JP2013029466A - Electric measurement device including integration type current/voltage conversion circuit - Google Patents

Electric measurement device including integration type current/voltage conversion circuit Download PDF

Info

Publication number
JP2013029466A
JP2013029466A JP2011167085A JP2011167085A JP2013029466A JP 2013029466 A JP2013029466 A JP 2013029466A JP 2011167085 A JP2011167085 A JP 2011167085A JP 2011167085 A JP2011167085 A JP 2011167085A JP 2013029466 A JP2013029466 A JP 2013029466A
Authority
JP
Japan
Prior art keywords
measured
switch
resistor
current
capacitor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011167085A
Other languages
Japanese (ja)
Other versions
JP5779034B2 (en
Inventor
Hideaki Wakamatsu
英彰 若松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hioki EE Corp
Original Assignee
Hioki EE Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hioki EE Corp filed Critical Hioki EE Corp
Priority to JP2011167085A priority Critical patent/JP5779034B2/en
Publication of JP2013029466A publication Critical patent/JP2013029466A/en
Application granted granted Critical
Publication of JP5779034B2 publication Critical patent/JP5779034B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To exclude a measurement error caused by a dielectric absorption phenomenon inherent in a capacitor for integration in an electric measurement device including an integration type current/voltage conversion circuit.SOLUTION: The electric measurement device includes an integration type current/voltage conversion circuit 20 including a capacitor 22 for integration in a feedback circuit connected between one input terminal 21a and an output terminal 21c of an operational amplifier 21, and a DC voltage source 10. The electric measurement device is configured so that a resistor Rx to be measured is connected between the DC voltage source 10 and the one input terminal 21a of the operational amplifier 21, and a predetermined element characteristic included in the resistor Rx to be measured is measured based on an output voltage Vo appearing on the output terminal 21c of the operational amplifier 21 in accordance with electric charge to be charged to the capacitor 22. The electric measurement device further includes a DC current source 40 for reverse charge which after measuring the element characteristic of the resistor Rx to be measured by applying a predetermined voltage to the resistor Rx to be measured by the DC voltage source 10, charges the capacitor 22 for integration in a direction reverse to a charging direction for the element characteristic measurement.

Description

本発明は、積分型の電流電圧変換回路を有する電気測定装置に関し、さらに詳しく言えば、帰還回路に接続されている積分用コンデンサの誘電吸収現象による測定誤差を排除する技術に関するものである。
本発明の電気測定装置は、特に自動検査機に搭載され、例えばセラミックコンデンサの漏れ電流等の微小電流や絶縁抵抗を繰り返し測定するのに適している。
The present invention relates to an electrical measurement apparatus having an integration type current-voltage conversion circuit, and more particularly to a technique for eliminating measurement errors due to a dielectric absorption phenomenon of an integration capacitor connected to a feedback circuit.
The electrical measuring device of the present invention is particularly mounted in an automatic inspection machine, and is suitable for repeatedly measuring, for example, a minute current such as a leakage current of a ceramic capacitor and an insulation resistance.

積分型の電流電圧変換回路は、例えば特許文献1,2等に記載されているが、図3に積分型の電流電圧変換回路を有する電気測定装置を電流測定装置とした一般的な従来例を示し、まずは、これについて説明する。   An integration type current-voltage conversion circuit is described in, for example, Patent Documents 1 and 2, etc., but a general conventional example in which an electric measurement device having an integration type current-voltage conversion circuit in FIG. First, this will be described.

図3に示すように、電流測定装置は、被測定抵抗体Rxに所定の直流電圧を印加する直流電圧源10と、被測定抵抗体Rxに流れる電流を電圧に変換する電流電圧変換回路20とを備える。   As shown in FIG. 3, the current measuring device includes a DC voltage source 10 that applies a predetermined DC voltage to the resistor Rx to be measured, a current-voltage conversion circuit 20 that converts the current flowing through the resistor Rx to be measured, and a voltage. Is provided.

電流電圧変換回路20は積分型であって、演算増幅器(高入力インピーダンス増幅器)21の一方の入力端子21aと出力端子21cとの間の帰還回路に積分用コンデンサ22が接続されている。   The current-voltage conversion circuit 20 is of an integration type, and an integration capacitor 22 is connected to a feedback circuit between one input terminal 21a and an output terminal 21c of an operational amplifier (high input impedance amplifier) 21.

この例において、一方の入力端子21aはマイナス側で、この端子21aにスイッチSW1を介して被測定抵抗体Rxが接続され、他方のプラス側の入力端子21bは接地されていることから、演算増幅器21は反転増幅器として動作する。   In this example, one input terminal 21a is on the negative side, the resistor under test Rx is connected to this terminal 21a via the switch SW1, and the other input terminal 21b on the positive side is grounded. 21 operates as an inverting amplifier.

また、積分用コンデンサ22に対して、抵抗素子31とスイッチSW2とを直列に接続した放電回路30が並列に接続されている。スイッチSW1とスイッチSW2は、一方がオン(オフ)のとき、他方がオフ(オン)となるように動作する。   A discharge circuit 30 in which a resistance element 31 and a switch SW2 are connected in series is connected to the integrating capacitor 22 in parallel. The switches SW1 and SW2 operate so that when one is on (off), the other is off (on).

