JP6382561B2 - Electrochemical measuring device - Google Patents

Electrochemical measuring device Download PDF

Info

Publication number
JP6382561B2
JP6382561B2 JP2014085316A JP2014085316A JP6382561B2 JP 6382561 B2 JP6382561 B2 JP 6382561B2 JP 2014085316 A JP2014085316 A JP 2014085316A JP 2014085316 A JP2014085316 A JP 2014085316A JP 6382561 B2 JP6382561 B2 JP 6382561B2
Authority
JP
Japan
Prior art keywords
voltage
resistance
switch
electrochemical
side load
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014085316A
Other languages
Japanese (ja)
Other versions
JP2015206604A (en
Inventor
洋一 示野
洋一 示野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
New Japan Radio Co Ltd
Original Assignee
New Japan Radio Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by New Japan Radio Co Ltd filed Critical New Japan Radio Co Ltd
Priority to JP2014085316A priority Critical patent/JP6382561B2/en
Publication of JP2015206604A publication Critical patent/JP2015206604A/en
Application granted granted Critical
Publication of JP6382561B2 publication Critical patent/JP6382561B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Description

本発明は、電気化学センサの接続不良や断線異常や感度劣化度合等を検出することができるようにした電気化学計測装置に関する。   The present invention relates to an electrochemical measurement apparatus capable of detecting connection failure, disconnection abnormality, sensitivity deterioration degree, and the like of an electrochemical sensor.

電気化学センサの1つとしての定電位電解式ガスセンサの内外リード線の接続不良や断線異常を検出する機能点検装置について特許文献1に記載がある。この機能点検装置は、図4に示すように、容器に収納した電解液に作用極11、対極12、照合極13を浸漬した定電位電解式ガスセンサ10に対し、パルス発生器80により発生した数mV〜数十mVの電圧パルスを、ポテンショスタット回路70によりそのガスセンサ10の対極12に印加し、そのとき流れる電流を電流計60により、そのとき発生する作用極11と対極12との間の電圧を電圧計50により、それぞれ測定して、その測定結果により接続不良や断線異常の有無を判定するものである。   Patent Document 1 describes a function inspection device that detects a connection failure or disconnection abnormality of an internal / external lead wire of a constant potential electrolytic gas sensor as one of electrochemical sensors. As shown in FIG. 4, this functional inspection device includes a number generated by a pulse generator 80 for a constant potential electrolytic gas sensor 10 in which a working electrode 11, a counter electrode 12, and a reference electrode 13 are immersed in an electrolyte stored in a container. A voltage pulse of mV to several tens of mV is applied to the counter electrode 12 of the gas sensor 10 by the potentiostat circuit 70, and the current flowing at that time is generated by the ammeter 60 between the working electrode 11 and the counter electrode 12. Are respectively measured by the voltmeter 50, and the presence or absence of a connection failure or disconnection abnormality is determined based on the measurement results.

たとえば、パルス発生器80により、振幅が2mVでパルス幅が0.1秒のパルス電圧を発生してガスセンサ10に印加したとき、
(1)測定電流値が15μAで測定電圧が0Vであれば正常
(2)測定電流値が0Aで測定電圧が0Vであれば作用極11が断線異常
(3)測定電流値が15μAで測定電圧が300mVであれば対極12が断線異常
と判定するものである。また、上記したパルス電圧による測定結果をガスセンサ10の使用初期と現在とで比較すれば、そのガスセンサ10の感度劣化度合を判定できる。
For example, when the pulse generator 80 generates a pulse voltage with an amplitude of 2 mV and a pulse width of 0.1 seconds and applies it to the gas sensor 10,
(1) Normal if the measured current value is 15 μA and the measured voltage is 0 V. (2) If the measured current value is 0 A and the measured voltage is 0 V, the working electrode 11 is broken. (3) The measured voltage is 15 μA and the measured voltage. Is 300 mV, it is determined that the counter electrode 12 is broken. Moreover, if the measurement result by the pulse voltage described above is compared between the initial use of the gas sensor 10 and the present time, the degree of sensitivity deterioration of the gas sensor 10 can be determined.

上記したパルス発生器80は、ポテンショスタット回路70に、基準電圧(バイアス電圧)あるいは数mV〜数十mVのパルス電圧を印加させるために、D/A変換器を使用したり、あるいは図5に示すように、定電圧ダイオードZDで発生した定電圧を、抵抗R80,R81a,R81b,R82a,R82b,R83a,R83b,R84a,R84bからなる抵抗ラダーで分割する抵抗分割回路を使用している。SW81は基準電圧あるいはパルス電圧を選択するためのスイッチである。   The pulse generator 80 uses a D / A converter to apply a reference voltage (bias voltage) or a pulse voltage of several mV to several tens of mV to the potentiostat circuit 70, or FIG. As shown, a resistor divider circuit is used that divides the constant voltage generated by the constant voltage diode ZD by a resistor ladder including resistors R80, R81a, R81b, R82a, R82b, R83a, R83b, R84a, and R84b. SW81 is a switch for selecting a reference voltage or a pulse voltage.

図5では、たとえば、抵抗R81a,R81bは第1の基準電圧Vref1用、抵抗R82a,R82bは第2の基準電圧Vref2用、抵抗R83a,R83bは第3の基準電圧Vref3用、抵抗R84a,R84bは第4の基準電圧Vref4用として設定される。また、抵抗値は、R81b<R81a、R82b<R82a、R83b<R83a、R84b<R84aに設定される。   In FIG. 5, for example, resistors R81a and R81b are for the first reference voltage Vref1, resistors R82a and R82b are for the second reference voltage Vref2, resistors R83a and R83b are for the third reference voltage Vref3, and resistors R84a and R84b are It is set for the fourth reference voltage Vref4. The resistance values are set to R81b <R81a, R82b <R82a, R83b <R83a, and R84b <R84a.

そして、通常のガスセンサとして使用するときは、当該ガスセンサ10に応じてスイッチSW81を切り替えることにより、基準電圧Vref1〜Vref4のうちのいずれかが選択されて設定され、ポテンショスタット回路70の正転入力端子に印加する。   When used as a normal gas sensor, one of the reference voltages Vref1 to Vref4 is selected and set by switching the switch SW81 according to the gas sensor 10, and the normal rotation input terminal of the potentiostat circuit 70 Apply to.

また、接続不良や断線異常や感度劣化度合等を点検するときは、当該ガスセンサ10の種類に応じて、スイッチSW81によって、たとえば基準電圧Vref1が設定されるときは、一時的にスイッチSW81を基準電圧Vref1+αに切り替えることで、抵抗R81bの抵抗分に相当する大きさα(=数mV〜数十mV程度)のパルス電圧を生成する。また、基準電圧Vref2が設定されるときは、一時的にスイッチSW81を基準電圧Vref2+βに切り替えることで、抵抗R82bの抵抗分に相当する大きさβ(=数mV〜数十mV程度)のパルス電圧を生成する。同様に、基準電圧Vref3,Vref4が設定されるときは、一時的にスイッチSW81を基準電圧Vref3+γ、Vref4+δに切り替えることで、抵抗R83b,R84bの抵抗分に相当する大きさγ、δ(=数mV〜数十mV程度)のパルス電圧を生成する。   Also, when checking connection failure, disconnection abnormality, sensitivity deterioration degree, or the like, when the reference voltage Vref1 is set by the switch SW81 according to the type of the gas sensor 10, the switch SW81 is temporarily set to the reference voltage. By switching to Vref1 + α, a pulse voltage having a magnitude α (= several mV to several tens mV) corresponding to the resistance of the resistor R81b is generated. When the reference voltage Vref2 is set, the pulse voltage having a magnitude β (= several mV to several tens mV) corresponding to the resistance of the resistor R82b is temporarily switched by switching the switch SW81 to the reference voltage Vref2 + β. Is generated. Similarly, when the reference voltages Vref3 and Vref4 are set, by temporarily switching the switch SW81 to the reference voltages Vref3 + γ and Vref4 + δ, the magnitudes γ and δ (= several mV) corresponding to the resistances of the resistors R83b and R84b. A pulse voltage of about tens of mV).

