JPH06174691A - Voltage-measuring circuit - Google Patents

Voltage-measuring circuit

Info

Publication number
JPH06174691A
JPH06174691A JP4349687A JP34968792A JPH06174691A JP H06174691 A JPH06174691 A JP H06174691A JP 4349687 A JP4349687 A JP 4349687A JP 34968792 A JP34968792 A JP 34968792A JP H06174691 A JPH06174691 A JP H06174691A
Authority
JP
Japan
Prior art keywords
potential
measured
electrode
reference electrode
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4349687A
Other languages
Japanese (ja)
Other versions
JP3390193B2 (en
Inventor
Hidekazu Ikezaki
秀和 池崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Anritsu Corp
Original Assignee
Anritsu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Anritsu Corp filed Critical Anritsu Corp
Priority to JP34968792A priority Critical patent/JP3390193B2/en
Publication of JPH06174691A publication Critical patent/JPH06174691A/en
Application granted granted Critical
Publication of JP3390193B2 publication Critical patent/JP3390193B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To provide a voltage-measuring circuit wherein even when a leakage of current occurs between a solution to be measured and the ground, a reference electrode is hardly influenced by the leakage. CONSTITUTION:A voltage difference operation means 4 having a reference voltage input terminal 41 and a measured voltage input terminal 42 receives a measured voltage signal from a sensor 5 and a reference signal from a reference electrode 1 and operates a difference voltage between the measured voltage and the reference voltage. In the voltage reference operation means 4, the reference electrode 1 connected to the reference voltage input terminal 41 is not connected to the ground but a dummy electrode 2 is provided to be connected to the ground.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、例えば、味覚センサ
を用いて液体のアジを測定する装置やpHセンサ(ガラ
ス電極)を用いてpHを測定する装置等、センサで得ら
れる電位から測定対象である液体についての各種情報を
得る測定装置に用いる電位測定回路に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an object to be measured from a potential obtained by a sensor, such as a device for measuring a liquid aji using a taste sensor or a device for measuring pH using a pH sensor (glass electrode). The present invention relates to a potential measuring circuit used in a measuring device that obtains various information about a liquid.

【0002】[0002]

【従来の技術】ここでは、味覚センサで得られる電位か
ら液体のアジを測定するアジ測定装置を例にとり従来の
技術を説明する。図5(a),(b) は前記アジ測定装置に用
いられる、脂質膜を用いたマルチチャンネルの味覚セン
サである。本図ではマルチチャンネルのアレイ電極のう
ち三つの感応部が示されている。図示の例では、基材25
に 0.5mmφの孔を貫通して、それに銀の丸棒を差し込み
電極26とした。脂質膜27は緩衝層28を介して電極26に接
触するように基材25に張りつけている。
2. Description of the Related Art Here, a conventional technique will be described by taking an azimuth measuring device for measuring the azimuth of a liquid from an electric potential obtained by a taste sensor as an example. 5 (a) and 5 (b) show a multi-channel taste sensor using a lipid membrane, which is used in the horse mackerel measuring apparatus. In this figure, three sensitive parts of the multi-channel array electrode are shown. In the illustrated example, the substrate 25
A 0.5 mmφ hole was penetrated through and a silver round bar was inserted therein to form an electrode 26. The lipid membrane 27 is attached to the base material 25 so as to contact the electrode 26 via the buffer layer 28.

【0003】この味覚センサを用いたアジ測定装置を図
6に示す。呈味物質の水溶液を作り、それを被測定溶液
11とし、ビーカーのような容器12に入れる。被測定溶液
中に、前に述べたような、アクリル板(基材)上に脂質
膜と電極とを配置して作った味覚センサアレイ13を入れ
た。使用前に、塩化カリウム 1m mole/l 水溶液で電極
電位を安定化した。図中、14−1,……14−8は各々の
脂質膜を黒点で示したものである。
FIG. 6 shows a horse mackerel measuring apparatus using this taste sensor. Make an aqueous solution of the taste substance and use it as the solution to be measured.
11 and place in a beaker-like container 12. The taste sensor array 13 prepared by arranging the lipid film and the electrode on the acrylic plate (base material) as described above was put in the solution to be measured. Prior to use, the electrode potential was stabilized with an aqueous solution of 1m mole / l potassium chloride. In the figure, 14-1, ..., 14-8 are the lipid membranes shown by black dots.

【0004】測定の基準となる電位を発生する電極とし
て参照電極15を用意し、それを被測定溶液に入れる。味
覚センサアレイ13と参照電極15とは所定の距離を隔てて
設置する。参照電極15の表面には、緩衝層16として、塩
化カリウム 100m mole/l を寒天で固化したもので覆っ
てあるから、結局、電極系は銀26|塩化銀28|脂質膜27
(14)|被測定溶液12|緩衝層(塩化カリウム 100m mole
/l )16|塩化銀28|銀26という構成となっている。
A reference electrode 15 is prepared as an electrode for generating an electric potential serving as a standard for measurement, and the reference electrode 15 is put in a solution to be measured. The taste sensor array 13 and the reference electrode 15 are installed at a predetermined distance. The surface of the reference electrode 15 is covered with 100 m mole / l of potassium chloride solidified with agar as the buffer layer 16, so that the electrode system is eventually silver 26 | silver chloride 28 | lipid film 27.
(14) | Measured solution 12 | Buffer layer (potassium chloride 100m mole
/ L) 16 | silver chloride 28 | silver 26.

【0005】脂質膜からの電気信号は、図では8チャン
ネルの信号となり、リード線17−1,……,17−8によ
ってそれぞれバッファ増幅器19−1,……,19−8に導
かれる。バッファ増幅器19の各出力は、アナログスイッ
チ(8チャンネル)20で選択されてA/D変換器21に加
えられる。参照電極15からの電気信号もリード線18を介
してA/D変換器21に加えられ、膜からの電位との差を
ディジタル信号に変換する。このディジタル信号はマイ
クロコンピュータ22で適当に処理され、またX−Yレコ
ーダ23で表示される。
The electric signal from the lipid membrane becomes an 8-channel signal in the figure and is led to the buffer amplifiers 19-1, ..., 19-8 by the lead wires 17-1 ,. Each output of the buffer amplifier 19 is selected by the analog switch (8 channels) 20 and added to the A / D converter 21. The electric signal from the reference electrode 15 is also applied to the A / D converter 21 via the lead wire 18, and the difference from the potential from the membrane is converted into a digital signal. This digital signal is appropriately processed by the microcomputer 22 and displayed by the XY recorder 23.

【0006】従来のアジ測定装置で用いられている電位
測定回路を説明する。図4に従来の電位測定回路を示
す。基準となる電位を得るための参照電極1は電位差検
出手段6の基準電位用入力端子61及びグランドに接続さ
れている。グランドに接続されているのは、基準電位を
0ボルトとすることで電位差検出手段6に用いられてい
る演算増幅器65等の直線性の良い部分を有効に使うため
である。電位差検出手段6の他の入力端子62は電位測定
回路の入力端子でもあり、味覚センサ5の各チャンネル
の電極が接続される。
A potential measuring circuit used in a conventional horse mackerel measuring apparatus will be described. FIG. 4 shows a conventional potential measuring circuit. The reference electrode 1 for obtaining the reference potential is connected to the reference potential input terminal 61 of the potential difference detection means 6 and the ground. It is connected to the ground in order to effectively use a portion having good linearity such as the operational amplifier 65 used in the potential difference detecting means 6 by setting the reference potential to 0 volt. The other input terminal 62 of the potential difference detecting means 6 is also an input terminal of the potential measuring circuit, and the electrode of each channel of the taste sensor 5 is connected to it.

【0007】図4は説明を簡単にするために1チャンネ
ルの場合を示している。この例では、電位差検出手段6
は1つの演算増幅器65、2つの入力端子61,62及び2つ
の出力端子63,64から構成されており、前記2つの入力
端子のうち1つは測定電位用入力端子62であり前記演算
増幅器65の入力端子に接続されている。他の1つは基準
電位用入力端子61であり前記2つの出力端子のうちの1
つの出力端子64に接続されている。他の出力端子63は前
記演算増幅器65の出力端子に接続されている。該電位差
検出手段6の出力端子は電位測定回路の出力端子でもあ
る。
FIG. 4 shows the case of one channel in order to simplify the explanation. In this example, the potential difference detecting means 6
Is composed of one operational amplifier 65, two input terminals 61 and 62 and two output terminals 63 and 64, one of the two input terminals being the measurement potential input terminal 62 and the operational amplifier 65. Is connected to the input terminal of. The other one is a reference potential input terminal 61, which is one of the two output terminals.
Connected to one output terminal 64. The other output terminal 63 is connected to the output terminal of the operational amplifier 65. The output terminal of the potential difference detecting means 6 is also the output terminal of the potential measuring circuit.

【0008】この回路の動作を説明する。味覚センサ5
から電位差検出手段6の測定電位用入力端子62に測定電
位信号が入力され、参照電極1から電位差検出手段6の
基準電位用入力端子61に基準電位信号が入力される。電
位差検出手段6の2つの出力端子間には基準電位と測定
電位との電位差が出力される。
The operation of this circuit will be described. Taste sensor 5
The measurement potential signal is input to the measurement potential input terminal 62 of the potential difference detection means 6 from the reference electrode 1, and the reference potential signal is input from the reference electrode 1 to the reference potential input terminal 61 of the potential difference detection means 6. The potential difference between the reference potential and the measured potential is output between the two output terminals of the potential difference detection means 6.

【0009】[0009]

【発明が解決しようとする課題】以上、説明したよう
に、従来の電位測定回路は参照電極1をグランドに落と
し、グランドを基準とした電位を測定している。また、
多くの場合、バッファアンプ65を入れてハイインピーダ
ンスのセンサに対応できるようにしている。従来の電位
測定回路のような構成をとっていると、被測定溶液がこ
ぼれる等して、容器中の被測定溶液11とグランドとの間
で電流のリークがあると、参照電極1に電流が流れてし
まう。
As described above, the conventional potential measuring circuit drops the reference electrode 1 to the ground and measures the potential with reference to the ground. Also,
In many cases, a buffer amplifier 65 is provided so as to be compatible with a high impedance sensor. When the conventional potential measuring circuit is used, if the solution to be measured spills and there is a current leak between the solution to be measured 11 in the container and the ground, the current flows to the reference electrode 1. It will flow.

【0010】被測定溶液を一定の温度に保っての測定で
は、被測定溶液を収容した容器を循環水中に入れるタイ
プの恒温槽を用いることがあり、前記循環水がグランド
とつながっている場合が多く、特にリークの危険性が高
い。また、被測定溶液を容器にとらないで、工場のライ
ンの中で被測定溶液を測定する場合もリークの危険性が
高い。それ以外にも、一般的に、被測定溶液を収容した
容器は測定を安定に行うためにグランドに落とした導体
で覆ったりすることが多いので、リークの危険性をはら
んでいる。
In the measurement while keeping the solution to be measured at a constant temperature, there may be used a constant temperature bath of a type in which a container containing the solution to be measured is put in circulating water, and the circulating water may be connected to a ground. Many, especially the risk of leaks. Further, there is a high risk of leakage even when the solution to be measured is measured in a factory line without storing the solution to be measured in a container. In addition to this, in general, the container containing the solution to be measured is often covered with a conductor dropped to the ground in order to perform the measurement stably, so that there is a risk of leakage.

【0011】参照電極1に電流が流れると、参照電極内
で酸化還元の化学反応が起こり(電流の流れる向きによ
り酸化が起こるか還元が起こるかが決まる。)、参照電
極1で電位が変動する(参照電極1の接地されている出
力側と被測定溶液に接している側との間の電位差が変動
する。)。また、リークがなくなっても、すぐには元の
電位に戻らない。基準となる電位が不安定となるため、
測定結果に大きな誤差を生ずることとなる。
When a current flows through the reference electrode 1, a redox chemical reaction takes place in the reference electrode (whether oxidation or reduction occurs depending on the direction of the current flow), and the potential at the reference electrode 1 fluctuates. (The potential difference between the grounded output side of the reference electrode 1 and the side in contact with the solution to be measured fluctuates.). Moreover, even if the leak disappears, it does not return to the original potential immediately. Since the reference potential becomes unstable,
This will cause a large error in the measurement result.

【0012】この発明の目的は、前述の問題を解決し、
容器中の被測定溶液とグランドとの間で電流のリークが
あっても、参照電極に及ぼす影響が少ない(つまり、測
定誤差も小さい)電位測定回路を提供することである。
The object of the present invention is to solve the aforementioned problems,
An object of the present invention is to provide a potential measurement circuit that has a small influence on the reference electrode (that is, a measurement error is small) even if a current leaks between the measured solution in the container and the ground.

【0013】[0013]

【課題を解決するための手段】前記課題を解決するため
に、第1の発明の電位測定回路は、参照電極1をグラン
ドに落とすのではなく、ダミー電極2を設けて、被測定
溶液中に浸漬した前記ダミー電極2をグランドに落と
し、被測定溶液の電位を0ボルトとするようにしてい
る。すなわち、被測定溶液に浸漬された参照電極1と、
該参照電極1からの基準電位信号を入力する基準電位入
力端子41及び被測定溶液に浸漬されたセンサからの測定
電位信号を入力する測定電位入力端子42を有する電位差
演算手段4と、被測定溶液に浸漬され、かつ、接地され
たダミー電極2とを備えている。
In order to solve the above problems, in the potential measuring circuit of the first invention, the reference electrode 1 is not dropped to the ground, but a dummy electrode 2 is provided so that the reference electrode 1 is placed in the solution to be measured. The immersed dummy electrode 2 is dropped to the ground so that the potential of the measured solution is 0 volt. That is, the reference electrode 1 immersed in the solution to be measured,
Potential difference calculating means 4 having a reference potential input terminal 41 for inputting a reference potential signal from the reference electrode 1 and a measurement potential input terminal 42 for inputting a measurement potential signal from a sensor immersed in the solution to be measured, and a solution to be measured And a dummy electrode 2 that is grounded.

【0014】また、第2の発明の電位測定回路は、参照
電極1を直接グランドに落とすのではなく、抵抗3を介
して落とすこととしている。すなわち、被測定溶液に浸
漬された参照電極1と、該参照電極1からの基準電位信
号を入力する、抵抗3を介して接地された基準電位入力
端子41及び被測定溶液に浸漬されたセンサからの測定電
位信号を入力する測定電位入力端子42を有する電位差演
算手段4とを備えている。
In the potential measuring circuit according to the second aspect of the invention, the reference electrode 1 is not dropped directly to the ground, but is dropped via the resistor 3. That is, from the reference electrode 1 immersed in the solution to be measured, the reference potential input terminal 41 for inputting the reference potential signal from the reference electrode 1 and grounded via the resistor 3, and the sensor immersed in the solution to be measured. And a potential difference calculating means 4 having a measurement potential input terminal 42 for inputting the measurement potential signal.

【0015】[0015]

【作用】第1の発明の電位測定回路は、ダミー電極を設
けて、被測定溶液中に浸漬した前記ダミー電極をグラン
ドに落とすこととしているので、被測定溶液とグランド
との間でリークしても、ダミー電極には電流が流れるが
参照電極には流れない。リークした場合、ダミー電極で
は、電流が流れて化学変化が起こり、液電位とグランド
との間の電位差は変動する。しかし、この電位差はセン
サからの測定電位と参照電極からの基準電位の両方に含
まれるので、測定電位と基準電位との差をとることで打
ち消される。
In the potential measuring circuit according to the first aspect of the present invention, the dummy electrode is provided and the dummy electrode immersed in the solution to be measured is dropped to the ground. Therefore, a leak occurs between the solution to be measured and the ground. Also, current flows through the dummy electrode but not through the reference electrode. When a leak occurs, a current flows in the dummy electrode to cause a chemical change, and the potential difference between the liquid potential and the ground fluctuates. However, since this potential difference is included in both the measurement potential from the sensor and the reference potential from the reference electrode, it is canceled by taking the difference between the measurement potential and the reference potential.

【0016】また、第2の発明の電位測定回路は、参照
電極を直接グランドに落とすのではなく、抵抗を介して
落とすこととしているので、被測定溶液とグランドとの
間でリークしても、参照電極に流れる電流は前記抵抗に
よって制限される。
Further, in the potential measuring circuit of the second invention, the reference electrode is not dropped directly to the ground but is dropped via a resistor. Therefore, even if a leak occurs between the solution to be measured and the ground, The current flowing through the reference electrode is limited by the resistance.

【0017】[0017]

【実施例】以下、第1の発明及び第2の発明の実施例を
それぞれ図面に基づいて説明する。図1は第1の発明の
実施例(以下、第1の実施例という。)を示す概略構成
図である。第1の実施例の電位測定回路は、ダミー電極
2、基準となる電位を得るための参照電極1及び電位差
演算手段4から構成されている。前記参照電極1は電位
差演算手段4の基準電位用入力端子41に接続されてお
り、ダミー電極2はグランドに接続されている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the first invention and the second invention will be described below with reference to the drawings. FIG. 1 is a schematic configuration diagram showing an embodiment of the first invention (hereinafter referred to as the first embodiment). The potential measuring circuit of the first embodiment is composed of a dummy electrode 2, a reference electrode 1 for obtaining a reference potential, and a potential difference calculating means 4. The reference electrode 1 is connected to the reference potential input terminal 41 of the potential difference calculating means 4, and the dummy electrode 2 is connected to the ground.

【0018】電位差演算手段4の他の入力端子42は電位
測定回路の入力端子でもあり、被測定溶液の電位を検出
するセンサ、例えば、味覚センサ等が接続される。図1
は説明を簡単にするために1チャンネルの場合を示して
いる。この例では、電位差演算手段4は3つの演算増幅
器から構成されており、該電位差演算手段4の各入力端
子は第1及び第2の演算増幅器45,46に接続され、各演
算増幅器45,46の出力端子は第3の演算増幅器47の入力
端子にそれぞれ接続されている。該第3の演算増幅器47
の出力端子は電位差演算手段4の出力端子であり、か
つ、電位測定回路の出力端子でもある。
The other input terminal 42 of the potential difference calculating means 4 is also an input terminal of the potential measuring circuit, and is connected with a sensor for detecting the potential of the solution to be measured, such as a taste sensor. Figure 1
Shows the case of one channel for simplification of description. In this example, the potential difference calculating means 4 is composed of three operational amplifiers, and the input terminals of the potential difference calculating means 4 are connected to the first and second operational amplifiers 45 and 46, respectively. The output terminals of are connected to the input terminals of the third operational amplifier 47, respectively. The third operational amplifier 47
The output terminal of is the output terminal of the potential difference calculating means 4 and also the output terminal of the potential measuring circuit.

【0019】この回路の動作を説明する。味覚センサか
ら電位差演算手段の入力端子に測定電位信号が入力さ
れ、参照電極から電位差演算手段の基準電位用入力端子
に基準電位信号が入力される。各入力端子に入力された
測定電位信号と基準電位信号とから電位差演算手段でそ
の電位差が演算され出力端子から出力される。
The operation of this circuit will be described. The measured potential signal is input from the taste sensor to the input terminal of the potential difference calculating means, and the reference potential signal is input from the reference electrode to the reference potential input terminal of the potential difference calculating means. The potential difference calculation means calculates the potential difference from the measured potential signal and the reference potential signal input to each input terminal, and the potential difference is output from the output terminal.

【0020】この電位差演算手段は、味覚センサからの
測定電位と参照電極からの基準電位との電位差を演算す
ればよいのであるから、センサその他の条件により種々
の変形が考えられる。例えば、味覚センサがローインピ
ーダンスであり、第1及び第2の演算増幅器45,46を1
倍の増幅率とするのであれば、第2の演算増幅器46は取
り除いてもよい。また、この例はアナログで演算を行う
タイプの電位差演算手段であるが、第1及び第2の演算
増幅器45,46の出力をアナログ−デジタル変換器に入力
し、測定電位と基準電位とをデジタルに変換し、CPU
を用いてデジタルで演算を行うようにしてもよい。しか
し、どのような構成のものにするにしても、参照電極を
接続する入力端子と他の入力端子間及び各入力端子とグ
ランドとの間はハイインピーダンスにしておく必要があ
る。参照電極に電流を流さないためである。
Since the potential difference calculating means only has to calculate the potential difference between the measured potential from the taste sensor and the reference potential from the reference electrode, various modifications can be considered depending on the sensor and other conditions. For example, the taste sensor has a low impedance, and the first and second operational amplifiers 45 and 46 are
The second operational amplifier 46 may be removed if the amplification factor is doubled. Further, this example is a type of potential difference calculation means for performing calculation in analog, but the outputs of the first and second operational amplifiers 45 and 46 are input to the analog-digital converter, and the measured potential and the reference potential are digitalized. Converted to CPU
Alternatively, the calculation may be performed digitally. However, no matter what the configuration is, it is necessary to keep high impedance between the input terminal to which the reference electrode is connected and the other input terminals, and between each input terminal and the ground. This is because no current is applied to the reference electrode.

【0021】ここで、ダミー電極2について少しく付け
加えると、ダミー電極は参照電極1の電位と近い電位を
発生させる方が良い。なぜなら、電位差演算手段4で用
いられている演算増幅器等の直線性の良い部分を測定に
利用できる。一つの方法としては、参照電極と同じ電極
を用いてもよい。また、プラチナ(Pt)、金(A
u)、銀(Ag)の線等でもよい。プラチナ及び金は一
般に電位が不安定であるが、腐食しない。銀は塩素イオ
ンとの酸化還元反応があるため塩素イオンの濃度により
電位が変化するものの、塩素イオンの濃度が一定であれ
ば安定である。ダミー電極の電位は化学変化による変動
はせいぜい数100mVであり、被測定溶液の種類、濃
度により電位が変動しても、この電位は測定電位及び基
準電位にとってはコモンモードであり、センサ(測定電
位)と参照電極(基準電位)との差をとるため測定値に
は影響しない。ただし、電位差演算手段で用いられてい
る演算増幅器等のコモンモードのレンジを越えないこと
が必要である。
Here, adding a little to the dummy electrode 2, it is better that the dummy electrode generate a potential close to that of the reference electrode 1. This is because a portion having good linearity such as an operational amplifier used in the potential difference calculating means 4 can be used for measurement. As one method, the same electrode as the reference electrode may be used. Also, platinum (Pt), gold (A
u), a silver (Ag) line or the like may be used. Platinum and gold generally have unstable potentials but do not corrode. Since silver has an oxidation-reduction reaction with chloride ions, the potential changes depending on the chloride ion concentration, but it is stable if the chloride ion concentration is constant. The potential of the dummy electrode varies by several hundred mV at most due to chemical changes, and even if the potential varies depending on the type and concentration of the solution to be measured, this potential is a common mode for the measurement potential and the reference potential, and the sensor (measurement potential ) And the reference electrode (reference potential), the measured value is not affected. However, it is necessary not to exceed the range of the common mode of the operational amplifier used in the potential difference calculation means.

【0022】図2は第2の発明の実施例(以下、第2の
実施例という。)を示す概略構成図である。第2の実施
例の電位測定回路は、基準となる電位を得るための参照
電極1、電位差演算手段4及び抵抗3から構成されてい
る。前記参照電極は電位差演算手段の基準電位用入力端
子に接続されており、かつ、前記抵抗を介してグランド
に接続されている。電位差演算手段の他の入力端子は電
位測定回路の入力端子でもあり、被測定溶液の電位を検
出するセンサ、例えば、味覚センサ等が接続される。図
2は説明を簡単にするために1チャンネルの場合を示し
ている。この例では、電位差演算手段は3つの演算増幅
器から構成されており、該電位差演算手段の各入力端子
は第1及び第2の演算増幅器45,46に接続され、各演算
増幅器45,46の出力端子は第3の演算増幅器47の入力端
子にそれぞれ接続されている。該第3の演算増幅器の出
力端子は電位差演算手段の出力端子であり、かつ、電位
測定回路の出力端子でもある。
FIG. 2 is a schematic configuration diagram showing an embodiment of the second invention (hereinafter referred to as the second embodiment). The potential measuring circuit of the second embodiment comprises a reference electrode 1 for obtaining a reference potential, a potential difference calculating means 4 and a resistor 3. The reference electrode is connected to the reference potential input terminal of the potential difference calculating means, and is also connected to the ground via the resistor. The other input terminal of the potential difference calculating means is also an input terminal of the potential measuring circuit, and is connected with a sensor for detecting the potential of the solution to be measured, such as a taste sensor. FIG. 2 shows the case of one channel for the sake of simplicity. In this example, the potential difference calculating means is composed of three operational amplifiers, and the respective input terminals of the potential difference calculating means are connected to the first and second operational amplifiers 45 and 46, and the outputs of the respective operational amplifiers 45 and 46. The terminals are connected to the input terminals of the third operational amplifier 47, respectively. The output terminal of the third operational amplifier is the output terminal of the potential difference calculating means and also the output terminal of the potential measuring circuit.

【0023】この回路の動作を説明する。味覚センサか
ら電位差演算手段の入力端子に測定電位が入力され、参
照電極から電位差演算手段の基準電位用入力端子に基準
電位が入力される。各入力端子に入力された測定電位と
基準電位とは電位差演算手段でその差が演算され出力端
子から出力される。
The operation of this circuit will be described. The measured potential is input from the taste sensor to the input terminal of the potential difference calculating means, and the reference potential is input from the reference electrode to the reference potential input terminal of the potential difference calculating means. The difference between the measured potential and the reference potential input to each input terminal is calculated by the potential difference calculation means and output from the output terminal.

【0024】この電位差演算手段は味覚センサからの測
定電位と参照電極からの基準電位との電位差を演算すれ
ばよいのであるから、センサその他の条件により種々の
変形が考えられること、しかし、どのような構成のもの
にするにしても、各入力端子間及び各入力端子とグラン
ドとの間はハイインピーダンスにしておく必要があるこ
と等は第1の実施例の場合と同様である。
Since this potential difference calculating means has only to calculate the potential difference between the measured potential from the taste sensor and the reference potential from the reference electrode, various modifications are conceivable depending on the sensor and other conditions. Even with such a structure, it is necessary to keep high impedance between the input terminals and between the input terminals and the ground, as in the case of the first embodiment.

【0025】ここで、抵抗の抵抗値について述べる。図
3は図2の電位測定回路において、被測定溶液とグラン
ドとの間にリークがあった場合の等価回路を示す。参照
電極の内部抵抗値をR0 、出力側と被測定溶液側との間
の電位差をV0 、味覚センサの内部抵抗値をR1 、出力
側と被測定溶液側との間の電位差をV1 、抵抗3の抵抗
値をR、第1及び第2の演算増幅器45,46の出力電圧を
それぞれE0 ,E1 、リークが生じたときの被測定溶液
とグランドとの間の抵抗値及び電位差をそれぞれr,
v、リークによって参照電極を流れる電流値をIとする
と式(1)及び式(2)の関係が成り立つ。 I=(V0 +v)/(R+R0 +r) …………… (1) E1 −E0 =V1 −V0 −IR0 …………… (2) 式(2)の“IR0 ”はリークによるシフト分であり、
測定誤差となる。“IR0 ”に式(1)を代入すると、 IR0 =(V0 +v)R0 /(R+R0 +r) …………… (3) となる。
Here, the resistance value of the resistor will be described. FIG. 3 shows an equivalent circuit in the potential measuring circuit of FIG. 2 when there is a leak between the measured solution and the ground. The internal resistance value of the reference electrode is R 0 , the potential difference between the output side and the measured solution side is V 0 , the internal resistance value of the taste sensor is R 1 , the potential difference between the output side and the measured solution side is V 0. 1 , the resistance value of the resistor 3 is R, the output voltages of the first and second operational amplifiers 45 and 46 are E 0 and E 1 , respectively, and the resistance value between the measured solution and the ground when a leak occurs and The potential difference is r,
The relations of the equations (1) and (2) are established, where v is the current value flowing through the reference electrode due to leakage. I = (V 0 + v) / (R + R 0 + r) (1) E 1 −E 0 = V 1 −V 0 −IR 0 ……… (2) “IR” in the formula (2) 0 ”is the shift due to leak,
It causes a measurement error. By substituting the equation (1) into "IR 0 ", IR 0 = (V 0 + v) R 0 / (R + R 0 + r) (3)

【0026】参照電極の内部抵抗値R0 は一般に低い。
例えば、AgCl(塩化銀)電極の場合、数100Ωか
ら数kΩである。リークが生じたときの被測定溶液とグ
ランドとの間の抵抗値rを最も条件の悪い場合であるr
=0Ωとし、参照電極の内部抵抗値R0 をR0 =1kΩ
とし、 抵抗の抵抗値RをR=10MΩとすれば、V0
vが1V(リークが液体同士で生じていると浸透圧差の
電位差が決まり最大でも200mV程度、導体を通して
リークした場合は酸化還元電位で最大でも1V程度であ
る。)あったとしても、誤差は0.1mVに抑えられ
る。従来の電位測定回路ではR=0Ωに相当するので、
他を同じ条件とすれば誤差は1Vになってしまう。
Internal resistance value R of the reference electrode0Is generally low.
For example, in the case of AgCl (silver chloride) electrode, several hundred Ω
From several kΩ. When a leak occurs, the solution to be measured and the
The resistance value r with the land is r, which is the worst case
= 0Ω, internal resistance value R of the reference electrode0R0= 1kΩ
age, If the resistance value R of the resistor is R = 10 MΩ, then V0+
v is 1 V (If the leak occurs between the liquids, the osmotic pressure difference
Potential difference is determined and maximum is about 200 mV through conductor
When leaking, the redox potential is about 1 V at maximum.
It Even if there is, the error is suppressed to 0.1 mV
It In the conventional potential measuring circuit, it corresponds to R = 0Ω,
If the other conditions are the same, the error becomes 1V.

【0027】発明者等の味覚センサを用いてのアジの測
定における経験から、誤差0.1mVがどのような意味
をもつかについて触れる。アジに差があることが認識で
きるウェーバー比は、一般の人で20%、プロのテイス
ターで5%である。プロのテイスターと同じウェーバー
比5%の感度に相当する味覚センサの出力の差は、酸味
・塩味で約1.0〜1.5mV、甘味・苦味で約0.2
〜0.5mVである。また、異なる角度から比較してみ
ると、例えば、ビールの品種を判別するためには誤差は
0.5mV程度であることが要求される。
From the experience of the inventors of the present invention in the measurement of horse mackerel using a taste sensor, the meaning of the error of 0.1 mV will be described. The Weber ratio that can be recognized to have a difference in horse mackerel is 20% for the general public and 5% for professional tasters. The difference in output of the taste sensor, which corresponds to the same 5% Weber ratio as a professional taster, is about 1.0 to 1.5 mV for sourness and saltiness, and about 0.2 for sweetness and bitterness.
~ 0.5 mV. Further, when compared from different angles, for example, in order to determine the type of beer, the error is required to be about 0.5 mV.

【0028】pH計の場合、pH=0.05の精度で測
定することもかなり難しいが、誤差0.1mVはpH=
0.0015に相当する。これらのことからリークがあ
ったとしても0.1mV程度であることの意味は大き
い。
In the case of a pH meter, it is quite difficult to measure with an accuracy of pH = 0.05, but an error of 0.1 mV is pH =
This corresponds to 0.0015. From these things, even if there is a leak, it is significant that it is about 0.1 mV.

【0029】[0029]

【発明の効果】第1の発明の電位測定回路は、ダミー電
極を設けて、被測定溶液中に浸漬した前記ダミー電極を
グランドに落とすこととしたから、被測定溶液とグラン
ドとの間でリークしても、ダミー電極には電流が流れる
が参照電極には流れない。リークした場合、ダミー電極
では、電流が流れて化学変化が起こり、液電位とグラン
ドとの間の電位差は変動する。しかし、この電位差はセ
ンサからの測定電位と参照電極からの基準電位の両方に
含まれるので、測定電位と基準電位との差をとれば打ち
消すことができる。
In the potential measuring circuit of the first invention, the dummy electrode is provided and the dummy electrode immersed in the solution to be measured is dropped to the ground. Therefore, there is a leak between the solution to be measured and the ground. However, current flows through the dummy electrode but not through the reference electrode. When a leak occurs, a current flows in the dummy electrode to cause a chemical change, and the potential difference between the liquid potential and the ground fluctuates. However, since this potential difference is included in both the measurement potential from the sensor and the reference potential from the reference electrode, it can be canceled by taking the difference between the measurement potential and the reference potential.

【0030】また、第2の発明の電位測定回路は、参照
電極を直接グランドに落とすのではなく、抵抗を介して
落とすこととしたから、被測定溶液とグランドとの間で
リークしてもる、参照電極に流れる電流は少なく、参照
電極に与えるダメージや測定値への影響は小さい。つま
り、第1の発明の電位測定回路及び第2の発明の電位測
定回路のいずれも、容器中の被測定溶液とグランドとの
間で電流のリークがあっても、参照電極に及ぼす影響が
少ない(つまり、測定誤差も小さい)電位測定回路であ
り、リークが起こりやすい、液体を被測定物として電位
を測定する装置に有用である。特に、参照電極はローイ
ンピーダンスであることが条件の1つであるため、本発
明の効果は大きい。
In the potential measuring circuit according to the second aspect of the invention, the reference electrode is not directly dropped to the ground but is dropped via a resistor, so that the leak may occur between the solution to be measured and the ground. The current flowing through the reference electrode is small, and the damage to the reference electrode and the influence on the measured value are small. That is, both the potential measuring circuit of the first invention and the potential measuring circuit of the second invention have little influence on the reference electrode even if there is a current leak between the measured solution in the container and the ground. This is a potential measurement circuit (that is, a measurement error is small), and is useful for an apparatus for measuring potential using a liquid as an object to be measured, in which leakage easily occurs. In particular, one of the conditions is that the reference electrode has low impedance, so that the effect of the present invention is great.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の第1の実施例を示す概略構成図。FIG. 1 is a schematic configuration diagram showing a first embodiment of the present invention.

【図2】この発明の第2の実施例を示す概略構成図。FIG. 2 is a schematic configuration diagram showing a second embodiment of the present invention.

【図3】この発明の第2の実施例の電位測定回路におい
て被測定溶液とグランドとの間にリークがあった場合の
等価回路を示す図。
FIG. 3 is a diagram showing an equivalent circuit in the case where there is a leak between a solution to be measured and a ground in the potential measuring circuit according to the second embodiment of the present invention.

【図4】従来の電位測定回路を示す図。FIG. 4 is a diagram showing a conventional potential measuring circuit.

【図5】味覚センサを示す図であり、(a) は正面図、
(b) は断面図。
FIG. 5 is a view showing a taste sensor, (a) is a front view,
(b) is a sectional view.

【図6】アジ測定装置を示す図。FIG. 6 is a diagram showing an horse mackerel measuring device.

【符号の説明】[Explanation of symbols]

1 参照電極 2 ダミー電極 3 抵抗 4 電位差演算手段 5 センサ 6 電位差検出手段 11 被測定溶液 12 容器 13 味覚センサアレイ 14 各々の脂質膜(黒点で示す) 15 参照電極 16 緩衝層 17 リード線 18 リード線 19 バッファ増幅器 20 アナログスイッチ 21 A/D変換器 22 マイクロコンピュータ 23 X−Yレコーダ 24 接地電位 25 基材(基板) 26 電極 27 脂質膜 28 緩衝層 29 リード線 30 ベース膜 DESCRIPTION OF SYMBOLS 1 reference electrode 2 dummy electrode 3 resistance 4 potential difference calculating means 5 sensor 6 potential difference detecting means 11 solution to be measured 12 container 13 taste sensor array 14 each lipid membrane (indicated by black dots) 15 reference electrode 16 buffer layer 17 lead wire 18 lead wire 19 Buffer amplifier 20 Analog switch 21 A / D converter 22 Microcomputer 23 XY recorder 24 Ground potential 25 Base material (substrate) 26 Electrode 27 Lipid membrane 28 Buffer layer 29 Lead wire 30 Base membrane

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 被測定溶液に浸漬された参照電極(1)
と、該参照電極からの基準電位信号を入力する基準電位
入力端子及び被測定溶液に浸漬されたセンサからの測定
電位信号を入力する測定電位入力端子を有する電位差演
算手段(4)と、被測定溶液に浸漬され、かつ、接地さ
れたダミー電極(2)とを備えた電位測定回路。
1. A reference electrode (1) immersed in a solution to be measured.
And a potential difference calculating means (4) having a reference potential input terminal for inputting a reference potential signal from the reference electrode and a measurement potential input terminal for inputting a measurement potential signal from a sensor immersed in a solution to be measured, and a measured potential difference A potential measuring circuit comprising a dummy electrode (2) immersed in a solution and grounded.
【請求項2】 被測定溶液に浸漬された参照電極(1)
と、該参照電極からの基準電位信号を入力する、抵抗
(3)を介して接地された基準電位入力端子及び被測定
溶液に浸漬されたセンサからの測定電位信号を入力する
測定電位入力端子を有する電位差演算手段(4)とを備
えた電位測定回路。
2. A reference electrode (1) immersed in a solution to be measured.
And a reference potential input terminal for inputting a reference potential signal from the reference electrode, which is grounded via a resistor (3), and a measurement potential input terminal for inputting a measurement potential signal from a sensor immersed in the solution to be measured. A potential measuring circuit comprising: a potential difference calculating means (4) having
JP34968792A 1992-12-02 1992-12-02 Potential measurement circuit Expired - Lifetime JP3390193B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34968792A JP3390193B2 (en) 1992-12-02 1992-12-02 Potential measurement circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34968792A JP3390193B2 (en) 1992-12-02 1992-12-02 Potential measurement circuit

Publications (2)

Publication Number Publication Date
JPH06174691A true JPH06174691A (en) 1994-06-24
JP3390193B2 JP3390193B2 (en) 2003-03-24

Family

ID=18405427

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34968792A Expired - Lifetime JP3390193B2 (en) 1992-12-02 1992-12-02 Potential measurement circuit

Country Status (1)

Country Link
JP (1) JP3390193B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011122765A2 (en) * 2010-03-31 2011-10-06 서울대학교 산학협력단 Reference potential adjustment device and a measuring device equipped with the same

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004045373A (en) 2002-05-21 2004-02-12 Tanita Corp Electrochemical sensor
KR101959533B1 (en) * 2018-11-06 2019-03-18 (주)신우에프에이 Metal type PH sensor for acid and alkali distinguishing

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011122765A2 (en) * 2010-03-31 2011-10-06 서울대학교 산학협력단 Reference potential adjustment device and a measuring device equipped with the same
WO2011122765A3 (en) * 2010-03-31 2011-12-29 서울대학교 산학협력단 Reference potential adjustment device and a measuring device equipped with the same
KR101287162B1 (en) * 2010-03-31 2013-07-17 서울대학교산학협력단 Reference potential controlling equipment and measuring device including the same

Also Published As

Publication number Publication date
JP3390193B2 (en) 2003-03-24

Similar Documents

Publication Publication Date Title
JP3143631B2 (en) Simultaneous detection of multiple different gas components
US9568450B2 (en) Measuring arrangement and method for registering an analyte concentration in a measured medium
US7323091B1 (en) Multimode electrochemical sensing array
JP3104247B2 (en) Electrochemical detector
US9279781B2 (en) Measuring arrangement and method for registering an analyte concentration in a measured medium
CN104422720B (en) Measuring device
JP4456303B2 (en) pH sensor
KR950019728A (en) Ion concentration measuring device and ion concentration measuring method
JP3361237B2 (en) Residual chlorine measuring method and apparatus and residual chlorine detecting probe
CN111108374A (en) PH sensor and calibration method for a PH sensor
US3839178A (en) Potentiometric oxygen sensor
JPS62130349A (en) Device for measuring concentration of substance in solution
US3357908A (en) Electrolytic sensor with water diffusion compensation
JPH06174691A (en) Voltage-measuring circuit
US6761817B2 (en) Smart determination of dissolved oxygen probe operating bias
US9588075B2 (en) Sensor for detecting hydrogen ions in an aqueous solution
US5736029A (en) Amperometric dual-electrode sensors
JP3275865B2 (en) Chemical sensor
US4908105A (en) Flow-compensated electrochemical cell and method of analysis
US20040132204A1 (en) Portable pH detector
JP2004125668A (en) Oxidation-reduction potential measuring instrument
Hendrikse et al. The EMOSFET as a potentiometric transducer in an oxygen sensor
JP2586983Y2 (en) Combination-type effective chlorine countermeasure free reagent-free chlorine analyzer
US20230249179A1 (en) Testing implement and measuring device
JP4322555B2 (en) Residual chlorine concentration measuring method and residual chlorine concentration measuring device

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090117

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100117

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110117

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120117

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130117

Year of fee payment: 10

EXPY Cancellation because of completion of term