図4のタイミングチャートを併せて参照して、被測定抵抗体Rxの電流測定前には、スイッチSW1がオフ、スイッチSW2がオンのリセット状態とされ、出力端子21cの出力Voは0Vである。   Referring also to the timing chart of FIG. 4, before measuring the current of the resistor Rx to be measured, the switch SW1 is turned off and the switch SW2 is turned on, and the output Vo of the output terminal 21c is 0V.

被測定抵抗体Rxの電流測定時には、スイッチSW1がオンすると同時にスイッチSW2がオフとなり、直流電圧源10から被測定抵抗体Rxを介して流れる電流iにより、積分用コンデンサ22が充電される。   At the time of measuring the current of the resistor Rx to be measured, the switch SW1 is turned on at the same time as the switch SW2 is turned off, and the integration capacitor 22 is charged by the current i flowing from the DC voltage source 10 through the resistor Rx to be measured.

積分用コンデンサ22の容量をC,充電時間(測定時間)をtとすると、出力端子には、Vo=i×t/Cなる電圧が現れる。これにより、被測定抵抗体Rxを流れる電流iがi=C×Vo/tにより求められる。   When the capacitance of the integrating capacitor 22 is C and the charging time (measurement time) is t, a voltage Vo = i × t / C appears at the output terminal. Thereby, the current i flowing through the measured resistor Rx is obtained by i = C × Vo / t.

被測定抵抗体Rxの電流測定後には、スイッチSW1がオフすると同時にスイッチSW2がオンとなり、積分用コンデンサ22に充電された電荷が放電され、初期のリセット状態に戻される。   After the current of the resistor Rx to be measured is measured, the switch SW1 is turned off and the switch SW2 is turned on at the same time, so that the charge charged in the integrating capacitor 22 is discharged and returned to the initial reset state.

特開平7−72180号公報JP-A-7-72180 特開2001−174492号公報JP 2001-174492 A

ところで、上記した電流測定装置により、被測定抵抗体Rxの電流測定を繰り返し行う場合、積分用コンデンサ22の誘電吸収現象により、その測定回数に応じて出力端子21cに現れる出力電圧Voの値が徐々に変化し、これが誤差要因となる。   By the way, when the current measurement device Rx repeatedly measures the current of the resistor Rx to be measured, the value of the output voltage Vo appearing at the output terminal 21c gradually increases depending on the number of measurements due to the dielectric absorption phenomenon of the integrating capacitor 22. This becomes an error factor.

特に、上記した電流測定装置を自動検査機等に搭載して使用する場合には、繰り返し時間(測定のインターバル)が短く、しかも長時間にわたって使用されることから、出力端子21cに現れる出力電圧Voの変化が大きくなる。   In particular, when the current measuring device described above is used in an automatic inspection machine or the like, since the repetition time (measurement interval) is short and it is used for a long time, the output voltage Vo appearing at the output terminal 21c. The change of becomes large.

この点を考慮して、積分用コンデンサ22に誘電吸収現象の小さいコンデンサを使用すれば、誘電吸収現象の大きいコンデンサを用いた場合と比べると、同じ回数測定した場合の出力電圧Voの変化は小さくはなるが、さらに長時間にわたって測定が繰り返し行われ測定回数が増えれば同様な問題が生じるため、根本的な解決にはならない。   Considering this point, if a capacitor having a small dielectric absorption phenomenon is used as the integrating capacitor 22, the change in the output voltage Vo when measuring the same number of times is smaller than when using a capacitor having a large dielectric absorption phenomenon. However, if the measurement is repeated for a longer time and the number of times of measurement is increased, the same problem will occur, so this is not a fundamental solution.

また、被測定抵抗体Rxに印加される電圧をV1,被測定抵抗体Rxに流れる電流をiとして、被測定抵抗体Rxの絶縁抵抗値RはV1/iで表され、上記電流測定装置によれば、被測定抵抗体Rxに流れる電流iがi=C×Vo/tにより求められることから、上記電流測定装置と同じ構成で、被測定抵抗体Rxの絶縁抵抗値RをV1×t/(C×Vo)として測定することもできるが、この絶縁抵抗測定においても、上記と同様に、積分用コンデンサ22の誘電吸収現象に起因する問題が生ずる。   Further, the voltage applied to the resistor Rx to be measured is V1, the current flowing through the resistor Rx to be measured is i, and the insulation resistance value R of the resistor Rx to be measured is expressed as V1 / i. Accordingly, since the current i flowing through the resistor Rx to be measured is obtained by i = C × Vo / t, the insulation resistance value R of the resistor Rx to be measured is V1 × t / Although it can be measured as (C × Vo), in this insulation resistance measurement as well, a problem caused by the dielectric absorption phenomenon of the integrating capacitor 22 occurs.

したがって、本発明の課題は、積分型の電流電圧変換回路を有し、電流測定や絶縁抵抗測定を行う電気測定装置において、積分用コンデンサ固有の誘電吸収現象による測定誤差を排除することにある。   Accordingly, an object of the present invention is to eliminate a measurement error due to a dielectric absorption phenomenon inherent in an integrating capacitor in an electrical measuring apparatus that has an integrating current-voltage conversion circuit and performs current measurement and insulation resistance measurement.

上記課題を解決するため、本発明は、演算増幅器の一方の入力端子と出力端子との間の帰還回路に積分用コンデンサを有する積分型の電流電圧変換回路と、直流電圧源とを含み、上記直流電圧源と上記演算増幅器の一方の入力端子との間に被測定抵抗体を接続し、上記積分用コンデンサに充電される電荷に応じて上記演算増幅器の出力端子に現れる出力電圧に基づいて上記被測定抵抗体が備える所定の素子特性を測定する電気測定装置において、上記直流電圧源より上記被測定抵抗体に所定の電圧を印加して上記被測定抵抗体の素子特性を測定した後に、上記積分用コンデンサを上記素子特性の測定時とは逆方向に充電する逆充電用の直流電流源を備えていることを特徴としている。   In order to solve the above problems, the present invention includes an integration type current-voltage conversion circuit having an integration capacitor in a feedback circuit between one input terminal and an output terminal of an operational amplifier, and a DC voltage source, A resistor to be measured is connected between the DC voltage source and one input terminal of the operational amplifier, and the output voltage appears at the output terminal of the operational amplifier according to the charge charged in the integrating capacitor. In the electrical measuring apparatus for measuring a predetermined element characteristic of the resistor to be measured, after measuring a device characteristic of the resistor to be measured by applying a predetermined voltage to the resistor to be measured from the DC voltage source, A DC current source for reverse charging that charges the integrating capacitor in a direction opposite to that at the time of measuring the element characteristics is provided.

本発明において、上記逆充電用の直流電流源には、出力電流が可変の可変直流電流源が用いられる。   In the present invention, a variable DC current source having a variable output current is used as the DC current source for reverse charging.

本発明の好ましい態様によれば、上記演算増幅器の一方の入力端子側に上記被測定抵抗体を選択的に接続する第1スイッチが設けられ、上記積分用コンデンサに対して抵抗素子および第2スイッチを直列に接続してなる放電回路が並列的に接続されているとともに、上記逆充電用の直流電流源は、第3スイッチを介して上記積分用コンデンサの上記演算増幅器の一方の入力端子側の極と接地との間に接続される。   According to a preferred aspect of the present invention, a first switch for selectively connecting the resistor to be measured is provided on one input terminal side of the operational amplifier, and a resistive element and a second switch are connected to the integrating capacitor. Are connected in parallel, and the DC current source for reverse charging is connected to one input terminal side of the operational amplifier of the integrating capacitor via a third switch. Connected between the pole and ground.

また、本発明は、少なくとも上記第1,第2および第3スイッチを制御する制御部をさらに備え、上記制御部は、上記第1スイッチをオフ,上記第2スイッチをオンとした状態から、第1ステップとして、上記第1スイッチをオン,上記第2スイッチをオフにして、上記直流電圧源より上記被測定抵抗体に所定の電圧を印加して上記被測定体の素子特性を測定し、その後、第2ステップとして、上記第1スイッチをオフ,上記第2スイッチをオンにして、上記積分用コンデンサに充電された電荷を上記放電回路により放電させ、その後、第3ステップとして、上記第2スイッチをオフ,上記第3スイッチをオンにして、上記逆充電用の直流電流源により上記積分用コンデンサを上記素子特性の測定時とは逆方向に充電し、その後、第4ステップとして、上記第2スイッチをオン,上記第3スイッチをオフにして上記第3ステップで上記積分用コンデンサに逆充電された電荷を上記放電回路により放電させることを特徴としている。   The present invention further includes a control unit that controls at least the first, second, and third switches, and the control unit switches from the state in which the first switch is off and the second switch is on. As one step, the first switch is turned on, the second switch is turned off, a predetermined voltage is applied to the measured resistor from the DC voltage source, and element characteristics of the measured device are measured. As a second step, the first switch is turned off, the second switch is turned on, and the charge charged in the integrating capacitor is discharged by the discharge circuit. Then, as the third step, the second switch Is turned off, the third switch is turned on, and the integrating capacitor is charged in the opposite direction to the measurement of the element characteristics by the DC current source for reverse charging, and then the fourth step. As has turned the second switch, a reverse charge stored in the integration capacitor in the third step to clear the third switch, wherein the discharging by the discharge circuit.

上記第3ステップでの逆充電時における上記積分用コンデンサへの充電電荷量は、上記第1ステップでの電流測定時における上記積分用コンデンサへの充電電荷量と同じとするが、上記第3ステップでの逆充電時における電流値および充電時間は、上記第1ステップでの素子特性測定時における電流値および測定時間と同じとすることが好ましい。   The charge amount to the integration capacitor during reverse charging in the third step is the same as the charge amount to the integration capacitor during current measurement in the first step, but the third step It is preferable that the current value and the charging time at the time of reverse charging at are the same as the current value and the measuring time at the time of element characteristic measurement in the first step.

当該電気測定装置で測定される上記被測定抵抗体の素子特性は、電流値もしくは絶縁抵抗値である。   The element characteristic of the measured resistor measured by the electrical measuring device is a current value or an insulation resistance value.

本発明によれば、素子特性の測定時(電流測定もしくは絶縁抵抗測定時)に、積分用コンデンサは被測定抵抗体に流れる電流により充電されるが、電流測定後には積分用コンデンサが逆充電されることにより、誘電吸収現象も逆方向に発生して打ち消し合うことになるため、被測定抵抗体の測定を繰り返し行っても、コンデンサ固有の誘電吸収現象による測定誤差を排除することができる。   According to the present invention, when measuring element characteristics (current measurement or insulation resistance measurement), the integrating capacitor is charged by the current flowing through the resistor to be measured, but after the current measurement, the integrating capacitor is reverse charged. As a result, the dielectric absorption phenomenon also occurs in the opposite direction and cancels out. Therefore, measurement errors due to the dielectric absorption phenomenon inherent to the capacitor can be eliminated even if the measurement of the resistor under measurement is repeated.

本発明による電気測定装置により被測定抵抗体の電流測定を行う実施形態を示す模式的な構成図。The typical block diagram which shows embodiment which performs the electric current measurement of a to-be-measured resistor with the electrical measuring apparatus by this invention. 上記実施形態における動作説明用のタイミングチャート。The timing chart for operation | movement description in the said embodiment. 積分型電流電圧変換回路を有する従来の電流測定装置を示す模式的な構成図。The typical block diagram which shows the conventional electric current measuring apparatus which has an integration type current-voltage conversion circuit. 上記従来例における動作説明用のタイミングチャート。The timing chart for operation | movement description in the said prior art example.

次に、図1および図2により、本発明の実施形態について説明するが、本発明はこれに限定されるものではない。なお、この実施形態の説明において、先の図3で説明した従来例と変更を要しない構成要素については、同じ参照符号を用いている。   Next, an embodiment of the present invention will be described with reference to FIGS. 1 and 2, but the present invention is not limited to this. In the description of this embodiment, the same reference numerals are used for components that do not require any change from the conventional example described in FIG.

図1に示すように、本発明による電気測定装置を電流測定装置として、被測定抵抗体の電流測定を行うにあたって、この実施形態に係る電流測定装置においても、先の図3で説明した従来例と同じく、基本的な構成として、被測定抵抗体Rxに所定の直流電圧を印加する直流電圧源10と、被測定抵抗体Rxに流れる電流を電圧に変換する電流電圧変換回路20とを備える。   As shown in FIG. 1, the current measuring device according to the present invention is used as a current measuring device, and the current measuring device according to this embodiment is also used in the current measuring device according to this embodiment. Similarly, the basic configuration includes a DC voltage source 10 that applies a predetermined DC voltage to the resistor Rx to be measured, and a current-voltage conversion circuit 20 that converts a current flowing through the resistor Rx to be measured into a voltage.

なお、この実施形態において測定する電流は、例えばセラミックコンデンサ等の微小な漏れ電流を想定しているが、被測定抵抗体Rxは、これに限定されるものではない。   Note that the current measured in this embodiment is assumed to be a minute leakage current such as a ceramic capacitor, but the resistor Rx to be measured is not limited to this.

電流電圧変換回路20は積分型であって、演算増幅器(高入力インピーダンス増幅器)21の一方の入力端子21aと出力端子21cとの間の帰還回路に積分用コンデンサ22が接続されている。   The current-voltage conversion circuit 20 is of an integration type, and an integration capacitor 22 is connected to a feedback circuit between one input terminal 21a and an output terminal 21c of an operational amplifier (high input impedance amplifier) 21.

この実施形態においても、一方のマイナス側の入力端子21aに、スイッチSW1(請求項3における第1スイッチ)を介して被測定抵抗体Rxが接続され、他方のプラス側の入力端子21bは接地に接続されていることから、演算増幅器21は反転増幅器として動作する。なお、これとは反対に、プラス側の入力端子21bを電流入力端子とし、マイナス側の入力端子21aを接地に接続して、非反転の増幅器としてもよい。   Also in this embodiment, the measured resistor Rx is connected to one negative input terminal 21a via a switch SW1 (first switch in claim 3), and the other positive input terminal 21b is grounded. Since it is connected, the operational amplifier 21 operates as an inverting amplifier. On the other hand, the positive input terminal 21b may be used as a current input terminal, and the negative input terminal 21a may be connected to the ground to form a non-inverting amplifier.

また、積分用コンデンサ22に対して、抵抗素子31とスイッチSW2(請求項3における第2スイッチ)とを直列に接続した放電回路30が並列に接続されている。スイッチSW1とスイッチSW2は、一方がオン(オフ)のとき、他方がオフ(オン)となるように動作する。   Further, a discharge circuit 30 in which a resistance element 31 and a switch SW2 (second switch in claim 3) are connected in series is connected to the integrating capacitor 22 in parallel. The switches SW1 and SW2 operate so that when one is on (off), the other is off (on).

上記した構成に加えて、本発明では、積分用コンデンサ22を電流測定時とは逆方向に充電する逆充電用の直流電流源40を備える。この直流電流源40には、出力電流が可変の可変直流電流源が用いられる。   In addition to the above-described configuration, the present invention includes a DC current source 40 for reverse charging that charges the integrating capacitor 22 in the direction opposite to that during current measurement. As this DC current source 40, a variable DC current source whose output current is variable is used.

この逆充電用の直流電流源40は、積分用コンデンサ22における演算増幅器21の一方の入力端子21a側の極と接地との間に、スイッチSW3(請求項3における第3スイッチ)を介して接続され、その電流の流れ方向は接地側である。   The DC current source 40 for reverse charging is connected between the pole on the one input terminal 21a side of the operational amplifier 21 in the integrating capacitor 22 and the ground via a switch SW3 (third switch in claim 3). The current flow direction is the ground side.