特許第2613316号Japanese Patent No. 2613316

しかしながら、前述のD/A変換器を使用する場合は、回路規模や消費電流が大きくなるという問題がある。また、図5で説明した抵抗分割回路を使用する場合は、多種類のガスセンサに対応させるとき、複数種類の基準電圧が必要となるので、その各基準電圧についてそれぞれ数mV〜数十mV程度で変化するパルス電圧を発生させるための抵抗(図5では抵抗R81b,R82b,R83b,R84b)が必要となる。また、1.25V程度の定電圧ダイオードZDから数mV〜数十mV程度で変化するパルス電圧を生成させるときは、必要な抵抗比(抵抗の重み付け、たとえばR81aとR81bの抵抗比)が大きくなり、精度を確保することが難しくなる。   However, when the D / A converter described above is used, there is a problem that the circuit scale and current consumption increase. In addition, when the resistance dividing circuit described in FIG. 5 is used, a plurality of types of reference voltages are required when corresponding to various types of gas sensors, and therefore each reference voltage is about several mV to several tens of mV. Resistors (resistors R81b, R82b, R83b, R84b in FIG. 5) for generating a changing pulse voltage are required. Also, when generating a pulse voltage that varies from several mV to several tens of mV from a constant voltage diode ZD of about 1.25 V, the required resistance ratio (resistance weighting, for example, the resistance ratio of R81a and R81b) increases. It becomes difficult to ensure accuracy.

本発明の目的は、ポテンショスタット回路を構成するオペアンプでオフセット電圧を発生させて、電気化学センサの接続不良や断線異常や感度劣化度合等を検出するためのパルス電圧が生成されるようにし、消費電流の問題や抵抗分割回路の大規模化、さらには検出精度低下の問題を解決した電気化学計測装置を提供することである。   An object of the present invention is to generate an offset voltage with an operational amplifier constituting a potentiostat circuit so as to generate a pulse voltage for detecting an electrochemical sensor connection failure, disconnection abnormality, sensitivity deterioration degree, etc. It is an object of the present invention to provide an electrochemical measuring apparatus that solves the problems of current, the large-scaled resistance dividing circuit, and the problem of reduced detection accuracy.

上記目的を達成するために、請求項1にかかる発明は、収納された電解液に少なくとも作用極と対極が浸漬された電気化学センサと、所定の電圧を前記対極に印加するポテンショスタット回路とを備え、前記電気化学センサの出力電流又は該出力電流を電圧変換した出力電圧を測定する電気化学計測装置において、前記ポテンショスタット回路をオペアンプで構成し、該オペアンプの正転出力側負荷抵抗と反転出力側負荷抵抗を同一の抵抗値に設定し、前記正転出力側負荷抵抗又は前記反転出力側負荷抵抗の抵抗値を別の抵抗値に切り替えるスイッチを設け、該スイッチがオン→オフ操作されることで発生するオフセットパルスが前記電気化学センサに印加されるようにしたことを特徴とする。
In order to achieve the above object, an invention according to claim 1 includes an electrochemical sensor in which at least a working electrode and a counter electrode are immersed in a stored electrolyte, and a potentiostat circuit that applies a predetermined voltage to the counter electrode. An electrochemical measuring device for measuring an output current of the electrochemical sensor or an output voltage obtained by converting the output current into a voltage, wherein the potentiostat circuit is configured by an operational amplifier , and the normal output side load resistance and the inverted output of the operational amplifier Set a side load resistance to the same resistance value, and provide a switch that switches the resistance value of the normal output side load resistance or the inverted output side load resistance to another resistance value, and the switch is turned on to off. The offset pulse generated in step 1 is applied to the electrochemical sensor .

請求項2にかかる発明は、請求項1に記載の電気化学計測装置において、前記スイッチは、前記正転出力側負荷抵抗又は前記反転出力側負荷抵抗の抵抗値を、互いに異なった複数の抵抗値のうちから選択した1つの抵抗値に設定する複数のスイッチからなり、該複数のスイッチのうちの1つがオン→オフ操作されることで発生するオフセットパルスが前記電気化学センサに印加されるようにしたことを特徴とする。
According to a second aspect of the present invention, in the electrochemical measurement device according to the first aspect, the switch has a plurality of resistance values different from each other in resistance values of the normal output side load resistance or the inverted output side load resistance. An offset pulse generated by switching one of the plurality of switches from on to off is applied to the electrochemical sensor. characterized in that it was.

本発明によれば、ポテンショスタット回路を構成するオペアンプにオフセット電圧発生手段を設けたので、このオフセット電圧発生手段によりパルス電圧が発生させることができ、電気化学センサの接続不良や断線異常や感度劣化度合等を検出する際に、D/A変換器を使用する場合のように追加のための回路や消費電流が小さくて済み、また大きな抵抗比を設定させた抵抗ラダーを設ける必要もなくなる。このため、回路の大規模化、検出精度低下等の問題を引き起こすことはない。オフセット電圧発生手段をスイッチで構成し、そのスイッチを複数用いれば、発生するパルス電圧の振幅をより細かく設定することができ、より多くの種類の電気化学センサの接続不良や断線異常や感度劣化度合等の検出に適用することができる。   According to the present invention, since the offset voltage generating means is provided in the operational amplifier constituting the potentiostat circuit, a pulse voltage can be generated by the offset voltage generating means, and the connection failure of the electrochemical sensor, the disconnection abnormality, or the sensitivity deterioration. When detecting the degree or the like, it is not necessary to provide an additional circuit or a small current consumption as in the case of using a D / A converter, and it is not necessary to provide a resistance ladder in which a large resistance ratio is set. For this reason, problems such as an increase in circuit scale and a decrease in detection accuracy are not caused. If the offset voltage generating means is composed of switches and a plurality of switches are used, the amplitude of the generated pulse voltage can be set more finely, and more types of electrochemical sensors can be connected poorly or broken, and the degree of sensitivity deterioration. It can apply to the detection of etc.

本発明の1つの実施例の電気化学計測装置のブロック図である。It is a block diagram of the electrochemical measuring device of one Example of this invention. 図1の電気化学計測装置のポテンショスタット回路の変形例の回路図である。It is a circuit diagram of the modification of the potentiostat circuit of the electrochemical measuring device of FIG. 図1の電気化学計測装置のポテンショスタット回路の別の変形例の回路図である。It is a circuit diagram of another modification of the potentiostat circuit of the electrochemical measuring device of FIG. 定電位電解式ガスセンサを使用した従来の電気化学計測装置のブロック図である。It is a block diagram of the conventional electrochemical measuring device which uses a constant potential electrolytic gas sensor. 図4の電気化学計測装置のパルス電圧発生回路の具体的な回路図である。It is a specific circuit diagram of the pulse voltage generation circuit of the electrochemical measuring device of FIG.

図1に本発明の1つの実施例の電気化学計測装置を示す。10は電解液が容器に収納された定電位電解式ガスセンサであり、作用極11、対極12、照合極13がその電解液内に浸漬されている。   FIG. 1 shows an electrochemical measurement apparatus according to one embodiment of the present invention. Reference numeral 10 denotes a constant potential electrolytic gas sensor in which an electrolytic solution is accommodated in a container, and a working electrode 11, a counter electrode 12, and a reference electrode 13 are immersed in the electrolytic solution.

20はポテンショスタット回路を構成するオペアンプであり、正転入力端子21、反転入力端子22、出力端子23を有し、さらに、差動接続のPMOSトランジスタMP1,MP2、電流源24、カレントミラー接続の能動負荷としてのNMOSトランジスタMN1,MN2、正転出力側負荷抵抗R11,R12、反転出力側負荷抵抗R21,R22、反転増幅器25、および抵抗R12を短絡するためのスイッチSW11を備える。そして、反転入力端子22がガスセンサ10の照合極13に接続され、出力端子23がガスセンサ10の対極12に接続されている。抵抗R11,R12,R21,R22の抵抗値は、R11=R21,R12=R22に設定されている。つまり、正転出力側負荷抵抗R11,R12の合計抵抗値と反転出力側負荷抵抗R21,R22の合計抵抗値は同じである。   Reference numeral 20 denotes an operational amplifier constituting a potentiostat circuit, which has a normal rotation input terminal 21, an inverting input terminal 22, and an output terminal 23, and further includes differentially connected PMOS transistors MP1 and MP2, a current source 24, and a current mirror connection. NMOS transistors MN1 and MN2 as active loads, normal output side load resistors R11 and R12, inverted output side load resistors R21 and R22, an inverting amplifier 25, and a switch SW11 for short-circuiting the resistor R12. The inverting input terminal 22 is connected to the verification electrode 13 of the gas sensor 10, and the output terminal 23 is connected to the counter electrode 12 of the gas sensor 10. The resistance values of the resistors R11, R12, R21, and R22 are set to R11 = R21 and R12 = R22. That is, the total resistance value of the normal output side load resistors R11 and R12 and the total resistance value of the inverted output side load resistors R21 and R22 are the same.

30は電流/電圧変換回路を構成するオペアンプであり、発振防止抵抗R31と帰還抵抗R32を備え、ガスセンサ10から出力する電流信号Ioutを電圧信号Voutに変換して出力する。31は正転入力端子、32は反転入力端子、33は出力端子である。   Reference numeral 30 denotes an operational amplifier constituting a current / voltage conversion circuit, which includes an oscillation preventing resistor R31 and a feedback resistor R32, and converts the current signal Iout output from the gas sensor 10 into a voltage signal Vout and outputs the voltage signal Vout. 31 is a normal rotation input terminal, 32 is an inverting input terminal, and 33 is an output terminal.

40は基準電圧発生回路であり、電源電圧Vddを5個の抵抗R41〜R45により分圧した4個の基準電圧Vref1〜Vref4から1つの電圧を、スイッチSW41により選択してオペアンプ20の正転入力端子21に供給し、スイッチSW42により選択してオペアンプ30の正転入力端子31に供給する。   Reference numeral 40 denotes a reference voltage generation circuit, which selects one voltage from four reference voltages Vref1 to Vref4 obtained by dividing the power supply voltage Vdd by five resistors R41 to R45 by the switch SW41, and inputs the normal rotation of the operational amplifier 20 The signal is supplied to the terminal 21, selected by the switch SW 42, and supplied to the normal input terminal 31 of the operational amplifier 30.

50はガスセンサの作用極11と対極12の間に印加された電圧を計測する電圧計、60はガスセンサ10の出力電流を計測する電流計である。   50 is a voltmeter that measures the voltage applied between the working electrode 11 and the counter electrode 12 of the gas sensor, and 60 is an ammeter that measures the output current of the gas sensor 10.

さて、ガスセンサ10の通常の使用態様では、電圧計50や電流計60は取り外され、オペアンプ20のスイッチSW11がオフに設定される。また、ガスセンサ10の規格に応じた基準電圧が、基準電圧発生回路40のスイッチSW41で選択されてオペアンプ20の正転入力端子21に入力し、スイッチSW42で選択された基準電圧がオペアンプ30の正転入力端子31に入力する。この設定状態でガスセンサ10によるガス検知が行われ、検知結果に応じた出力電圧Voutがオペアンプ30の出力端子33から出力する。   Now, in the normal usage mode of the gas sensor 10, the voltmeter 50 and the ammeter 60 are removed, and the switch SW11 of the operational amplifier 20 is set to OFF. Further, a reference voltage corresponding to the standard of the gas sensor 10 is selected by the switch SW41 of the reference voltage generation circuit 40 and input to the normal input terminal 21 of the operational amplifier 20, and the reference voltage selected by the switch SW42 is the positive voltage of the operational amplifier 30. Input to the rotation input terminal 31. In this set state, gas detection is performed by the gas sensor 10, and an output voltage Vout corresponding to the detection result is output from the output terminal 33 of the operational amplifier 30.

次に、ガスセンサ10の接続不良や断線異常や感度劣化度合等を検出するときは、電圧計50と電流計60が取り付けられ、基準電圧発生回路40のスイッチSW41,SW42の切換状態はそのままにした状態において、オペアンプ20のスイッチSW11を瞬間的にオン/オフさせる。これにより、オペアンプ10から数mV〜数十mVのオフセット電圧が、パルス電圧として発生して出力端子23に現れる。   Next, when detecting a connection failure, disconnection abnormality, sensitivity deterioration degree, etc. of the gas sensor 10, the voltmeter 50 and the ammeter 60 are attached, and the switching state of the switches SW41 and SW42 of the reference voltage generation circuit 40 is left as it is. In the state, the switch SW11 of the operational amplifier 20 is instantaneously turned on / off. As a result, an offset voltage of several mV to several tens of mV is generated as a pulse voltage from the operational amplifier 10 and appears at the output terminal 23.

よって、スイッチSW11をオン→オフすることによって発生するオフセット電圧のパルス電圧が、図4で説明した場合と同様に2mVでパルス幅が0.1秒であって、ガスセンサ10が図4で説明したガスセンサ10と同一であれば、
(1)測定電流値が15μAで測定電圧が0Vであれば正常
(2)測定電流値が0Aで測定電圧が0Vであれば作用極11が断線異常
(3)測定電流値が15μAで測定電圧が300mVであれば対極12が断線異常
と判定することができる。また、上記したパルス電圧による測定結果をガスセンサ10の使用初期と現在とで比較すれば、そのガスセンサ10の感度劣化度合を判定できる。
Therefore, the pulse voltage of the offset voltage generated by switching the switch SW11 from on to off is 2 mV and the pulse width is 0.1 second as in the case described with reference to FIG. 4, and the gas sensor 10 has been described with reference to FIG. If it is the same as the gas sensor 10,
(1) Normal if the measured current value is 15 μA and the measured voltage is 0 V. (2) If the measured current value is 0 A and the measured voltage is 0 V, the working electrode 11 is broken. (3) The measured voltage is 15 μA and the measured voltage. Is 300 mV, it can be determined that the counter electrode 12 is broken. Moreover, if the measurement result by the pulse voltage described above is compared between the initial use of the gas sensor 10 and the present time, the degree of sensitivity deterioration of the gas sensor 10 can be determined.

図2は図1で説明したオペアンプ20の変形例のオペアンプ20Aを示す回路であり、正転側負荷抵抗を4個の抵抗R13,R14,R15,R16で構成し、反転側負荷抵抗を4個の抵抗R23,R24,R25,R26で構成し、さらに、抵抗R14〜R16を短絡するスイッチSW12、抵抗R15とR16を短絡するスイッチSW13、抵抗R16を短絡するスイッチSW14を設けたものである。抵抗値は、R13=R23,R14=R24,R15=R25,R16=R26に設定される。   FIG. 2 is a circuit showing an operational amplifier 20A which is a modification of the operational amplifier 20 described with reference to FIG. 1. The forward load resistance is composed of four resistors R13, R14, R15, and R16, and four inverting load resistors are included. Are provided with a switch SW12 that short-circuits the resistors R14 to R16, a switch SW13 that short-circuits the resistors R15 and R16, and a switch SW14 that short-circuits the resistor R16. The resistance values are set to R13 = R23, R14 = R24, R15 = R25, and R16 = R26.

このオペアンプ20Aでは、ガスセンサ10を通常動作させるときは、スイッチSW12〜SW14をオフにしておく。また、ガスセンサ10の接続不良や断線異常や感度劣化度合等を検出するときは、スイッチSW12〜SW14のいずれか1つをオン/オフさせる。スイッチSW12をオン→オフしたときはオフセット電圧が最大となるので最大振幅のパルス電圧が発生し、スイッチSW13をオン→オフしたときはオフセット電圧が中位となるので中位の振幅のパルス電圧が発生し、スイッチSW14をオン→オフしたときはオフセット電圧が最小となるので最小振幅のパルス電圧が発生する。これにより、数mV〜数十mVの複数のパルス電圧を発生できるので、複数種類のガスセンサ10の接続不良や断線異常や感度劣化度合等の検出が可能となる。   In the operational amplifier 20A, when the gas sensor 10 is normally operated, the switches SW12 to SW14 are turned off. Further, when detecting a connection failure, disconnection abnormality, sensitivity deterioration degree, or the like of the gas sensor 10, any one of the switches SW12 to SW14 is turned on / off. When the switch SW12 is turned on → off, the offset voltage is maximized, so that a pulse voltage with the maximum amplitude is generated. When the switch SW13 is turned on → off, the offset voltage becomes middle, so the pulse voltage with the middle amplitude is generated. When the switch SW14 is switched from on to off, the offset voltage is minimized, and a pulse voltage with the minimum amplitude is generated. As a result, a plurality of pulse voltages of several mV to several tens of mV can be generated, so that it is possible to detect a connection failure, disconnection abnormality, sensitivity deterioration degree, and the like of a plurality of types of gas sensors 10.

図3は図1で説明したオペアンプ20の別の変形例のオペアンプ20Bを示す回路であり、図2で説明したスイッチSW12〜SW14に加えて、抵抗R24〜R26を短絡するスイッチSW22、抵抗R25とR26を短絡するスイッチSW23、抵抗R26を短絡するスイッチSW24をさらに追加したものである。   FIG. 3 is a circuit showing an operational amplifier 20B as another modification of the operational amplifier 20 described in FIG. 1. In addition to the switches SW12 to SW14 described in FIG. 2, a switch SW22 that short-circuits resistors R24 to R26, a resistor R25, A switch SW23 for short-circuiting R26 and a switch SW24 for short-circuiting the resistor R26 are further added.

このオペアンプ20Bでは、ガスセンサ10を通常動作させるときは、スイッチSW12〜SW14、SW22〜SW24をオフにしておく。また、ガスセンサ10の接続不良や断線異常や感度劣化度合等を検出する際に、スイッチSW12〜SW14をオン/オフさせる場合は、図2の回路の場合と同様に、大、中、小のパルス電圧が発生するが、スイッチSW22〜SW24をオン/オフさせる場合は、図2の回路の場合と異なり、大、中、小の負パルス電圧が発生する。このように、図3のオペアンプ20Bでは、正および負の複数のパルス電圧(±数mV〜±数十mV)を発生させることができる。   In the operational amplifier 20B, when the gas sensor 10 is normally operated, the switches SW12 to SW14 and SW22 to SW24 are turned off. Further, when the switch SW12 to SW14 is turned on / off when detecting a connection failure, disconnection abnormality, sensitivity deterioration degree, or the like of the gas sensor 10, large, medium, and small pulses are performed as in the case of the circuit of FIG. A voltage is generated, but when the switches SW22 to SW24 are turned on / off, large, medium and small negative pulse voltages are generated, unlike the case of the circuit of FIG. As described above, the operational amplifier 20B of FIG. 3 can generate a plurality of positive and negative pulse voltages (± several mV to ± several tens of mV).

なお、以上説明した実施例では、定電位電解式ガスセンサ10について、その接続不良や断線異常や感度劣化度合等の検出の場合について説明したが、定電位電解式ガスセンサに限られるものではなく、照合極を有しないものも含めてすべての種類の電気化学センサについて、接続不良や断線異常や感度劣化度合等の検出が可能となるものである。   In the embodiment described above, the case of detecting the connection failure, disconnection abnormality, sensitivity deterioration degree, etc. of the constant potential electrolytic gas sensor 10 has been described. However, the present invention is not limited to the constant potential electrolytic gas sensor. For all types of electrochemical sensors including those having no poles, it is possible to detect connection failures, disconnection abnormalities, sensitivity deterioration degrees, and the like.

10:定電位電解式ガスセンサ、11:作用極、12:対極、13:照合極
20:オペアンプ、21:正転入力端子、22:反転入力端子、23:出力端子、24:電流 源、25:反転増幅器
30:オペアンプ、31:正転入力端子、32:反転入力端子、33:出力端子
40:基準電圧発生回路
50:電圧計
60:電流計
70:オペアンプ
80:パルス電圧発生回路
10: constant potential electrolytic gas sensor, 11: working electrode, 12: counter electrode, 13: reference electrode, 20: operational amplifier, 21: forward input terminal, 22: inverting input terminal, 23: output terminal, 24: current source, 25: Inverting amplifier 30: operational amplifier, 31: normal input terminal, 32: inverted input terminal, 33: output terminal 40: reference voltage generation circuit 50: voltmeter 60: ammeter 70: operational amplifier 80: pulse voltage generation circuit

Claims (2)

収納された電解液に少なくとも作用極と対極が浸漬された電気化学センサと、所定の電圧を前記対極に印加するポテンショスタット回路とを備え、前記電気化学センサの出力電流又は該出力電流を電圧変換した出力電圧を測定する電気化学計測装置において、
前記ポテンショスタット回路をオペアンプで構成し、該オペアンプの正転出力側負荷抵抗と反転出力側負荷抵抗を同一の抵抗値に設定し、前記正転出力側負荷抵抗又は前記反転出力側負荷抵抗の抵抗値を別の抵抗値に切り替えるスイッチを設け、該スイッチがオン→オフ操作されることで発生するオフセットパルスが前記電気化学センサに印加されるようにしたことを特徴とする電気化学計測装置。
An electrochemical sensor having at least a working electrode and a counter electrode immersed in a stored electrolyte, and a potentiostat circuit for applying a predetermined voltage to the counter electrode, and converting the output current of the electrochemical sensor or the output current into a voltage In an electrochemical measurement device that measures the output voltage
The potentiostat circuit is composed of an operational amplifier, the normal output side load resistance and the inverted output side load resistance of the operational amplifier are set to the same resistance value, and the normal output side load resistance or the resistance of the inverted output side load resistance An electrochemical measurement apparatus comprising a switch for switching a value to another resistance value, and an offset pulse generated when the switch is turned on to off is applied to the electrochemical sensor .
請求項1に記載の電気化学計測装置において、
前記スイッチは、前記正転出力側負荷抵抗又は前記反転出力側負荷抵抗の抵抗値を、互いに異なった複数の抵抗値のうちから選択した1つの抵抗値に設定する複数のスイッチからなり、
該複数のスイッチのうちの1つがオン→オフ操作されることで発生するオフセットパルスが前記電気化学センサに印加されるようにしたことを特徴とする電気化学計測装置。
In the electrochemical measuring device according to claim 1,
The switch comprises a plurality of switches for setting the resistance value of the normal output side load resistor or the inverted output side load resistor to one resistance value selected from a plurality of different resistance values.
An electrochemical measurement apparatus, wherein an offset pulse generated when one of the plurality of switches is turned on → off is applied to the electrochemical sensor .
JP2014085316A 2014-04-17 2014-04-17 Electrochemical measuring device Active JP6382561B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014085316A JP6382561B2 (en) 2014-04-17 2014-04-17 Electrochemical measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014085316A JP6382561B2 (en) 2014-04-17 2014-04-17 Electrochemical measuring device

Publications (2)

Publication Number Publication Date
JP2015206604A JP2015206604A (en) 2015-11-19
JP6382561B2 true JP6382561B2 (en) 2018-08-29

Family

ID=54603509

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014085316A Active JP6382561B2 (en) 2014-04-17 2014-04-17 Electrochemical measuring device

Country Status (1)

Country Link
JP (1) JP6382561B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017009302A (en) * 2015-06-17 2017-01-12 新コスモス電機株式会社 Constant potential electrolytic gas sensor and fault determination method for the same
JP6619570B2 (en) * 2015-06-17 2019-12-11 新コスモス電機株式会社 Constant potential electrolytic gas sensor
JP6919651B2 (en) * 2016-06-21 2021-08-18 ソニーグループ株式会社 Semiconductor device and cell potential measuring device
US10288674B2 (en) * 2017-05-04 2019-05-14 Analog Devices Global Impedance characteristic circuit for electrochemical sensor
WO2020161833A1 (en) * 2019-02-06 2020-08-13 株式会社島津製作所 Sulfur chemiluminescence detector
JP6805321B1 (en) * 2019-11-21 2020-12-23 新コスモス電機株式会社 Detector
CN110907863B (en) * 2019-12-10 2022-01-07 湖南优利泰克自动化系统有限公司 Analog input channel wiring state detection method and system

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6239318Y2 (en) * 1980-03-26 1987-10-07
JPS5798022U (en) * 1980-12-09 1982-06-16
JPS5741741Y2 (en) * 1981-05-21 1982-09-13
JP5502549B2 (en) * 2010-03-26 2014-05-28 ラピスセミコンダクタ株式会社 Voltage output device

Also Published As

Publication number Publication date
JP2015206604A (en) 2015-11-19

Similar Documents

Publication Publication Date Title
JP6382561B2 (en) Electrochemical measuring device
US8305035B2 (en) Energy storage device
US8845870B2 (en) Digital potentiostat circuit and system
KR101919256B1 (en) Calibration of current sensors by means of a reference current during the current measurement
US8427167B2 (en) Architecture and method to determine leakage impedance and leakage voltage node
US10288674B2 (en) Impedance characteristic circuit for electrochemical sensor
EP2270520A1 (en) Resistance bridge architecture and method
CN109791178A (en) Device and method for intelligence sensor application
JP5377670B2 (en) Electrochemical gas detector
CN108802155B (en) Diagnostic waveform generator for a sensor
JP6386816B2 (en) Battery state monitoring circuit and battery device
US7182845B2 (en) Electrochemical sensing circuit having high dynamic range
CN103166640B (en) For monitoring the method and system of the change of converter voltage reference
JP2008020364A (en) Electromagnetic flowmeter
JP2016169962A (en) Electromagnetic flowmeter
JP2014240818A5 (en)
EP3728951B1 (en) Flame sense circuit with variable bias
JP3543579B2 (en) Method and apparatus for detecting charge / discharge current of secondary battery
JP3204091B2 (en) Charge / discharge current measuring device
TW201624662A (en) Semiconductor device and AC resistance measuring system including the same
JP2013029466A (en) Electric measurement device including integration type current/voltage conversion circuit
JP5018373B2 (en) Resistance measuring device and resistance measuring method
JP2014010028A (en) Battery impedance measuring device and method
JP2017020954A (en) Insulation resistance monitoring device in direct current non-grounded electric circuit and monitoring method
JP5323401B2 (en) Insulation resistance tester

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170303

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180118

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180306

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180725

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180802

R150 Certificate of patent or registration of utility model

Ref document number: 6382561

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250