JP4876890B2 - Copper plate - Google Patents

Copper plate Download PDF

Info

Publication number
JP4876890B2
JP4876890B2 JP2006341379A JP2006341379A JP4876890B2 JP 4876890 B2 JP4876890 B2 JP 4876890B2 JP 2006341379 A JP2006341379 A JP 2006341379A JP 2006341379 A JP2006341379 A JP 2006341379A JP 4876890 B2 JP4876890 B2 JP 4876890B2
Authority
JP
Japan
Prior art keywords
copper
expansion coefficient
polyimide film
adhesive
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006341379A
Other languages
Japanese (ja)
Other versions
JP2007196670A (en
Inventor
周 前田
孔一 沢崎
昌宏 小國
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Du Pont Toray Co Ltd
Original Assignee
Du Pont Toray Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Du Pont Toray Co Ltd filed Critical Du Pont Toray Co Ltd
Priority to JP2006341379A priority Critical patent/JP4876890B2/en
Publication of JP2007196670A publication Critical patent/JP2007196670A/en
Application granted granted Critical
Publication of JP4876890B2 publication Critical patent/JP4876890B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Laminated Bodies (AREA)

Description

本発明は、電気電子機器分野で使用されるフレキシブルプリント配線板、COF、TAB等の材料として好適な銅張り板に関するものであり、更に詳しくはポリイミドフィルムを基材として、その片面或いは両面に銅を有するエッチング後の寸法変化率が小さい銅張り板に関するものである。    The present invention relates to a copper-clad board suitable as a material for flexible printed wiring boards, COF, TAB, etc. used in the field of electrical and electronic equipment. More specifically, the present invention relates to a polyimide film as a base material and copper on one or both sides. This relates to a copper-clad plate having a small dimensional change rate after etching.

プリント配線板は広く電子・電機機器に使用されている。中でも、折り曲げ可能なフレキシブルプリント配線板は、パーソナルコンピューターや携帯電話等の折り曲げ部分、ハードディスク等の屈曲が必要な部分に広く使用されている。このようなフレキシブルプリント配線板の材料としては、通常各種のポリイミドフィルムが使用された銅張り板が使用されている。   Printed wiring boards are widely used in electronic and electrical equipment. Among them, a flexible printed wiring board that can be bent is widely used in bent portions of personal computers and mobile phones, and in portions that require bending such as hard disks. As a material for such a flexible printed wiring board, a copper-clad board using various polyimide films is usually used.

銅張り板に使用されるポリイミドフィルムの代表的なものは、酸二無水物成分としてピロメリット酸二無水物を用い、ジアミン成分として4,4’−ジアミノジフェニルエーテルを用いるポリイミドフィルムが挙げられる。このようなポリイミドフィルムは機械的、熱的特性のバランスに優れた構造を有しており、汎用の製品として広く工業的に用いられている。しかしながら、ピロメリット酸二無水物と4,4’−ジアミノジフェニルエーテルとからなるポリイミドフィルムは曲げやすい長所を有する反面、柔らかすぎて半導体を搭載する際に基材が曲がってしまい、接合不良となる問題点を有していた。また、ピロメリット酸二無水物と4,4’−ジアミノジフェニルエーテルとからなるポリイミドフィルムは、熱膨張係数(CTE)や吸湿膨張係数(CHE)が大きく、吸水率も高い為、熱や吸水による寸法変化が大きく、微細な配線形成を行った場合に狙い通りの配線幅や配線間を形成できない問題を有していた。
このような問題を解決する為、ポリイミドフィルム以外の寸法変化が小さい基材、例えば液晶フィルム等を用いてフレキシブルプリント配線板を形成する方法(例えば特許文献1参照)等が開示されているが、液晶フィルムはポリイミドフィルムに比べて耐熱性が劣っており、半田付けの際に基材が変形するという問題を有していた。とりわけ近年は環境の問題から鉛を使用しない鉛フリー半田が広がっているが、鉛フリー半田のほとんどは融点が鉛含有半田よりも高い為、液晶フィルムの基材変形の問題は一層深刻となっていた。
特開2005−297405号公報
A typical example of a polyimide film used for a copper-clad board is a polyimide film using pyromellitic dianhydride as an acid dianhydride component and 4,4′-diaminodiphenyl ether as a diamine component. Such a polyimide film has a structure with an excellent balance between mechanical and thermal properties, and is widely used industrially as a general-purpose product. However, the polyimide film composed of pyromellitic dianhydride and 4,4'-diaminodiphenyl ether has the advantage that it is easy to bend, but it is too soft and the base material is bent when mounting a semiconductor, resulting in poor bonding. Had a point. In addition, polyimide film consisting of pyromellitic dianhydride and 4,4'-diaminodiphenyl ether has a large coefficient of thermal expansion (CTE) and hygroscopic expansion coefficient (CHE), and a high water absorption rate. There is a problem that the change is large, and when the fine wiring is formed, the intended wiring width and wiring cannot be formed.
In order to solve such a problem, a method of forming a flexible printed wiring board using a substrate having a small dimensional change other than a polyimide film, such as a liquid crystal film (for example, see Patent Document 1), etc. has been disclosed. The liquid crystal film is inferior in heat resistance to the polyimide film, and has a problem that the base material is deformed during soldering. Especially in recent years, lead-free solders that do not use lead have spread due to environmental problems, but since most of the lead-free solders have a higher melting point than lead-containing solders, the problem of liquid crystal film substrate deformation has become more serious. It was.
JP 2005-297405 A

したがって、本発明の目的は、かかるフレキシブルプリント配線板の寸法変化と耐熱性の両方の問題を解決し、微細な配線形成が可能で、かつ鉛フリー半田を用いても変形しないフレキシブルプリント配線板用の銅張り板を提供することにある。   Accordingly, an object of the present invention is to solve the problems of both dimensional change and heat resistance of the flexible printed wiring board, enable the formation of fine wiring, and for a flexible printed wiring board that does not deform even when lead-free solder is used. It is to provide a copper-clad board.

本発明は、上記目的を達成するため、以下の構成を採用する。
(1)ジアミン成分としてパラフェニレンジアミン及び4,4’−ジアミノジフェニルエーテル、酸二無水物成分としてピロメリット酸二無水物及び3,3’,4,4’−ビフェニルテトラカルボン酸二無水物から形成され、弾性率3〜7GPa、50〜200℃での線膨張係数が5〜20ppm/℃、湿度膨張係数が25ppm/%RH以下、吸水率が3%以下、200℃1時間での加熱収縮率が0.10%以下であるポリイミドフィルムの片面または両面に、接着剤を介して銅板を有している銅張り板であり、全面エッチング後の寸法変化率が、−0.10%〜0.10%の範囲内である銅張り板。
(2)ジアミン成分としてパラフェニレンジアミン及び4,4’−ジアミノジフェニルエーテル、酸二無水物成分としてピロメリット酸二無水物及び3,3’,4,4’−ビフェニルテトラカルボン酸二無水物から形成され、弾性率3〜7GPa、50〜200℃での線膨張係数が5〜20ppm/℃、湿度膨張係数が25ppm/%RH以下、吸水率が3%以下、200℃1時間での加熱収縮率が0.10%以下であるポリイミドフィルムの片面または両面に、接着剤を介することなく銅板を有している銅張り板であり、全面エッチング後の寸法変化率が、−0.10%〜0.10%の範囲内である銅張り板。
(3)ジアミン成分としてパラフェニレンジアミン及び4,4’−ジアミノジフェニルエーテル、酸二無水物成分としてピロメリット酸二無水物及び3,3’,4,4’−ビフェニルテトラカルボン酸二無水物から形成され、弾性率3〜7GPa、50〜200℃での線膨張係数が5〜20ppm/℃、湿度膨張係数が25ppm/%RH以下、吸水率が3%以下、200℃1時間での加熱収縮率が0.10%以下であるポリイミドフィルムの片面は接着剤を介し銅板を有し、もう片面は接着剤を介することなく銅板を有している銅張り板であり、全面エッチング後の寸法変化率が、−0.10%〜0.10%の範囲内である銅張り板。
(4)ポリイミドフィルムのジアミン成分が10〜50モル%のパラフェニレンジアミン及び50〜90モル%の4,4’−ジアミノジフェニルエーテル、酸二無水物成分がピロメリット酸二無水物50〜99モル%及び3,3’,4,4’−ビフェニルテトラカルボン酸二無水物1〜50モル%である(1)〜(3)のいずれかに記載の銅張り板。
(5)接着剤がエポキシ系接着剤、アクリル系接着剤、及びポリイミド系接着剤から選ばれる少なくとも1種からなることを特徴とする(1)または(3)〜()のいずれかに記載の銅張り板。
(6)接着側の銅の表面粗さ(Rz)が0.1〜10μmの銅箔である(1)または、(3)〜()のいずれかに記載の銅張り板。
The present invention adopts the following configuration in order to achieve the above object.
(1) Formed from paraphenylenediamine and 4,4′-diaminodiphenyl ether as the diamine component, and pyromellitic dianhydride and 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride as the acid dianhydride component With a modulus of elasticity of 3 to 7 GPa, a linear expansion coefficient at 50 to 200 ° C. of 5 to 20 ppm / ° C., a humidity expansion coefficient of 25 ppm /% RH or less, a water absorption of 3% or less, and a heat shrinkage at 200 ° C. for 1 hour. Is a copper-clad plate having a copper plate via an adhesive on one or both sides of a polyimide film having a 0.10% or less, and the dimensional change rate after etching the entire surface is -0.10% to 0.00. Copper-clad plate that is in the range of 10% .
(2) Formed from paraphenylenediamine and 4,4′-diaminodiphenyl ether as the diamine component, and pyromellitic dianhydride and 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride as the acid dianhydride component With a modulus of elasticity of 3 to 7 GPa, a linear expansion coefficient at 50 to 200 ° C. of 5 to 20 ppm / ° C., a humidity expansion coefficient of 25 ppm /% RH or less, a water absorption of 3% or less, and a heat shrinkage at 200 ° C. for 1 hour. Is a copper-clad plate having a copper plate without an adhesive on one or both sides of a polyimide film having a 0.10% or less, and the dimensional change rate after etching the entire surface is -0.10% to 0 Copper-clad plate that is within 10% range .
(3) Formed from paraphenylenediamine and 4,4′-diaminodiphenyl ether as the diamine component, and pyromellitic dianhydride and 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride as the acid dianhydride component With a modulus of elasticity of 3 to 7 GPa, a linear expansion coefficient at 50 to 200 ° C. of 5 to 20 ppm / ° C., a humidity expansion coefficient of 25 ppm /% RH or less, a water absorption of 3% or less, and a heat shrinkage at 200 ° C. for 1 hour. One side of the polyimide film having a 0.10% or less is a copper-clad plate having a copper plate with an adhesive and the other side having a copper plate without an adhesive. Is a copper-clad board in the range of -0.10% to 0.10% .
(4) The diamine component of the polyimide film is 10-50 mol% paraphenylenediamine and 50-90 mol% 4,4'-diaminodiphenyl ether, and the acid dianhydride component is pyromellitic dianhydride 50-99 mol%. And the copper-clad board in any one of (1)-(3) which is 1-50 mol% of 3,3 ', 4,4'-biphenyltetracarboxylic dianhydride.
(5) The adhesive is composed of at least one selected from an epoxy adhesive, an acrylic adhesive, and a polyimide adhesive, (1) or any one of (3) to ( 4 ), Copper-clad board.
(6) The copper-clad plate according to any one of (1) or (3) to ( 5 ), which is a copper foil having a copper surface roughness (Rz) of 0.1 to 10 μm .

本発明によれば、微細な配線形成が可能で、かつ鉛フリー半田を用いても変形しないフレキシブルプリント配線板の材料として有用な銅張り板を提供することができる。   According to the present invention, it is possible to provide a copper-clad board useful as a material for a flexible printed wiring board that can form fine wiring and does not deform even when lead-free solder is used.

本発明の銅張り板は、基材としてポリイミドフィルムを用い、このポリイミドフィルムの片面または両面に銅板を有するものである。   The copper-clad plate of the present invention uses a polyimide film as a base material and has a copper plate on one side or both sides of this polyimide film.

ここで、基材のポリイミドフィルムとしては、ジアミン成分としてパラフェニレンジアミン及び4,4’−ジアミノジフェニルエーテル、酸二無水物成分としてピロメリット酸二無水物及び3,3’,4,4’−ビフェニルテトラカルボン酸二無水物からなるポリイミドフィルムである。すなわち、パラフェニレンジアミン、4、4’−ジアミノジフェニルエーテル、ピロメリット酸二無水物、3,3’,4、4’−ビフェニルテトラカルボン酸二無水物の4種類を必須成分とし、これら4種類のみ、あるいはこれら4種類に加えて少量の別成分を加えることにより得られるポリイミドフィルムである。好ましくはジアミン成分として10〜50モル%のパラフェニレンジアミン及び50〜90モル%の4,4’−ジアミノジフェニルエーテルを用い、酸二無水物成分として50〜99モル%のピロメリット酸二無水物及び1〜50モル%の3,3’,4、4’−ビフェニルテトラカルボン酸二無水物を用いてなるポリイミドフィルムである。更に好ましくは、弾性率が3〜7GPa、50〜200℃での線膨張係数が5〜20ppm/℃、湿度膨張係数が25ppm/%RH以下、吸水率が3%以下、200℃1時間での加熱収縮率が0.10%以下であるポリイミドフィルムである。パラフェニレンジアミンが多すぎると硬くなり、少なすぎると柔らかすぎるので、1〜70モル%が好ましく、更に好ましくは5〜60モル%、より好ましくは10〜50モル%である。4,4’−ジアミノジフェニルエーテルが多すぎると柔らかくなり、少なすぎると硬くなるので、20〜99モル%が好ましく、更に好ましくは40〜95モル%、より好ましくは50〜90モル%である。ピロメリット酸二無水物が多すぎると硬くなり、少なすぎると柔らかくなるので、50〜99モル%が好ましく、更に好ましくは60〜90モル%、より好ましくは65〜85モル%である。3,3’,4、4’−ビフェニルテトラカルボン酸二無水物が多すぎると柔らかくなり、少なすぎると硬くなるので、1〜50モル%が好ましく、更に好ましくは10〜40モル%、より好ましくは15〜35モル%である。硬さの指標である弾性率は3〜7GPaの範囲が好ましく、7GPaを超えると硬すぎ、3GPaより小さいと柔らかすぎる。線膨張係数は5〜20ppm/℃が好ましく、20ppm/℃を超えると熱による寸法変化が大き過ぎ、5ppm/℃より小さくなると、配線に使用される金属との線膨張係数との差が大きくなるため反りが生じてしまう。湿度膨張係数が25ppm/%RHを超えると湿度による寸法変化が大き過ぎるので、湿度膨張係数は25ppm/%RH以下が好ましい。吸水率が3%を超えると、吸い込んだ水の影響でフィルムの寸法変化が大きくなるので3%以下が好ましい。200℃1時間の加熱収縮率が0.10%を超えるとやはり熱による寸法変化が大きくなるので、加熱収縮率は0.10%以下が好ましい。   Here, as the polyimide film of the base material, paraphenylenediamine and 4,4′-diaminodiphenyl ether as diamine components, pyromellitic dianhydride and 3,3 ′, 4,4′-biphenyl as acid dianhydride components It is a polyimide film made of tetracarboxylic dianhydride. That is, four types of paraphenylenediamine, 4,4′-diaminodiphenyl ether, pyromellitic dianhydride, 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride are essential components, and only these four types are included. Or it is a polyimide film obtained by adding a small amount of another component in addition to these four types. Preferably, 10 to 50 mol% paraphenylenediamine and 50 to 90 mol% 4,4'-diaminodiphenyl ether are used as the diamine component, and 50 to 99 mol% pyromellitic dianhydride as the acid dianhydride component and It is a polyimide film using 1 to 50 mol% of 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride. More preferably, the elastic modulus is 3 to 7 GPa, the linear expansion coefficient at 50 to 200 ° C. is 5 to 20 ppm / ° C., the humidity expansion coefficient is 25 ppm /% RH or less, the water absorption is 3% or less, and 200 ° C. for 1 hour. It is a polyimide film having a heat shrinkage of 0.10% or less. If the amount of paraphenylenediamine is too large, it becomes hard, and if it is too small, it is too soft, so 1 to 70 mol% is preferable, more preferably 5 to 60 mol%, and more preferably 10 to 50 mol%. When the amount of 4,4'-diaminodiphenyl ether is too much, it becomes soft, and when it is too little, it becomes hard, so 20 to 99 mol% is preferable, 40 to 95 mol% is more preferable, and 50 to 90 mol% is more preferable. When there is too much pyromellitic dianhydride, it becomes hard, and when it is too little, it becomes soft, so 50 to 99 mol% is preferable, 60 to 90 mol% is more preferable, and 65 to 85 mol% is more preferable. The amount of 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride becomes soft when it is too much, and it becomes hard when it is too little, so 1-50 mol% is preferable, more preferably 10-40 mol%, more preferably Is 15 to 35 mol%. The elastic modulus, which is an index of hardness, is preferably in the range of 3 to 7 GPa. If it exceeds 7 GPa, it is too hard and if it is less than 3 GPa, it is too soft. The linear expansion coefficient is preferably 5 to 20 ppm / ° C., and if it exceeds 20 ppm / ° C., the dimensional change due to heat is too large, and if it is smaller than 5 ppm / ° C., the difference from the linear expansion coefficient with the metal used for the wiring increases. Therefore, warping occurs. When the humidity expansion coefficient exceeds 25 ppm /% RH, the dimensional change due to humidity is too large. Therefore, the humidity expansion coefficient is preferably 25 ppm /% RH or less. If the water absorption rate exceeds 3%, the dimensional change of the film becomes large due to the influence of the sucked water, so 3% or less is preferable. When the heat shrinkage rate at 200 ° C. for 1 hour exceeds 0.10%, the dimensional change due to heat becomes large, so the heat shrinkage rate is preferably 0.10% or less.

重合方法は公知のいずれの方法で行ってもよく、例えば
(1)先に芳香族ジアミン成分全量を溶媒中に入れ、その後芳香族テトラカルボン酸類成分を芳香族ジアミン成分全量と当量になるよう加えて重合する方法。
The polymerization method may be carried out by any known method, for example: (1) First, the aromatic diamine component is added to the solvent first, and then the aromatic tetracarboxylic acid component is added to the equivalent amount of the aromatic diamine component. To polymerize.

(2)先に芳香族テトラカルボン酸類成分全量を溶媒中に入れ、その後芳香族ジアミン成分を芳香族テトラカルボン酸類成分と等量になるよう加えて重合する方法。   (2) A method in which the total amount of the aromatic tetracarboxylic acid component is first put in a solvent, and then the aromatic diamine component is added in an amount equivalent to that of the aromatic tetracarboxylic acid component for polymerization.

(3)一方の芳香族ジアミン化合物を溶媒中に入れた後、反応成分に対して芳香族テトラカルボン酸類化合物が95〜105モル%となる比率で反応に必要な時間混合した後、もう一方の芳香族ジアミン化合物を添加し、続いて芳香族テトラカルボン酸類化合物を全芳香族ジアミン成分と全芳香族テトラカルボン酸類成分とがほぼ等量になるよう添加して重合する方法。   (3) After one aromatic diamine compound is put in a solvent, the aromatic tetracarboxylic acid compound is mixed at a ratio of 95 to 105 mol% with respect to the reaction components, and then mixed for the other time. A method in which an aromatic diamine compound is added, and then an aromatic tetracarboxylic acid compound is added and polymerized so that the total aromatic diamine component and the total aromatic tetracarboxylic acid component are approximately equal.

(4)芳香族テトラカルボン酸類化合物を溶媒中に入れた後、反応成分に対して一方の芳香族ジアミン化合物が95〜105モル%となる比率で反応に必要な時間混合した後、芳香族テトラカルボン酸類化合物を添加し、続いてもう一方の芳香族ジアミン化合物を全芳香族ジアミン成分と全芳香族テトラカルボン酸類成分とがほぼ等量になるよう添加して重合する方法。   (4) After putting the aromatic tetracarboxylic acid compound in the solvent, the aromatic tetracarboxylic acid compound is mixed for a time required for the reaction at a ratio of 95 to 105 mol% of one aromatic diamine compound with respect to the reaction component, and then the aromatic tetracarboxylic acid compound is mixed. A method in which a carboxylic acid compound is added, and then the other aromatic diamine compound is added and polymerized so that the total aromatic diamine component and the total aromatic tetracarboxylic acid component are approximately equal.

(5)溶媒中で一方の芳香族ジアミン成分と芳香族テトラカルボン酸類をどちらかが過剰になるよう反応させてポリアミド酸溶液(A)を調整し、別の溶媒中でもう一方の芳香族ジアミン成分と芳香族テトラカルボン酸類をどちらかが過剰になるよう反応させポリアミド酸溶液(B)を調整する。こうして得られた各ポリアミド酸溶液(A)と(B)を混合し、重合を完結する方法。この時ポリアミド酸溶液(A)を調整するに際し芳香族ジアミン成分が過剰の場合、ポリアミド酸溶液(B)では芳香族テトラカルボン酸成分を過剰に、またポリアミド酸溶液(A)で芳香族テトラカルボン酸成分が過剰の場合、ポリアミド酸溶液(B)では芳香族ジアミン成分を過剰にし、ポリアミド酸溶液(A)と(B)を混ぜ合わせこれら反応に使用される全芳香族ジアミン成分と全芳香族テトラカルボン酸類成分とがほぼ等量になるよう調整する。   (5) A polyamic acid solution (A) is prepared by reacting one aromatic diamine component and an aromatic tetracarboxylic acid in a solvent so that either one becomes excessive, and the other aromatic diamine in another solvent. The polyamic acid solution (B) is prepared by reacting the component and the aromatic tetracarboxylic acid so that either one becomes excessive. A method of mixing the polyamic acid solutions (A) and (B) thus obtained to complete the polymerization. At this time, when adjusting the polyamic acid solution (A), if the aromatic diamine component is excessive, the polyamic acid solution (B) contains excessive aromatic tetracarboxylic acid component, and the polyamic acid solution (A) contains aromatic tetracarboxylic acid. When the acid component is excessive, the polyamic acid solution (B) makes the aromatic diamine component excessive, and the polyamic acid solutions (A) and (B) are combined to form the wholly aromatic diamine component and wholly aromatic compound used in these reactions. Adjustment is made so that the amount of the tetracarboxylic acid component is approximately equal.

なお、重合方法はこれらに限定されることはなく、その他公知の方法を用いてもよい。   The polymerization method is not limited to these, and other known methods may be used.

また、本発明において、ポリアミック酸溶液の形成に使用される有機溶媒の具体例としては、例えば、ジメチルスルホキシド、ジエチルスルホキシドなどのスルホキシド系溶媒、N,N−ジメチルホルムアミド、N,N−ジエチルホルムアミドなどのホルムアミド系溶媒、N,N−ジメチルアセトアミド、N,N−ジエチルアセトアミドなどのアセトアミド系溶媒、N−メチル−2−ピロリドン、N−ビニル−2−ピロリドンなどのピロリドン系溶媒、フェノール、o−,m−,またはp−クレゾール、キシレノール、ハロゲン化フェノール、カテコールなどのフェノール系溶媒、あるいはヘキサメチルホスホルアミド、γ−ブチロラクトンなどの非プロトン性極性溶媒を挙げることができ、これらを単独又は混合物として用いるのが望ましいが、さらにはキシレン、トルエンのような芳香族炭化水素の使用も可能である。   In the present invention, specific examples of the organic solvent used for forming the polyamic acid solution include sulfoxide solvents such as dimethyl sulfoxide and diethyl sulfoxide, N, N-dimethylformamide, N, N-diethylformamide and the like. Formamide solvents, N, N-dimethylacetamide, acetamide solvents such as N, N-diethylacetamide, pyrrolidone solvents such as N-methyl-2-pyrrolidone and N-vinyl-2-pyrrolidone, phenol, o-, Examples thereof include phenolic solvents such as m- or p-cresol, xylenol, halogenated phenol and catechol, or aprotic polar solvents such as hexamethylphosphoramide and γ-butyrolactone, and these may be used alone or as a mixture. It is desirable to use But further xylene, the use of aromatic hydrocarbons such as toluene are also possible.

こうして得られるポリアミック酸溶液は、固形分を5〜40重量%、好ましくは10〜30重量%を含有しており、またその粘度はブルックフィールド粘度計による測定値で10〜2000Pa・s、好ましくは、100〜1000Pa・sのものが、安定した送液のために好ましく使用される。また、有機溶媒溶液中のポリアミック酸は部分的にイミド化されていてもよい。   The polyamic acid solution thus obtained contains a solid content of 5 to 40% by weight, preferably 10 to 30% by weight, and its viscosity is 10 to 2000 Pa · s as measured by a Brookfield viscometer, preferably 100-1000 Pa · s is preferably used for stable liquid feeding. Moreover, the polyamic acid in the organic solvent solution may be partially imidized.

次に、本発明のポリイミドフィルムの製造方法について説明する。   Next, the manufacturing method of the polyimide film of this invention is demonstrated.

ポリイミドフィルムを製膜する方法としては、ポリアミック酸溶液をフィルム状にキャストし熱的に脱環化脱溶媒させてポリイミドフィルムを得る方法、およびポリアミック酸溶液に環化触媒及び脱水剤を混合し化学的に脱環化させてゲルフィルムを作成しこれを加熱脱溶媒することによりポリイミドフィルムを得る方法が挙げられるが、後者の方が得られるポリイミドフィルムの熱膨張係数を低く抑えることができるので好ましい。   As a method for forming a polyimide film, a polyamic acid solution is cast into a film and thermally decyclized and desolvated to obtain a polyimide film, and a polyamic acid solution is mixed with a cyclization catalyst and a dehydrating agent. The method of obtaining a polyimide film by preparing a gel film by decyclizing it and heating it to remove the solvent is preferable, but the latter is preferable because the thermal expansion coefficient of the obtained polyimide film can be kept low. .

更に、フィルムの滑り性を向上させる目的でシリカやアルミナ等の各種フィラーを添加してもよい。これら使用するフィラーの粒径としては、平均粒径が0.1〜1μmのものを使用するのが好ましい。平均粒径0.1μm未満であるとフィルムの滑り性が悪く、また平均粒径1μmを越えるとフィルム作製時には凝集体が多く存在させてしまうので好ましくない。さらには平均粒径1μmを越えるフィラーを使用するとフィルム表面上に大きさ20μm以上の凸が10個/5cm×5cmより多くなり、また高さ2μm以上の凸が3個/5cm×5cmより多くなってしまう。このサイズの凸の存在量により、配線間にフィラーが跨って導電不通を引き起こすこと、またフォトレジストマスクの膜厚を突き破っての不具合を引き起こしやすくなるので好ましくない。   Furthermore, various fillers such as silica and alumina may be added for the purpose of improving the slipperiness of the film. As the particle size of the filler to be used, it is preferable to use those having an average particle size of 0.1 to 1 μm. If the average particle size is less than 0.1 μm, the slipperiness of the film is poor, and if the average particle size exceeds 1 μm, many agglomerates are present during film production. Furthermore, if a filler having an average particle size of more than 1 μm is used, the number of protrusions with a size of 20 μm or more on the film surface is more than 10/5 cm × 5 cm, and the number of protrusions with a height of 2 μm or more is more than 3/5 cm × 5 cm. End up. Due to the presence of protrusions of this size, it is not preferable because the filler straddles between the wirings and causes conduction failure, and it becomes easy to cause a problem of breaking through the film thickness of the photoresist mask.

銅張り板に接着剤を介して有する銅板に使用する銅箔としては、接着側の銅の表面粗さ(Rz)が0.1〜10μmの銅箔であるものが好ましい。これより表面粗さが粗いとフレキシブルプリント配線板として高周波信号領域での使用時に、表皮効果により電流が流れにくくなり高周波領域での使用が困難になる。ここでいう表面粗さ(Rz)とはJISB 0601−1994「表面粗さの定義と表示」の5.1「十点平均粗さの定義」に規定されたRzのことである。   As a copper foil used for the copper plate which has an adhesive agent in a copper-clad board, what is the copper foil whose surface roughness (Rz) of the copper by the side of adhesion is 0.1-10 micrometers is preferable. If the surface roughness is greater than this, when the flexible printed wiring board is used in the high-frequency signal region, current does not easily flow due to the skin effect, making it difficult to use in the high-frequency region. The surface roughness (Rz) mentioned here is Rz defined in 5.1 “Definition of 10-point average roughness” in JIS B 0601-1994 “Definition and display of surface roughness”.

ポリイミドフィルムの厚みについては特に限定されないが、好ましくは5〜125μm、より好ましくは9〜75μm、更に好ましくは11〜55μmである。厚すぎるとロール状にした際に巻きずれが発生しやすくなり、薄すぎるとしわなどが入りやすくなる。   Although it does not specifically limit about the thickness of a polyimide film, Preferably it is 5-125 micrometers, More preferably, it is 9-75 micrometers, More preferably, it is 11-55 micrometers. When it is too thick, it becomes easy to cause winding slip when it is made into a roll, and when it is too thin, wrinkles and the like are likely to enter.

上記のようなポリイミドフィルムの片面あるいは両面に、接着剤を介して、あるいは接着剤無しで銅板を形成する。接着剤を用いる場合、接着剤はエポキシ系接着剤、アクリル系接着剤、及びポリイミド系接着剤から選ばれる少なくとも1種が好ましい。これらの接着剤には、柔軟性を持たせる目的で各種ゴム、可塑剤、硬化剤、リン系等の難燃剤、その他の各種添加物が付与されていてもよい。また、ポリイミド系接着剤の樹脂成分としては主として熱可塑性ポリイミドが用いられることが多いが、熱硬化性ポリイミドでもよい。また、ポリイミド系接着剤としては熱可塑性のポリイミドフィルムを接着剤として使用しても良い。   A copper plate is formed on one or both sides of the polyimide film as described above via an adhesive or without an adhesive. When the adhesive is used, the adhesive is preferably at least one selected from an epoxy adhesive, an acrylic adhesive, and a polyimide adhesive. These adhesives may be provided with various rubbers, plasticizers, curing agents, phosphorus-based flame retardants, and other various additives for the purpose of imparting flexibility. Further, as the resin component of the polyimide-based adhesive, thermoplastic polyimide is often used, but thermosetting polyimide may be used. Moreover, you may use a thermoplastic polyimide film as an adhesive as a polyimide-type adhesive agent.

銅張り板の全面エッチング後の寸法変化率は、フレキシブルプリント配線板として実装の際の不具合を出さないためには、−0.10%〜0.10%の範囲内が好ましく、より好ましくは−0.05%〜0.05%の範囲内が好ましく、更に好ましくは−0.03%〜0.03%である。   The rate of dimensional change after the entire etching of the copper-clad board is preferably in the range of −0.10% to 0.10%, more preferably − in order not to cause a problem in mounting as a flexible printed wiring board. It is preferably in the range of 0.05% to 0.05%, more preferably -0.03% to 0.03%.

以下、実施例にて具体的に説明する。なお、実施例で用いるポリイミドフィルムは合成例1〜6の方法により製膜したものを用いるが、これらに限定されない。また、比較例1〜2で用いるポリイミドフィルムは合成例7〜8により製膜したものを用いる。更に、実施例で用いる接着剤としては合成例9〜10により調合したものを用いるが、これらに限定されない。   Hereinafter, specific examples will be described. In addition, although the polyimide film used by the Example uses what was formed into a film by the method of the synthesis examples 1-6, it is not limited to these. Moreover, what was formed into a film by the synthesis examples 7-8 is used for the polyimide film used by Comparative Examples 1-2. Furthermore, as the adhesive used in the examples, those prepared in Synthesis Examples 9 to 10 are used, but are not limited thereto.

また、合成例で得られたポリイミドフィルムおよび実施例の銅張り板の各特性は次の方法で評価した。   Moreover, each characteristic of the polyimide film obtained by the synthesis example and the copper-clad board of an Example was evaluated with the following method.

(1)フィルム厚
Mitutoyo製ライトマチック(Series318 )厚み計を使用して次のようにして測定した。すなわち、フィルム全面から任意に15箇所を選び、この15箇所にについて厚みを測定し、その平均を算出し、厚みとした。
(1) Film thickness It measured as follows using the Mitutoyo lightmatic (Series318) thickness meter. That is, 15 points were selected arbitrarily from the entire surface of the film, the thicknesses were measured at these 15 points, and the average was calculated to obtain the thickness.

(2)線膨張係数
島津製作所製TMA−50熱機械分析装置を使用し、測定温度範囲:50〜200℃、昇温速度:10℃/分の条件で測定した。荷重を0.25Nとし、まず35℃から10℃/分で昇温して300℃まで温度を上げた。300℃にて5分間保持し、その後10℃/分で降温して35℃まで温度を下げ、35℃で30分間保持し、しかる後に10℃/分で昇温して300℃まで温度を上げた。2度目の35℃から300℃までの昇温の時のデータを読み、50〜200℃の部分の平均から線膨張係数を算出した。
(2) Linear expansion coefficient A TMA-50 thermomechanical analyzer manufactured by Shimadzu Corporation was used, and measurement was performed under conditions of a measurement temperature range of 50 to 200 ° C and a temperature increase rate of 10 ° C / min. The load was 0.25 N, and the temperature was first raised from 35 ° C. at 10 ° C./min to 300 ° C. Hold at 300 ° C. for 5 minutes, then lower the temperature at 10 ° C./minute to lower the temperature to 35 ° C., hold at 35 ° C. for 30 minutes, then raise the temperature at 10 ° C./minute to raise the temperature to 300 ° C. It was. The data at the time of the second temperature increase from 35 ° C. to 300 ° C. was read, and the linear expansion coefficient was calculated from the average of the portion of 50 to 200 ° C.

(3)弾性率
エー・アンド・デイ製RTM−250テンシロン万能試験機を使用し、引張速度:100mm/分の条件で測定した。ロードセル10Kgf、測定精度±0.5%フルスケールとし、応力−歪み曲線を測定し、応力−歪み曲線の立ち上がり部分の直線の傾き(2Nから15Nの2点間の最小2乗法により算出)、初期試料長さ、試料幅、試料厚さから以下のように算出した。
弾性率=(直線部分の傾き×初期試料長さ)/(試料幅×試料厚さ)
(3) Elastic modulus RTM-250 Tensilon universal testing machine manufactured by A & D was used and measured under the condition of tensile speed: 100 mm / min. Load cell 10Kgf, measurement accuracy ± 0.5% full scale, measure stress-strain curve, slope of straight line of rising part of stress-strain curve (calculated by least square method between 2N to 15N), initial Calculation was performed as follows from the sample length, the sample width, and the sample thickness.
Elastic modulus = (Slope of straight line portion × initial sample length) / (sample width × sample thickness)

(4)湿度膨張係数
25℃にてULVAC製TM7000炉内にフィルムを取り付け、炉内にドライ空気を送り込んで2時間乾燥させた後、HC−1型水蒸気発生装置からの給気によりTM7000炉内を90%RHに加湿させ、その間の寸法変化から湿度膨張係数を求めた。加湿時間は7時間とした。3RH%から90RH%までのデータを読み、3〜90RH%の部分の平均から湿度膨張係数を算出した。
(4) Humidity expansion coefficient At 25 ° C, a film was mounted in a TM7000 furnace manufactured by ULVAC, dried air was fed into the furnace and dried for 2 hours, and then the TM7000 furnace was supplied with air from an HC-1 type steam generator. Was humidified to 90% RH, and the coefficient of humidity expansion was determined from the dimensional change during that period. The humidification time was 7 hours. The data from 3RH% to 90RH% was read, and the humidity expansion coefficient was calculated from the average of the portion of 3 to 90RH%.

(5)吸水率
98%RH雰囲気下のデシケーター内に2日間静置し、乾燥時重量に対しての増加重量%で評価した。
(5) Water absorption rate It left still in the desiccator of 98% RH atmosphere for 2 days, and evaluated by the weight increase with respect to the weight at the time of drying.

(6)加熱収縮率
20cm×20cmのフィルムを用意し、25℃、60%RHに調整された部屋に2日間放置した後のフィルム寸法(L1)を測定し、続いて200℃60分間加熱した後再び25℃、60%RHに調整された部屋に2日間放置した後フィルム寸法(L2)を測定し、下記式計算により評価した。
加熱収縮率 = −[(L2−L1)/L1]×100
(6) Heat shrinkage rate A film of 20 cm × 20 cm was prepared, and the film size (L1) after being left in a room adjusted to 25 ° C. and 60% RH for 2 days was measured, followed by heating at 200 ° C. for 60 minutes. Thereafter, the film size (L2) was measured after being left in a room adjusted to 25 ° C. and 60% RH for 2 days, and evaluated by the following formula calculation.
Heat shrinkage rate = − [(L2−L1) / L1] × 100

(7)寸法変化率
銅張り板エッチング前後の寸法変化率の測定は温度25℃、湿度60%の条件下、CNC画像処理測定システム((株)ニコン製、NEXIV VMR−3020)を使用して、視野:1.165mm×0.875mm(4倍)にて銅張り板の表面にMD方向に210mmの間隔で2枚貼った6mmφの円形マスキングテープの円の中心間の距離を銅全面エッチング前後に測定し、算出することにより行った。エッチング前の距離をL3、エッチング後の距離をL4とし、銅エッチング前後共、測定前にはサンプルを温度25℃、湿度60%の条件下にて一晩放置し、ポリイミドの吸水による影響を排除する。寸法変化率は、2点間の距離を5回測定した値の平均値を用いて下記の式により計算した。
寸法変化率(%)=[(L3−L4)/L3]×100
(7) Dimensional change rate The dimensional change rate before and after etching the copper-clad plate was measured using a CNC image processing measurement system (manufactured by Nikon Corporation, NEXIV VMR-3020) under conditions of a temperature of 25 ° C. and a humidity of 60%. Field of view: 1.165mm x 0.875mm (4x) The distance between the centers of 6mmφ circular masking tape circled on the surface of the copper-clad plate with a spacing of 210mm in the MD direction before and after etching the entire copper surface It was performed by measuring and calculating. The distance before etching is L3, the distance after etching is L4, and before and after copper etching, the sample is left overnight under conditions of temperature 25 ° C and humidity 60% to eliminate the influence of polyimide water absorption. To do. The dimensional change rate was calculated by the following formula using an average value of values obtained by measuring the distance between two points five times.
Dimensional change rate (%) = [(L3-L4) / L3] × 100

(合成例1)
ピロメリット酸二無水物(分子量218.12)/3,3’,4、4’−ビフェニルテトラカルボン酸二無水物(分子量294.22)/4,4’−ジアミノジフェニルエーテル(分子量200.24)/パラフェニレンジアミン(分子量108.14)をモル比で65/35/80/20の割合で用意し、DMAc(N,N−ジメチルアセトアミド)中18.5重量%溶液にして重合し、ポリアミド酸を得た。無水酢酸(分子量102.09)とイソキノリンからなる転化剤をポリアミド酸溶液に対し50重量%の割合で混合、攪拌した。この時、ポリアミド酸のアミド酸基に対し、無水酢酸及びイソキノリンがそれぞれ2.0及び0.4モル当量になるように調製した。得られた混合物を、T型スリットダイより回転する100℃のステンレス製ドラム上にキャストし、残揮発成分が55重量%、厚み約0.20mmの自己支持性を有するゲルフィルムを得た。このゲルフィルムをドラムから引き剥がし、その両端を把持し、加熱炉にて200℃×30秒、350℃×30秒、550℃×30秒処理し、厚さ25μmのポリイミドフィルムを得た。物性を表1に示す。
(Synthesis Example 1)
Pyromellitic dianhydride (molecular weight 218.12) / 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride (molecular weight 294.22) / 4,4′-diaminodiphenyl ether (molecular weight 200.24) / Paraphenylenediamine (molecular weight 108.14) is prepared in a molar ratio of 65/35/80/20, polymerized in a 18.5 wt% solution in DMAc (N, N-dimethylacetamide), and polyamic acid Got. A conversion agent consisting of acetic anhydride (molecular weight 102.09) and isoquinoline was mixed and stirred at a ratio of 50% by weight to the polyamic acid solution. At this time, it prepared so that acetic anhydride and isoquinoline might be 2.0 and 0.4 molar equivalent with respect to the amic acid group of a polyamic acid, respectively. The obtained mixture was cast on a 100 ° C. stainless steel drum rotated from a T-shaped slit die to obtain a gel film having a self-supporting property of 55% by weight of residual volatile components and a thickness of about 0.20 mm. This gel film was peeled off from the drum, and both ends thereof were gripped and treated in a heating furnace at 200 ° C. for 30 seconds, 350 ° C. for 30 seconds, and 550 ° C. for 30 seconds to obtain a polyimide film having a thickness of 25 μm. The physical properties are shown in Table 1.

(合成例2)
ピロメリット酸二無水物(分子量218.12)/3,3’,4、4’−ビフェニルテトラカルボン酸二無水物(分子量294.22)/4,4’−ジアミノジフェニルエーテル(分子量200.24)/パラフェニレンジアミン(分子量108.14)をモル比で65/35/80/20の割合で用意し、DMAc(N,N−ジメチルアセトアミド)中18.5重量%溶液にして重合し、ポリアミド酸を得た。無水酢酸(分子量102.09)とイソキノリンからなる転化剤をポリアミド酸溶液に対し50重量%の割合で混合、攪拌した。この時、ポリアミド酸のアミド酸基に対し、無水酢酸及びイソキノリンがそれぞれ2.0及び0.4モル当量になるように調製した。得られた混合物を、T型スリットダイより回転する100℃のステンレス製ドラム上にキャストし、残揮発成分が55重量%、厚み約0.30mmの自己支持性を有するゲルフィルムを得た。このゲルフィルムをドラムから引き剥がし、その両端を把持し、加熱炉にて200℃×30秒、350℃×30秒、550℃×30秒処理し、厚さ38μmのポリイミドフィルムを得た。物性を表1に示す。
(Synthesis Example 2)
Pyromellitic dianhydride (molecular weight 218.12) / 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride (molecular weight 294.22) / 4,4′-diaminodiphenyl ether (molecular weight 200.24) / Paraphenylenediamine (molecular weight 108.14) is prepared in a molar ratio of 65/35/80/20, polymerized in a 18.5 wt% solution in DMAc (N, N-dimethylacetamide), and polyamic acid Got. A conversion agent consisting of acetic anhydride (molecular weight 102.09) and isoquinoline was mixed and stirred at a ratio of 50% by weight to the polyamic acid solution. At this time, it prepared so that acetic anhydride and isoquinoline might be 2.0 and 0.4 molar equivalent with respect to the amic acid group of a polyamic acid, respectively. The obtained mixture was cast on a 100 ° C. stainless steel drum rotated by a T-shaped slit die to obtain a gel film having a self-supporting property of 55% by weight of residual volatile components and a thickness of about 0.30 mm. This gel film was peeled off from the drum, and both ends thereof were gripped and treated in a heating furnace at 200 ° C. for 30 seconds, 350 ° C. for 30 seconds, and 550 ° C. for 30 seconds to obtain a polyimide film having a thickness of 38 μm. The physical properties are shown in Table 1.

(合成例3)
ピロメリット酸二無水物(分子量218.12)/3,3’,4、4’−ビフェニルテトラカルボン酸二無水物(分子量294.22)//4,4’−ジアミノジフェニルエーテル(分子量200.24)/パラフェニレンジアミン(分子量108.14)をモル比で3/1/3/1の割合で用意し、DMAc(N,N−ジメチルアセトアミド)中18.5重量%溶液にして重合し、ポリアミド酸を得た。無水酢酸(分子量102.09)とイソキノリンからなる転化剤をポリアミド酸溶液に対し50重量%の割合で混合、攪拌した。この時、ポリアミド酸のアミド酸基に対し、無水酢酸及びイソキノリンがそれぞれ2.0及び0.4モル当量になるように調製した。得られた混合物を、T型スリットダイより回転する100℃のステンレス製ドラム上にキャストし、残揮発成分が55重量%、厚み約0.20mmの自己支持性を有するゲルフィルムを得た。このゲルフィルムをドラムから引き剥がし、その両端を把持し、加熱炉にて200℃×30秒、350℃×30秒、550℃×30秒処理し、厚さ25μmのポリイミドフィルムを得た。物性を表1に示す。
(Synthesis Example 3)
Pyromellitic dianhydride (molecular weight 218.12) / 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride (molecular weight 294.22) // 4,4′-diaminodiphenyl ether (molecular weight 200.24 ) / Paraphenylenediamine (molecular weight 108.14) in a molar ratio of 3/1/3/1, prepared as a 18.5 wt% solution in DMAc (N, N-dimethylacetamide), and polymerized. The acid was obtained. A conversion agent consisting of acetic anhydride (molecular weight 102.09) and isoquinoline was mixed and stirred at a ratio of 50% by weight to the polyamic acid solution. At this time, it prepared so that acetic anhydride and isoquinoline might be 2.0 and 0.4 molar equivalent with respect to the amic acid group of a polyamic acid, respectively. The obtained mixture was cast on a 100 ° C. stainless steel drum rotated from a T-shaped slit die to obtain a gel film having a self-supporting property of 55% by weight of residual volatile components and a thickness of about 0.20 mm. This gel film was peeled off from the drum, and both ends thereof were gripped and treated in a heating furnace at 200 ° C. for 30 seconds, 350 ° C. for 30 seconds, and 550 ° C. for 30 seconds to obtain a polyimide film having a thickness of 25 μm. The physical properties are shown in Table 1.

(合成例4)
ピロメリット酸二無水物(分子量218.12)/3,3’,4、4’−ビフェニルテトラカルボン酸二無水物(分子量294.22)/4,4’−ジアミノジフェニルエーテル(分子量200.24)/パラフェニレンジアミン(分子量108.14)をモル比で4/1/4/1の割合で用意し、DMAc(N,N−ジメチルアセトアミド)中18.5重量%溶液にして重合し、ポリアミド酸を得た。無水酢酸(分子量102.09)とイソキノリンからなる転化剤をポリアミド酸溶液に対し50重量%の割合で混合、攪拌した。この時、ポリアミド酸のアミド酸基に対し、無水酢酸及びイソキノリンがそれぞれ2.0及び0.4モル当量になるように調製した。得られた混合物を、T型スリットダイより回転する100℃のステンレス製ドラム上にキャストし、残揮発成分が55重量%、厚み約0.10mmの自己支持性を有するゲルフィルムを得た。このゲルフィルムをドラムから引き剥がし、その両端を把持し、加熱炉にて200℃×30秒、350℃×30秒、550℃×30秒処理し、厚さ12.5μmのポリイミドフィルムを得た。物性を表1に示す。
(Synthesis Example 4)
Pyromellitic dianhydride (molecular weight 218.12) / 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride (molecular weight 294.22) / 4,4′-diaminodiphenyl ether (molecular weight 200.24) / Paraphenylenediamine (molecular weight 108.14) is prepared in a molar ratio of 4/1/4/1 and polymerized in a 18.5 wt% solution in DMAc (N, N-dimethylacetamide) to form a polyamic acid Got. A conversion agent consisting of acetic anhydride (molecular weight 102.09) and isoquinoline was mixed and stirred at a ratio of 50% by weight to the polyamic acid solution. At this time, it prepared so that acetic anhydride and isoquinoline might be 2.0 and 0.4 molar equivalent with respect to the amic acid group of a polyamic acid, respectively. The obtained mixture was cast on a stainless steel drum rotated at 100 ° C. from a T-shaped slit die to obtain a gel film having a self-supporting property of 55% by weight of residual volatile components and a thickness of about 0.10 mm. The gel film was peeled off from the drum, and both ends thereof were gripped and treated in a heating furnace at 200 ° C. for 30 seconds, 350 ° C. for 30 seconds, 550 ° C. for 30 seconds to obtain a polyimide film having a thickness of 12.5 μm. . The physical properties are shown in Table 1.

(合成例5)
ピロメリット酸二無水物(分子量218.12)/3,3’,4、4’−ビフェニルテトラカルボン酸二無水物(分子量294.22)/4,4’−ジアミノジフェニルエーテル(分子量200.24)/パラフェニレンジアミン(分子量108.14)をモル比で9/1/8/2の割合で用意し、DMAc(N,N−ジメチルアセトアミド)中18.5重量%溶液にして重合し、ポリアミド酸を得た。無水酢酸(分子量102.09)とイソキノリンからなる転化剤をポリアミド酸溶液に対し50重量%の割合で混合、攪拌した。この時、ポリアミド酸のアミド酸基に対し、無水酢酸及びイソキノリンがそれぞれ2.0及び0.4モル当量になるように調製した。得られた混合物を、T型スリットダイより回転する100℃のステンレス製ドラム上にキャストし、残揮発成分が55重量%、厚み約0.07mmの自己支持性を有するゲルフィルムを得た。このゲルフィルムをドラムから引き剥がし、その両端を把持し、加熱炉にて200℃×30秒、350℃×30秒、550℃×30秒処理し、厚さ9μmのポリイミドフィルムを得た。物性を表1に示す。
(Synthesis Example 5)
Pyromellitic dianhydride (molecular weight 218.12) / 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride (molecular weight 294.22) / 4,4′-diaminodiphenyl ether (molecular weight 200.24) / Paraphenylenediamine (molecular weight 108.14) is prepared in a molar ratio of 9/1/8/2, polymerized to a 18.5 wt% solution in DMAc (N, N-dimethylacetamide), and polyamic acid Got. A conversion agent consisting of acetic anhydride (molecular weight 102.09) and isoquinoline was mixed and stirred at a ratio of 50% by weight to the polyamic acid solution. At this time, it prepared so that acetic anhydride and isoquinoline might be 2.0 and 0.4 molar equivalent with respect to the amic acid group of a polyamic acid, respectively. The obtained mixture was cast on a 100 ° C. stainless steel drum rotated by a T-shaped slit die to obtain a gel film having a self-supporting property of 55% by weight of residual volatile components and a thickness of about 0.07 mm. This gel film was peeled off from the drum, both ends thereof were gripped, and treated in a heating furnace at 200 ° C. × 30 seconds, 350 ° C. × 30 seconds, 550 ° C. × 30 seconds to obtain a 9 μm-thick polyimide film. The physical properties are shown in Table 1.

(合成例6)
ピロメリット酸二無水物(分子量218.12)/3,3’,4、4’−ビフェニルテトラカルボン酸二無水物(分子量294.22)/4,4’−ジアミノジフェニルエーテル(分子量200.24)/パラフェニレンジアミン(分子量108.14)をモル比で3/2/3/2の割合で用意し、DMAc(N,N−ジメチルアセトアミド)中18.5重量%溶液にして重合し、ポリアミド酸を得た。無水酢酸(分子量102.09)とイソキノリンからなる転化剤をポリアミド酸溶液に対し50重量%の割合で混合、攪拌した。この時、ポリアミド酸のアミド酸基に対し、無水酢酸及びイソキノリンがそれぞれ2.0及び0.4モル当量になるように調製した。得られた混合物を、T型スリットダイより回転する100℃のステンレス製ドラム上にキャストし、残揮発成分が55重量%、厚み約0.05mmの自己支持性を有するゲルフィルムを得た。このゲルフィルムをドラムから引き剥がし、その両端を把持し、加熱炉にて200℃×30秒、350℃×30秒、550℃×30秒処理し、厚さ6μmのポリイミドフィルムを得た。物性を表1に示す。
(Synthesis Example 6)
Pyromellitic dianhydride (molecular weight 218.12) / 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride (molecular weight 294.22) / 4,4′-diaminodiphenyl ether (molecular weight 200.24) / Paraphenylenediamine (molecular weight 108.14) is prepared in a molar ratio of 3/2/3/2, polymerized to a 18.5 wt% solution in DMAc (N, N-dimethylacetamide), and polyamic acid Got. A conversion agent consisting of acetic anhydride (molecular weight 102.09) and isoquinoline was mixed and stirred at a ratio of 50% by weight to the polyamic acid solution. At this time, it prepared so that acetic anhydride and isoquinoline might be 2.0 and 0.4 molar equivalent with respect to the amic acid group of a polyamic acid, respectively. The obtained mixture was cast on a stainless steel drum at 100 ° C. rotated by a T-shaped slit die to obtain a gel film having a self-supporting property of 55% by weight of residual volatile components and a thickness of about 0.05 mm. This gel film was peeled off from the drum, and both ends thereof were gripped and treated in a heating furnace at 200 ° C. for 30 seconds, 350 ° C. for 30 seconds, and 550 ° C. for 30 seconds to obtain a 6 μm thick polyimide film. The physical properties are shown in Table 1.

(合成例7)
ピロメリット酸二無水物(分子量218.12)/4,4’−ジアミノジフェニルエーテル(分子量200.20)をモル比で50/50の割合で混合し、DMF(N,N−ジメチルホルムアミド)18.5重量%溶液にして重合し、ポリアミド酸を得た。無水酢酸(分子量102.09)とイソキノリンからなる転化剤をポリアミド酸溶液に対し50重量%の割合で混合、攪拌した。この時、ポリアミド酸のアミド酸基に対し、無水酢酸及びイソキノリンがそれぞれ2.0及び0.4モル当量になるように調製した。得られた混合物を、T型スリットダイより回転する100℃のステンレス製ドラム上にキャストし、残揮発成分が55重量%、厚み約0.20mmの自己支持性を有するゲルフィルムを得た。このゲルフィルムをドラムから引き剥がし、その両端を把持し、加熱炉にて200℃×30秒、350℃×30秒、550℃×30秒処理し、厚さ25μmのポリイミドフィルムを得た。物性を表1に示す。
(Synthesis Example 7)
Pyromellitic dianhydride (molecular weight 218.12) / 4,4′-diaminodiphenyl ether (molecular weight 200.20) is mixed in a molar ratio of 50/50 to obtain DMF (N, N-dimethylformamide) 18. Polymerization was performed with a 5% by weight solution to obtain a polyamic acid. A conversion agent consisting of acetic anhydride (molecular weight 102.09) and isoquinoline was mixed and stirred at a ratio of 50% by weight to the polyamic acid solution. At this time, it prepared so that acetic anhydride and isoquinoline might be 2.0 and 0.4 molar equivalent with respect to the amic acid group of a polyamic acid, respectively. The obtained mixture was cast on a 100 ° C. stainless steel drum rotated from a T-shaped slit die to obtain a gel film having a self-supporting property of 55% by weight of residual volatile components and a thickness of about 0.20 mm. This gel film was peeled off from the drum, and both ends thereof were gripped and treated in a heating furnace at 200 ° C. for 30 seconds, 350 ° C. for 30 seconds, and 550 ° C. for 30 seconds to obtain a polyimide film having a thickness of 25 μm. The physical properties are shown in Table 1.

(合成例8)
ピロメリット酸二無水物(分子量218.12)/C(分子量200.20)をモル比で50/50の割合で混合し、DMF(N,N−ジメチルホルムアミド)18.5重量%溶液にして重合し、ポリアミド酸を得た。無水酢酸(分子量102.09)とイソキノリンからなる転化剤をポリアミド酸溶液に対し50重量%の割合で混合、攪拌した。この時、ポリアミド酸のアミド酸基に対し、無水酢酸及びイソキノリンがそれぞれ2.0及び0.4モル当量になるように調製した。得られた混合物を、T型スリットダイより回転する100℃のステンレス製ドラム上にキャストし、残揮発成分が55重量%、厚み約0.10mmの自己支持性を有するゲルフィルムを得た。このゲルフィルムをドラムから引き剥がし、その両端を把持し、加熱炉にて200℃×30秒、350℃×30秒、550℃×30秒処理し、厚さ12.5μmのポリイミドフィルムを得た。物性を表1に示す。
(Synthesis Example 8)
Pyromellitic dianhydride (molecular weight 218.12) / C (molecular weight 200.20) was mixed at a molar ratio of 50/50 to obtain a DMF (N, N-dimethylformamide) 18.5% by weight solution. Polymerization gave a polyamic acid. A conversion agent consisting of acetic anhydride (molecular weight 102.09) and isoquinoline was mixed and stirred at a ratio of 50% by weight to the polyamic acid solution. At this time, it prepared so that acetic anhydride and isoquinoline might be 2.0 and 0.4 molar equivalent with respect to the amic acid group of a polyamic acid, respectively. The obtained mixture was cast on a stainless steel drum rotated at 100 ° C. from a T-shaped slit die to obtain a gel film having a self-supporting property of 55% by weight of residual volatile components and a thickness of about 0.10 mm. The gel film was peeled off from the drum, and both ends thereof were gripped and treated in a heating furnace at 200 ° C. for 30 seconds, 350 ° C. for 30 seconds, 550 ° C. for 30 seconds to obtain a polyimide film having a thickness of 12.5 μm. . The physical properties are shown in Table 1.

(合成例9)
油化シェル(株)製エポキシ樹脂「エピコート」834を50重量部、東都化成(株)リン含有エポキシ樹脂FX279BEK75を100重量部、住友化学(株)製硬化剤4,4’−DDSを6重量部、JSR(株)NBR(PNR−1H)100重量部、昭和電工(株)製水酸化アルミニウム30重量部をメチルイソブチルケトン600重量部に30℃で攪拌、混合し、接着剤溶液を得た。
(Synthesis Example 9)
50 parts by weight of epoxy resin “Epicoat” 834 manufactured by Yuka Shell Co., Ltd., 100 parts by weight of phosphorus-containing epoxy resin FX279BEK75 manufactured by Tohto Kasei Co., Ltd., 6 weights of curing agent 4,4′-DDS manufactured by Sumitomo Chemical Co., Ltd. Part, JSR Co., Ltd. NBR (PNR-1H) 100 parts by weight, Showa Denko Co., Ltd. 30 parts by weight aluminum hydroxide was stirred and mixed with methyl isobutyl ketone 600 parts by weight at 30 ° C. to obtain an adhesive solution. .

(合成例10)
油化シェル(株)製エポキシ樹脂「エピコート」828を50重量部、東都化成(株)リン含有エポキシ樹脂FX279BEK75を80重量部、住友化学(株)製硬化剤4,4’−DDSを6重量部、JSR(株)NBR(PNR−1H)100重量部、昭和電工(株)製水酸化アルミニウム10重量部をメチルイソブチルケトン600重量部に30℃で攪拌、混合し、接着剤溶液を得た。
(Synthesis Example 10)
50 parts by weight of epoxy resin “Epicoat” 828 manufactured by Yuka Shell Co., Ltd., 80 parts by weight of phosphorus-containing epoxy resin FX279BEK75 manufactured by Tohto Kasei Co., Ltd., 6 weights of curing agent 4,4′-DDS manufactured by Sumitomo Chemical Co., Ltd. Part, JSR Co., Ltd. NBR (PNR-1H) 100 parts by weight, Showa Denko Co., Ltd. aluminum hydroxide 10 parts by weight with methyl isobutyl ketone 600 parts by stirring at 30 ° C. to obtain an adhesive solution. .

Figure 0004876890
Figure 0004876890

(実施例1)
合成例1で製膜したポリイミドフィルムを用い、この片面に合成例9の接着剤を塗布し、150℃×5分間加熱乾燥し、乾燥膜厚10μmの接着剤層を形成した。この片面接着剤付きポリイミドフィルムと表面粗さ(Rz)が1.5μmの1/2オンス銅箔(古河サーキットフォイル(株)製、F0−WS18)とを、熱ロールラミネート機を用いてラミネート温度160℃、ラミネート圧力196N/cm(20kgf/cm)、ラミネート速度1.5m/分の条件で熱ラミネートを行い、片面フレキシブル銅張板を作製した。得られた銅張り板を使用して、銅全面エッチング前後での寸法変化率を測定したところ、寸法変化率は0.010%であった。
Example 1
Using the polyimide film formed in Synthesis Example 1, the adhesive of Synthesis Example 9 was applied to one side of the polyimide film and dried by heating at 150 ° C. for 5 minutes to form an adhesive layer having a dry film thickness of 10 μm. Lamination temperature of this polyimide film with single-sided adhesive and 1/2 ounce copper foil (F0-WS18, manufactured by Furukawa Circuit Foil Co., Ltd.) having a surface roughness (Rz) of 1.5 μm using a hot roll laminator. Thermal lamination was performed at 160 ° C., a lamination pressure of 196 N / cm (20 kgf / cm), and a lamination speed of 1.5 m / min to produce a single-sided flexible copper-clad plate. When the dimensional change rate before and after the copper entire surface etching was measured using the obtained copper-clad plate, the dimensional change rate was 0.010%.

(実施例2)
合成例5で製膜したポリイミドフィルムを使用した以外は全て実施例1と同様にして、片面銅張り板を作製した。銅全面エッチング前後での寸法変化率を測定したところ、寸法変化率は0.015%であった。
(Example 2)
A single-sided copper-clad plate was produced in the same manner as in Example 1 except that the polyimide film formed in Synthesis Example 5 was used. When the dimensional change rate before and after the copper entire surface etching was measured, the dimensional change rate was 0.015%.

(実施例3)
合成例4で製膜したポリイミドフィルムを使用した以外は全て実施例1と同様にして、片面銅張り板を作製した。銅全面エッチング前後での寸法変化率を測定したところ、寸法変化率は0.002%であった。
(Example 3)
A single-sided copper-clad board was produced in the same manner as in Example 1 except that the polyimide film formed in Synthesis Example 4 was used. When the dimensional change rate before and after the copper entire surface etching was measured, the dimensional change rate was 0.002%.

(実施例4)
合成例6で製膜したポリイミドフィルムを使用した以外は全て実施例1と同様にして、片面銅張り板を作製した。銅全面エッチング前後での寸法変化率を測定したところ、寸法変化率は0.048%であった。
Example 4
A single-sided copper-clad plate was produced in the same manner as in Example 1 except that the polyimide film formed in Synthesis Example 6 was used. When the dimensional change rate before and after the copper entire surface etching was measured, the dimensional change rate was 0.048%.

(実施例5)
合成例2で製膜したポリイミドフィルムを用い、真空槽を到達圧力1×10−3Paにした後、アルゴンガス圧1×10−1PaにてDCマグネトロンスパッタによりニッケル/クロム=95/5(重量比)のニクロム合金を厚さ5nmになるように片面にスパッタリングし、更に銅を厚さ50nmになるようにスパッタリングした。次に、硫酸銅浴による電解鍍金で6μmの厚さの銅層を、2A/dm2の電流密度の条件により積層し、片面銅張板を作製した。なお、硫酸銅浴の組成は、硫酸銅五水和物80g/リットル、硫酸200g/リットル、塩酸50mg/リットルに適宜量の添加剤を加えた溶液を用いた。得られた銅張り板を使用して、銅全面エッチング前後での寸法変化率を測定したところ、寸法変化率は0.008%であった。
(Example 5)
After using the polyimide film formed in Synthesis Example 2 and setting the vacuum chamber to an ultimate pressure of 1 × 10 −3 Pa, nickel / chrome = 95/5 (weight ratio) by DC magnetron sputtering at an argon gas pressure of 1 × 10 −1 Pa. The Nichrome alloy (1) was sputtered on one side to a thickness of 5 nm, and copper was further sputtered to a thickness of 50 nm. Next, a copper layer having a thickness of 6 μm was laminated by electrolytic plating using a copper sulfate bath under the condition of a current density of 2 A / dm 2 to prepare a single-sided copper-clad plate. The composition of the copper sulfate bath was a solution in which an appropriate amount of additives was added to copper sulfate pentahydrate 80 g / liter, sulfuric acid 200 g / liter, and hydrochloric acid 50 mg / liter. When the dimensional change rate before and after the copper entire surface etching was measured using the obtained copper-clad plate, the dimensional change rate was 0.008%.

(実施例6)
合成例3で製膜したポリイミドフィルムを用い、この両面に合成例10の接着剤を塗布し、150℃×5分間加熱乾燥し、乾燥膜厚10μmの接着剤層を形成した。この両面接着剤付きポリイミドフィルムと表面粗さ(Rz)が1.5μmの1/2オンス銅箔(古河サーキットフォイル(株)製、F0−WS18)とを、熱ロールラミネート機を用いてラミネート温度160℃、ラミネート圧力196N/cm(20kgf/cm)、ラミネート速度1.5m/分の条件で熱ラミネートを行い、両面銅張り板を作製した。得られた両面銅張り板を使用して、銅全面エッチング前後での寸法変化率を測定したところ、寸法変化率は−0.008%であった。
(Example 6)
The polyimide film formed in Synthesis Example 3 was used, and the adhesive of Synthesis Example 10 was applied to both surfaces of the polyimide film, followed by heat drying at 150 ° C. for 5 minutes to form an adhesive layer having a dry film thickness of 10 μm. This polyimide film with a double-sided adhesive and a 1/2 ounce copper foil (F0-WS18, manufactured by Furukawa Circuit Foil Co., Ltd.) having a surface roughness (Rz) of 1.5 μm are laminated using a hot roll laminator. Thermal lamination was performed at 160 ° C., a lamination pressure of 196 N / cm (20 kgf / cm), and a lamination speed of 1.5 m / min to produce a double-sided copper-clad plate. Using the obtained double-sided copper-clad plate, the dimensional change rate before and after etching the entire copper surface was measured, and the dimensional change rate was -0.008%.

(実施例7)
合成例2で製膜したポリイミドフィルムを用い、真空槽を到達圧力1×10−3Paにした後、アルゴンガス圧1×10−1PaにてDCマグネトロンスパッタによりニッケル/クロム=90/10(重量比)のニクロム合金を厚さ3nmになるように両面にスパッタリングし、更に銅を厚さ10nmになるようにスパッタリングした。次に、硫酸銅浴による電解鍍金で5μmの厚さの銅層を、2A/dm2の電流密度の条件により積層し、両面銅張板を作製した。なお、硫酸銅浴の組成は、硫酸銅五水和物80g/リットル、硫酸200g/リットル、塩酸50mg/リットルに適宜量の添加剤を加えた溶液を用いた。得られた両面銅張り板を使用して、銅全面エッチング前後での寸法変化率を測定したところ、寸法変化率は0.005%であった。
(Example 7)
The polyimide film formed in Synthesis Example 2 was used, the vacuum chamber was brought to an ultimate pressure of 1 × 10 −3 Pa, and then nickel / chrome = 90/10 (weight ratio) by DC magnetron sputtering at an argon gas pressure of 1 × 10 −1 Pa. The Nichrome alloy of 2) was sputtered on both sides to a thickness of 3 nm, and copper was further sputtered to a thickness of 10 nm. Next, a copper layer having a thickness of 5 μm was laminated by electrolytic plating using a copper sulfate bath under the condition of a current density of 2 A / dm 2 to prepare a double-sided copper-clad plate. The composition of the copper sulfate bath was a solution in which an appropriate amount of additives was added to copper sulfate pentahydrate 80 g / liter, sulfuric acid 200 g / liter, and hydrochloric acid 50 mg / liter. Using the obtained double-sided copper-clad plate, the dimensional change rate before and after etching the entire copper surface was measured, and the dimensional change rate was 0.005%.

(実施例8)
合成例6で製膜したポリイミドフィルムを用い、真空槽を到達圧力1×10−3Paにした後、アルゴンガス圧1×10−1PaにてDCマグネトロンスパッタによりニッケル/クロム=90/10(重量比)のニクロム合金を厚さ3nmになるように片面にスパッタリングし、更に銅を厚さ10nmになるようにスパッタリングした。次に、硫酸銅浴による電解鍍金で12μmの厚さの銅層を、2A/dm2の電流密度の条件により積層し、片面フレキシブル銅張板を作製した。なお、硫酸銅浴の組成は、硫酸銅五水和物80g/リットル、硫酸200g/リットル、塩酸50mg/リットルに適宜量の添加剤を加えた溶液を用いた。得られた片面銅張り板を用い、銅層が形成されている面の反対面(ポリイミド面)に合成例8の接着剤を塗布し、150℃×5分間加熱乾燥し、乾燥膜厚10μmの接着剤層を形成した。接着剤付き片面銅張り板と表面粗さ(Rz)が1.5μmの1/3オンス銅箔(古河サーキットフォイル(株)製、F0−WS12)とを、熱ロールラミネート機を用いてラミネート温度160℃、ラミネート圧力196N/cm(20kgf/cm)、ラミネート速度1.5m/分の条件で熱ラミネートを行い、片面は接着剤を介し、もう片面は接着剤を介することなく銅が形成されている両面銅張板を得た。得られた両面銅張り板を使用して、銅全面エッチング前後での寸法変化率を測定したところ、寸法変化率は−0.052%であった。
(Example 8)
After using the polyimide film formed in Synthesis Example 6 and setting the vacuum chamber to an ultimate pressure of 1 × 10 −3 Pa, nickel / chromium = 90/10 (weight ratio) by DC magnetron sputtering at an argon gas pressure of 1 × 10 −1 Pa. The Nichrome alloy (1) was sputtered on one side to a thickness of 3 nm, and copper was further sputtered to a thickness of 10 nm. Next, a copper layer having a thickness of 12 μm was laminated by electrolytic plating using a copper sulfate bath under the condition of a current density of 2 A / dm 2 to prepare a single-sided flexible copper-clad plate. The composition of the copper sulfate bath was a solution in which an appropriate amount of additives was added to copper sulfate pentahydrate 80 g / liter, sulfuric acid 200 g / liter, and hydrochloric acid 50 mg / liter. Using the obtained single-sided copper-clad plate, the adhesive of Synthesis Example 8 was applied to the opposite surface (polyimide surface) of the surface on which the copper layer was formed, and heat-dried at 150 ° C. for 5 minutes, and the dry film thickness was 10 μm. An adhesive layer was formed. Lamination temperature of one-sided copper-clad plate with adhesive and 1/3 ounce copper foil (F0-WS12, manufactured by Furukawa Circuit Foil Co., Ltd.) having a surface roughness (Rz) of 1.5 μm using a hot roll laminator. Heat lamination is performed under the conditions of 160 ° C., laminating pressure of 196 N / cm (20 kgf / cm), laminating speed of 1.5 m / min, copper is formed on one side with an adhesive and the other side without an adhesive. Obtained double-sided copper-clad board. Using the obtained double-sided copper-clad plate, the dimensional change rate before and after etching the entire copper surface was measured, and the dimensional change rate was -0.052%.

(比較例1)
合成例7で製膜したポリイミドフィルムを使用した以外は全て実施例1と同様にして、片面銅張り板を作製した。銅全面エッチング前後での寸法変化率を測定したところ、寸法変化率は−0.122%であった。
(Comparative Example 1)
A single-sided copper-clad board was produced in the same manner as in Example 1 except that the polyimide film formed in Synthesis Example 7 was used. When the dimensional change rate before and after the copper entire surface etching was measured, the dimensional change rate was -0.122%.

(比較例2)
合成例8で製膜したポリイミドフィルムを使用した以外は全て実施例1と同様にして、片面銅張り板を作製した。銅全面エッチング前後での寸法変化率を測定したところ、寸法変化率は−0.132%であった。
(Comparative Example 2)
A single-sided copper-clad board was produced in the same manner as in Example 1 except that the polyimide film formed in Synthesis Example 8 was used. When the dimensional change rate before and after the copper entire surface etching was measured, the dimensional change rate was -0.132%.

(比較例3)
合成例7で製膜したポリイミドフィルムを使用した以外は全て実施例8と同様にして、両面銅張り板を作製した。銅全面エッチング前後での寸法変化率を測定したところ、寸法変化率は−0.105%であった。
(Comparative Example 3)
A double-sided copper-clad board was produced in the same manner as in Example 8 except that the polyimide film formed in Synthesis Example 7 was used. When the dimensional change rate before and after the copper entire surface etching was measured, the dimensional change rate was -0.105%.

実施例1〜8および比較例1〜3の寸法変化率を表2にまとめて示した。   Table 2 summarizes the dimensional change rates of Examples 1 to 8 and Comparative Examples 1 to 3.

Figure 0004876890
Figure 0004876890

本発明によれば、寸法安定性や耐熱性に優れたフレキシブル配線板用として好適な銅張り板の提供が可能になる。   According to the present invention, it is possible to provide a copper-clad board suitable for a flexible wiring board having excellent dimensional stability and heat resistance.

Claims (6)

ジアミン成分としてパラフェニレンジアミン及び4,4’−ジアミノジフェニルエーテル、酸二無水物成分としてピロメリット酸二無水物及び3,3’,4,4’−ビフェニルテトラカルボン酸二無水物から形成され、弾性率3〜7GPa、50〜200℃での線膨張係数が5〜20ppm/℃、湿度膨張係数が25ppm/%RH以下、吸水率が3%以下、200℃1時間での加熱収縮率が0.10%以下であるポリイミドフィルムの片面または両面に、接着剤を介して銅板を有している銅張り板であり、全面エッチング後の寸法変化率が、−0.10%〜0.10%の範囲内である銅張り板。 Formed from p-phenylenediamine and 4,4'-diaminodiphenyl ether as the diamine component, pyromellitic dianhydride and 3,3 ', 4,4'-biphenyltetracarboxylic dianhydride as the acid dianhydride component , elastic The linear expansion coefficient at a rate of 3 to 7 GPa, a linear expansion coefficient at 50 to 200 ° C. is 5 to 20 ppm / ° C., a humidity expansion coefficient is 25 ppm /% RH or less, a water absorption is 3% or less, and a heat shrinkage rate at 200 ° C. for 1 hour is 0. It is a copper-clad plate having a copper plate with an adhesive on one or both sides of a polyimide film that is 10% or less, and the dimensional change rate after etching the entire surface is -0.10% to 0.10%. Copper-clad plate that is within range . ジアミン成分としてパラフェニレンジアミン及び4,4’−ジアミノジフェニルエーテル、酸二無水物成分としてピロメリット酸二無水物及び3,3’,4,4’−ビフェニルテトラカルボン酸二無水物から形成され、弾性率3〜7GPa、50〜200℃での線膨張係数が5〜20ppm/℃、湿度膨張係数が25ppm/%RH以下、吸水率が3%以下、200℃1時間での加熱収縮率が0.10%以下であるポリイミドフィルムの片面または両面に、接着剤を介することなく銅板を有している銅張り板であり、全面エッチング後の寸法変化率が、−0.10%〜0.10%の範囲内である銅張り板。 Formed from p-phenylenediamine and 4,4'-diaminodiphenyl ether as the diamine component, pyromellitic dianhydride and 3,3 ', 4,4'-biphenyltetracarboxylic dianhydride as the acid dianhydride component , elastic The linear expansion coefficient at a rate of 3 to 7 GPa, a linear expansion coefficient at 50 to 200 ° C. is 5 to 20 ppm / ° C., a humidity expansion coefficient is 25 ppm /% RH or less, a water absorption is 3% or less, and a heat shrinkage rate at 200 ° C. for 1 hour is 0. It is a copper-clad plate having a copper plate on one or both sides of a polyimide film that is 10% or less without an adhesive, and the dimensional change rate after etching the entire surface is -0.10% to 0.10%. Copper-clad plate that is within the range of ジアミン成分としてパラフェニレンジアミン及び4,4’−ジアミノジフェニルエーテル、酸二無水物成分としてピロメリット酸二無水物及び3,3’,4,4’−ビフェニルテトラカルボン酸二無水物から形成され、弾性率3〜7GPa、50〜200℃での線膨張係数が5〜20ppm/℃、湿度膨張係数が25ppm/%RH以下、吸水率が3%以下、200℃1時間での加熱収縮率が0.10%以下であるポリイミドフィルムの片面は接着剤を介し銅板を有し、もう片面は接着剤を介することなく銅板を有している銅張り板であり、全面エッチング後の寸法変化率が、−0.10%〜0.10%の範囲内である銅張り板。 Formed from p-phenylenediamine and 4,4'-diaminodiphenyl ether as the diamine component, pyromellitic dianhydride and 3,3 ', 4,4'-biphenyltetracarboxylic dianhydride as the acid dianhydride component , elastic The linear expansion coefficient at a rate of 3 to 7 GPa, a linear expansion coefficient at 50 to 200 ° C. is 5 to 20 ppm / ° C., a humidity expansion coefficient is 25 ppm /% RH or less, a water absorption is 3% or less, and a heat shrinkage rate at 200 ° C. for 1 hour is 0. One side of the polyimide film that is 10% or less is a copper-clad plate that has a copper plate through an adhesive, and the other side is a copper plate without an adhesive, and the dimensional change rate after the entire etching is − A copper-clad plate within a range of 0.10% to 0.10% . ポリイミドフィルムのジアミン成分が10〜50モル%のパラフェニレンジアミン及び50〜90モル%の4,4’−ジアミノジフェニルエーテル、酸二無水物成分がピロメリット酸二無水物50〜99モル%及び3,3’,4,4’−ビフェニルテトラカルボン酸二無水物1〜50モル%である請求項1〜3のいずれかに記載の銅張り板。 The diamine component of the polyimide film is 10-50 mol% paraphenylenediamine and 50-90 mol% 4,4'-diaminodiphenyl ether, the acid dianhydride component is 50-99 mol% pyromellitic dianhydride and 3, The copper-clad plate according to any one of claims 1 to 3, which is 1 to 50 mol% of 3 ', 4,4'-biphenyltetracarboxylic dianhydride. 接着剤がエポキシ系接着剤、アクリル系接着剤、及びポリイミド系接着剤から選ばれる少なくとも1種からなることを特徴とする請求項1または請求項3〜のいずれかに記載の銅張り板。 Adhesive epoxy adhesive, copper clad laminate according to claim 1 or claim 3-4, characterized in that it consists of at least one selected from acrylic adhesives, and polyimide adhesives. 接着側の銅の表面粗さ(Rz)が0.1〜10μmの銅箔である請求項1または、請求項3〜のいずれかに記載の銅張り板。 The copper-clad plate according to any one of claims 1 and 3 to 5 , which is a copper foil having a surface roughness (Rz) of copper on the adhesion side of 0.1 to 10 µm .
JP2006341379A 2005-12-26 2006-12-19 Copper plate Expired - Fee Related JP4876890B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006341379A JP4876890B2 (en) 2005-12-26 2006-12-19 Copper plate

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2005372216 2005-12-26
JP2005372216 2005-12-26
JP2006341379A JP4876890B2 (en) 2005-12-26 2006-12-19 Copper plate

Publications (2)

Publication Number Publication Date
JP2007196670A JP2007196670A (en) 2007-08-09
JP4876890B2 true JP4876890B2 (en) 2012-02-15

Family

ID=38451731

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006341379A Expired - Fee Related JP4876890B2 (en) 2005-12-26 2006-12-19 Copper plate

Country Status (1)

Country Link
JP (1) JP4876890B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5166233B2 (en) * 2008-12-26 2013-03-21 新日鉄住金化学株式会社 Laminate for wiring board having transparent insulating resin layer
TWI548524B (en) * 2012-09-28 2016-09-11 Dainippon Ink & Chemicals Laminated body, conductive pattern and circuit
CN109843796A (en) * 2016-10-14 2019-06-04 株式会社钟化 The manufacturing method of graphite film

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3635085B2 (en) * 1991-10-30 2005-03-30 東レ・デュポン株式会社 Polyimide film
JPH0725906B2 (en) * 1992-07-21 1995-03-22 宇部興産株式会社 Polyimide composite sheet
JP3351265B2 (en) * 1995-10-03 2002-11-25 宇部興産株式会社 Aromatic polyimide film and copper foil laminated film
JP2003335877A (en) * 2002-05-17 2003-11-28 Du Pont Toray Co Ltd Method for manufacturing polyimide film

Also Published As

Publication number Publication date
JP2007196670A (en) 2007-08-09

Similar Documents

Publication Publication Date Title
JP5180814B2 (en) Laminated body for flexible wiring board
JP4888719B2 (en) Copper plate
TWI784065B (en) Polyimide membrane
JP5077840B2 (en) Coverlay
KR101333808B1 (en) Laminate for wiring board
JP2008087254A (en) Flexible copper-clad laminate and flexible copper clad laminate with carrier
JP4876890B2 (en) Copper plate
JP2007196671A (en) Copper clad plate
JP4994992B2 (en) Laminate for wiring board and flexible wiring board for COF
JP4947297B2 (en) Copper plate
JP2007168370A (en) Copper plated board
JP2007194603A (en) Flexible printed wiring board, and manufacturing method thereof
JP2008166556A (en) Flexible printed wiring board
JP2007313738A (en) Metal clad plate
JP2007201442A (en) Chip-on film
TWI392408B (en) Copper plate
JP2008290303A (en) Copper-clad plate
JP3587291B2 (en) TAB tape
JP2009018523A (en) Copper clad plate
KR20070068295A (en) Copper foiled substrate
JP5126735B2 (en) Flexible printed wiring board
JP2007173260A (en) Flexible printed wiring board
JP2009018522A (en) Copper clad plate
JP5126734B2 (en) Copper plate
JP2007194602A (en) Flexible printed wiring board, and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091019

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20100301

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20100301

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110708

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110719

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110915

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20110915

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20110915

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111108

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111114

R150 Certificate of patent or registration of utility model

Ref document number: 4876890

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141209

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees