are connected, respectively, and the connector CN1 has a pair of concentration measurement devices. First and second connection terminals (hereinafter abbreviated as connection terminals) t1 and t2 to which the electrodes 1a and 1b are connected, respectively, and connection terminals t5 and t6 to which the thermistor is connected are provided. The water quality meter A includes a connector CN2 to which either a pH measurement probe or an ORP measurement probe 22 is connected. The connector CN2 includes a glass electrode 2a and a comparison electrode 2b or ORP measurement electrodes 3a and 3b. The third and fourth connection terminals (hereinafter abbreviated as connection terminals) t3 and t4 to which one of the above is connected, and the connection terminals t7 and t8 to which the thermistor is connected are provided. The water quality meter A includes a differential amplifier circuit 4 that amplifies a difference voltage between the voltage at the connection terminal t1 and the voltage at the connection terminal t2, a successive approximation circuit 5, a signal processing unit 6 that constitutes a measurement circuit, and a power supply circuit. 7, a bias circuit 8, a buzzer circuit 9, a switch input circuit 10, a reset circuit 11 that resets the signal processing unit 6, and a liquid crystal display 12.

差動増幅回路4は、抵抗R1とコンデンサC1との直列回路からなり接続端子t1の電圧から高周波ノイズを除去するローパスフィルタと、抵抗R2とコンデンサC2との直列回路からなり接続端子t2の電圧から高周波ノイズを除去するローパスフィルタと、コンデンサC1,C2の両端電圧がそれぞれ非反転入力端子に印加されたオペアンプOP1,OP2と、各オペアンプOP1,OP2の出力端子と非反転入力端子との間にそれぞれ接続された抵抗R3,R4と、オペアンプOP1の反転入力端子とオペアンプOP2の反転入力端子との間に接続された抵抗R5と、抵抗R5の両端間に接続された抵抗R6及びスイッチS1の直列回路と、抵抗R5の両端間に接続された抵抗R7及びスイッチS2の直列回路と、反転入力端子とオペアンプOP1の出力端子との間に抵抗R8が接続されるとともに、出力端子と反転入力端子との間に抵抗R9が接続され、且つ、非反転入力端子が抵抗R10を介してオペアンプOP2の出力端子に接続されたオペアンプOP3とを備えている。オペアンプOP3の非反転入力端子は抵抗R11とコンデンサC3との直列回路を介して回路のグランドに接続されており、抵抗R11およびコンデンサC3の接続点は回路電圧Vccを分圧する分圧抵抗R12,R13の中点に電気的に接続されている。またオペアンプOP3の出力電圧は後述する信号処理部6の入力ポートPI1に入力されている。この差動増幅回路4はインスツルメンテーションアンプと呼ばれる従来周知の差動アンプであるので、その動作については説明を省略する。なおスイッチS1,S2は、信号処理部6の出力ポートPO1,PO2から入力される信号によりオン/オフされ、オペアンプOP1の反転入力端子とオペアンプOP2の反転入力端子との間のインピーダンスを切り替えることで、差動増幅回路4の増幅率を調整している。   The differential amplifier circuit 4 includes a series circuit of a resistor R1 and a capacitor C1, and includes a low-pass filter that removes high frequency noise from the voltage at the connection terminal t1, and a series circuit of the resistor R2 and the capacitor C2, and the voltage at the connection terminal t2. A low-pass filter that removes high-frequency noise, operational amplifiers OP1 and OP2 in which voltages across the capacitors C1 and C2 are respectively applied to the non-inverting input terminals, and output terminals and non-inverting input terminals of the operational amplifiers OP1 and OP2, respectively. A series circuit of connected resistors R3 and R4, a resistor R5 connected between the inverting input terminal of the operational amplifier OP1 and the inverting input terminal of the operational amplifier OP2, a resistor R6 connected between both ends of the resistor R5, and the switch S1 A series circuit of a resistor R7 and a switch S2 connected between both ends of the resistor R5, an inverting input terminal, and an operation The resistor R8 is connected between the output terminal of the amplifier OP1, the resistor R9 is connected between the output terminal and the inverting input terminal, and the non-inverting input terminal is connected to the output terminal of the operational amplifier OP2 via the resistor R10. And an operational amplifier OP3 connected to. The non-inverting input terminal of the operational amplifier OP3 is connected to the circuit ground through a series circuit of a resistor R11 and a capacitor C3, and the connection point between the resistor R11 and the capacitor C3 is a voltage dividing resistor R12, R13 that divides the circuit voltage Vcc. Is electrically connected to the middle point. The output voltage of the operational amplifier OP3 is input to an input port PI1 of the signal processing unit 6 described later. Since the differential amplifier circuit 4 is a conventionally known differential amplifier called an instrumentation amplifier, description of its operation is omitted. The switches S1 and S2 are turned on / off by signals input from the output ports PO1 and PO2 of the signal processing unit 6, and the impedance between the inverting input terminal of the operational amplifier OP1 and the inverting input terminal of the operational amplifier OP2 is switched. The amplification factor of the differential amplifier circuit 4 is adjusted.

逐次比較回路5は、抵抗R14およびコンデンサC4の直列回路からなり、信号処理部6の出力ポートPO3から入力されたPWM信号を平滑する平滑回路5aと、接続端子t4の電圧がローパスフィルタ(抵抗R5とコンデンサC5からなる)を介して非反転入力端子に印加されるとともに、平滑回路5aにより平滑された電圧V6がバッファアンプBUF1を介して反転入力端子に印加されたコンパレータCP1とを備え、コンパレータCP1の出力電圧が信号処理部6の入力ポートPI2に入力される。ところでガラス電極2aと比較電極2bの間に発生する電圧は1pH当たり約60mVであるのに対して、ORP測定用電極3a,3b間に発生する起電圧は±1500mV(フルレンジで3V)である。信号処理部6を安価な4bitのマイクロコンピュータで構成した場合、4bitのマイクロコンピュータでは内蔵のA/D変換部がせいぜい10bit程度なので分解能が十分ではなく、ガラス電極2aと比較電極2bの間に発生する電圧とORP測定用電極3a,3b間に発生する起電圧とを同一のA/D変換部でA/D変換しようとすると、電極2a,2bに発生する電圧の変換誤差が大きくなるという問題がある。汎用のマイクロコンピュータは一般的に16bit程度のPWM信号出力部6bを備えているので、本実施形態ではPWM信号出力部6bから出力されるPWM信号を利用して逐次比較回路5を構成し、この逐次比較回路5と信号処理部6とで逐次比較型のA/D変換回路を構成してあり、このA/D変換回路によりガラス電極2aと比較電極2bの間に発生する起電圧や、ORP測定用電極3a,3b間に発生する起電圧をA/D変換している。   The successive approximation circuit 5 includes a series circuit of a resistor R14 and a capacitor C4. The smoothing circuit 5a smoothes the PWM signal input from the output port PO3 of the signal processing unit 6, and the voltage at the connection terminal t4 is a low-pass filter (resistor R5 And a comparator CP1 to which the voltage V6 smoothed by the smoothing circuit 5a is applied to the inverting input terminal via the buffer amplifier BUF1. Is input to the input port PI2 of the signal processing unit 6. By the way, the voltage generated between the glass electrode 2a and the comparison electrode 2b is about 60 mV per pH, whereas the electromotive voltage generated between the ORP measurement electrodes 3a and 3b is ± 1500 mV (3 V in the full range). When the signal processing unit 6 is composed of an inexpensive 4-bit microcomputer, the built-in A / D conversion unit of the 4-bit microcomputer is at most about 10 bits, so the resolution is not sufficient, and is generated between the glass electrode 2a and the comparison electrode 2b. When the same A / D conversion unit tries to A / D convert the voltage to be generated and the electromotive voltage generated between the ORP measurement electrodes 3a and 3b, the conversion error of the voltage generated at the electrodes 2a and 2b increases. There is. Since a general-purpose microcomputer generally includes a PWM signal output unit 6b of about 16 bits, in this embodiment, the successive approximation circuit 5 is configured using the PWM signal output from the PWM signal output unit 6b. The successive approximation circuit 5 and the signal processing unit 6 constitute a successive approximation type A / D conversion circuit. An electromotive voltage generated between the glass electrode 2a and the comparison electrode 2b by this A / D conversion circuit, ORP An electromotive voltage generated between the measurement electrodes 3a and 3b is A / D converted.

信号処理部6は例えば4bitのマイクロコンピュータからなり、入力ポートPI1に入力された電圧を内蔵する10bitのA/D変換部6aでA/D変換している。また信号処理部6は、入力ポートPI8,PI9にそれぞれ入力された電圧を内蔵するA/D変換部でA/D変換している。また内蔵する16bitのPWM信号出力部6bからデューティ比が可変のPWM信号を出力することによって、平滑回路5aの出力電圧V6を16bitの分解能で変化させている。また信号処理部6には液晶表示部12が接続されており、液晶表示部12の表示を制御している。また信号処理部6は、濃度測定用電極1a,1b間に発生する起電圧と不純物濃度との関係を示す検量線データや、ガラス電極2aと比較電極2bの間に発生する電圧とpHとの関係を示す検量線データや、ORP測定用電極3a,3b間に発生する起電圧と酸化還元電位との関係を示す検量線データを記憶したメモリ6cを内蔵している。   The signal processing unit 6 is composed of, for example, a 4-bit microcomputer, and A / D-converts the voltage input to the input port PI1 by a 10-bit A / D conversion unit 6a. The signal processing unit 6 performs A / D conversion by an A / D conversion unit that incorporates voltages input to the input ports PI8 and PI9, respectively. Further, by outputting a PWM signal with a variable duty ratio from the built-in 16-bit PWM signal output unit 6b, the output voltage V6 of the smoothing circuit 5a is changed with a resolution of 16 bits. Further, a liquid crystal display unit 12 is connected to the signal processing unit 6 and controls the display of the liquid crystal display unit 12. In addition, the signal processing unit 6 includes calibration curve data indicating the relationship between the electromotive voltage generated between the concentration measuring electrodes 1a and 1b and the impurity concentration, and the voltage and pH generated between the glass electrode 2a and the comparison electrode 2b. A memory 6c that stores calibration curve data indicating the relationship and calibration curve data indicating the relationship between the electromotive voltage generated between the ORP measurement electrodes 3a and 3b and the oxidation-reduction potential is incorporated.

電源回路7は、バッテリBから供給される直流電圧を安定化する三端子レギュレータIC1を備え、三端子レギュレータIC1により安定化された直流電圧Vcc(例えばDC4V)を信号処理部6などに動作電圧として供給する。   The power supply circuit 7 includes a three-terminal regulator IC1 that stabilizes the DC voltage supplied from the battery B. The DC voltage Vcc (for example, DC4V) stabilized by the three-terminal regulator IC1 is used as an operating voltage for the signal processing unit 6 or the like. Supply.

バイアス回路8は、直流電圧Vccを分圧する分圧抵抗R15,R16の直列回路と、低圧側の分圧抵抗R16に並列接続されたコンデンサC6とで構成され、直流電圧Vccを分圧して得たバイアス電圧Vb(例えば2V)を、一方の接続端子t3に印加している。そして、この接続端子t3と、測定液に浸けた時に低圧側となる接続端子t1との間に抵抗R17(インピーダンス要素)を接続してある。抵抗R17は、両接続端子t1,t3間に流れる電流が略ゼロとなるような高抵抗の抵抗器であり、例えば10MΩの抵抗器を用いている。なお本回路において、インピーダンス要素の影響を最も大きく受けるのは、内部インピーダンスが500MΩ以下であるpH測定用の電極2a,2bを用いた場合である。したがって、pH測定用のプローブと濃度測定用のプローブとを同時に接続し、水温を下げて、センサ及び水のインピーダンスを最大にした状態で、相互干渉が発生しないような抵抗値にインピーダンス要素の抵抗値を決定すれば良く、本実施形態の水質計Aでは、インピーダンス要素を10MΩ程度から100MΩ程度に設定すれば、相互干渉の影響を無視できることが判明した。   The bias circuit 8 includes a series circuit of voltage dividing resistors R15 and R16 that divides the DC voltage Vcc and a capacitor C6 connected in parallel to the voltage dividing resistor R16 on the low voltage side, and is obtained by dividing the DC voltage Vcc. A bias voltage Vb (for example, 2 V) is applied to one connection terminal t3. A resistor R17 (impedance element) is connected between the connection terminal t3 and the connection terminal t1 that is on the low voltage side when immersed in the measurement liquid. The resistor R17 is a high-resistance resistor such that the current flowing between the connection terminals t1 and t3 becomes substantially zero. For example, a resistor of 10 MΩ is used. In this circuit, the influence of the impedance element is the largest when the pH measuring electrodes 2a and 2b having an internal impedance of 500 MΩ or less are used. Therefore, when the probe for pH measurement and the probe for concentration measurement are connected at the same time, the resistance of the impedance element is set to such a resistance value that mutual interference does not occur when the temperature of the water is lowered and the impedance of the sensor and water is maximized. The water quality meter A of this embodiment can be determined, and it has been found that the influence of mutual interference can be ignored if the impedance element is set from about 10 MΩ to about 100 MΩ.

ブザー回路9は、信号処理部6の出力ポートPO4からの信号でオン/オフされるトランジスタTr1を備え、トランジスタTr1によりブザーBZ1にパルス状の電流を流して、ブザーBZ1を鳴動させる。   The buzzer circuit 9 includes a transistor Tr1 that is turned on / off by a signal from the output port PO4 of the signal processing unit 6, and causes the buzzer BZ1 to ring by causing the transistor Tr1 to flow a pulsed current to the buzzer BZ1.

スイッチ入力回路10は、入力ポートPI3〜PI5と入力ポートPI6,PI7との間に接続された複数個のスイッチSW1〜SW7の操作入力を監視する。   The switch input circuit 10 monitors operation inputs of a plurality of switches SW1 to SW7 connected between the input ports PI3 to PI5 and the input ports PI6 and PI7.

次に、本実施形態の水質計Aの動作について説明する。ここで、コネクタCN1に濃度測定用のプローブ21を接続するとともに、コネクタCN2にpH測定用のプローブを接続した場合の動作について説明する。この時、接続端子t1,t2には濃度測定用電極1a,1bが、接続端子t3,t4にはガラス電極2a及び比較電極2bが接続されるとともに、接続端子t5,t6間、接続端子t7,t8間にそれぞれサーミスタが接続される。   Next, operation | movement of the water quality meter A of this embodiment is demonstrated. Here, the operation when the concentration measurement probe 21 is connected to the connector CN1 and the pH measurement probe is connected to the connector CN2 will be described. At this time, the concentration measuring electrodes 1a and 1b are connected to the connection terminals t1 and t2, the glass electrode 2a and the comparison electrode 2b are connected to the connection terminals t3 and t4, and the connection terminals t7 and t6 are connected between the connection terminals t5 and t6. Each thermistor is connected during t8.

ここで、濃度測定用のプローブ21とpH測定用のプローブとを測定液に浸けると、液中の塩素濃度に応じた大きさの起電圧が濃度測定用電極1a,1b間に発生するとともに、液のpHに応じた大きさの電圧がガラス電極2aと比較電極2bの間に発生する。   Here, when the probe 21 for concentration measurement and the probe for pH measurement are immersed in the measurement liquid, an electromotive voltage having a magnitude corresponding to the chlorine concentration in the liquid is generated between the concentration measurement electrodes 1a and 1b. A voltage having a magnitude corresponding to the pH of the liquid is generated between the glass electrode 2a and the comparison electrode 2b.

このとき濃度測定用電極1a,1bに発生した起電圧により接続端子t1,t2に電圧V1,V2が発生し、差動増幅回路4では、接続端子t1の電圧V1と、接続端子t2の電圧V2との差電圧を所定のゲインで増幅し、信号処理部6の入力ポートPI1に出力する。信号処理部6では、A/D変換部6aが入力ポートPI1に入力された電圧V3をA/D変換しており、A/D変換部6aの出力とメモリ6cに記憶された検量線データとに基づいて塩素濃度を演算により求めるとともに、入力ポートPI8の入力電圧をA/D変換して得た温度データをもとに温度補償を行って、温度補償後の塩素濃度を液晶表示部12に表示させている。   At this time, voltages V1 and V2 are generated at the connection terminals t1 and t2 due to the electromotive voltages generated at the concentration measurement electrodes 1a and 1b. In the differential amplifier circuit 4, the voltage V1 at the connection terminal t1 and the voltage V2 at the connection terminal t2 are generated. Is amplified with a predetermined gain and output to the input port PI1 of the signal processing unit 6. In the signal processing unit 6, the A / D conversion unit 6a performs A / D conversion on the voltage V3 input to the input port PI1, and the output of the A / D conversion unit 6a and the calibration curve data stored in the memory 6c The chlorine concentration is obtained by calculation based on the above, and temperature compensation is performed based on the temperature data obtained by A / D conversion of the input voltage of the input port PI8. It is displayed.

一方、逐次比較回路5には、ガラス電極2aと比較電極2bの間に発生したV4に、バイアス電圧Vbを加算した電圧V5が印加される。信号処理部6では、PWM信号出力部6bから出力するPWM信号のデューティ比を測定開始時に最小値とし、その後デューティ比を最小値から最大値まで徐々に大きくして、平滑回路5aの出力電圧V6を段階的に大きくしている。信号処理部6の入力ポートPI2には、電圧V5と平滑回路5aの出力電圧V6との高低を比較するコンパレータCP1の出力が入力されており、入力ポートPI2の電圧レベルがハイからローに反転すると、信号処理部6は、この時のデューティ比に対応する平滑回路5aの出力電圧V6が、両電極2a,2b間の電圧V4にバイアス電圧Vbを加算した電圧V5であると判断する。そして信号処理部6では、電圧V5からバイアス電圧Vbを減算することによって、ガラス電極2aと比較電極2bの間に発生した電圧V4を求めており、この電圧V4からメモリ6cに記憶された検量線データに基づいてpHを演算により求め、さらに入力ポートPI9の入力電圧をA/D変換して得た温度データをもとに温度補償を行って、温度補償後のpH値を液晶表示部12に表示させている。信号処理部6が内蔵するA/D変換部を用いた場合は10bitの分解能しか得られないが、信号処理部6が内蔵する16bitのPWM信号出力部6bを利用することで、16bitの分解能のA/D変換回路を構成しているので、高い分解能のA/D変換部を内蔵した高価なマイクロコンピュータを用いることなく、内蔵のA/D変換部よりも高い分解能で接続端子t3,t4間の電圧をA/D変換することができる。尚、ここでは接続端子t3,t4にpH測定用電極2a,2bが接続された場合について説明を行ったが、接続端子t3,t4にORP測定用電極3a,3bが接続された場合の動作も上述と同様であるので、その説明は省略する。   On the other hand, a voltage V5 obtained by adding a bias voltage Vb to V4 generated between the glass electrode 2a and the comparison electrode 2b is applied to the successive approximation circuit 5. In the signal processing unit 6, the duty ratio of the PWM signal output from the PWM signal output unit 6b is set to the minimum value at the start of measurement, and then the duty ratio is gradually increased from the minimum value to the maximum value to output the output voltage V6 of the smoothing circuit 5a. Is gradually increased. The output of the comparator CP1 that compares the level of the voltage V5 and the output voltage V6 of the smoothing circuit 5a is input to the input port PI2 of the signal processing unit 6, and the voltage level of the input port PI2 is inverted from high to low. The signal processing unit 6 determines that the output voltage V6 of the smoothing circuit 5a corresponding to the duty ratio at this time is the voltage V5 obtained by adding the bias voltage Vb to the voltage V4 between the electrodes 2a and 2b. Then, the signal processing unit 6 obtains the voltage V4 generated between the glass electrode 2a and the comparison electrode 2b by subtracting the bias voltage Vb from the voltage V5, and the calibration curve stored in the memory 6c from this voltage V4. Based on the data, the pH is obtained by calculation, and temperature compensation is performed based on temperature data obtained by A / D converting the input voltage of the input port PI9, and the pH value after temperature compensation is displayed on the liquid crystal display unit 12. It is displayed. When the A / D conversion unit built in the signal processing unit 6 is used, only a resolution of 10 bits can be obtained. However, by using the 16-bit PWM signal output unit 6b built in the signal processing unit 6, the resolution of 16 bits can be obtained. Since the A / D converter circuit is configured, the connection terminals t3 and t4 can be connected with higher resolution than the built-in A / D converter without using an expensive microcomputer with a built-in high-resolution A / D converter. Can be A / D converted. Here, the case where the pH measurement electrodes 2a and 2b are connected to the connection terminals t3 and t4 has been described, but the operation when the ORP measurement electrodes 3a and 3b are connected to the connection terminals t3 and t4 is also described. Since it is the same as the above-mentioned, the description is abbreviate | omitted.

以上説明したように信号処理部3では、濃度測定用電極1a,1bがそれぞれ接続された接続端子t1の電圧と接続端子t2の電圧との差電圧を入力インピーダンスの高い差動増幅回路で増幅して得た電圧から、検量線データに基づいて不純物濃度を求めている。さらに、pH測定用電極2a,2b又はORP測定用電極3a,3bの何れかが接続される第3及び第4の接続端子t3,t4の内、一方の接続端子t3にバイアス回路8からバイアス電圧Vbを印加して、他方の接続端子t4の電圧から検量線データに基づいてpH或いはORPを求めており、第1及び第2の接続端子t1,t2の内で低圧側となる接続端子t1と、バイアス電圧Vbが印加された接続端子t3との間を高抵抗の抵抗R17を接続している。すなわち、濃度測定用電極1a,1bが接続される接続端子t1,t2の電圧は入力インピーダンスの高い差動増幅回路4を用いて測定し、pH測定用電極2a,2b又はORP測定用電極3a,3bの何れかが接続される接続端子t3,t4間の電圧には、一定のバイアス電圧Vbを加算してあり、接続端子t1,t3間に高抵抗のインピーダンス要素を接続しているので、両接続端子t1,t3間に流れる電流を抑制して、測定の誤差を低減することができる。しかも濃度測定用の回路と、pH又はORPを測定する回路とに、互いに絶縁された回路を用いていないので、測定回路を安価に製造することができるという効果もある。   As described above, in the signal processing unit 3, the differential voltage between the voltage at the connection terminal t1 to which the concentration measuring electrodes 1a and 1b are connected and the voltage at the connection terminal t2 is amplified by the differential amplifier circuit having a high input impedance. The impurity concentration is obtained from the obtained voltage based on the calibration curve data. Further, the bias voltage from the bias circuit 8 to one of the third and fourth connection terminals t3 and t4, to which one of the pH measurement electrodes 2a and 2b or the ORP measurement electrodes 3a and 3b is connected. Vb is applied to determine pH or ORP based on calibration curve data from the voltage at the other connection terminal t4, and the connection terminal t1 that is on the low voltage side among the first and second connection terminals t1 and t2 A high-resistance resistor R17 is connected to the connection terminal t3 to which the bias voltage Vb is applied. That is, the voltages at the connection terminals t1 and t2 to which the concentration measuring electrodes 1a and 1b are connected are measured using the differential amplifier circuit 4 having a high input impedance, and the pH measuring electrodes 2a and 2b or the ORP measuring electrodes 3a, A constant bias voltage Vb is added to the voltage between the connection terminals t3 and t4 to which one of 3b is connected, and a high resistance impedance element is connected between the connection terminals t1 and t3. The measurement error can be reduced by suppressing the current flowing between the connection terminals t1 and t3. In addition, since the circuit for measuring the concentration and the circuit for measuring pH or ORP are not insulated from each other, the measurement circuit can be manufactured at low cost.

ところで、上記の説明では液中に溶解した不純物として塩素を例に説明したが、測定対象の不純物を塩素に限定する趣旨のものではなく、濃度測定用電極が感度を有する全ての媒質に本発明を適用可能であり、例えば溶存オゾン、溶存酸素、溶存二酸化炭素、及び溶存水素などの不純物濃度を測定することが可能である。   By the way, in the above description, chlorine is described as an example of the impurity dissolved in the liquid. However, the impurity to be measured is not limited to chlorine, and the present invention is applied to all media in which the concentration measuring electrode has sensitivity. The concentration of impurities such as dissolved ozone, dissolved oxygen, dissolved carbon dioxide, and dissolved hydrogen can be measured.

なお、上記のように、本発明の精神と範囲に反することなしに、広範に異なる実施形態を構成することができることは明白なので、この発明は、添付クレームにおいて限定した以外は、その特定の実施形態に制約されるものではない。   It should be noted that, as described above, it is obvious that a wide variety of different embodiments can be constructed without departing from the spirit and scope of the present invention, so that the present invention is not limited to the specific implementation except as defined in the appended claims. It is not restricted by form.

本発明の実施形態に係る水質計の回路図である。It is a circuit diagram of the water quality meter concerning the embodiment of the present invention. 同上の水質計を示し、(a)は本体の正面図、(b)(c)はプローブの外観斜視図である。The water quality meter is shown. (A) is a front view of the main body, and (b) and (c) are external perspective views of the probe. 従来の水質計の回路図である。It is a circuit diagram of the conventional water quality meter.

符号の説明Explanation of symbols

1a,1b 濃度測定用電極
2a,2b pH測定用電極
3a,3b ORP測定用電極
4 差動増幅回路
6 信号処理部
6c メモリ
8 バイアス回路
R17 抵抗
t1〜t4 接続端子
1a, 1b Concentration measurement electrode 2a, 2b pH measurement electrode 3a, 3b ORP measurement electrode 4 Differential amplification circuit 6 Signal processing unit 6c Memory 8 Bias circuit R17 Resistance t1-t4 Connection terminal

Claims (2)

互いに異なる金属で形成された第1の電極対を有し、前記第1の電極対の両方の電極が測定対象の液に浸漬されると、前記測定対象の液に含まれる測定対象の不純物濃度に応じた大きさの起電圧が、前記第1の電極対間に発生する濃度測定用の第1センサと、
pHが既知の比較溶液が入った容器に設けられ一方の面が前記比較溶液に接触したガラス薄膜および前記比較溶液に浸漬された内部電極を備えるガラス電極と前記測定対象の液に浸漬される電極とを備える第2の電極対を有し、前記第2の電極対が前記測定対象の液に浸漬されると、前記測定対象の液のpH値に応じた起電圧が、前記第2の電極対間に発生するpHセンサである第2センサと、
前記第1の電極対のそれぞれの電極に接続される第1及び第2の接続端子と、
前記第2の電極対のそれぞれの電極に接続される第3及び第4の接続端子と、
前記第1の接続端子の電圧と前記第2の接続端子の電圧との差電圧を増幅する差動増幅回路と、
前記第3の接続端子及び前記第4の接続端子のうちの一方に、一定のバイアス電圧を印加するバイアス回路と、
前記第1の電極対間に発生する起電圧と不純物濃度との関係、前記第2の電極対間に発生する起電圧とpH値との関係をそれぞれ示した検量線データを記憶するメモリと、
前記差動増幅回路の出力と前記検量線データとに基づいて不純物濃度を求めるとともに、前記第3の接続端子及び前記第4の接続端子のうちの他方の電圧から前記バイアス電圧を減算した電圧と前記検量線データとに基づいてpH値を求める測定回路とを備え、
前記第3の接続端子及び前記第4の接続端子のうちの一方の接続端子と、前記第1の接続端子及び前記第2の接続端子のうちで低圧側となる接続端子との間が、抵抗値が10MΩ以上且つ100MΩ以下のインピーダンス要素を介して電気的に接続されたことを特徴とする水質計。
When the first electrode pair is formed of different metals and both electrodes of the first electrode pair are immersed in the liquid to be measured, the impurity concentration of the measurement object contained in the liquid to be measured An electromotive voltage having a magnitude corresponding to the first sensor for concentration measurement generated between the first electrode pair;
A glass electrode comprising a glass thin film whose surface is in contact with the comparison solution and an internal electrode immersed in the comparison solution, and an electrode immersed in the liquid to be measured. a second electrode pair comprising bets, the the second electrode pair is immersed in the liquid of the measurement target, electromotive force corresponding to the pH value of the measurement target liquid is, the second electrode A second sensor which is a pH sensor generated between the pair;
First and second connection terminals connected to the respective electrodes of the first electrode pair;
Third and fourth connection terminals connected to the respective electrodes of the second electrode pair;
A differential amplifier circuit for amplifying a difference voltage between the voltage of the first connection terminal and the voltage of the second connection terminal;
A bias circuit for applying a constant bias voltage to one of the third connection terminal and the fourth connection terminal;
Memory and for storing calibration curve data illustrating each of a relation between said first relationship between the electromotive voltage and the impurity concentration is generated between the electrode pair, electromotive voltage and pH values occurring between before Symbol second electrode pair ,
An impurity concentration is obtained based on the output of the differential amplifier circuit and the calibration curve data, and a voltage obtained by subtracting the bias voltage from the other voltage of the third connection terminal and the fourth connection terminal; and a measurement circuit for determining the pH value based on said calibration curve data,
A resistance between one connection terminal of the third connection terminal and the fourth connection terminal and a connection terminal on the low voltage side of the first connection terminal and the second connection terminal is a resistance. A water quality meter characterized by being electrically connected through an impedance element having a value of 10 MΩ or more and 100 MΩ or less.
互いに異なる金属で形成された第1の電極対を有し、前記第1の電極対の両方の電極が測定対象の液に浸漬されると、前記測定対象の液に含まれる測定対象の不純物濃度に応じた大きさの起電圧が、前記第1の電極対間に発生する濃度測定用の第1センサと、
互いに異なる金属で形成された第2の電極対を有し、前記第2の電極対が前記測定対象の液に浸漬されると、前記測定対象の液の酸化還元電位に応じた大きさの起電圧が、前記第2の電極対間に発生するORPセンサである第2センサと、
前記第1の電極対のそれぞれの電極に接続される第1及び第2の接続端子と、
前記第2の電極対のそれぞれの電極に接続される第3及び第4の接続端子と、
前記第1の接続端子の電圧と前記第2の接続端子の電圧との差電圧を増幅する差動増幅回路と、
前記第3の接続端子及び前記第4の接続端子のうちの一方に、一定のバイアス電圧を印加するバイアス回路と、
前記第1の電極対間に発生する起電圧と不純物濃度との関係、前記第2の電極対間に発生する起電圧と酸化還元電位との関係をそれぞれ示した検量線データを記憶するメモリと、
前記差動増幅回路の出力と前記検量線データとに基づいて不純物濃度を求めるとともに、前記第3の接続端子及び前記第4の接続端子のうちの他方の電圧から前記バイアス電圧を減算した電圧と前記検量線データとに基づいて酸化還元電位を求める測定回路とを備え、
前記第3の接続端子及び前記第4の接続端子のうちの一方の接続端子と、前記第1の接続端子及び前記第2の接続端子のうちで低圧側となる接続端子との間が、抵抗値が10MΩ以上且つ100MΩ以下のインピーダンス要素を介して電気的に接続されたことを特徴とする水質計
When the first electrode pair is formed of different metals and both electrodes of the first electrode pair are immersed in the liquid to be measured, the impurity concentration of the measurement object contained in the liquid to be measured An electromotive voltage having a magnitude corresponding to the first sensor for concentration measurement generated between the first electrode pair;
When the second electrode pair has a second electrode pair formed of different metals, and the second electrode pair is immersed in the liquid to be measured, a magnitude corresponding to the oxidation-reduction potential of the liquid to be measured is generated. A second sensor that is an ORP sensor generating a voltage between the second electrode pair;
First and second connection terminals connected to the respective electrodes of the first electrode pair;
Third and fourth connection terminals connected to the respective electrodes of the second electrode pair;
A differential amplifier circuit for amplifying a difference voltage between the voltage of the first connection terminal and the voltage of the second connection terminal;
A bias circuit for applying a constant bias voltage to one of the third connection terminal and the fourth connection terminal;
A memory for storing calibration curve data indicating the relationship between the electromotive voltage generated between the first electrode pair and the impurity concentration, and the relationship between the electromotive voltage generated between the second electrode pair and the oxidation-reduction potential; ,
An impurity concentration is obtained based on the output of the differential amplifier circuit and the calibration curve data, and a voltage obtained by subtracting the bias voltage from the other voltage of the third connection terminal and the fourth connection terminal; A measurement circuit for obtaining an oxidation-reduction potential based on the calibration curve data,
A resistance between one connection terminal of the third connection terminal and the fourth connection terminal and a connection terminal on the low voltage side of the first connection terminal and the second connection terminal is a resistance. water quality meter you characterized in that the value has been electrically connected via the following impedance elements 10MΩ or more and 100 M.OMEGA.
JP2006145801A 2006-05-25 2006-05-25 Water quality meter Active JP4881068B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006145801A JP4881068B2 (en) 2006-05-25 2006-05-25 Water quality meter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006145801A JP4881068B2 (en) 2006-05-25 2006-05-25 Water quality meter

Publications (2)

Publication Number Publication Date
JP2007315913A JP2007315913A (en) 2007-12-06
JP4881068B2 true JP4881068B2 (en) 2012-02-22

Family

ID=38849901

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006145801A Active JP4881068B2 (en) 2006-05-25 2006-05-25 Water quality meter

Country Status (1)

Country Link
JP (1) JP4881068B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101115694B1 (en) 2009-01-19 2012-03-06 경북대학교 산학협력단 pH measurement system using a glass pH sensor
CN112255379B (en) * 2020-08-05 2021-08-10 海德星科技南京有限公司 Signal processing circuit and processing method based on river water quality automatic monitoring system
CN113933351B (en) * 2021-09-30 2023-12-22 深圳市中金岭南有色金属股份有限公司凡口铅锌矿 Pulp pH value detection method and device and computer readable storage medium

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62288562A (en) * 1986-06-09 1987-12-15 Hitachi Ltd Water quality multisensor
JP3263446B2 (en) * 1992-09-07 2002-03-04 東亜ディーケーケー株式会社 Electrode ion concentration meter
JP4673747B2 (en) * 2003-11-14 2011-04-20 株式会社タニタ Water quality meter

Also Published As

Publication number Publication date
JP2007315913A (en) 2007-12-06

Similar Documents

Publication Publication Date Title
US10288674B2 (en) Impedance characteristic circuit for electrochemical sensor
US20030155930A1 (en) Current measuring circuit suited for batteries
JP6382561B2 (en) Electrochemical measuring device
JP4881068B2 (en) Water quality meter
JPH11257909A (en) Electronic circuit for measuring dimensions and method and apparatus for measuring dimensions
JP5377670B2 (en) Electrochemical gas detector
US8419912B2 (en) Water quality analyzer
US6683464B2 (en) Stabilized conductivity sensing system
US20060032743A1 (en) Electrochemical measurement apparatus
JP4530205B2 (en) Polarographic densitometer
JP4614856B2 (en) Magnetic detection device and electronic azimuth meter using the same
JP2003066074A (en) Resistance measuring method and resistance measuring device
US8025779B2 (en) Water quality analyzer
JP2001333891A (en) Equipment for measuring biological impedance
CN220982384U (en) Liquid level detection device of coolant and vehicle system
WO2005080956A1 (en) Chlorometer
JP5003245B2 (en) Voltage generator
JPH0442770Y2 (en)
CN115931980A (en) Conductivity measurement sampling method
JPS61258160A (en) Precision type ph and ion concentration measuring instrument
JP5241250B2 (en) Measurement display device to which a biosensor is attached
JPS6033044A (en) Device for measuring polarography electrode provided with temperature compensating function
JP2000245705A (en) Living body impedance measuring device
JPH0375059B2 (en)
JP3045664B2 (en) Electric conductivity measuring device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090520

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110427

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110517

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110719

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110830

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111031

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111122

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111202

R150 Certificate of patent or registration of utility model

Ref document number: 4881068

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141209

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250