JP4880287B2 - Manufacturing method of conductive material - Google Patents

Manufacturing method of conductive material Download PDF

Info

Publication number
JP4880287B2
JP4880287B2 JP2005323512A JP2005323512A JP4880287B2 JP 4880287 B2 JP4880287 B2 JP 4880287B2 JP 2005323512 A JP2005323512 A JP 2005323512A JP 2005323512 A JP2005323512 A JP 2005323512A JP 4880287 B2 JP4880287 B2 JP 4880287B2
Authority
JP
Japan
Prior art keywords
silver
silver halide
developer
conductive material
halide emulsion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005323512A
Other languages
Japanese (ja)
Other versions
JP2007134068A (en
Inventor
和久 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujimori Kogyo Co Ltd
Mitsubishi Paper Mills Ltd
Original Assignee
Fujimori Kogyo Co Ltd
Mitsubishi Paper Mills Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujimori Kogyo Co Ltd, Mitsubishi Paper Mills Ltd filed Critical Fujimori Kogyo Co Ltd
Priority to JP2005323512A priority Critical patent/JP4880287B2/en
Publication of JP2007134068A publication Critical patent/JP2007134068A/en
Application granted granted Critical
Publication of JP4880287B2 publication Critical patent/JP4880287B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、電子回路、アンテナ回路、電磁波シールド材、タッチパネル等の用途に用いることができる導電性材料、特に金属部と光透過部を有する透明導電性材料の製造方法に関するものである。   The present invention relates to a conductive material that can be used for applications such as an electronic circuit, an antenna circuit, an electromagnetic wave shielding material, and a touch panel, and more particularly to a method for producing a transparent conductive material having a metal part and a light transmission part.

従来、透明性と導電性を兼ね備えた材料は、電磁波シールド材やタッチパネルの用途等に用いられており、その材料の1つの製造方法として、銀、銅、ニッケル、インジウム等の導電性金属をスパッタリング法、イオンプレーティング法、イオンビームアシスト法、真空蒸着法、湿式塗工法によって透明樹脂フィルム上に金属薄膜を形成させる方法が用いられてきた。しかしこの方法では工法が極めて複雑となり、高コストで生産性が悪いという問題が発生していた。さらに透明度を維持しつつ導電性を向上させるのには限界があり、また導電性のパタンを形成させるためには、さらにエッチング等の処理を行う必要があり不向きである。   Conventionally, materials having both transparency and conductivity have been used for electromagnetic shielding materials and touch panel applications. As one method of producing such materials, conductive metals such as silver, copper, nickel, and indium are sputtered. A method of forming a metal thin film on a transparent resin film by a method, an ion plating method, an ion beam assist method, a vacuum deposition method, or a wet coating method has been used. However, in this method, the construction method is extremely complicated, and there is a problem that the cost is high and the productivity is poor. Further, there is a limit to improving the conductivity while maintaining the transparency, and in order to form a conductive pattern, it is necessary to perform a process such as etching, which is not suitable.

さらに、最近一般的になってきたプラズマディスプレイパネルなどから放出される電磁波は、周辺の電子機器への影響や人体への影響が大きく、遮蔽能力の向上と透明性の維持はさらに困難になってきている。このような応用に対して、特開平10−41682号公報に記載のように、銅箔を積層したフィルムから、フォトレジスト・エッチング法によりサブトラクティブに格子パタンを作成することにより、導電性と透明性の両立を図る方法が知られている。この方法によれば格子パタンのみならず、様々な導電性パタンに対応することも可能である。しかしながらこの方法は、透明フィルムと銅箔の積層から始まり、最後の導電性パタンを得るまでに多数の工程を経なければならず、さらにサブトラクティブ法であるがゆえ、透明性の高いフィルムを得る場合、ほとんどの金属が活用されずに溶出するなどの欠点を有していた。   Furthermore, electromagnetic waves emitted from plasma display panels, etc., which have become popular recently, have a great influence on surrounding electronic devices and the human body, making it difficult to improve shielding performance and maintain transparency. ing. For such applications, as described in Japanese Patent Application Laid-Open No. 10-41682, by making a lattice pattern subtractively by a photoresist etching method from a film in which copper foil is laminated, conductivity and transparency are created. A method for achieving compatibility between sexes is known. According to this method, not only the lattice pattern but also various conductive patterns can be dealt with. However, this method starts from laminating a transparent film and copper foil, and has to go through a number of steps to obtain the final conductive pattern. Further, since it is a subtractive method, a highly transparent film is obtained. In such a case, there was a drawback that most of the metal eluted without being utilized.

このような事情から、生産性の高い方法で、かつアディティブに導電性パタンを形成させる方法が求められてきた。ハロゲン化銀写真感光材料は解像力が高く、画像が金属銀であることから、このような応用に対して有力な候補と期待され、例えば国際公開特許WO01/51276号公報(特許文献1)では銀塩写真感光材料を像露光、現像処理した後、金属めっき処理を施すことで透明導電性材料を製造する方法の提案がなされている。しかしながら具体的に実施するにあたり、市販のハロゲン化銀写真感光材料を用いた場合、めっきの触媒となる銀画像は、親水性バインダー中に埋没しており、めっき液との接触が容易でないことや、汚染による触媒活性の低下により、金属めっき処理が困難であり、既存の方法に対する優位性を得るに至らなかった。   Under such circumstances, there has been a demand for a method of forming conductive patterns additively by a highly productive method. Since the silver halide photographic light-sensitive material has a high resolving power and the image is metallic silver, it is expected to be a promising candidate for such an application. A proposal has been made for a method for producing a transparent conductive material by subjecting a salt photographic light-sensitive material to image exposure and development, followed by metal plating. However, in concrete implementation, when a commercially available silver halide photographic light-sensitive material is used, the silver image serving as a plating catalyst is buried in a hydrophilic binder, and contact with the plating solution is not easy. However, due to a decrease in catalytic activity due to contamination, metal plating treatment is difficult, and it has not been possible to obtain an advantage over existing methods.

一方、特開2004−221564号公報(特許文献2)においては、特許文献1と同様に、物理現像やめっき処理により銀画像に外部から金属を供給することにより、導電性パタンを形成させるが、銀/ゼラチン体積比を高めることでそのめっきの効率が改善されることが開示されている。しかしながら同公報に開示されているような方法では外部からの金属の供給は必須であり、ハロゲン化銀感光材料中の銀のみでは、例えば電解めっきを行うための最低限の導電性を得るのも困難であった。
国際公開特許01/51276号パンフレット 特開2004−221564号公報
On the other hand, in Japanese Patent Application Laid-Open No. 2004-221564 (Patent Document 2), similarly to Patent Document 1, a conductive pattern is formed by supplying a metal to the silver image from the outside by physical development or plating treatment. It has been disclosed that increasing the silver / gelatin volume ratio improves the efficiency of the plating. However, in the method as disclosed in the publication, it is essential to supply metal from the outside. For example, only silver in the silver halide light-sensitive material can obtain the minimum conductivity for performing electroplating. It was difficult.
WO 01/51276 pamphlet JP 2004-221564 A

本発明の目的は、透明性と導電性が共に高い導電性材料を、高い生産性で得るための製造方法を提供することにある。   An object of the present invention is to provide a production method for obtaining a conductive material having high transparency and high conductivity with high productivity.

本発明の上記目的は、以下の手法を用いることによって達成された。
(1)支持体上に少なくとも1層のハロゲン化銀乳剤層を含有し、物理現像核層を有さない導電性材料前駆体を露光し、現像処理することにより導電性パタンを形成させる導電性材料の製造方法において、該前駆体を、露光部が最大到達濃度の90%に達する現像処理条件で、現像液1リットルあたり1平方メートル処理した際に、銀イオンが10ppm以上溶出する現像液で処理することを特徴とする導電性材料の製造方法。
(2)上記(1)に記載の方法で形成された導電性パタンをさらに金属めっきすることを特徴とする導電性材料の製造方法。
The above object of the present invention has been achieved by using the following method.
(1) Conductivity for forming a conductive pattern by exposing and developing a conductive material precursor containing at least one silver halide emulsion layer on a support and having no physical development nucleus layer In the material manufacturing method, the precursor is processed with a developer that elutes 10 ppm or more of silver ions when processed by 1 square meter per liter of the developer under the development processing conditions in which the exposed area reaches 90% of the maximum density. A method for producing a conductive material.
(2) A method for producing a conductive material, wherein the conductive pattern formed by the method described in (1) is further metal-plated.

本発明の透明導電性材料の製造方法により、透明性と導電性が共に高く、かつ生産性の良い導電性材料が得られるための製造方法を提供することができた。   According to the method for producing a transparent conductive material of the present invention, it was possible to provide a production method for obtaining a conductive material having both high transparency and high conductivity and good productivity.

本発明の導電性材料前駆体に用いられる透明支持体としては、例えばポリエチレンテレフタレート等のポリエステル樹脂、ジアセテート樹脂、トリアセテート樹脂、アクリル樹脂、ポリカーボネート樹脂、ポリ塩化ビニル、ポリイミド樹脂、セロハン、セルロイド等のプラスチック樹脂フィルム、ガラス板などが挙げられる。さらに本発明においては支持体上にハロゲン化銀写真乳剤層との接着性を向上させるための下引き層や帯電防止層などを必要に応じて設けることもできる   Examples of the transparent support used for the conductive material precursor of the present invention include polyester resins such as polyethylene terephthalate, diacetate resins, triacetate resins, acrylic resins, polycarbonate resins, polyvinyl chloride, polyimide resins, cellophane, and celluloid. A plastic resin film, a glass plate, etc. are mentioned. Further, in the present invention, an undercoat layer or an antistatic layer for improving the adhesiveness with the silver halide photographic emulsion layer can be provided on the support, if necessary.

本発明の導電性材料前駆体においては光センサーとしてハロゲン化銀乳剤層が支持体上に設けられる。ハロゲン化銀に関する銀塩写真フィルムや印画紙、印刷製版用フィルム、フォトマスク用エマルジョンマスク等で用いられる技術は、本発明においてもそのまま用いることもできる。   In the conductive material precursor of the present invention, a silver halide emulsion layer is provided on the support as an optical sensor. Techniques used in silver halide photographic films, photographic papers, printing plate-making films, emulsion masks for photomasks, etc. relating to silver halide can also be used as they are in the present invention.

本発明におけるハロゲン化銀に含有されるハロゲン化物は、塩化物、臭化物、ヨウ化物及びフッ化物のいずれであってもよく、これらを組み合わせでもよいが、塩化物比率が高い物の方が好ましい。ハロゲン化銀乳剤粒子の形成には、順混合、逆混合、同時混合等の、当業界では周知の方法が用いられる。なかでも同時混合法の1種で、粒子形成される液相中のpAgを一定に保ついわゆるコントロールドダブルジェット法を用いることが、粒径のそろったハロゲン化銀乳剤粒子が得られる点において好ましい。本発明においては、好ましいハロゲン化銀乳剤粒子の平均粒径は0.25μm以下、特に好ましくは0.05〜0.2μmである。   The halide contained in the silver halide in the present invention may be any of chloride, bromide, iodide and fluoride, and may be a combination thereof, but those having a high chloride ratio are preferred. For the formation of silver halide emulsion grains, methods well known in the art such as forward mixing, reverse mixing, and simultaneous mixing are used. Among them, it is preferable to use a so-called controlled double jet method, which is one of the simultaneous mixing methods and keeps the pAg in the liquid phase to be formed constant, from the viewpoint of obtaining silver halide emulsion grains having a uniform particle size. . In the present invention, the average grain size of preferable silver halide emulsion grains is 0.25 μm or less, particularly preferably 0.05 to 0.2 μm.

本発明におけるハロゲン化銀粒子の形状は特に限定されず、例えば、球状、立方体状、平板状(6角平板状、三角形平板状、4角形平板状など)、八面体状、14面体状など様々な形状であることができる。   The shape of the silver halide grains in the present invention is not particularly limited. For example, various shapes such as a spherical shape, a cubic shape, a flat plate shape (hexagonal flat plate shape, triangular flat plate shape, tetragonal flat plate shape, etc.), octahedral shape, and tetradecahedral shape are available. It can be a simple shape.