また、この実施形態に係る電流測定装置は、上記各スイッチSW1,SW2,SW3をオンオフ制御する制御部50を備える。制御部50には、好ましくはCPU(中央演算処理ユニット)やマイクロコンピュータが用いられる。   In addition, the current measuring device according to this embodiment includes a control unit 50 that performs on / off control of each of the switches SW1, SW2, and SW3. The control unit 50 is preferably a CPU (Central Processing Unit) or a microcomputer.

なお、制御部50に、スイッチSW1〜SW3のオンオフ制御機能のほか、演算増幅器21の出力端子21cに現れる出力電圧Vo(=i×t/C)から、被測定抵抗体Rxに流れる電流値i(=C×Vo/t)を求める演算機能を持たせてもよい。   In addition to the on / off control function of the switches SW1 to SW3, the control unit 50 has a current value i flowing through the measured resistor Rx from the output voltage Vo (= i × t / C) appearing at the output terminal 21c of the operational amplifier 21. A calculation function for obtaining (= C × Vo / t) may be provided.

次に、図2のタイミングチャートを併せて参照して、この電流測定装置の動作について説明する。   Next, the operation of this current measuring apparatus will be described with reference to the timing chart of FIG.

被測定抵抗体Rxの電流測定前には、スイッチSW1,SW3がオフ、スイッチSW2がオンのリセット状態とされ、出力端子21cの出力Voは0Vである。   Prior to the current measurement of the resistor Rx to be measured, the switches SW1 and SW3 are turned off and the switch SW2 is turned on, and the output Vo of the output terminal 21c is 0V.

まず、t1時〜t2時にかけての第1ステップで、被測定抵抗体Rxの電流測定が行われる。このときスイッチSW1がオンすると同時にスイッチSW2がオフとなり(スイッチSW3はオフを維持)、直流電圧源10から被測定抵抗体Rxを介して流れる電流iにより、積分用コンデンサ22が充電される。   First, in the first step from time t1 to time t2, current measurement of the resistor Rx to be measured is performed. At this time, the switch SW1 is turned on and at the same time the switch SW2 is turned off (the switch SW3 is kept off), and the integrating capacitor 22 is charged by the current i flowing from the DC voltage source 10 through the resistor Rx to be measured.

積分用コンデンサ22の容量をC,充電時間(測定時間)をtとすると、出力端子には、Vo=i×t/Cなる電圧が現れる。これにより、被測定抵抗体Rxを流れる電流iがi=C×Vo/tにより求められる。   When the capacitance of the integrating capacitor 22 is C and the charging time (measurement time) is t, a voltage Vo = i × t / C appears at the output terminal. Thereby, the current i flowing through the measured resistor Rx is obtained by i = C × Vo / t.

次に、第2ステップとして、被測定抵抗体Rxの電流測定後のt2時〜t3時にかけて、スイッチSW1がオフすると同時にスイッチSW2がオンとなり(スイッチSW3はオフを維持)、積分用コンデンサ22に充電された電荷が放電され、初期のリセット状態に戻される。   Next, as a second step, from time t2 to time t3 after measuring the current of the resistor Rx to be measured, the switch SW1 is turned off and the switch SW2 is turned on at the same time (the switch SW3 is kept off). The charged charge is discharged and returned to the initial reset state.

その後の第3ステップとして、t3時〜t4時にかけて、積分用コンデンサ22に対して逆充電が行われる。このとき、スイッチSW3がオンになると同時にスイッチSW2がオフとなり(スイッチSW1はオフを維持)、逆充電用の直流電流源40により、積分用コンデンサ22に対して電流測定時とは逆方向の電流irが流される。   As a third step thereafter, reverse charging is performed on the integrating capacitor 22 from t3 to t4. At this time, the switch SW3 is turned on at the same time as the switch SW2 is turned off (the switch SW1 is kept off), and the reverse charging direct current source 40 causes the current in the direction opposite to that during current measurement to the integrating capacitor 22. Ir is flushed.

そして、第4ステップとして、この逆充電が終了した時点のt4時に、スイッチSW3がオフになると同時にスイッチSW2がオンとなり(スイッチSW1はオフを維持)、初期のリセット状態に戻される。   As a fourth step, at time t4 when the reverse charging is finished, the switch SW3 is turned off and at the same time the switch SW2 is turned on (the switch SW1 remains off), and the initial reset state is restored.

上記第3ステップにおいて、積分用コンデンサ22に流される逆方向電流irの電流値は、上記第1ステップの電流測定時に積分用コンデンサ22に流される電流iの電流値と同じとし、また、逆方向充電時間(t3〜t4)も、電流測定時の充電時間t(t1〜t2)と同じとすることが好ましい。   In the third step, the current value of the reverse current ir that flows through the integrating capacitor 22 is the same as the current value of the current i that flows through the integrating capacitor 22 during the current measurement in the first step. The charging time (t3 to t4) is also preferably the same as the charging time t (t1 to t2) at the time of current measurement.

別の実施形態として、図1の電流測定装置と同じ回路構成にて、被測定抵抗体Rxの絶縁抵抗をも測定することができる。   As another embodiment, the insulation resistance of the resistor Rx to be measured can be measured with the same circuit configuration as the current measuring device of FIG.

すなわち、被測定抵抗体Rxに印加される電圧をV1,被測定抵抗体Rxに流れる電流をiとして、被測定抵抗体Rxの絶縁抵抗値RはV1/iで表される。上記の実施形態に係る電流測定装置によれば、被測定抵抗体Rxに流れる電流iがi=C×Vo/tにより求められることから、上記電流測定装置と同じ回路構成で、被測定抵抗体Rxの絶縁抵抗値RをV1×t/(C×Vo)として測定することができる。   That is, the voltage applied to the measured resistor Rx is V1, and the current flowing through the measured resistor Rx is i, and the insulation resistance value R of the measured resistor Rx is expressed as V1 / i. According to the current measuring device according to the above embodiment, since the current i flowing through the measured resistor Rx is obtained by i = C × Vo / t, the measured resistor has the same circuit configuration as the current measuring device. The insulation resistance value R of Rx can be measured as V1 × t / (C × Vo).

なお、被測定抵抗体Rxに印加される電圧V1は、直流電圧源10の発生電圧であってもよいし、図示しない電圧測定部により測定される被測定抵抗体Rxの端子間電圧を用いてもよい。   Note that the voltage V1 applied to the resistor Rx to be measured may be a voltage generated by the DC voltage source 10, or a voltage across the terminals of the resistor Rx to be measured measured by a voltage measuring unit (not shown). Also good.

この絶縁抵抗測定においても、制御部50により、図2のタイミングチャートにしたがって、スイッチSW1〜SW3を所定の順序でオンオフ制御することにより、電流測定時と同様に、積分用コンデンサ22を逆充電することができる。   Also in this insulation resistance measurement, the controller 50 reverse-charges the integrating capacitor 22 in the same way as during current measurement by performing on / off control of the switches SW1 to SW3 in a predetermined order according to the timing chart of FIG. be able to.

上記各実施形態によれば、電流測定後もしくは絶縁抵抗測定後で、積分用コンデンサ22に蓄積された充電電荷を放電した後に、積分用コンデンサ22に対して、電流測定時もしくは絶縁抵抗測定時と同じ電流値で、かつ、同じ時間だけ逆方向に充電を行うようにしたことにより、積分用コンデンサ22における誘電吸収現象も逆方向に発生して打ち消し合うことになる。   According to each of the above embodiments, after the current measurement or the insulation resistance measurement, after discharging the charge accumulated in the integration capacitor 22, the integration capacitor 22 is subjected to the current measurement or the insulation resistance measurement. By charging in the reverse direction for the same time at the same current value, the dielectric absorption phenomenon in the integrating capacitor 22 also occurs in the reverse direction and cancels out.

したがって、自動検査機等に搭載され、電流測定や絶縁抵抗測定を繰り返し行っても、積分用コンデンサ固有の誘電吸収現象による測定誤差を排除することができる。また、積分用コンデンサを選択するにあたって、その誘電吸収の大小に余り気を使う必要がなく、積分用コンデンサの選択の自由度が高められる。   Therefore, even if it is mounted on an automatic inspection machine or the like and current measurement or insulation resistance measurement is repeated, measurement errors due to the dielectric absorption phenomenon inherent to the integrating capacitor can be eliminated. In addition, when selecting an integration capacitor, it is not necessary to use much attention to the magnitude of the dielectric absorption, and the degree of freedom in selecting the integration capacitor is increased.

なお、上記各実施形態では、積分用コンデンサに対して電流測定時もしくは絶縁抵抗測定時と同じ電流値で、かつ、同じ時間だけ逆方向に充電するようにしているが、積分用コンデンサに対する逆充電は、電流測定時もしくは絶縁抵抗測定時に充電された電荷と同じ電荷量を充電すればよいことから、一例として、逆充電電流irを測定時の電流iの2倍とし、逆充電時間を測定時の1/2にしてもよい。   In each of the above embodiments, the integration capacitor is charged in the reverse direction for the same time and with the same current value as during current measurement or insulation resistance measurement. Since it is only necessary to charge the same amount of charge as that charged during current measurement or insulation resistance measurement, as an example, the reverse charge current ir is twice the current i during measurement and the reverse charge time is measured. You may make it 1/2.

10 直流電圧源
20 積分型電流電圧変換回路
21 演算増幅器
21a,21b 入力端子
21c 出力端子
22 積分用コンデンサ
30 放電回路
31 抵抗素子
40 逆充電用の直流電流源
50 制御部
Rx 被測定抵抗体
SW1〜SW3 スイッチ
DESCRIPTION OF SYMBOLS 10 DC voltage source 20 Integral current voltage conversion circuit 21 Operational amplifiers 21a, 21b Input terminal 21c Output terminal 22 Integration capacitor 30 Discharge circuit 31 Resistive element 40 DC current source for reverse charging 50 Control unit Rx Resistor to be measured SW1 SW3 switch

Claims (8)

演算増幅器の一方の入力端子と出力端子との間の帰還回路に積分用コンデンサを有する積分型の電流電圧変換回路と、直流電圧源とを含み、上記直流電圧源と上記演算増幅器の一方の入力端子との間に被測定抵抗体を接続し、上記積分用コンデンサに充電される電荷に応じて上記演算増幅器の出力端子に現れる出力電圧に基づいて上記被測定抵抗体が備える所定の素子特性を測定する電気測定装置において、
上記直流電圧源より上記被測定抵抗体に所定の電圧を印加して上記被測定抵抗体の素子特性を測定した後に、上記積分用コンデンサを上記素子特性の測定時とは逆方向に充電する逆充電用の直流電流源を備えていることを特徴とする電気測定装置。
An integration type current-voltage conversion circuit having an integrating capacitor in a feedback circuit between one input terminal and an output terminal of the operational amplifier and a DC voltage source, and one input of the DC voltage source and the operational amplifier A resistor to be measured is connected to the terminal, and a predetermined element characteristic of the resistor to be measured is provided on the basis of an output voltage appearing at the output terminal of the operational amplifier according to the charge charged in the integrating capacitor. In the electrical measuring device to measure,
After applying a predetermined voltage from the DC voltage source to the resistor to be measured to measure the element characteristics of the resistor to be measured, the capacitor for integration is charged in the opposite direction to the measurement of the element characteristics. An electrical measuring apparatus comprising a direct current source for charging.
上記逆充電用の直流電流源は、出力電流が可変の可変直流電流源であることを特徴とする請求項1に記載の電気測定装置。   2. The electrical measuring apparatus according to claim 1, wherein the DC current source for reverse charging is a variable DC current source having a variable output current. 上記演算増幅器の一方の入力端子側に上記被測定抵抗体を選択的に接続する第1スイッチが設けられ、上記積分用コンデンサに対して抵抗素子および第2スイッチを直列に接続してなる放電回路が並列的に接続されているとともに、上記逆充電用の直流電流源は、第3スイッチを介して上記積分用コンデンサの上記演算増幅器の一方の入力端子側の極と接地との間に接続されていることを特徴とする請求項1または2に記載の電気測定装置。   A discharge circuit in which a first switch for selectively connecting the resistor under test is provided on one input terminal side of the operational amplifier, and a resistance element and a second switch are connected in series to the integrating capacitor Are connected in parallel, and the reverse charging DC current source is connected between the pole on the one input terminal side of the operational amplifier of the integrating capacitor and the ground via a third switch. The electrical measuring device according to claim 1, wherein the electrical measuring device is provided. 少なくとも上記第1,第2および第3スイッチを制御する制御部をさらに備え、上記制御部は、上記第1スイッチをオフ,上記第2スイッチをオンとした状態から、
第1ステップとして、上記第1スイッチをオン,上記第2スイッチをオフにして、上記直流電圧源より上記被測定抵抗体に所定の電圧を印加して上記被測定体の素子特性を測定し、
その後、第2ステップとして、上記第1スイッチをオフ,上記第2スイッチをオンにして、上記積分用コンデンサに充電された電荷を上記放電回路により放電させ、
その後、第3ステップとして、上記第2スイッチをオフ,上記第3スイッチをオンにして、上記逆充電用の直流電流源により上記積分用コンデンサを上記素子特性の測定時とは逆方向に充電し、
その後、第4ステップとして、上記第2スイッチをオン,上記第3スイッチをオフにして上記第3ステップで上記積分用コンデンサに逆充電された電荷を上記放電回路により放電させることを特徴とする請求項3に記載の電気測定装置。
A control unit that controls at least the first, second, and third switches; the control unit from a state in which the first switch is off and the second switch is on;
As a first step, the first switch is turned on, the second switch is turned off, a predetermined voltage is applied to the measured resistor from the DC voltage source, and element characteristics of the measured device are measured.
Thereafter, as a second step, the first switch is turned off, the second switch is turned on, and the electric charge charged in the integrating capacitor is discharged by the discharge circuit,
Thereafter, as a third step, the second switch is turned off and the third switch is turned on, and the integration capacitor is charged in the opposite direction to the measurement of the element characteristics by the DC current source for reverse charging. ,
Thereafter, as a fourth step, the second switch is turned on and the third switch is turned off, and the charge reversely charged in the integrating capacitor in the third step is discharged by the discharge circuit. Item 4. The electrical measuring device according to Item 3.
上記第3ステップでの逆充電時における上記積分用コンデンサへの充電電荷量は、上記第1ステップでの素子特性の測定時における上記積分用コンデンサへの充電電荷量と同じとすることを特徴とする請求項4に記載の電気測定装置。   The charge amount to the integration capacitor at the time of reverse charging in the third step is the same as the charge amount to the integration capacitor at the time of measuring element characteristics in the first step. The electrical measurement device according to claim 4. 上記第3ステップでの逆充電時における電流値および充電時間は、上記第1ステップでの素子特性の測定時における電流値および測定時間と同じとすることを特徴とする請求項4または5に記載の電流測定装置。   6. The current value and charging time during reverse charging in the third step are the same as the current value and measuring time during device characteristic measurement in the first step. Current measuring device. 当該電気測定装置で測定される上記被測定抵抗体の素子特性が電流値であることを特徴とする請求項1ないし6のいずれか1項に記載の電気測定装置。   7. The electrical measuring apparatus according to claim 1, wherein an element characteristic of the measured resistor measured by the electrical measuring apparatus is a current value. 当該電気測定装置で測定される上記被測定抵抗体の素子特性が絶縁抵抗値であることを特徴とする請求項1ないし6のいずれか1項に記載の電気測定装置。   7. The electrical measuring apparatus according to claim 1, wherein an element characteristic of the measured resistor measured by the electrical measuring apparatus is an insulation resistance value. 8.
JP2011167085A 2011-07-29 2011-07-29 Electrical measuring device having an integral current-voltage conversion circuit Expired - Fee Related JP5779034B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011167085A JP5779034B2 (en) 2011-07-29 2011-07-29 Electrical measuring device having an integral current-voltage conversion circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011167085A JP5779034B2 (en) 2011-07-29 2011-07-29 Electrical measuring device having an integral current-voltage conversion circuit

Publications (2)

Publication Number Publication Date
JP2013029466A true JP2013029466A (en) 2013-02-07
JP5779034B2 JP5779034B2 (en) 2015-09-16

Family

ID=47786626

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011167085A Expired - Fee Related JP5779034B2 (en) 2011-07-29 2011-07-29 Electrical measuring device having an integral current-voltage conversion circuit

Country Status (1)

Country Link
JP (1) JP5779034B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106383272A (en) * 2015-07-30 2017-02-08 北京电子工程总体研究所 High-precision small resistor resistance measurement circuit
CN110058078A (en) * 2019-05-23 2019-07-26 上海仁机仪器仪表有限公司 A kind of current measurement circuit and measurement method based on I-F transformation
CN110703111A (en) * 2019-10-22 2020-01-17 谢丽阳 Novel storage battery double-flow alternating-measurement nuclear capacity testing machine
JP2020085714A (en) * 2018-11-28 2020-06-04 日置電機株式会社 Integration type current voltage conversion circuit, current measurement device and resistance measurement device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4211981A (en) * 1978-05-04 1980-07-08 Abbott Laboratories Integrator with dielectric absorption correction
JPS6160366B2 (en) * 1981-03-31 1986-12-20 Takahata Denshi Kk
JPS62264728A (en) * 1986-05-12 1987-11-17 Minolta Camera Co Ltd Analog-digital converter
JPH0564782U (en) * 1992-02-06 1993-08-27 横河・ヒューレット・パッカード株式会社 Insulation resistance / voltage converter
JPH0772180A (en) * 1993-09-02 1995-03-17 Fujitsu Ltd Current-voltage conversion circuit
JPH11101830A (en) * 1997-09-29 1999-04-13 Hioki Ee Corp Resistance measuring instrument

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4211981A (en) * 1978-05-04 1980-07-08 Abbott Laboratories Integrator with dielectric absorption correction
JPS6160366B2 (en) * 1981-03-31 1986-12-20 Takahata Denshi Kk
JPS62264728A (en) * 1986-05-12 1987-11-17 Minolta Camera Co Ltd Analog-digital converter
JPH0564782U (en) * 1992-02-06 1993-08-27 横河・ヒューレット・パッカード株式会社 Insulation resistance / voltage converter
JPH0772180A (en) * 1993-09-02 1995-03-17 Fujitsu Ltd Current-voltage conversion circuit
JPH11101830A (en) * 1997-09-29 1999-04-13 Hioki Ee Corp Resistance measuring instrument

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106383272A (en) * 2015-07-30 2017-02-08 北京电子工程总体研究所 High-precision small resistor resistance measurement circuit
CN106383272B (en) * 2015-07-30 2018-12-14 北京电子工程总体研究所 A kind of small resistance measuring circuit of high-precision
JP2020085714A (en) * 2018-11-28 2020-06-04 日置電機株式会社 Integration type current voltage conversion circuit, current measurement device and resistance measurement device
JP7204447B2 (en) 2018-11-28 2023-01-16 日置電機株式会社 Integral type current-voltage conversion circuit, current measuring device and resistance measuring device
CN110058078A (en) * 2019-05-23 2019-07-26 上海仁机仪器仪表有限公司 A kind of current measurement circuit and measurement method based on I-F transformation
CN110703111A (en) * 2019-10-22 2020-01-17 谢丽阳 Novel storage battery double-flow alternating-measurement nuclear capacity testing machine

Also Published As

Publication number Publication date
JP5779034B2 (en) 2015-09-16

Similar Documents

Publication Publication Date Title
JP2008070307A (en) Capacity measuring device and method
JP2015197406A (en) Insulation detector
JP5779034B2 (en) Electrical measuring device having an integral current-voltage conversion circuit
KR20140101780A (en) Fast single-ended to differential converter
JP6470022B2 (en) Battery remaining capacity prediction device and battery pack
JP2015206604A (en) Electrochemical measurement device
US9182430B2 (en) Device and method for measuring a value of a resistor
Malik et al. A CCII-based relaxation oscillator as a versatile interface for resistive and capacitive sensors
US20230349960A1 (en) Conductivity measurement device
JP2010025667A (en) Parallel resistance measuring method and device therefor
JP7204447B2 (en) Integral type current-voltage conversion circuit, current measuring device and resistance measuring device
TWI414796B (en) Measuring apparatus and method for capacitor
JP6862877B2 (en) Battery level measurement circuit, electronic devices and battery level measurement method
JP5512368B2 (en) Inspection apparatus and inspection method
JP2015169440A (en) Voltage measurement device and voltage measuring method
JP2007315981A (en) Measuring device and inspection device
JP2017188733A (en) Signal processing circuit, coulomb counter circuit, and electronic equipment
JP2011027453A (en) Semiconductor test apparatus and semiconductor test method
JP6541456B2 (en) Test equipment
JP2011185625A (en) Inspection device
JP5172724B2 (en) Surge test equipment
JP6662033B2 (en) Method and apparatus for measuring resistance of storage element
RU2377580C1 (en) Device for measurement of electrical insulation resistance
US8766622B2 (en) Voltage measuring apparatus for buck circuit
JP2007121125A (en) Current detector and capacitance measurement device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140627

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150304

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150325

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20150420

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150420

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150610

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150710

R150 Certificate of patent or registration of utility model

Ref document number: 5779034

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees