JP4876960B2 - Manufacturing equipment and manufacturing method for thick steel plate - Google Patents

Manufacturing equipment and manufacturing method for thick steel plate Download PDF

Info

Publication number
JP4876960B2
JP4876960B2 JP2007039127A JP2007039127A JP4876960B2 JP 4876960 B2 JP4876960 B2 JP 4876960B2 JP 2007039127 A JP2007039127 A JP 2007039127A JP 2007039127 A JP2007039127 A JP 2007039127A JP 4876960 B2 JP4876960 B2 JP 4876960B2
Authority
JP
Japan
Prior art keywords
cooling
steel plate
facility
thick steel
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007039127A
Other languages
Japanese (ja)
Other versions
JP2008200708A (en
Inventor
直樹 中田
高志 黒木
晃夫 藤林
昭博 奥野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2007039127A priority Critical patent/JP4876960B2/en
Publication of JP2008200708A publication Critical patent/JP2008200708A/en
Application granted granted Critical
Publication of JP4876960B2 publication Critical patent/JP4876960B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、厚鋼板の製造設備および製造方法に関するものである。   The present invention relates to a thick steel plate manufacturing facility and a manufacturing method.

近年、厚鋼板の熱間圧延においては、強度や靭性の優れた鋼板の製造が求められており、その一例として、圧延材に制御圧延(Controlled Rolling;CR)を施すことにより、優れた材質の厚鋼板を造り込んでいる。すなわち、1000℃以上に加熱したスラブを一旦所定の板厚まで圧延し、その後、圧延材の温度が未再結晶温度域やその温度域に近い温度域にある状態で仕上板厚まで圧延を行うものである。たとえば、厚さ200〜300mmのスラブを1100〜1200℃程度まで加熱後、仕上板厚の1.5〜2倍程度まで圧延し、その後、温度が未再結晶域である850℃以下になった時点で制御圧延を開始し、仕上板厚(たとえば15mm)まで圧延するというものである。   In recent years, in the hot rolling of thick steel plates, the production of steel plates with excellent strength and toughness has been demanded. As an example, by applying controlled rolling (CR) to the rolled material, an excellent material can be obtained. Made of thick steel plate. That is, a slab heated to 1000 ° C. or higher is once rolled to a predetermined thickness, and then rolled to a finished thickness in a state where the temperature of the rolled material is in a non-recrystallization temperature range or a temperature range close to that temperature range. Is. For example, after heating a slab having a thickness of 200 to 300 mm to about 1100 to 1200 ° C., the slab was rolled to about 1.5 to 2 times the finished plate thickness, and then the temperature became 850 ° C. or less which is an unrecrystallized region. Control rolling is started at the time, and rolling is performed to a finished sheet thickness (for example, 15 mm).

その際に、制御圧延を行う温度(制御圧延開始温度)が低くかつ制御圧延を行う板厚(制御圧延開始板厚)が厚い場合には、圧延材が制御圧延開始温度になるまでにかなりの時間を要するため、圧延機(可逆式圧延機)近傍の圧延ライン上で制御圧延開始温度になるまで圧延材を放冷状態で待機させていた。その結果、その冷却待ちによって圧延機に空き時間が発生し、圧延能率が低下するという問題が生じていた。   At that time, if the temperature at which controlled rolling is performed (controlled rolling start temperature) is low and the sheet thickness at which controlled rolling is performed (controlled rolling start plate thickness) is thick, a considerable amount of time is required until the rolled material reaches the controlled rolling start temperature. Since time is required, the rolled material is allowed to stand in a cool state until the controlled rolling start temperature is reached on the rolling line near the rolling mill (reversible rolling mill). As a result, there is a problem that idle time is generated in the rolling mill due to the cooling and the rolling efficiency is lowered.

このような冷却待ちによって圧延機に空き時間が発生し圧延能率が低下するのを解消するために、特許文献1や特許文献2では、冷却待ちが必要となった鋼板を圧延ライン外に設けた待機位置に移動させて冷却し、その冷却を行っている間は他の鋼板の圧延を行い、待機位置で冷却していた鋼板が所定の制御圧延開始温度になれば、待機位置から圧延ラインに戻して制御圧延を行うという技術が提案されている。   In order to eliminate the occurrence of idle time in the rolling mill due to such a waiting for cooling and a reduction in rolling efficiency, in Patent Document 1 and Patent Document 2, a steel sheet that needs to wait for cooling is provided outside the rolling line. The steel plate is moved to the standby position for cooling, and other steel plates are rolled while the cooling is being performed, and when the steel plate cooled at the standby position reaches a predetermined controlled rolling start temperature, the standby position is moved to the rolling line. There has been proposed a technique of returning and performing controlled rolling.

しかし、特許文献1、2に記載の技術においては、圧延ライン外に待機位置を設けるためのスペースや、鋼板を圧延ラインと待機位置の間で移動させるための手段が必要となり、大掛かりな設備になってしまうという問題がある。   However, in the techniques described in Patent Documents 1 and 2, a space for providing a standby position outside the rolling line and means for moving the steel plate between the rolling line and the standby position are required, which is a large facility. There is a problem of becoming.

これに対して、特許文献3等には、制御圧延を行うまでの冷却待ち時間を短くするために、圧延ラインにおいてシャワー冷却設備等によって鋼板を水冷して圧延を行うという技術が記載されている。   On the other hand, Patent Document 3 and the like describe a technique in which rolling is performed by water-cooling a steel sheet with a shower cooling facility or the like in a rolling line in order to shorten the cooling waiting time until performing controlled rolling. .

また、特許文献4には、厚鋼板の制御圧延ではないが、厚鋼板の直接焼入れ(ダイレクトクエンチ)などにおけるオンライン冷却技術として、厚鋼板を押えローラによって上下から拘束した状態でスリットジェットノズルにより水量密度を2m3/m2min以上として第1の冷却を行い、次いで上面冷却にパイプノズル、下面冷却にスプレーノズルを用いて、水量密度を0.7m3/m2min以上として第2の冷却を行う技術が記載されている。
特開昭53−146208号公報 特開昭60−180604号公報 特開昭55−106615号公報 特開昭61−153235号公報
In addition, Patent Document 4 discloses that although not controlled rolling of a thick steel plate, as an on-line cooling technique in direct quenching of a thick steel plate, the amount of water by a slit jet nozzle in a state where the thick steel plate is restrained from above and below by a press roller The first cooling is performed with a density of 2 m 3 / m 2 min or more, and then the second cooling with a water nozzle density of 0.7 m 3 / m 2 min or more using a pipe nozzle for upper surface cooling and a spray nozzle for lower surface cooling. Techniques for performing are described.
JP-A-53-146208 JP 60-180604 A JP-A-55-106615 JP-A-61-153235

前記の特許文献3に記載のように、圧延ラインにおいて鋼板を水冷して圧延を行う技術では、制御圧延開始温度が低くかつ制御圧延開始板厚が厚い場合は、圧延を中断してから制御圧延開始温度になるまでに、かなり長い時間水冷を行わなければならない。そのため、鋼板を通過させながら水冷する通過冷却式の場合、所定の水冷時間が得られるように、鋼板全体が冷却設備を通り抜けるようにしながら往復搬送させる必要があるが、鋼板の長さに比べて冷却設備の長さが短いと、鋼板自体は空冷されている時間の比率が大きくなり、あまり速く冷却されない。したがって、従来は、鋼板全体が収まるような長さの冷却設備によって、鋼板を停止またはオシレーションさせながら水冷を行う滞在冷却式の場合が多かったが、その際の水冷は、比較的低い水量密度のシャワー冷却などで行われており、必ずしも充分な冷却速度は得られていなかった。   As described in Patent Document 3, in the technique of rolling a steel sheet by water cooling in a rolling line, when the control rolling start temperature is low and the control rolling start plate thickness is thick, the rolling is interrupted before the control rolling. Water cooling must take place for a fairly long time before the starting temperature is reached. Therefore, in the case of the passing cooling type in which water cooling is performed while passing the steel plate, it is necessary to carry out reciprocating conveyance while allowing the entire steel plate to pass through the cooling facility so that a predetermined water cooling time is obtained, but compared to the length of the steel plate. When the length of the cooling equipment is short, the ratio of the time during which the steel sheet is air-cooled becomes large and is not cooled so quickly. Therefore, in the past, there were many cases of stay-cooling type in which water cooling was performed by stopping or oscillating the steel plate with a cooling facility long enough to fit the entire steel plate, but the water cooling at that time is a relatively low water density However, a sufficient cooling rate was not always obtained.

そこで、上記のシャワー冷却の水量密度を上げて、冷却速度を上昇させ、水冷時間を短縮して、生産性を向上させることが考えられるが、鋼板全体が収まるような長さの冷却設備で水量密度を上げると、冷却水を大量に増やす必要があり、送水ポンプや配管などの設備コストがかかるという問題がある。もちろん、冷却設備を短くすると、冷却設備よりも長い鋼板を停止またはオシレーションをさせながら均一に冷やすことができなくなる。   Therefore, it is conceivable to increase the water density of the shower cooling described above, increase the cooling rate, shorten the water cooling time, and improve the productivity. When the density is increased, it is necessary to increase the amount of cooling water in large quantities, and there is a problem that equipment costs such as a water pump and piping are required. Of course, if the cooling equipment is shortened, it becomes impossible to cool the steel plate longer than the cooling equipment uniformly while stopping or oscillating.

また、特許文献4に記載の技術を、制御圧延を行うための冷却待ち時間を短くするために用いることが考えられるが、それには、下記のような多くの問題がある。   Moreover, although it is possible to use the technique of patent document 4 in order to shorten the cooling waiting time for performing control rolling, there exist many problems as follows.

第1に、押えローラが必要であるので、設備コストが高いという問題がある。   First, since a press roller is necessary, there is a problem that the equipment cost is high.

第2に、直接焼入れの場合は圧延機から離れた所で行うので問題にならないが、特許文献4に記載の技術を圧延機近くに適用しようとした場合は、設備破損の危険性が極めて高いという問題がある。圧延で反った厚鋼板の先端が押えローラにぶつかった場合、後ろの部分がまだ圧延中であると、設備を破損させながら厚鋼板が搬送されてしまうという問題がある。圧延中でない、いわゆるフローティング材であれば、プロテクターなどである程度設備を保護することができるが、圧延中では圧延機のパワーによってプロテクターごと破損させてしまう。   Secondly, direct quenching is not a problem because it is performed away from the rolling mill, but when the technique described in Patent Document 4 is applied near the rolling mill, the risk of equipment damage is extremely high. There is a problem. When the tip of the thick steel plate warped by rolling hits the presser roller, there is a problem that if the rear portion is still rolling, the thick steel plate is conveyed while damaging the equipment. If it is what is called a floating material which is not under rolling, a protector etc. can protect an installation to some extent, However, During rolling, the whole protector will be damaged with the power of a rolling mill.

第3に、特許文献4に記載の技術では、厚鋼板の搬送が一方向であるのが前提となっているので、圧延機近くに適用して逆方向の搬送を行う際の冷却均一性が確保できない。第2の冷却装置から第1の冷却装置に搬送する時、第1の冷却装置内で先端部分に冷却水が供給されず、冷却不足になるという問題点がある。   Thirdly, the technique described in Patent Document 4 is based on the premise that the conveyance of the thick steel plate is in one direction, so that the cooling uniformity when the conveyance in the reverse direction is performed near the rolling mill is performed. It cannot be secured. When transported from the second cooling device to the first cooling device, there is a problem that the cooling water is not supplied to the tip portion in the first cooling device, resulting in insufficient cooling.

本発明は、上記のような事情に鑑みてなされたものであり、厚鋼板を制御圧延によって製造する場合等において、圧延材の冷却待ち時間を短縮でき、生産性を飛躍的に向上させることができる厚鋼板の製造設備および製造方法を提供することを目的とするものである。   The present invention has been made in view of the above circumstances, and in the case of manufacturing a thick steel plate by controlled rolling, the cooling waiting time of the rolled material can be shortened, and productivity can be dramatically improved. It aims at providing the manufacturing equipment and manufacturing method of a thick steel plate which can be performed.

上記課題を解決するために、本発明は以下の特徴を有する。   In order to solve the above problems, the present invention has the following features.

[1]加熱炉、可逆式圧延機、第1の冷却設備、第2の冷却設備の順に配置された厚鋼板の製造設備であって、
前記第1の冷却設備は、長さ0.5〜5mにわたって流量密度4m3/m2min以上の冷却水を厚鋼板の上下面に供給する設備であるとともに、その内、厚鋼板の上面に冷却水を供給する上面冷却装置は、厚鋼板上面に向けて斜めに冷却水を供給するノズルを搬送方向に複数列有して、搬送方向に互いに対向するように棒状冷却水を噴射する装置であり、
前記第2の冷却設備は、長さ15〜35mにわたって流量密度0.05〜1m3/m2minの冷却水を厚鋼板の上下面に供給する設備であることを特徴とする厚鋼板の製造設備。
[1] A steel plate manufacturing facility arranged in the order of a heating furnace, a reversible rolling mill, a first cooling facility, and a second cooling facility,
The first cooling facility is a facility for supplying cooling water having a flow rate density of 4 m 3 / m 2 min or more to the upper and lower surfaces of the thick steel plate over a length of 0.5 to 5 m, and among them, the upper surface of the thick steel plate. The upper surface cooling device for supplying cooling water is a device that has a plurality of nozzles for supplying cooling water obliquely toward the upper surface of the thick steel plate and injects rod-shaped cooling water so as to face each other in the conveying direction. Yes,
The second cooling facility is a facility for supplying cooling water having a flow density of 0.05 to 1 m 3 / m 2 min over the length of 15 to 35 m to the upper and lower surfaces of the thick steel plate. Facility.

[2]スラブを加熱し、可逆式圧延機で1パス以上の圧延を行った厚鋼板を、第1冷却設備内を通過させて第2冷却設備内に搬送し、第2冷却設備内で厚鋼板を停止またはオシレーションさせながら水冷を行い、次いで、第1冷却設備内を通過させて可逆式圧延機に搬送して1パス以上の圧延を行う厚鋼板の製造方法であって、
前記第1冷却設備内を通過する2回のうち少なくとも1回以上、厚鋼板を停止させることなく、長さ0.5〜5mにわたって流量密度4m3/m2min以上の冷却水を厚鋼板上下面に供給し、かつその厚鋼板上面の冷却は、厚鋼板上面に向けて斜めに対向するように棒状冷却水を噴射して行うものであり、
前記第2冷却設備での冷却は、長さ15〜35mにわたって流量密度0.05〜1m3/m2minの冷却水を鋼板上下面に供給して行うものであることを特徴とする厚鋼板の製造方法。
[2] The slab is heated, and the thick steel plate that has been rolled by one or more passes with a reversible rolling mill is passed through the first cooling facility and conveyed into the second cooling facility, and is thickened in the second cooling facility. Water cooling while stopping or oscillating the steel sheet, and then passing through the first cooling equipment and transporting to a reversible rolling mill to roll one pass or more,
Cooling water having a flow density of 4 m 3 / m 2 min or more over a length of 0.5 to 5 m without stopping the steel plate at least once out of the two times passing through the first cooling facility. Supplying to the lower surface, and cooling the upper surface of the thick steel plate is performed by injecting rod-shaped cooling water so as to face diagonally toward the upper surface of the thick steel plate,
Cooling in the second cooling facility is performed by supplying cooling water having a flow density of 0.05 to 1 m 3 / m 2 min over the length of 15 to 35 m to the upper and lower surfaces of the steel sheet. Manufacturing method.

[3]同一の冷却水配管から第1冷却設備と第2冷却設備に冷却水を供給できるようにし、第1冷却設備内での冷却と第2冷却設備内での冷却とを、冷却水の供給を切り替えて行うことを特徴とする前記[2]に記載の厚鋼板の製造方法。   [3] The cooling water can be supplied from the same cooling water pipe to the first cooling facility and the second cooling facility, and cooling in the first cooling facility and cooling in the second cooling facility are performed. The method for producing a thick steel plate according to [2], wherein the supply is switched.

[4]当該厚鋼板の圧延の最初のパスと最終パスとの間に、後続する厚鋼板の圧延を少なくとも1回以上行うことを特徴とする前記[2]または[3]に記載の厚鋼板の製造方法。   [4] The thick steel plate according to [2] or [3], wherein the subsequent thick steel plate is rolled at least once between a first pass and a final pass of the thick steel plate. Manufacturing method.

本発明を用いることにより、厚鋼板を制御圧延によって製造する場合等において、圧延材の冷却待ち時間を短縮でき、生産性を飛躍的に向上させることができる。   By using this invention, when manufacturing a thick steel plate by controlled rolling, the cooling waiting time of a rolling material can be shortened and productivity can be improved dramatically.

本発明の一実施形態を図面に基づいて説明する。   An embodiment of the present invention will be described with reference to the drawings.

図1は、本発明の一実施形態における厚鋼板の製造設備と、その製造設備を用いて厚鋼板を製造する際の搬送・冷却パターンの一例を表す図である。   FIG. 1 is a diagram illustrating an example of a steel plate manufacturing facility according to an embodiment of the present invention and a conveyance / cooling pattern when a steel plate is manufactured using the manufacturing facility.

この実施形態における厚鋼板の製造設備は、上流側から順に、加熱炉1、可逆式圧延機2、第1冷却設備3、第2冷却設備4を備えている。   The steel plate manufacturing facility in this embodiment includes a heating furnace 1, a reversible rolling mill 2, a first cooling facility 3, and a second cooling facility 4 in order from the upstream side.

そして、加熱炉1から抽出後、可逆式圧延機2にて所定の板厚まで圧延された厚鋼板(以下、単に鋼板ともいう)10は、第1冷却設備3に搬送されて、これを通過しながら水冷され、次いで、第2冷却設備4に搬送されて、ここで停止またはオシレーションされながら水冷された後、搬送を逆方向にして、再び第1冷却設備3に搬送され、これを通過しながら水冷される。   And after extracting from the heating furnace 1, the thick steel plate (henceforth only called a steel plate) 10 rolled to the predetermined plate thickness with the reversible rolling mill 2 is conveyed by the 1st cooling equipment 3, and passes this. Then, the water is cooled and then transported to the second cooling facility 4, and then stopped or oscillated while being water-cooled. Then, the transport is reversed and transported again to the first cooling facility 3 and passes therethrough. While cooling with water.

ここで、第1冷却設備3は、図2に示すような通過冷却式の冷却設備であり、鋼板10の上面に冷却水を供給する上面冷却装置が、鋼板上面に向けて斜めに棒状冷却水23を噴射する上ノズル22を搬送方向に6列ずつ有した上ヘッダ21を2個、搬送方向に互いに対向するように設置した冷却装置であるとともに、鋼板10の下面に冷却水を供給する下面冷却装置が、鋼板下面に向けて垂直に棒状冷却水33を噴射する下ノズル32を搬送方向に3列ずつ有した下ヘッダ31を、テーブルローラ13を挟んで2個設置した冷却装置となっている。   Here, the first cooling facility 3 is a through-cooling type cooling facility as shown in FIG. 2, and the upper surface cooling device that supplies the cooling water to the upper surface of the steel plate 10 has a rod-shaped cooling water obliquely toward the upper surface of the steel plate. 2 is a cooling device in which two upper headers 21 each having six upper nozzles 22 for jetting 23 are arranged in the conveying direction so as to face each other in the conveying direction, and a lower surface for supplying cooling water to the lower surface of the steel plate 10 The cooling device is a cooling device in which two lower headers 31 each having three rows of lower nozzles 32 for injecting the rod-shaped cooling water 33 vertically toward the lower surface of the steel plate in the conveying direction are disposed with the table roller 13 interposed therebetween. Yes.

このように、第1冷却設備3は、上面冷却装置が棒状冷却水23を搬送方向に互いに対向するように噴射するようになっているので、供給された冷却水自身が鋼板10上の滞留冷却水24を堰き止めて適切に水切りを行うようになり、均一で安定した冷却を行うことが可能になっている。   In this way, the first cooling equipment 3 is configured so that the upper surface cooling device injects the rod-shaped cooling water 23 so as to face each other in the transport direction, so that the supplied cooling water itself is the staying cooling on the steel plate 10. The water 24 is dammed up and drained appropriately, and uniform and stable cooling can be performed.

ちなみに、本発明の棒状冷却水とは、円形状(楕円や多角の形状も含む)のノズル噴出口から噴射される冷却水のことを指している。また、本発明の棒状冷却水は、スプレー状の噴流でなく、膜状のラミナーフローでなく、ノズル噴出口から鋼板に衝突するまでの水流の断面がほぼ円形に保たれ、連続性で直進性のある水流の冷却水をいう。   Incidentally, the rod-shaped cooling water of the present invention refers to cooling water that is injected from a circular (including elliptical or polygonal) nozzle outlet. In addition, the rod-shaped cooling water of the present invention is not a spray-like jet, but a film-like laminar flow, the cross section of the water flow from the nozzle outlet to the steel plate is maintained in a substantially circular shape, and is continuous and straight. Cooling water with a water flow.

なお、第1の冷却設備3は、可逆式圧延機2と第2冷却設備4の間にあればよく、望ましくは、可逆式圧延機2の直近もしくは第2冷却設備4近傍に設置するのがよい。ただし、第1の冷却設備3からは冷却水が板幅方向外側に流れ出るから、可逆式圧延機2のサイドガイドと同じ位置でない方がよく、また、圧延材の測定センサーの近くであると、板厚や温度などの測定ができなくなるから、測定センサー設置位置からはある程度離れた位置に設置すればよい。   In addition, the 1st cooling equipment 3 should just be between the reversible rolling mill 2 and the 2nd cooling equipment 4, It is desirable to install in the immediate vicinity of the reversible rolling mill 2, or the 2nd cooling equipment 4 vicinity. Good. However, since the cooling water flows out from the first cooling equipment 3 to the outside in the sheet width direction, it is better not to be at the same position as the side guide of the reversible rolling mill 2, and when it is near the measurement sensor of the rolled material, Since it becomes impossible to measure the plate thickness, temperature, etc., it should be installed at a position somewhat away from the measurement sensor installation position.

もし、第1冷却設備3が加熱炉1と可逆式圧延機2の間にあると、第2冷却設備4への搬送時間が長くなるので、生産性の向上効果が小さくなるのでよくない。また、第1冷却設備3が第2冷却設備4よりもさらに搬送方向下流側にあっても搬送時間が長くなるのでよくない。   If the first cooling facility 3 is between the heating furnace 1 and the reversible rolling mill 2, the transport time to the second cooling facility 4 becomes long, so the effect of improving productivity becomes small. Further, even if the first cooling facility 3 is further downstream in the transport direction than the second cooling facility 4, the transport time is not good.

そして、第1の冷却設備3は、通常、第2の冷却設備4と合わせて使用するので、短い冷却時間である程度の温度降下を得るために、多量の冷却水を供給する必要があり、流量密度は4m/mmin以上でなければならない。また、冷却水が鋼板に当たる冷却ゾーンの長さは0.5〜5mでなければならない。冷却ゾーンが長いとその分、多くの冷却水を必要とするため、設備コストがかかるとともに、第2の冷却設備4が可逆式圧延機2から遠くなり、鋼板の搬送時間が長くなるので、生産性向上効果が小さくなるからである。ここで、冷却ゾーンとは図2に示すように冷却水が最初に供給される地点から最後に供給される地点の距離のことである。 And since the 1st cooling equipment 3 is normally used together with the 2nd cooling equipment 4, in order to obtain a certain amount of temperature fall in a short cooling time, it is necessary to supply a lot of cooling water, The density must be 4 m 3 / m 2 min or more. The length of the cooling zone where the cooling water hits the steel sheet must be 0.5-5 m. The longer the cooling zone, the more the cooling water is required, which increases the equipment cost, and the second cooling equipment 4 is far from the reversible rolling mill 2 and the transport time of the steel sheet is increased. This is because the effect of improving the properties is reduced. Here, the cooling zone is a distance from a point at which the cooling water is first supplied to a point at which the cooling water is supplied last as shown in FIG.

一方、第2の冷却設備4は、従来と同様の冷却設備であり、鋼板全体が収まるような長さを備えた滞在冷却式で、比較的低い水量密度のシャワー冷却設備である。   On the other hand, the second cooling equipment 4 is a cooling equipment similar to the conventional one, is a stay-cooling type having a length that can accommodate the entire steel sheet, and is a shower cooling equipment with a relatively low water density.

すなわち、第2の冷却設備4は、鋼板全体をその中に収めて、停止またはオシレーション冷却を行うために、冷却設備の長さが鋼板の長さより長くなければならないので、15〜35m程度の長さが必要である。ただし、鋼板全体が設備内に収まればよいので、不必要に長い設備でなくてよい。長い冷却設備では流量密度を大きくするとポンプや送水配管、排水ピットなどの設備コストが高くなるので、従来の設備のように比較的低い流量密度、具体的には0.05〜1m/mminがよく、より好ましくは0.05〜0.2m/mmin程度に抑えた方がよい。0.05m/mminより少ないと冷却能力が小さすぎるうえ、冷却後の乗り水(滞留冷却水)が鋼板上でまばらになり、冷却むらが発生しやすい。1m/mminより多いとポンプや配管などの設備コストが異常に高くなるうえ、冷却後の乗り水が冷却設備外にも流れて、水切りができなくなり、冷却むらが発生しやすい。 That is, the second cooling facility 4 has the length of the cooling facility longer than the length of the steel plate in order to stop or oscillate cooling the entire steel plate therein, so that the length of the steel plate is about 15 to 35 m. Length is needed. However, since the whole steel plate should just be settled in an installation, it does not need to be an unnecessarily long installation. In a long cooling facility, if the flow density is increased, the cost of equipment such as pumps, water supply pipes, and drain pits increases. Therefore, a relatively low flow density, specifically 0.05 to 1 m 3 / m 2 , as in conventional equipment. Min is good, and more preferably 0.05 to 0.2 m 3 / m 2 min. If it is less than 0.05 m 3 / m 2 min, the cooling capacity is too small, and the cooling water (stagnation cooling water) after cooling becomes sparse on the steel sheet, and uneven cooling tends to occur. If it exceeds 1 m 3 / m 2 min, the cost of equipment such as pumps and piping becomes abnormally high, and the water after cooling flows out of the cooling equipment, making it impossible to drain water and causing uneven cooling.

そして、上記のような第1冷却設備3と第2冷却設備4を用いて鋼板10を冷却する手順とその際の冷却水使用量の経時変化の例を図3に示す。   FIG. 3 shows an example of a procedure for cooling the steel plate 10 using the first cooling equipment 3 and the second cooling equipment 4 as described above and a change over time in the amount of cooling water used at that time.

すなわち、図3に示すように、第1冷却設備3を鋼板先端が通過するよりも早く、第1冷却設備3の注水を開始する。第1冷却設備3を鋼板先端が通過した後の注水停止はいつでもよい。第2冷却設備4に鋼板全体が進入後、オシレーションを開始し、すぐに第2冷却設備4の注水を開始する。所定の温度降下が得られたら、注水を停止し、オシレーションを終了する。直ちに搬送を開始して鋼板を第1冷却設備3に送るが、鋼板先端が第1冷却設備3を通過するよりも先に第1冷却設備3の注水を開始しておく。鋼板尾端が第1冷却設備3を通過した後の注水停止はいつでもよい。   That is, as shown in FIG. 3, water injection of the first cooling facility 3 is started earlier than the tip of the steel plate passes through the first cooling facility 3. Water injection stop after the tip of the steel plate has passed through the first cooling facility 3 may be anytime. After the entire steel sheet has entered the second cooling facility 4, the oscillation is started, and water injection of the second cooling facility 4 is started immediately. When a predetermined temperature drop is obtained, water injection is stopped and the oscillation is terminated. The conveyance is started immediately and the steel plate is sent to the first cooling facility 3, but the water injection of the first cooling facility 3 is started before the front end of the steel plate passes through the first cooling facility 3. Water injection stop after the tail end of the steel plate has passed through the first cooling facility 3 may be anytime.

なお、上記において、第1冷却設備3の配管系と第2冷却設備4の配管系を統合・共通化して、第1冷却設備3への注水と第2冷却設備4への注水を3方弁で切り替えて行うようにしてもよい。それによって、第1冷却設備3と第2冷却設備4で別々に配管系を設置する場合よりも、配管などの設備費がはるかに安くすることができる。また、冷却水を効率よく使用でき、ランニングコストを抑えることができる。   In addition, in the above, the piping system of the 1st cooling equipment 3 and the piping system of the 2nd cooling equipment 4 are integrated and made common, and the water injection to the 1st cooling equipment 3 and the water injection to the 2nd cooling equipment 4 are three way valves You may make it switch by. Thereby, compared with the case where a piping system is separately installed in the 1st cooling equipment 3 and the 2nd cooling equipment 4, equipment expenses, such as piping, can be made far cheaper. Further, the cooling water can be used efficiently, and the running cost can be suppressed.

このようにして、この実施形態においては、高い水量密度で通過冷却式の第1冷却設備3と低い水量密度で滞在冷却式の第2冷却設備4を適切に組み合わせて圧延材を冷却するようにしているので、厚鋼板を制御圧延によって製造する場合等において、圧延材の冷却待ち時間を短縮でき、生産性を飛躍的に向上させることができる。   In this way, in this embodiment, the rolling material is cooled by appropriately combining the first cooling facility 3 with a high water content density and the second cooling facility 4 with a low water content density and the stay cooling type. Therefore, when a thick steel plate is manufactured by controlled rolling, the cooling waiting time of the rolled material can be shortened, and productivity can be dramatically improved.

なお、ここでは、図1に示したように、鋼板を1枚ずつ圧延する場合について説明したが、図4に示すように、先行鋼板が冷却待ちをしている間に、後続鋼板の粗圧延(制御圧延の前の段階)を行ってもよい。このようにすると、生産能率を向上させることができるから好適である。   Here, as shown in FIG. 1, the case where the steel plates are rolled one by one has been described, but as shown in FIG. 4, rough rolling of the subsequent steel plates while the preceding steel plates are waiting for cooling. (Stage before controlled rolling) may be performed. This is preferable because the production efficiency can be improved.

そこで、第2冷却設備4は、従来からそうであるが、可逆式圧延機2からの距離が15〜30m程度であることが望ましい。これによって、上述したように、先行鋼板が冷却待ちをしている間に、後続鋼板の粗圧延を行って、生産能率を向上させることができるからである。後続鋼板は制御圧延を行う前の段階であり、板厚が比較的厚く、その長さは通常30m以内に収まるので、可逆式圧延機2から第2冷却設備4までの好適な距離が上記のように決まる。   Therefore, the second cooling facility 4 is conventionally, but the distance from the reversible rolling mill 2 is preferably about 15 to 30 m. Thereby, as described above, while the preceding steel plate is waiting for cooling, the subsequent steel plate can be roughly rolled to improve the production efficiency. The succeeding steel plate is a stage before performing the controlled rolling, and the plate thickness is relatively thick, and the length is usually within 30 m. Therefore, a suitable distance from the reversible rolling mill 2 to the second cooling equipment 4 is as described above. It is determined as follows.

また、ここでは、図2に示したように、第1冷却設備3の下面冷却装置として、垂直なノズルから棒状冷却水を噴射する冷却装置を用いているが、本発明はこれに限るものではなく、第1冷却設備3の下面冷却装置としては、スリットノズルから膜状冷却水を噴射する冷却装置でもよいし、スプレーノズルから噴霧状冷却水を噴射する冷却装置でもよい。   In addition, here, as shown in FIG. 2, a cooling device that injects rod-shaped cooling water from a vertical nozzle is used as the lower surface cooling device of the first cooling equipment 3, but the present invention is not limited to this. Instead, the lower surface cooling device of the first cooling facility 3 may be a cooling device that injects film-like cooling water from the slit nozzle, or a cooling device that injects spray-like cooling water from the spray nozzle.

さらに、ここでは、図1に示したように、鋼板10の往復搬送中に第1冷却設備3による水冷を2回行っているが、目標とする温度降下量が小さい時には、水冷を1回だけ行ってもよい。それによって、第2冷却設備4での水冷ないしは空冷待機の時間を短くできれば、それで充分な効果を発揮する。また、鋼板10が第1冷却設備3を2往復以上するような搬送を行って冷却してもよい。   Further, here, as shown in FIG. 1, the water cooling by the first cooling equipment 3 is performed twice during the reciprocating conveyance of the steel plate 10, but when the target temperature drop is small, the water cooling is performed only once. You may go. Accordingly, if the time for waiting for water cooling or air cooling in the second cooling facility 4 can be shortened, a sufficient effect is exhibited. Further, the steel plate 10 may be cooled by carrying it such that the first cooling facility 3 is reciprocated twice or more.

そして、既に第2冷却設備4が設置されている場合でも、設置スペースをあまりとらない第1冷却設備3を増設することは比較的簡単である。第1冷却設備3での水冷と第2冷却設備4での水冷は時間的に重複しないから、送水ポンプや配管を共用するような増設も可能である。それによって、冷却待ちの時間を短縮して制御圧延材等の生産性を向上させるという本発明の効果が十分に得られる。   And even if the second cooling equipment 4 is already installed, it is relatively easy to add the first cooling equipment 3 that does not take up much installation space. Since the water cooling in the first cooling facility 3 and the water cooling in the second cooling facility 4 do not overlap in time, it is possible to add a water pump and piping in common. Thereby, the effect of the present invention can be sufficiently obtained that the waiting time for cooling is shortened and the productivity of the control rolled material is improved.

本発明の実施例として、図1〜図3で示した本発明の一実施形態に基づいて厚鋼板を製造した。その際、第1冷却設備3と第2冷却設備4を用いて冷却した場合を本発明例、第2冷却設備4のみを用いて冷却した場合を比較例とし、それぞれ5種類の鋼板A〜Eの冷却を行った。   As an example of the present invention, a thick steel plate was manufactured based on one embodiment of the present invention shown in FIGS. In that case, the case where it cooled using the 1st cooling equipment 3 and the 2nd cooling equipment 4 is set as the example of this invention, and the case where it cools using only the 2nd cooling equipment 4 is a comparative example, and each 5 types of steel plates AE Was cooled.

なお、制御圧延開始板厚は、鋼板Aが40mm、鋼板B、Dが30mm、鋼板C、Eが20mmであり、冷却時の鋼板長さは、鋼板A〜Dが20m、鋼板Eが30mであった。   The control rolling start plate thickness is 40 mm for steel plate A, 30 mm for steel plates B and D, 20 mm for steel plates C and E, and the steel plate length during cooling is 20 m for steel plates A to D and 30 m for steel plate E. there were.

また、冷却待ちのために圧延を中断する温度は全て950℃であり、鋼板A〜CとEは800℃で制御圧延を開始(圧延を再開)し、鋼板Dは890℃で制御圧延を開始(圧延を再開)した。搬送速度は4m/sであり、可逆式圧延機2と第2冷却設備4の間を往復するのに要した時間は20sであった。   In addition, the temperature at which rolling is interrupted due to waiting for cooling is all 950 ° C., steel plates A to C and E start controlled rolling at 800 ° C. (resume rolling), and steel plate D starts controlled rolling at 890 ° C. (Rolling resumed). The conveyance speed was 4 m / s, and the time required to reciprocate between the reversible rolling mill 2 and the second cooling equipment 4 was 20 s.

そして、前述したように、第1冷却設備3は、図2に示すような通過冷却式の冷却設備であり、鋼板上面に流量密度4m/mminの棒状冷却水を供給し、鋼板下面に流量密度5.5m/mminの棒状冷却水を供給した。冷却水が最初に供給される地点から最後に供給される地点の距離として定義した冷却ゾーンの長さは1mであった。 And as mentioned above, the 1st cooling equipment 3 is a through-cooling type cooling equipment as shown in FIG. 2, supplies the bar-shaped cooling water with a flow density of 4 m 3 / m 2 min to the upper surface of the steel plate, Was supplied with rod-shaped cooling water having a flow density of 5.5 m 3 / m 2 min. The length of the cooling zone, defined as the distance from the point where the cooling water was first supplied to the point where it was last supplied, was 1 m.

また、前述したように、第2冷却設備は、従来技術と同様な滞在冷却式のシャワー冷却設備であり、冷却ゾーン長さは25mで、鋼板上面に流量密度0.1m/mminの冷却水を供給し、鋼板下面に流量密度0.2m/mminの冷却水を供給した。 Further, as described above, the second cooling equipment is a stay cooling shower cooling equipment similar to the conventional technology, the cooling zone length is 25 m, and the flow density is 0.1 m 3 / m 2 min on the upper surface of the steel plate. Cooling water was supplied, and cooling water with a flow density of 0.2 m 3 / m 2 min was supplied to the lower surface of the steel plate.

上記のようにして鋼板A〜Eの冷却を行った結果を図5および表1に示す。なお、鋼板Eでは、鋼板全体が第2冷却設備4に収まらないので、第2冷却設備4では水冷ができず、空冷待機するだけであった。   The results of cooling the steel plates A to E as described above are shown in FIG. In addition, in the steel plate E, since the whole steel plate does not fit in the 2nd cooling equipment 4, the 2nd cooling equipment 4 was not able to perform water cooling, and only waited by air cooling.

Figure 0004876960
Figure 0004876960

まず、図5(a)〜(c)は、それぞれ、鋼板B、D、Eの圧延中断から圧延再開までの温度履歴を示す図であり、本発明例では比較例よりも冷却待ち時間(圧延中断から圧延再開までの時間)が短縮していることが分かる。   First, FIGS. 5A to 5C are diagrams showing temperature histories from the rolling interruption of the steel plates B, D, and E to the resumption of rolling, respectively. It can be seen that the time from the interruption to the resumption of rolling is shortened.

そして、表1に示すように、比較例では、鋼板A〜Dは20sの搬送中に空冷され、第2冷却設備に入ってから水冷されたが、水冷に要した時間(冷却待ち時間)は、板厚が厚いほど、また圧延中断温度と圧延再開温度(制御圧延開始温度)の差が大きいほど長くかかった。特に、鋼板Aでは、冷却待ち時間が74sもかかり、生産性が低かった。さらに、鋼板Eでは、空冷待機するだけであったので、冷却待ち時間が100sもかかり、生産性が著しく低かった。   As shown in Table 1, in the comparative example, the steel plates A to D were air-cooled during conveyance for 20 s and water-cooled after entering the second cooling facility, but the time required for water-cooling (cooling waiting time) was The longer the sheet thickness, the longer the difference between the rolling interruption temperature and the rolling restart temperature (control rolling start temperature). In particular, in the steel plate A, the cooling waiting time was as long as 74 seconds, and the productivity was low. Furthermore, since the steel plate E was merely waiting for air cooling, the cooling waiting time was as long as 100 s, and the productivity was extremely low.

これに対して、本発明例では、鋼板A〜Eが第2冷却設備4まで往復搬送される途中で、第1冷却設備3を通過中に大流量密度の冷却水を供給して2回の冷却を行ったので、第1冷却設備3での水冷時間は往復で0.5sと短かったにもかかわらず、鋼板の温度降下は30〜40℃もあった。その分、鋼板A〜Dについては、第2冷却設備4での水冷時間を短縮することができた。特に、鋼板Dでは、第2冷却設備4での水冷は行わず、鋼板の尾端が第1冷却設備3を通過したらすぐに逆方向に搬送させることができた。さらに、第2冷却設備での水冷が行えなかった鋼板Eでも、鋼板の尾端が第1冷却設備を通過したら40s間空冷待機させた後、逆方向に搬送することができた。   On the other hand, in the example of the present invention, while the steel plates A to E are reciprocally conveyed to the second cooling facility 4, the cooling water having a large flow density is supplied while passing through the first cooling facility 3, and the two times. Since the cooling was performed, the water cooling time in the first cooling facility 3 was as short as 0.5 s in the round trip, but the temperature drop of the steel sheet was 30-40 ° C. Accordingly, for the steel plates A to D, the water cooling time in the second cooling facility 4 could be shortened. In particular, in the steel plate D, water cooling in the second cooling facility 4 was not performed, and the steel plate D could be conveyed in the reverse direction as soon as the tail end of the steel plate passed through the first cooling facility 3. Furthermore, even with the steel plate E that could not be cooled with water in the second cooling facility, after the tail end of the steel plate passed through the first cooling facility, it was allowed to air-cool for 40 s and then transported in the reverse direction.

その結果、本発明例では、比較例に比べて、冷却待ち時間が、鋼板A〜Dでは12s、鋼板Eでは40sの短縮が実現できた。鋼板1枚を製造するのに要する時間は平均で240s程度であったから、5〜17%も生産性を向上させることができた。   As a result, in the example of the present invention, the cooling waiting time was shortened by 12 s for the steel plates A to D and 40 s for the steel plate E as compared with the comparative example. Since the time required to manufacture one steel plate was about 240 s on average, productivity could be improved by 5 to 17%.

しかも、第1冷冷却設備3の冷却ゾーンの長さは1mと短かったので、冷却水量は、第2冷却設備とほぼ同等であり、冷却水を効率よく使用でき、ランニングコストを抑えることができた。   Moreover, since the length of the cooling zone of the first cooling and cooling facility 3 is as short as 1 m, the amount of cooling water is almost the same as that of the second cooling facility, and the cooling water can be used efficiently and the running cost can be suppressed. It was.

本発明の一実施形態における厚鋼板の製造設備とそれによる厚鋼板の搬送・冷却パターンを表す図である。It is a figure showing the conveyance and cooling pattern of the thick steel plate manufacturing equipment by it in one Embodiment of this invention. 第1冷却設備を表す図である。It is a figure showing 1st cooling equipment. 本発明の一実施形態において、鋼板を冷却する手順とその際の冷却水使用量の経時変化の例を表す図である。In one Embodiment of this invention, it is a figure showing the example of the time-dependent change of the procedure which cools a steel plate, and the cooling water usage amount in that case. 本発明の一実施形態における厚鋼板の搬送・冷却パターンの他の例を表す図である。It is a figure showing the other example of the conveyance and cooling pattern of the thick steel plate in one Embodiment of this invention. 本発明の実施例における圧延中断から圧延再開までの温度履歴を表す図である。It is a figure showing the temperature history from rolling interruption in the Example of this invention to rolling restart.

符号の説明Explanation of symbols

1 加熱炉
2 可逆式圧延機
3 第1冷却設備
4 第2冷却設備
10 鋼板(厚鋼板)
13 テーブルローラ
21 上ヘッダ
22 上ノズル
23 棒状冷却水
24 滞留冷却水
31 下ヘッダ
32 下ノズル
33 棒状冷却水
DESCRIPTION OF SYMBOLS 1 Heating furnace 2 Reversible rolling mill 3 1st cooling equipment 4 2nd cooling equipment 10 Steel plate (thick steel plate)
13 Table Roller 21 Upper Header 22 Upper Nozzle 23 Bar Cooling Water 24 Retention Cooling Water 31 Lower Header 32 Lower Nozzle 33 Bar Cooling Water

Claims (4)

加熱炉、可逆式圧延機、第1の冷却設備、第2の冷却設備の順に配置された厚鋼板の製造設備であって、
前記第1の冷却設備は、長さ0.5〜5mにわたって流量密度4m3/m2min以上の冷却水を厚鋼板の上下面に供給する設備であるとともに、その内、厚鋼板の上面に冷却水を供給する上面冷却装置は、厚鋼板上面に向けて斜めに冷却水を供給するノズルを搬送方向に複数列有して、搬送方向に互いに対向するように棒状冷却水を噴射する装置であり、
前記第2の冷却設備は、長さ15〜35mにわたって流量密度0.05〜1m3/m2minの冷却水を厚鋼板の上下面に供給する設備であることを特徴とする厚鋼板の製造設備。
A steel plate manufacturing facility arranged in the order of a heating furnace, a reversible rolling mill, a first cooling facility, and a second cooling facility,
The first cooling facility is a facility for supplying cooling water having a flow rate density of 4 m 3 / m 2 min or more to the upper and lower surfaces of the thick steel plate over a length of 0.5 to 5 m, and among them, the upper surface of the thick steel plate. The upper surface cooling device for supplying cooling water is a device that has a plurality of nozzles for supplying cooling water obliquely toward the upper surface of the thick steel plate and injects rod-shaped cooling water so as to face each other in the conveying direction. Yes,
The second cooling facility is a facility for supplying cooling water having a flow density of 0.05 to 1 m 3 / m 2 min over the length of 15 to 35 m to the upper and lower surfaces of the thick steel plate. Facility.
スラブを加熱し、可逆式圧延機で1パス以上の圧延を行った厚鋼板を、第1冷却設備内を通過させて第2冷却設備内に搬送し、第2冷却設備内で厚鋼板を停止またはオシレーションさせながら水冷を行い、次いで、第1冷却設備内を通過させて可逆式圧延機に搬送して1パス以上の圧延を行う厚鋼板の製造方法であって、
前記第1冷却設備内を通過する2回のうち少なくとも1回以上、厚鋼板を停止させることなく、長さ0.5〜5mにわたって流量密度4m3/m2min以上の冷却水を厚鋼板上下面に供給し、かつその厚鋼板上面の冷却は、厚鋼板上面に向けて斜めに対向するように棒状冷却水を噴射して行うものであり、
前記第2冷却設備での冷却は、長さ15〜35mにわたって流量密度0.05〜1m3/m2minの冷却水を鋼板上下面に供給して行うものであることを特徴とする厚鋼板の製造方法。
The slab is heated, and the thick steel plate that has been rolled for one or more passes by the reversible rolling mill is passed through the first cooling facility and transported into the second cooling facility, and the thick steel plate is stopped in the second cooling facility. Alternatively, it is a method for producing a thick steel plate that performs water cooling while oscillating, then passes through the first cooling facility and transports it to a reversible rolling mill to perform one or more passes of rolling.
Cooling water having a flow density of 4 m 3 / m 2 min or more over a length of 0.5 to 5 m without stopping the steel plate at least once out of the two times passing through the first cooling facility. Supplying to the lower surface, and cooling the upper surface of the thick steel plate is performed by injecting rod-shaped cooling water so as to face diagonally toward the upper surface of the thick steel plate,
Cooling in the second cooling facility is performed by supplying cooling water having a flow density of 0.05 to 1 m 3 / m 2 min over the length of 15 to 35 m to the upper and lower surfaces of the steel sheet. Manufacturing method.
同一の冷却水配管から第1冷却設備と第2冷却設備に冷却水を供給できるようにし、第1冷却設備内での冷却と第2冷却設備内での冷却とを、冷却水の供給を切り替えて行うことを特徴とする請求項2に記載の厚鋼板の製造方法。   The cooling water can be supplied to the first cooling facility and the second cooling facility from the same cooling water pipe, and the cooling water supply is switched between the cooling in the first cooling facility and the cooling in the second cooling facility. The method for producing a thick steel plate according to claim 2, wherein the method is performed. 当該厚鋼板の圧延の最初のパスと最終パスとの間に、後続する厚鋼板の圧延を少なくとも1回以上行うことを特徴とする請求項2または3に記載の厚鋼板の製造方法。   The method for producing a thick steel plate according to claim 2 or 3, wherein the subsequent thick steel plate is rolled at least once between a first pass and a final pass of rolling of the thick steel plate.
JP2007039127A 2007-02-20 2007-02-20 Manufacturing equipment and manufacturing method for thick steel plate Active JP4876960B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007039127A JP4876960B2 (en) 2007-02-20 2007-02-20 Manufacturing equipment and manufacturing method for thick steel plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007039127A JP4876960B2 (en) 2007-02-20 2007-02-20 Manufacturing equipment and manufacturing method for thick steel plate

Publications (2)

Publication Number Publication Date
JP2008200708A JP2008200708A (en) 2008-09-04
JP4876960B2 true JP4876960B2 (en) 2012-02-15

Family

ID=39778728

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007039127A Active JP4876960B2 (en) 2007-02-20 2007-02-20 Manufacturing equipment and manufacturing method for thick steel plate

Country Status (1)

Country Link
JP (1) JP4876960B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101510548B1 (en) * 2013-11-01 2015-04-08 주식회사 포스코 Apparatus for quenching of rolled steel

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5577655B2 (en) * 2009-09-04 2014-08-27 Jfeスチール株式会社 Hot-rolled steel sheet cooling equipment and cooling method
JP2011143459A (en) * 2010-01-15 2011-07-28 Jfe Steel Corp Method for manufacturing thick steel plate
JP2011143462A (en) * 2010-01-15 2011-07-28 Jfe Steel Corp Method for manufacturing thick steel plate
JP2011143460A (en) * 2010-01-15 2011-07-28 Jfe Steel Corp Method for manufacturing thick steel plate
JP2011143461A (en) * 2010-01-15 2011-07-28 Jfe Steel Corp Method for manufacturing thick steel plate
JP5750826B2 (en) * 2010-01-21 2015-07-22 Jfeスチール株式会社 Manufacturing method of thick steel plate and method of determining the number of water cooling passes

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2968140B2 (en) * 1992-12-28 1999-10-25 新日本製鐵株式会社 Cooling method and cooling device for thick steel plate
JPH08150410A (en) * 1994-11-28 1996-06-11 Hitachi Ltd Equipment for cooling hot rolled steel sheet
JP3189732B2 (en) * 1997-04-17 2001-07-16 日本鋼管株式会社 Cooling method for hot steel sheet and cooling device for hot steel sheet
JP2001286925A (en) * 2000-04-10 2001-10-16 Sumitomo Metal Ind Ltd Device and method for water-cooling steel sheet
JP3764350B2 (en) * 2001-05-07 2006-04-05 株式会社神戸製鋼所 Thick plate manufacturing method and rolling mill
JP2003320402A (en) * 2002-04-30 2003-11-11 Jfe Steel Kk Method and apparatus for manufacturing hot rolled steel strip
WO2004014577A1 (en) * 2002-08-08 2004-02-19 Jfe Steel Corporation Cooling device, manufacturing method, and manufacturing line for hot rolled steel band
JP2006181628A (en) * 2004-12-28 2006-07-13 Jfe Steel Kk Method for rolling thick steel plate and method for producing thick steel plate

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101510548B1 (en) * 2013-11-01 2015-04-08 주식회사 포스코 Apparatus for quenching of rolled steel

Also Published As

Publication number Publication date
JP2008200708A (en) 2008-09-04

Similar Documents

Publication Publication Date Title
JP4876960B2 (en) Manufacturing equipment and manufacturing method for thick steel plate
KR100882931B1 (en) Method of cooling steel sheet
JP2007061838A (en) Hot-rolling equipment and method for steel plate
JP4774887B2 (en) Steel sheet cooling equipment and manufacturing method
JP4876782B2 (en) Steel sheet hot rolling equipment and hot rolling method
JP5515483B2 (en) Thick steel plate cooling equipment and cooling method
JPWO2011115277A1 (en) Thick steel plate manufacturing equipment
JP5750826B2 (en) Manufacturing method of thick steel plate and method of determining the number of water cooling passes
JP5906712B2 (en) Thermal steel sheet descaling equipment and descaling method
JP2002239623A (en) Cooling apparatus for hot-rolled steel strip
KR20150122186A (en) Thick steel plate manufacturing method and manufacturing device
JP4029865B2 (en) Hot rolled steel sheet manufacturing equipment and hot rolled steel sheet manufacturing method
JP6699688B2 (en) Hot rolled steel sheet manufacturing method
JP6137109B2 (en) Rough rolling method for hot-rolled steel sheet
JP6233613B2 (en) Production line for hot-rolled steel strip and method for producing hot-rolled steel strip
JP2015073995A (en) Hot rolled steel sheet cooler
JP5910712B2 (en) Thick steel plate manufacturing method
CN103658204B (en) A kind of method for arranging of jet flow cleaning nozzle
KR101428298B1 (en) Apparatus for Cooling Hot Plate
WO2017130767A1 (en) Production equipment line for hot-rolled steel strips and production method for hot-rolled steel strip
JP2013240808A (en) Continuous hot rolling facility
JP2003112216A (en) Method for cooling steel plate
JP5673370B2 (en) Method for cooling hot-rolled steel sheet
TWI753487B (en) Secondary cooling method and device for continuous casting slab
JP2008194733A (en) Cooling device and method for work roll of metal plate rolling mill, and metal plate manufacturing method using the same cooling method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090821

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100519

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110712

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110908

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111101

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111114

R150 Certificate of patent or registration of utility model

Ref document number: 4876960

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141209

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250