本発明におけるハロゲン化銀乳剤の製造においては、必要に応じてハロゲン化銀粒子の形成あるいは物理熟成の過程において、亜硫酸塩、鉛塩、タリウム塩、あるいはロジウム塩もしくはその錯塩、イリジウム塩もしくはその錯塩などVIII族金属元素の塩若しくはその錯塩を共存させても良い。また、種々の化学増感剤によって増感することができ、イオウ増感法、セレン増感法、貴金属増感法など当業界で一般的な方法を、単独、あるいは組み合わせて用いることができる。また本発明においてハロゲン化銀乳剤は必要に応じて色素増感することもできる。また本発明において、ハロゲン化銀乳剤は必ずしもネガ感光性でなくてもよく、必要に応じてポジ感光性を持つ直接反転乳剤としてもよい。   In the production of the silver halide emulsion in the present invention, a sulfite, a lead salt, a thallium salt, a rhodium salt or a complex salt thereof, an iridium salt or a complex salt thereof is formed in the process of forming silver halide grains or physical ripening as necessary. A group VIII metal element salt or a complex salt thereof may coexist. Further, it can be sensitized by various chemical sensitizers, and methods commonly used in the art such as sulfur sensitization method, selenium sensitization method and noble metal sensitization method can be used alone or in combination. In the present invention, the silver halide emulsion can be dye-sensitized as necessary. In the present invention, the silver halide emulsion does not necessarily have to be negative photosensitive, and may be a direct reversal emulsion having positive sensitivity if necessary.

本発明の導電性材料前駆体に設けられるハロゲン化銀乳剤の銀量としては、単独で十分な導電性を持たせるために、少なくとも2g/mは必要である。ただあまり多すぎると、長い現像時間を必要としたり、支持体に近い側のハロゲン化銀乳剤粒子の感光性が低下したりするなどの問題があるため、7g/m程度を上限とすべきである。より好ましい範囲は4〜6g/mである。 The silver amount of the silver halide emulsion provided in the conductive material precursor of the present invention is required to be at least 2 g / m 2 in order to give sufficient conductivity by itself. However, if it is too much, there is a problem that a long development time is required or the photosensitivity of the silver halide emulsion grains on the side close to the support is lowered. Therefore, the upper limit should be about 7 g / m 2. It is. A more preferable range is 4 to 6 g / m 2 .

本発明においてハロゲン化銀乳剤層には、水溶性ポリマーをバインダーとして含む。好ましいバインダーとしては、例えば、ゼラチン、ポリビニルアルコール(PVA)、ポリビニルピロリドン(PVP)、澱粉等の多糖類、セルロース及びその誘導体、ポリエチレンオキサイド、ポリビニルアミン、キトサン、ポリリジン、ポリアクリル酸、ポリアルギン酸、ポリヒアルロン酸、カルボキシセルロース等が挙げられる。   In the present invention, the silver halide emulsion layer contains a water-soluble polymer as a binder. Preferred binders include, for example, gelatin, polyvinyl alcohol (PVA), polyvinyl pyrrolidone (PVP), starch and other polysaccharides, cellulose and derivatives thereof, polyethylene oxide, polyvinylamine, chitosan, polylysine, polyacrylic acid, polyalginic acid, poly Examples include hyaluronic acid and carboxycellulose.

本発明においては、様々な目的のため上記水溶性ポリマーバインダーの他に疎水性ポリマーを併用してもよい。一般にこれらの疎水性ポリマーは水系分散物として使用され、各種モノマーの単独重合体や共重合体など公知のものを用いることができる。単独重合体としては酢酸ビニル、塩化ビニル、スチレン、メチルアクリレート、ブチルアクリレート、メタクリロニトリル、ブタジエン、イソプレンなどがあり、共重合体としてはエチレン・ブタジエン、スチレン・ブタジエン、スチレン・p−メトオキシスチレン、スチレン・酢酸ビニル、酢酸ビニル・塩化ビニル、酢酸ビニル・マレイン酸ジエチル、メチルメタクリレート・アクリロニトリル、メチルメタクリレート・ブタジエン、メチルメタクリレート・スチレン、メチルメタクリレート・酢酸ビニル、メチルメタクリレート・塩化ビニリデン、メチルアクリレート・アクリロニトリル、メチルアクリレート・ブタジエン、メチルアクリレート・スチレン、メチルアクリレート・酢酸ビニル、アクリル酸・ブチルアクリレート、メチルアクリレート・塩化ビニル、ブチルアクリレート・スチレン等がある。   In the present invention, a hydrophobic polymer may be used in combination with the water-soluble polymer binder for various purposes. Generally, these hydrophobic polymers are used as aqueous dispersions, and known ones such as homopolymers and copolymers of various monomers can be used. Homopolymers include vinyl acetate, vinyl chloride, styrene, methyl acrylate, butyl acrylate, methacrylonitrile, butadiene, and isoprene. Copolymers include ethylene / butadiene, styrene / butadiene, and styrene / p-methoxystyrene. , Styrene / vinyl acetate, vinyl acetate / vinyl chloride, vinyl acetate / diethyl maleate, methyl methacrylate / acrylonitrile, methyl methacrylate / butadiene, methyl methacrylate / styrene, methyl methacrylate / vinyl acetate, methyl methacrylate / vinylidene chloride, methyl acrylate / acrylonitrile , Methyl acrylate / butadiene, methyl acrylate / styrene, methyl acrylate / vinyl acetate, acrylic acid / butyl acrylate, methyl Acrylate-vinyl chloride, butyl acrylate-styrene and the like.

ハロゲン化銀乳剤層に含有する水溶性ポリマーと疎水性ポリマーバインダーの総量、すなわち総バインダー量については、バインダー量が少ないと塗布性に悪影響を及ぼし、また安定したハロゲン化銀粒子も得られなくなる。一方、多過ぎると導電性の低下や、無電解めっき性の低下がみられるようになる。好ましいハロゲン化銀(銀換算)と総バインダーとの重量比(銀/総バインダー)は1.2以上、より好ましくは1.5〜3.5である。   With respect to the total amount of water-soluble polymer and hydrophobic polymer binder contained in the silver halide emulsion layer, that is, the total amount of binder, if the amount of the binder is small, the coating property is adversely affected, and stable silver halide grains cannot be obtained. On the other hand, if the amount is too large, a decrease in conductivity and a decrease in electroless plating property are observed. The weight ratio (silver / total binder) of the preferred silver halide (in terms of silver) and the total binder is 1.2 or more, more preferably 1.5 to 3.5.

ハロゲン化銀乳剤層には、さらに種々の目的のために、公知の写真用添加剤を用いることができる。これらは、Research Disclosure Item 17643(1978年12月)および18716(1979年11月)308119(1989年12月)に記載、あるいは引用された文献に記載されている。   In the silver halide emulsion layer, known photographic additives can be used for various purposes. These are described in Research Disclosure Items 17643 (December 1978) and 18716 (November 1979) 308119 (December 1989) or cited.

本発明における導電性材料前駆体には必要に応じて支持体のハロゲン化銀乳剤層と反対面に裏塗層やハロゲン化銀乳剤層の上にオーバー層などを設けることができる。   If necessary, the conductive material precursor in the present invention may be provided with a backing layer or an overlayer on the silver halide emulsion layer on the opposite side of the support from the silver halide emulsion layer.

上記導電性材料前駆体を用い、透明導電性材料を作製するための方法は、例えば網目状パタンの銀薄膜の形成が挙げられる。この場合、ハロゲン化銀乳剤層は網目状パタンに露光されるが、露光方法として、網目状パタンの透過原稿とハロゲン化銀乳剤層を密着して露光する方法、あるいは各種レーザー光を用いて走査露光する方法等がある。上記したレーザー光で露光する方法においては、例えば400〜430nmに発振波長を有する青色半導体レーザー(バイオレットレーザーダイオードとも云う)を用いることができる。   Examples of a method for producing a transparent conductive material using the conductive material precursor include formation of a silver thin film having a mesh pattern. In this case, the silver halide emulsion layer is exposed in a reticulated pattern. As an exposure method, a method for exposing the retransmitted original of the reticulated pattern and the silver halide emulsion layer for exposure, or scanning using various laser beams. There are exposure methods. In the above-described method of exposing with laser light, for example, a blue semiconductor laser (also referred to as a violet laser diode) having an oscillation wavelength of 400 to 430 nm can be used.

導電性材料前駆体にはハロゲン化銀乳剤層の感光波長域に吸収極大を有する非増感性染料又は顔料を、画質向上のためのハレーション、あるいはイラジエーション防止剤として用いることは好ましい。ハレーション防止剤としてはハロゲン化銀乳剤層と支持体の間の下引き層やあるいは裏塗り層に含有させることができる。イラジエーション防止剤としては、ハロゲン化銀乳剤層に含有させるのがよい。添加量は、目的の効果が得られるのであれば広範囲に変化しうるが、たとえばハレーション防止剤として裏塗り層に含有させる場合、1平方メートル当たり、約20mg〜約1gの範囲が望ましく、好ましくは、極大吸収波長における光学濃度として、0.5以上である。   As the conductive material precursor, it is preferable to use a non-sensitizing dye or pigment having an absorption maximum in the photosensitive wavelength region of the silver halide emulsion layer as a halation for improving image quality or an irradiation prevention agent. The antihalation agent can be contained in the undercoat layer or the backcoat layer between the silver halide emulsion layer and the support. The irradiation inhibitor is preferably contained in the silver halide emulsion layer. The amount added can vary widely as long as the desired effect is obtained, but when it is contained in the backing layer as an antihalation agent, for example, the range of about 20 mg to about 1 g per square meter is desirable, The optical density at the maximum absorption wavelength is 0.5 or more.

本発明における、前駆体を、露光部が最大到達濃度の90%に達する現像処理条件で、1平方メートル/1リットル処理した場合、銀イオンを10ppm以上溶出させる現像液を用いるという状態は、使用する現像液中に銀イオンがある程度以上存在する、ということとは本質的に異なる。このような現像液中の銀イオンの存在は、特許文献2の12頁に記載のような「物理現像」において有効な技術であるが、本発明においては、画像の太りが生じるなど、外部から銀イオン供給する物理現像は、かえって目的を達成するのに不都合である。本発明においての銀の溶出は、露光部が最大到達濃度の90%に達するまで、つまり化学現像の進行の途中で溶出する銀であり、液中の銀イオンがほとんど存在しない新液状態であっても、本発明の条件を満たす現像液を用いる限り、本発明の実施形態であるといえる。   In the present invention, when the precursor is processed for 1 square meter / 1 liter under the development processing conditions where the exposed area reaches 90% of the maximum attained density, a state of using a developer that elutes 10 ppm or more of silver ions is used. This is essentially different from the presence of silver ions in the developer to some extent. The presence of silver ions in the developer is an effective technique in “physical development” as described on page 12 of Patent Document 2. However, in the present invention, the image is thickened from the outside. Physical development that supplies silver ions is rather inconvenient for achieving the purpose. The elution of silver in the present invention is a silver that is eluted until the exposed area reaches 90% of the maximum density, that is, in the course of chemical development, and is in a new liquid state in which almost no silver ions are present in the liquid. However, as long as a developer satisfying the conditions of the present invention is used, it can be said that this is an embodiment of the present invention.

本発明における現像液は、基本組成として現像主薬、保恒剤、アルカリ剤、カブリ防止剤からなる。現像主薬としては具体的にヒドロキノン、アスコルビン酸、p−アミノフェノール、p−フェニレンジアミン、フェニドン等が挙げられる。これらの一部は導電性材料前駆体に含有させてもよい。保恒剤としては、亜硫酸イオン、ヒドロキシルアミン、アスコルビン酸などがある。アルカリ剤は、現像主薬の還元性を発揮するために必要であり、現像液のpHを9以上、好ましくは10以上になるように添加される。また安定に塩基性を保つための、炭酸塩やリン酸塩のような緩衝剤も用いられる。さらに現像核を持たないハロゲン化銀粒子が還元されないように加えられるカブリ防止剤としては、臭化物イオン、ベンズイミダゾール、ベンゾトリアゾール、1−フェニル−5−メルカプトテトラゾールなどが挙げられる。   The developer in the present invention comprises a developing agent, a preservative, an alkali agent, and an antifoggant as a basic composition. Specific examples of the developing agent include hydroquinone, ascorbic acid, p-aminophenol, p-phenylenediamine, phenidone and the like. Some of these may be contained in the conductive material precursor. Examples of preservatives include sulfite ions, hydroxylamine, and ascorbic acid. The alkaline agent is necessary for exhibiting the reducing ability of the developing agent, and is added so that the pH of the developer is 9 or more, preferably 10 or more. In addition, a buffering agent such as carbonate or phosphate is also used in order to keep the basicity stably. Furthermore, examples of the antifoggant added so that silver halide grains having no development nucleus are not reduced include bromide ions, benzimidazole, benzotriazole, 1-phenyl-5-mercaptotetrazole and the like.

本発明では、該前駆体を、露光部が最大到達濃度の90%に達する現像処理条件で、現像液1リットルあたり1平方メートル処理した際に、銀イオンが10ppm以上溶出する現像液であることを特徴とする。一般にハロゲン化銀は難溶性であるが、ゼロではない溶解度を持ち、ハロゲン化物組成も、塩化物の比率が上がると溶解性は増す。また現像液中に多くの場合添加される亜硫酸塩や臭化カリウム濃度、pH、現像温度や時間といった現像条件が、銀イオンの溶出に影響を与える。具体的に銀イオンの溶出を高める方法としては、1)導電性材料前駆体のハロゲン化銀粒子の粒径を細かくする、あるいはハロゲン化物組成の塩化物比率を高める、2)一般的に現像液に添加される亜硫酸塩や可溶性ハロゲン化物塩などのハロゲン化銀溶解性のあるものを過剰に加える、3)現像液に可溶性銀錯塩形成剤を添加する、などが挙げられる。1)の方法では一般に感度が低下してしまうなど、実施にはある程度の限界があるため、本発明の条件を満足させるためには、2)、3)の方法をとることが好ましい。   In the present invention, the precursor is a developer that elutes 10 ppm or more of silver ions when processed by 1 square meter per liter of the developer under the development processing conditions in which the exposed area reaches 90% of the maximum density. Features. In general, silver halides are sparingly soluble, but have non-zero solubility, and the halide composition also increases in solubility as the chloride ratio increases. Further, development conditions such as sulfite, potassium bromide concentration, pH, development temperature and time which are often added to the developer affect the elution of silver ions. Specific methods for increasing the elution of silver ions include 1) increasing the grain size of the silver halide grains of the conductive material precursor or increasing the chloride ratio of the halide composition, and 2) generally developing solutions. 3) adding a soluble silver complex forming agent to the developing solution, and the like. Since the method 1) generally has a certain limit in performance, such as a decrease in sensitivity, the methods 2) and 3) are preferably used in order to satisfy the conditions of the present invention.

可溶性銀錯塩形成剤としては。具体的にはチオ硫酸アンモニウムやチオ硫酸ナトリウムのようなチオ硫酸塩、チオシアン酸ナトリウムやチオシアン酸アンモニウムのようなチオシアン酸塩、亜硫酸ナトリウムや亜硫酸水素カリウムのような亜硫酸塩、1,10−ジチアー18−クラウン−6、2,2’−チオジエタノールなどのチオエーテル類、オキサドリドン類、2−メルカプト安息香酸及びその誘導体、ウラシルのような環状イミド類、アルカノールアミン、ジアミン、特開平9−171257号公報に記載のメソイオン性化合物、5,5−ジアルキルヒダントイン類、アルキルスルホン類、他に「ザ・セオリー・オブ・ザ・フォトグラフィック・プロセス4版」(T.H.ジェームス編、1977年)の474〜475項に記載されている化合物が挙げられる。   As a soluble silver complex forming agent. Specifically, thiosulfates such as ammonium thiosulfate and sodium thiosulfate, thiocyanates such as sodium thiocyanate and ammonium thiocyanate, sulfites such as sodium sulfite and potassium hydrogen sulfite, 1,10-dithia 18- Thioethers such as crown-6, 2,2'-thiodiethanol, oxadoridones, 2-mercaptobenzoic acid and derivatives thereof, cyclic imides such as uracil, alkanolamines, diamines, described in JP-A-9-171257 Mesoionic compounds, 5,5-dialkylhydantoins, alkylsulfones, and others, 474-475 of "The Theory of the Photographic Process 4th Edition" (TH James, 1977). And compounds described in the section.

これらの可溶性銀錯塩形成剤の中で特にアルカノールアミンが好ましい。アルカノールアミンとしては、例えば2−(2−アミノエチルアミノ)エタノール、ジエタノールアミン、N−メチルエタノールアミン、トリエタノールアミン、N−エチルジエタノールアミン、ジイソプロパノールアミン、エタノールアミン、4−アミノブタノール、N,N−ジメチルエタノールアミン、3−アミノプロパノール、N,N−エチル−2,2’−イミノジエタノール、2−メチルアミノエタノール、2−アミノ−2−メチル−1−プロパノール等が挙げられる。   Of these soluble silver complex salt forming agents, alkanolamines are particularly preferred. Examples of the alkanolamine include 2- (2-aminoethylamino) ethanol, diethanolamine, N-methylethanolamine, triethanolamine, N-ethyldiethanolamine, diisopropanolamine, ethanolamine, 4-aminobutanol, N, N- Examples include dimethylethanolamine, 3-aminopropanol, N, N-ethyl-2,2′-iminodiethanol, 2-methylaminoethanol, 2-amino-2-methyl-1-propanol and the like.

これらの可溶性銀錯塩形成剤は単独で、または複数組み合わせて使用することができる。また可溶性銀錯塩形成剤の使用量としては前駆体から1平方メートル/1リットル処理で、銀イオンを10ppm以上溶出させるために必要な量が選ばれるが、あまり量が多いと、十分な現像進行を妨げてしまうため、好ましくは10ppm以上100ppm以下の溶出銀量となるように選ばれる。現像処理温度は通常15℃から45℃の間で選ばれるが、より好ましくは25℃〜40℃である。本発明は、露光部が最大到達濃度の90%に達する条件で、を現像液1リットルあたり1平方メートル処理した際に溶出した銀イオンを定量することにより特定される。これは、現像の進行に従い写真特性曲線の高露光側の最大濃度が上昇し、やがてそれ以上はいくら現像を継続しても頭打ちとなるが、それがここでいう最大到達濃度であり、その濃度を対数で表した場合の90%(たとえば最大到達濃度が3.0の場合、最大濃度が2.7)、に達する現像条件で前駆体を1平方メートル/1リットル現像処理し、現像液中の銀イオンを定量することにより特定される。定量方法としては、滴定法、蛍光エックス線分析法、原子吸光分光法など公知の方法を用いることができる。   These soluble silver complex salt forming agents can be used alone or in combination. The amount of the soluble silver complex forming agent used is 1 square meter / liter processing from the precursor, and the amount necessary for eluting silver ions of 10 ppm or more is selected. Therefore, it is preferably selected so that the amount of the eluted silver is 10 ppm or more and 100 ppm or less. The development processing temperature is usually selected between 15 ° C and 45 ° C, more preferably 25 ° C to 40 ° C. The present invention is specified by quantifying the silver ions eluted when the exposed area reaches 90% of the maximum attainable density and processed for 1 square meter per liter of the developer. This is because the maximum density on the high-exposure side of the photographic characteristic curve increases as the development progresses, and eventually reaches the peak even if the development is continued, but this is the maximum reached density here. The precursor is developed at 1 square meter / 1 liter under development conditions that reach 90% of the logarithm expressed in logarithm (for example, when the maximum density is 3.0, the maximum density is 2.7). It is specified by quantifying silver ions. As the quantification method, a known method such as titration method, X-ray fluorescence analysis method, atomic absorption spectroscopy method or the like can be used.

本発明において、未現像のハロゲン化銀乳剤を溶解除去するために、ハロゲン化銀溶剤を含む定着液で処理することは好ましい。その場合、現像処理を終えた前駆体は、定着処理の前に停止処理を行ってもよい。これには薄い酢酸溶液のような酸性溶液が用いられる。   In the present invention, in order to dissolve and remove the undeveloped silver halide emulsion, it is preferable to treat with a fixing solution containing a silver halide solvent. In that case, the precursor that has undergone the development process may be subjected to a stop process before the fixing process. For this, an acidic solution such as a thin acetic acid solution is used.

定着液としてはハロゲン化銀溶剤としてチオ硫酸アンモニウム及びチオ硫酸ナトリウムのようなチオ硫酸塩が一般的に用いられる。また既述の可溶性銀錯塩形成剤も単独、あるいはチオ硫酸塩と併用して用いることができる。その他、保恒剤として亜硫酸塩、重亜硫酸塩、pH緩衝剤として酢酸、硼酸アミン、リン酸塩などを含むことができる。また、硬膜剤として水溶性アルミニウム(例えば硫酸アルミニウム、塩化アルミニウム、カリ明ばん等)、アルミニウムの沈殿防止剤として二塩基酸(例えば、酒石酸、酒石酸カリウム、酒石酸ナトリウム、クエン酸ナトリウム、クエン酸リチウム、クエン酸カリウム等)も含有させることができる。定着処理温度は通常15℃から45℃の間で選ばれるが、より好ましくは25℃〜40℃である。   As the fixer, thiosulfates such as ammonium thiosulfate and sodium thiosulfate are generally used as a silver halide solvent. In addition, the aforementioned soluble silver complex salt forming agent can be used alone or in combination with thiosulfate. In addition, sulfites and bisulfites can be included as preservatives, and acetic acid, amine borate, phosphates and the like as pH buffers. In addition, water-soluble aluminum (for example, aluminum sulfate, aluminum chloride, potassium alum) as a hardening agent, dibasic acid (for example, tartaric acid, potassium tartrate, sodium tartrate, sodium citrate, lithium citrate) as an aluminum precipitation inhibitor , Potassium citrate and the like). The fixing processing temperature is usually selected between 15 ° C. and 45 ° C., more preferably 25 ° C. to 40 ° C.

本発明では、前記露光及び現像処理により形成された現像銀部の導電性を高める目的で、金属めっき処理をおこなってもよい。どの程度導電性を高めるかは用途に応じて異なるが、例えばPDP用に用いる電磁波シールド材として用いるためには、50%以上の透明性を確保しつつ、シート抵抗値0.5Ω/□以下、好ましくは0.1Ω/□以下が要求されている。   In the present invention, metal plating may be performed for the purpose of enhancing the conductivity of the developed silver portion formed by the exposure and development processing. How much the conductivity is increased depends on the application, but for use as an electromagnetic shielding material used for PDP, for example, while ensuring a transparency of 50% or more, a sheet resistance value of 0.5Ω / □ or less, Preferably 0.1 Ω / □ or less is required.

本発明において、めっき処理は、無電解めっき(化学還元めっきや置換めっき)および/または、電解めっきを用いることができるが、本発明の目的である、生産性の高い導電性材料の製造方法を得るためには直接に電解めっきを行うことが好ましい。電解めっき法としては例えば「めっき技術ガイドブック」(東京鍍金材料協同組合技術委員会編、1987年)p.75〜112に記載の硫酸銅めっきやピロリン酸銅めっき、p.127〜180に記載のワット浴ニッケルめっきやスルファミン酸浴ニッケルめっきを行うことが好ましい。   In the present invention, electroless plating (chemical reduction plating or displacement plating) and / or electrolytic plating can be used for the plating treatment, but the production method of a highly productive conductive material, which is an object of the present invention, is used. In order to obtain it, it is preferable to perform electrolytic plating directly. Examples of the electroplating method include “Plating Technology Guidebook” (edited by the Technical Committee of Tokyo Sheet Metal Cooperative Association, 1987) p. 75-112 copper sulfate plating or copper pyrophosphate plating, p. It is preferable to perform Watt bath nickel plating or sulfamic acid bath nickel plating described in 127 to 180.

以下実施例によって本発明を更に詳しく説明するが、本発明はこの実施例に限定されるものではない。   Hereinafter, the present invention will be described in more detail by way of examples. However, the present invention is not limited to these examples.

(実施例1)
0.15g/mのゼラチン下引き層を有する厚さ100ミクロンのポリエチレンテレフタレートフィルムに、下記組成の裏塗り層を塗布した。
<裏塗り層組成/1mあたり>
ゼラチン 2g
不定形シリカマット剤(平均粒径5μm) 20mg
染料1 200mg
界面活性剤(S−1) 400mg
1,3−ジビニルスルホニル−2−プロパノール 40mg
Example 1
A backing layer having the following composition was applied to a 100-micron-thick polyethylene terephthalate film having a gelatin subbing layer of 0.15 g / m 2 .
<Undercoat layer composition / per 1 m 2 >
2g of gelatin
Amorphous silica matting agent (average particle size 5μm) 20mg
Dye 1 200mg
Surfactant (S-1) 400mg
1,3-divinylsulfonyl-2-propanol 40mg

Figure 0004880287
Figure 0004880287

続いて、下記組成のハロゲン化銀乳剤層を1mあたり銀4gとなるように、保護層を1mあたりゼラチン1gとなるように上記裏塗り層と反対の面に塗布した。下記のハロゲン化銀乳剤A〜Dは、一般的なコントロールドダブルジェット混合法で製造した。さらにこれらのハロゲン化銀乳剤を定法に従いチオ硫酸ナトリウムと塩化金酸を用い、最適に金イオウ増感した。こうして得られたハロゲン化銀乳剤は銀1gあたり0.3gのゼラチンを含む。 Subsequently, a silver halide emulsion layer having the following composition was coated on the surface opposite to the backing layer so that 4 g of silver per 1 m 2 and a protective layer 1 g of gelatin per 1 m 2 . The following silver halide emulsions A to D were prepared by a general controlled double jet mixing method. Further, these silver halide emulsions were optimally sensitized with gold sulfur using sodium thiosulfate and chloroauric acid according to a conventional method. The silver halide emulsion thus obtained contains 0.3 g of gelatin per gram of silver.

<ハロゲン化銀乳剤A>
塩化物95%、臭化物5%、粒径0.13ミクロン
<ハロゲン化銀乳剤B>
塩化物70%、臭化物30%、粒径0.10ミクロン
<ハロゲン化銀乳剤C>
塩化物20%、臭化物80%、粒径0.10ミクロン
<ハロゲン化銀乳剤D>
臭化物98%、ヨウ化物2%、粒径0.05ミクロン
<Silver halide emulsion A>
Chloride 95%, bromide 5%, grain size 0.13 micron <silver halide emulsion B>
70% chloride, 30% bromide, grain size 0.10 micron <silver halide emulsion C>
Chloride 20%, bromide 80%, grain size 0.10 micron <silver halide emulsion D>
98% bromide, 2% iodide, particle size 0.05 microns

<ハロゲン化銀乳剤層組成>
ゼラチン 30g
ハロゲン化銀乳剤 300g銀相当
1−フェニル−5−メルカプトテトラゾール 0.3g
界面活性剤(S−1) 3g
1,3−ジビニルスルホニル−2−プロパノール 1.5g
<Silver halide emulsion layer composition>
30g gelatin
Silver halide emulsion 300g equivalent to silver 1-phenyl-5-mercaptotetrazole 0.3g
Surfactant (S-1) 3g
1,3-divinylsulfonyl-2-propanol 1.5g

<保護層組成>
ゼラチン 100g
不定形シリカマット剤(平均粒径3.5μm) 1g
界面活性剤(S−1) 1g
界面活性剤(S−2) 10mg
<Protective layer composition>
100g gelatin
Amorphous silica matting agent (average particle size 3.5μm) 1g
Surfactant (S-1) 1g
Surfactant (S-2) 10mg

Figure 0004880287
Figure 0004880287

このようにして得た透明導電性フィルム前駆体を、ハロゲンランプを光源とする密着プリンターで、細線幅20μmで格子間隔300μmの網目パタンの透過ネガ原稿を密着させて露光し、続いて、表1に記載の組み合わせで下記の現像液A〜G中に30℃で30秒間浸漬した後、15秒間、1.5%酢酸水溶液で停止し、三菱製紙(株)製定着液CF−6001で35℃30秒定着した後、水洗乾燥して網目導電性銀パタンを形成させた。いずれの試料もほぼ同じ全光線透過率を示し、特に細線の細り、太りは見られなかった。   The transparent conductive film precursor thus obtained was exposed with a contact negative printer using a halogen lamp as a light source, and a transmission negative original having a mesh pattern with a fine line width of 20 μm and a lattice interval of 300 μm was brought into close contact, and subsequently exposed to Table 1. After being immersed in the following developers A to G at 30 ° C. for 30 seconds with the combination described in 1), the solution was stopped with a 1.5% aqueous acetic acid solution for 15 seconds, and 35 ° C. with a fixer CF-6001 manufactured by Mitsubishi Paper Industries Co. After fixing for 30 seconds, it was washed with water and dried to form a network conductive silver pattern. All the samples showed almost the same total light transmittance, and in particular, no thin line was thinned or thickened.

<現像液A>
亜硫酸ナトリウム 50g/L
ハイドロキノン 18g/L
1−フェニル−3−ピラゾリドン 0.7g/L
炭酸カリウム 30g/L
臭化カリウム 3g/L
水酸化ナトリウム pH=10.5となる量
<Developer A>
Sodium sulfite 50g / L
Hydroquinone 18g / L
1-phenyl-3-pyrazolidone 0.7 g / L
Potassium carbonate 30g / L
Potassium bromide 3g / L
Sodium hydroxide pH = 10.5

<現像液B>
亜硫酸ナトリウムの量を100g/Lとした以外は現像液Aと同じ現像液
<Developer B>
The same developer as Developer A except that the amount of sodium sulfite was changed to 100 g / L

<現像液C>
現像液Aに、3,6−ジチアー1,8−オクタンジオールを4g/L添加した現像液
<Developer C>
Developer with 4 g / L of 3,6-dithia 1,8-octanediol added to Developer A

<現像液D>
現像液Aに、2−(2−アミノエチルアミノ)エタノールを10g/L添加した現像液
<Developer D>
Developer with 10 g / L of 2- (2-aminoethylamino) ethanol added to Developer A

<現像液E>
現像液Aの亜硫酸ナトリウムの量を70g/Lとし、2−(2−アミノエチルアミノ)エタノールを5g/L添加した現像液
<Developer E>
Developer solution in which the amount of sodium sulfite in Developer A is 70 g / L and 2- (2-aminoethylamino) ethanol is added at 5 g / L

<現像液F>
現像液Aの亜硫酸ナトリウムの量を70g/Lとし、N−メチルエタノールアミンを4g/L添加した現像液
<Developer F>
Developer A in which the amount of sodium sulfite in Developer A is 70 g / L and 4 g / L of N-methylethanolamine is added

<現像液G>
特開2004−221564号公報の実施例1に記載(17頁)の現像液、具体的には下記の組成を持つものである。
ハイドロキノン 0.037mole/L
N−メチルアミノフェノール 0.016mole/L
メタホウ酸ナトリウム 0.140mole/L
水酸化ナトリウム 0.360mole/L
臭化ナトリウム 0.031mole/L
メタ重亜硫酸カリウム 0.187mole/L
<Developer G>
The developer described in Example 1 (page 17) of JP-A No. 2004-221564, specifically having the following composition.
Hydroquinone 0.037 mole / L
N-methylaminophenol 0.016 mole / L
Sodium metaborate 0.140 mole / L
Sodium hydroxide 0.360 mole / L
Sodium bromide 0.031 mole / L
Potassium metabisulfite 0.187 mole / L

こうして得られた網目導電性銀パタンのシート抵抗値を、(株)ダイアインスツルメンツ製、ロレスタ−GP/ESPプローブを用いて、JIS K 7194に従い測定し、結果を表1に記載した。一方銀イオンの溶出性は、まず光学ウエッジを通して上記の密着プリンター露光した試料を、時間を変えて30℃の現像液で現像処理し、最大濃度が最大到達濃度の90%に達する現像時間を見いだし、各々の未露光の試料を、現像液1リットルあたり1平方メートル、見いだした時間(表1に記載)で処理したのち、現像液中に溶出した銀イオン濃度を、原子吸光分光光度計(島津製作所製、AA−670)を用いて測定した。結果は同じく表1に記載した。   The sheet resistance value of the mesh conductive silver pattern thus obtained was measured according to JIS K 7194 using a Loresta-GP / ESP probe manufactured by Dia Instruments Co., Ltd., and the results are shown in Table 1. On the other hand, as for the elution of silver ions, first, the sample exposed to the above-mentioned close contact printer through an optical wedge is developed with a developer at 30 ° C. at different times, and the development time when the maximum density reaches 90% of the maximum density is found. Each unexposed sample was processed for 1 square meter per liter of developer at the time found (shown in Table 1), and then the silver ion concentration eluted in the developer was measured using an atomic absorption spectrophotometer (Shimadzu Corporation). Manufactured by AA-670). The results are also shown in Table 1.

Figure 0004880287
Figure 0004880287

表1の結果から、本発明の方法により、導電性と光透過性がともに高い透明導電性材料を容易に得ることが可能となった。   From the results of Table 1, it was possible to easily obtain a transparent conductive material having both high conductivity and light transmittance by the method of the present invention.

(実施例2)
実施例1と同じ組み合わせの透明導電性フィルム前駆体と現像液を用い、50cm四方で両端に幅1cmの給電部を有する、細線幅20μmで格子間隔300μmの大型銀格子網目パタンフィルムを準備した。この大型パタンフィルムに、下記の硫酸銅めっき液を用いて、銅の厚みが6ミクロンとなるようにめっきを行った。
<硫酸銅めっき液>
硫酸銅・5水和物 220g
硫酸 60g
1N塩酸 1.4ml
全量を水で1000ml
(Example 2)
Using a transparent conductive film precursor and a developer having the same combination as in Example 1, a large silver lattice network pattern film having a fine line width of 20 μm and a lattice spacing of 300 μm, having a power feeding part of 1 cm width at both ends in 50 cm square was prepared. This large pattern film was plated using the following copper sulfate plating solution so that the copper thickness would be 6 microns.
<Copper sulfate plating solution>
Copper sulfate pentahydrate 220g
60g of sulfuric acid
1N hydrochloric acid 1.4ml
Total volume 1000ml with water

このようにして得られためっき済み銀格子網目パタンフィルムのめっき状態を観察し、表2にまとめた。   The plated state of the plated silver lattice network pattern film thus obtained was observed and summarized in Table 2.

Figure 0004880287
Figure 0004880287

表2の結果から、本発明の方法で、電解めっきにより導電性がさらに高まった透明導電性材料を、容易に得ることが可能となった。   From the results in Table 2, it was possible to easily obtain a transparent conductive material whose conductivity was further increased by electrolytic plating by the method of the present invention.

Claims (2)

支持体上に少なくとも1層のハロゲン化銀乳剤層を含有し、物理現像核層を有さない導電性材料前駆体を露光し、現像処理することにより導電性パタンを形成させる導電性材料の製造方法において、該前駆体を、露光部が最大到達濃度の90%に達する現像処理条件で、現像液1リットルあたり1平方メートル処理した際に、銀イオンが10ppm以上溶出する現像液で処理することを特徴とする導電性材料の製造方法。 Production of a conductive material comprising a conductive material precursor containing at least one silver halide emulsion layer on a support and having a physical development nucleus layer exposed to light and developed to form a conductive pattern In the method, the precursor is treated with a developer that elutes 10 ppm or more of silver ions when processed at 1 square meter per liter of the developer under the development processing conditions in which the exposed area reaches 90% of the maximum concentration. A method for producing a conductive material. 請求項1に記載の方法で形成された導電性パタンをさらに金属めっきすることを特徴とする導電性材料の製造方法。   A method for producing a conductive material, further comprising metal plating the conductive pattern formed by the method according to claim 1.
JP2005323512A 2005-11-08 2005-11-08 Manufacturing method of conductive material Expired - Fee Related JP4880287B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005323512A JP4880287B2 (en) 2005-11-08 2005-11-08 Manufacturing method of conductive material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005323512A JP4880287B2 (en) 2005-11-08 2005-11-08 Manufacturing method of conductive material

Publications (2)

Publication Number Publication Date
JP2007134068A JP2007134068A (en) 2007-05-31
JP4880287B2 true JP4880287B2 (en) 2012-02-22

Family

ID=38155569

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005323512A Expired - Fee Related JP4880287B2 (en) 2005-11-08 2005-11-08 Manufacturing method of conductive material

Country Status (1)

Country Link
JP (1) JP4880287B2 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63261349A (en) * 1987-04-20 1988-10-28 Fuji Photo Film Co Ltd Silver halide photographic sensitive material
CN100346003C (en) * 2002-07-12 2007-10-31 藤森工业株式会社 Electromagnetic wave shield material and process for producing the same
JP4320161B2 (en) * 2002-11-22 2009-08-26 三菱製紙株式会社 Transparent conductive film precursor and method for producing transparent conductive film
JP2006269795A (en) * 2005-03-24 2006-10-05 Fuji Photo Film Co Ltd Translucent and conductive film, developing solution for formation thereof, translucent electromagnetic shield film, and manufacturing methods thereof

Also Published As

Publication number Publication date
JP2007134068A (en) 2007-05-31

Similar Documents

Publication Publication Date Title
JP5166697B2 (en) Manufacturing method of conductive material
JP4584100B2 (en) Conductive material and method for producing the same
JP2010043358A (en) Method for producing electromagnetic wave shield material
JP4255293B2 (en) Method for producing transparent conductive film
JP4320161B2 (en) Transparent conductive film precursor and method for producing transparent conductive film
US9405198B2 (en) Method for providing conductive silver film elements
JP4943673B2 (en) Manufacturing method of conductive material
TW201610609A (en) Silver halide solution physical developing solution and method of use
JP4880287B2 (en) Manufacturing method of conductive material
JP4512535B2 (en) Manufacturing method of conductive material
JP5144074B2 (en) Method for producing conductive substrate
JP4943947B2 (en) Conductive material and method for producing the same
JP4704757B2 (en) Processing method and processing apparatus for forming conductive pattern
JP4895554B2 (en) Manufacturing method of conductive material
JP4656835B2 (en) A method for producing a transparent conductive film.
JP2009245748A (en) Method of manufacturing conductive material
JP2008198388A (en) Manufacturing method of conductive material precursor
JP2007087625A (en) Method for manufacturing precursor of electrically conductive film
JP2014112127A (en) Method for manufacturing silver image pattern
JP4624896B2 (en) Conductive material precursor
JP2009185342A (en) Conductive material precursor, and conductive material
JP2007109863A (en) Conductive pattern forming method
JP6018389B2 (en) Manufacturing method of conductive material
JP5180622B2 (en) Conductive material precursor and conductive material
JP4656849B2 (en) A method for producing a transparent conductive film.

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080912

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110907

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110913

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110926

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111122

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111201

R150 Certificate of patent or registration of utility model

Ref document number: 4880287

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141209

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees