JP4874743B2 - Gallium nitride compound semiconductor vapor phase growth system - Google Patents

Gallium nitride compound semiconductor vapor phase growth system Download PDF

Info

Publication number
JP4874743B2
JP4874743B2 JP2006225542A JP2006225542A JP4874743B2 JP 4874743 B2 JP4874743 B2 JP 4874743B2 JP 2006225542 A JP2006225542 A JP 2006225542A JP 2006225542 A JP2006225542 A JP 2006225542A JP 4874743 B2 JP4874743 B2 JP 4874743B2
Authority
JP
Japan
Prior art keywords
light
ceramic plate
vapor phase
phase growth
transmitting ceramic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006225542A
Other languages
Japanese (ja)
Other versions
JP2007096280A (en
JP2007096280A5 (en
Inventor
達也 大堀
一成 椎名
泰 家近
昇 須田
勇吉 高松
義康 石濱
岳夫 米山
由直 小宮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Pionics Ltd
Original Assignee
Japan Pionics Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Pionics Ltd filed Critical Japan Pionics Ltd
Priority to JP2006225542A priority Critical patent/JP4874743B2/en
Publication of JP2007096280A publication Critical patent/JP2007096280A/en
Publication of JP2007096280A5 publication Critical patent/JP2007096280A5/en
Application granted granted Critical
Publication of JP4874743B2 publication Critical patent/JP4874743B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、半導体膜の気相成長装置に関し、さらに詳細には、基板を載置するサセプタ、基板を加熱するヒータ、原料ガス導入部、及び反応ガス排出部を備えた窒化ガリウム系化合物半導体の気相成長装置に関する。 The present invention relates to a semiconductor film vapor phase growth apparatus, and more particularly, a gallium nitride-based compound semiconductor including a susceptor for placing a substrate, a heater for heating the substrate, a source gas introduction unit, and a reaction gas discharge unit. The present invention relates to a vapor phase growth apparatus.

近年、窒化ガリウム系化合物半導体が、発光ダイオードやレーザーダイオード等の素子として、照明分野を中心に急速に需要が高まっている。窒化ガリウム系化合物半導体の製造方法としては、例えばトリメチルガリウム、トリメチルインジウム、またはトリメチルアルミニウム等の有機金属ガスをIII族金属源として、アンモニアを窒素源として用い、あらかじめ反応室内にセットされたサファイア等の基板上に窒化ガリウム系化合物の半導体膜を気相成長させて成膜する方法(以下MOCVD法と記すことがある)が知られている。   In recent years, the demand for gallium nitride-based compound semiconductors has been increasing rapidly as an element such as a light-emitting diode or a laser diode, mainly in the lighting field. As a method for producing a gallium nitride compound semiconductor, for example, an organic metal gas such as trimethylgallium, trimethylindium, or trimethylaluminum is used as a group III metal source, ammonia is used as a nitrogen source, and sapphire is set in advance in a reaction chamber. A method of forming a semiconductor film of a gallium nitride compound on a substrate by vapor phase growth (hereinafter sometimes referred to as MOCVD method) is known.

また、前記窒化ガリウム系化合物半導体を製造するための装置としては、基板を載置するサセプタ、基板を加熱するヒータ、原料ガス導入部、反応ガス排出部、及びサセプタを支持するサセプタ回転軸を備えた横型あるいは縦型の気相成長装置等が公知である。このような気相成長装置においては、基板をサセプタに載せ、ヒータで加熱した後、前記の原料を含む2種類以上のガスを、基板の表面に対して水平方向、あるいは垂直方向から供給することにより、基板上に半導体膜を気相成長させて成膜する構成となっている。   The apparatus for producing the gallium nitride compound semiconductor includes a susceptor on which the substrate is placed, a heater for heating the substrate, a source gas introduction unit, a reaction gas discharge unit, and a susceptor rotating shaft that supports the susceptor. A horizontal type or vertical type vapor phase growth apparatus is known. In such a vapor phase growth apparatus, a substrate is placed on a susceptor and heated by a heater, and then two or more kinds of gases containing the above-mentioned raw materials are supplied from the horizontal direction or the vertical direction with respect to the surface of the substrate. Thus, a semiconductor film is formed on the substrate by vapor phase growth.

窒化ガリウム系化合物半導体の製造においては、基板を1000℃以上の高温に加熱するとともに、基板の表面に腐食性の前記原料ガスを供給するので、高温に加熱される基板、サセプタのほか、ヒータ自体にも耐熱性及び耐腐食性が要求される。従来から、高温の腐食性ガス雰囲気下に適用できる各種ヒータ、あるいはこれを用いた気相成長装置が開発されてきた。例えば、特開平5−206100には、石英管に保護されたヒータを用いた半導体製造装置が開示されている。特開平8−17745には、高純度熱分解黒鉛に被覆されたヒータ、炭化ケイ素に被覆されたヒータが開示されている。特開平11−233244には、3層のアルミニウムプレート層間の一方にヒータ、他方に補強材を組み込んだCVD装置用熱板が開示されている。また、特開2003−133225には、窒化物セラミックまたは炭化物セラミックからなる板状体の片面または内部に形成されたヒータが開示されている。
特開平5−206100号公報 特開平8−17745号公報 特開平11−233244号公報 特開2003−133225号公報
In the manufacture of gallium nitride-based compound semiconductors, the substrate is heated to a high temperature of 1000 ° C. or higher, and the corrosive source gas is supplied to the surface of the substrate. In addition, heat resistance and corrosion resistance are required. Conventionally, various heaters applicable to high temperature corrosive gas atmospheres, or vapor phase growth apparatuses using the same have been developed. For example, Japanese Patent Laid-Open No. 5-206100 discloses a semiconductor manufacturing apparatus using a heater protected by a quartz tube. JP-A-8-17745 discloses a heater coated with high-purity pyrolytic graphite and a heater coated with silicon carbide. Japanese Patent Application Laid-Open No. 11-233244 discloses a CVD apparatus hot plate in which a heater is incorporated in one of three aluminum plate layers and a reinforcing material is incorporated in the other. Japanese Patent Application Laid-Open No. 2003-133225 discloses a heater formed on one side or inside of a plate-like body made of nitride ceramic or carbide ceramic.
JP-A-5-206100 JP-A-8-17745 JP-A-11-233244 JP 2003-133225 A

しかしながら、前述のような耐熱性耐腐食性材料で被覆されたヒータであっても、室温と1100〜1200℃の繰返し使用では、発熱部の構成材料と耐熱性耐腐食性材料との熱膨張率の相異により、ヒータの変形やひび割れが起こり耐熱性耐腐食性材料を被覆する効果が減少する不都合があった。さらに、このような状況に加えて、1100〜1200℃、アンモニア10〜50%雰囲気下の使用により、比較的に短期間でこれらの材料が劣化しヒータが切れてしまいヒータを頻繁に交換する必要があった。   However, even in the case of a heater coated with a heat-resistant and corrosion-resistant material as described above, the coefficient of thermal expansion between the constituent material of the heat generating part and the heat-resistant and corrosion-resistant material after repeated use at room temperature and 1100 to 1200 ° C. Due to the difference, the heater is deformed and cracked, and the effect of covering the heat-resistant and corrosion-resistant material is reduced. Furthermore, in addition to such a situation, the use of 1100-1200 ° C. and 10-50% ammonia atmosphere deteriorates these materials in a relatively short period of time, and the heaters run out, so the heaters must be replaced frequently. was there.

尚、ヒータと空間を隔ててヒータの熱線を透過する石英板を配置し、ヒータから腐食性ガスを遮蔽することも考えられる。しかし、前記のような高温下では石英板の塑性変形が生じ、加熱、冷却を繰り返すうちに塑性変形が次第に大きくなり、例えば垂れ下がって反応室内のその他の部品と接触し、さらには装置が破損する等の問題が生じるため、比較的に短時間のうちに石英板を交換しなければならなかった。特に複数枚の基板について同時に気相成長できる構成の大型の装置においては、装置の規模に応じた大型の石英板を用いなければならず、石英の塑性変形の問題が大きくなる傾向があった。
従って、本発明が解決しようとする課題は、窒化ガリウム系化合物半導体のような高温で腐食性の高いガスを用いた気相成長反応を行なう場合であっても、半導体膜の品質に悪影響を与えることなく、長期間にわたり安定した成膜が可能な気相成長装置を提供することである。
It is also conceivable to place a quartz plate that transmits the heat rays of the heater across the space from the heater and shield the corrosive gas from the heater. However, plastic deformation of the quartz plate occurs at a high temperature as described above, and the plastic deformation gradually increases as heating and cooling are repeated. For example, the quartz plate hangs down and comes into contact with other components in the reaction chamber, and the apparatus is damaged. Therefore, the quartz plate had to be replaced in a relatively short time. In particular, in a large apparatus configured to vapor-phase grow simultaneously on a plurality of substrates, a large quartz plate corresponding to the scale of the apparatus must be used, and the problem of plastic deformation of quartz tends to increase.
Accordingly, the problem to be solved by the present invention is that the quality of the semiconductor film is adversely affected even when a vapor phase growth reaction using a gas having high corrosivity at a high temperature such as a gallium nitride compound semiconductor is performed. It is another object of the present invention to provide a vapor phase growth apparatus capable of stably forming a film over a long period of time.

本発明者らは、これらの課題を解決すべく鋭意検討した結果、ヒータと基板の間に、ヒータと空間を隔てて、支持部材により保持または補強された石英板等の光透過性セラミックス板を配置し、ヒータから腐食性ガスを遮蔽することにより、高温で腐食性の高いガスからヒータを保護できることを見出し、本発明の気相成長装置に到達した。すなわち本発明は、基板を載置するためのサセプタ、該基板を加熱するヒータ、該基板に原料ガスを供給する原料ガス導入部、及び反応ガス排出部を有し、該ヒータと基板の載置位置の間に、ヒータと空間を隔てて、外周部材、中心部材、及びこれらを結合する部材からなる支持部材により、下から保持または補強された光透過性セラミックス板であって、光透過性セラミックス板の中央に中心孔を形成している環状の光透過性セラミックスを備え、光透過性セラミックス板は、扇形状の複数の光透過性セラミックス板片で構成されていること特徴とする窒化ガリウム系化合物半導体の気相成長装置である。 As a result of intensive studies to solve these problems, the present inventors have established a light-transmitting ceramic plate such as a quartz plate held or reinforced by a support member with a space between the heater and the substrate. It has been found that by arranging and shielding the corrosive gas from the heater, the heater can be protected from the corrosive gas at high temperature, and the vapor phase growth apparatus of the present invention has been reached. That is, the present invention includes a susceptor for mounting a substrate, a heater for heating the substrate, a source gas introduction unit for supplying source gas to the substrate, and a reaction gas discharge unit, and mounting the heater and the substrate A light-transmitting ceramic plate that is held or reinforced from below by a support member comprising a peripheral member, a central member, and a member that couples these members, with a space between the heater and a space. A gallium nitride system comprising an annular light-transmitting ceramic having a central hole in the center of the plate, the light-transmitting ceramic plate being composed of a plurality of fan-shaped light-transmitting ceramic plate pieces This is a compound semiconductor vapor phase growth apparatus.

本発明の気相成長装置は、ヒータを直接的に耐熱性耐腐食性材料で被覆している構成ではないので、従来から指摘されている発熱部の構成材料と耐熱性耐腐食性材料との熱膨張率の相異の問題がなく、また比較的に軟化点が低い石英等の光透過性セラミックス板を、支持部材により保持または補強して、ヒータと基板の間に設けた構成なので、高温下においてもセラミックス板の塑性変形をほとんど無視することができ、セラミックス板の交換頻度を大幅に減らすことができる。従って、本発明の気相成長装置は、窒化ガリウム系化合物半導体のような高温で腐食性の高いガスを用いた気相成長反応を行なう場合であっても、ヒータの断線等を抑制することが可能となり、経時変化の少ない再現性のよい気相成長が可能である。   In the vapor phase growth apparatus of the present invention, the heater is not directly covered with the heat-resistant and corrosion-resistant material. There is no problem with the difference in thermal expansion coefficient, and a light-transmitting ceramic plate such as quartz, which has a relatively low softening point, is held or reinforced by a support member and provided between the heater and the substrate. Even below, plastic deformation of the ceramic plate can be almost ignored, and the replacement frequency of the ceramic plate can be greatly reduced. Therefore, the vapor phase growth apparatus of the present invention suppresses disconnection of the heater even when performing a vapor phase growth reaction using a gas having high corrosivity at a high temperature such as a gallium nitride compound semiconductor. This makes it possible to perform vapor phase growth with little change over time and good reproducibility.

本発明は、基板を載置するサセプタ、基板を加熱するヒータ、基板に原料ガスを供給する原料ガス導入部、及び反応ガス排出部を備えた窒化ガリウム系化合物半導体の気相成長装置に適用される。また、原料を含むガスを、水平方向から供給する方式、上方向から供給する方式、下方向から供給する方式のいずれの気相成長装置にも適用される。尚、高温の基板に原料ガスを吹き付けるMOCVD法においては、基板の成膜面を下に向け、基板の下方向から原料を供給する方法が熱対流の影響が少ない点で望ましい。また、本発明の気相成長装置においては、特に気相成長温度として1000℃以上の高温を必要とする窒化ガリウム系化合物半導体膜の成膜、さらに複数枚の基板への窒化ガリウム系化合物半導体膜の成膜の場合に、ヒータの断線等を抑制でき、長期的に安定した気相成長ができる点で、本発明の効果を充分に発揮させることができる。 INDUSTRIAL APPLICABILITY The present invention is applied to a gallium nitride compound semiconductor vapor phase growth apparatus including a susceptor for mounting a substrate, a heater for heating the substrate, a source gas introduction unit for supplying source gas to the substrate, and a reaction gas discharge unit. The Further, the present invention can be applied to any vapor phase growth apparatus in which a gas containing a raw material is supplied from the horizontal direction, supplied from above, or supplied from below. Note that, in the MOCVD method in which a source gas is blown onto a high-temperature substrate, a method of supplying the source material from the lower side of the substrate with the film-forming surface of the substrate facing down is desirable in that the influence of thermal convection is small. Further, in the vapor phase growth apparatus of the present invention, the formation of a gallium nitride compound semiconductor film requiring a high temperature of 1000 ° C. or more as the vapor growth temperature, and further the gallium nitride compound semiconductor film on a plurality of substrates In the case of film formation, the disconnection of the heater can be suppressed, and the effect of the present invention can be exhibited sufficiently in that stable vapor phase growth can be achieved over a long period of time.

以下、本発明の気相成長装置を、図1〜図7に基づいて詳細に説明するが、本発明がこれらにより限定されるものではない。
尚、図1、図2は、本発明の気相成長装置の一例を示す垂直断面図である。図3は、本発明の気相成長装置において、環状の光透過性セラミックス板の外周端または中心孔の周端を支持部材により保持した部分の例を示す拡大断面図である。図4は、本発明の気相成長装置において、環状または円板状の光透過性セラミックス板の中心部を支持部材により保持した部分の例を示す拡大断面図である。図5は、本発明の気相成長装置における光透過性セラミックス板の例を示す構成図である。図6、図7は、本発明の気相成長装置において、光透過性セラミックス板を下から保持または補強する支持部材の例を示す構成図である。
Hereinafter, although the vapor phase growth apparatus of this invention is demonstrated in detail based on FIGS. 1-7, this invention is not limited by these.
1 and 2 are vertical sectional views showing an example of the vapor phase growth apparatus of the present invention. FIG. 3 is an enlarged cross-sectional view showing an example of a portion in which the outer peripheral end of the annular light-transmitting ceramic plate or the peripheral end of the center hole is held by a support member in the vapor phase growth apparatus of the present invention. FIG. 4 is an enlarged cross-sectional view showing an example of a portion in which a central portion of an annular or disk-shaped light-transmitting ceramic plate is held by a support member in the vapor phase growth apparatus of the present invention. FIG. 5 is a configuration diagram showing an example of a light-transmitting ceramic plate in the vapor phase growth apparatus of the present invention. 6 and 7 are configuration diagrams showing examples of support members for holding or reinforcing a light-transmitting ceramic plate from below in the vapor phase growth apparatus of the present invention.

本発明の気相成長装置は、図1、図2に示すように、基板1を載置するためのサセプタ2、該基板1を加熱するヒータ3、該基板1に原料ガスを供給する原料ガス導入部4、及び反応ガス排出部5を有し、該ヒータ3と該基板1の載置位置の間に、図3、図4に示すような下からの支持部材6Cにより保持または補強された光透過性セラミックス板7を備えてなる気相成長装置である。さらに、図1に示すように、サセプタ2を公転させるためのギア部8(サセプタの外縁及びこれに接する対面に互いに噛み合う歯車が設けられる部分)、断熱板9、ガス案内部材10等を適宜設けることができる。サセプタ2は、図1、図2に示すように、基板1を複数枚載置する構成とすることができる。また、図2に示すように、図1のギア部8に替えてサセプタ回転軸11を設けることもできる。 As shown in FIGS. 1 and 2, the vapor phase growth apparatus of the present invention includes a susceptor 2 for placing a substrate 1, a heater 3 for heating the substrate 1, and a source gas for supplying a source gas to the substrate 1. It has an introduction part 4 and a reaction gas discharge part 5, and is held or reinforced by a support member 6C from below as shown in FIGS. 3 and 4 between the heater 3 and the mounting position of the substrate 1. A vapor phase growth apparatus including a light-transmitting ceramic plate 7. Further, as shown in FIG. 1, a gear portion 8 for revolving the susceptor 2 (a portion where gears meshing with each other on the outer edge of the susceptor and the facing surface contacting it), a heat insulating plate 9, a gas guide member 10 and the like are provided as appropriate. be able to. As shown in FIGS. 1 and 2, the susceptor 2 can be configured to mount a plurality of substrates 1. In addition, as shown in FIG. 2, a susceptor rotating shaft 11 can be provided instead of the gear portion 8 of FIG.

本発明において、光透過性セラミックス板7は、基板1、サセプタ2、あるいはヒータ3と空間を隔てて設けられる。また、光透過性セラミックス板7は、原料ガス導入部4から導入される原料ガス、あるいはこれらが反応して生成した反応ガスが、ヒータ3の表面に到達しないような構成となるように設けられる。従来の気相成長装置においては、光透過性セラミックス板7がないので、例えば、公転するサセプタ2の外周部の間隙、自転する基板1の外周部の間隙等から、原料ガス、反応ガスが侵入しヒータ3に到達する。尚、本発明における外周端支持部材6Aは、主に光透過性セラミックス板7を側面から支える役目を成し、中心部支持部材6Bは、主に光透過性セラミックス板7を中心部で支える役目を成し、下からの支持部材6Cは、主に光透過性セラミックス板7を補強するとともに下から支える役目を成す。 In the present invention, the light-transmitting ceramic plate 7 is provided with a space from the substrate 1, the susceptor 2, or the heater 3. The light-transmitting ceramic plate 7 is provided so that the source gas introduced from the source gas introduction unit 4 or the reaction gas generated by the reaction thereof does not reach the surface of the heater 3. . In the conventional vapor phase growth apparatus, since there is no light-transmitting ceramic plate 7, for example, the raw material gas and the reactive gas enter from the outer peripheral portion of the revolving susceptor 2 and the outer peripheral portion of the rotating substrate 1. And reach the heater 3. In the present invention, the outer peripheral end support member 6A mainly serves to support the light-transmitting ceramic plate 7 from the side surface, and the center support member 6B mainly serves to support the light-transmitting ceramic plate 7 at the center portion. The support member 6C from below mainly serves to reinforce the light-transmitting ceramic plate 7 and support it from below.

本発明の気相成長装置において、光透過性セラミックス板7は、通常は図5の構成図に示すように環状または円板状であるが、これに限定されることなく、外周または内周の形状が、四角形、五角形、六角形、八角形、多角形等であってもよい。光透過性セラミックス板7は、環状の場合は、通常は外周端12の一部または全部が、例えば図3に示すように外周端支持部材6Aと下からの支持部材6Cにより保持され、中心孔の周端13の一部または全部が、例えば図4(2)に示すように中心部支持部材6Bと下からの支持部材6Cにより保持される。また、孔がない円板状の場合は、通常は外周端12の一部または全部が、例えば図3に示すように外周端支持部材6Aと下からの支持部材6Cにより保持され、中心部の一部または全部が例えば図4(1)に示すように中心部支持部材6Bと下からの支持部材6Cにより保持される。尚、光透過性セラミックス板7を支持部材により保持する方法については特に制限されることはないが、例えば図3、図4に示すように、ボルトを用いて保持させる方法、外周端支持部材6A、中心部支持部材6Bにより保持させる方法を行なうことができる。 In the vapor phase growth apparatus of the present invention, the light-transmitting ceramic plate 7 is usually annular or disk-shaped as shown in the block diagram of FIG. The shape may be a quadrangle, a pentagon, a hexagon, an octagon, a polygon, or the like. When the light-transmitting ceramic plate 7 is annular, a part or all of the outer peripheral end 12 is usually held by an outer peripheral end supporting member 6A and a supporting member 6C from below as shown in FIG. For example, as shown in FIG. 4B, a part or all of the peripheral end 13 is held by a center support member 6B and a support member 6C from below . Further, in the case of a disc shape without holes, usually, a part or all of the outer peripheral end 12 is held by an outer peripheral end supporting member 6A and a supporting member 6C from below as shown in FIG. For example, as shown in FIG. 4A, a part or the whole is held by a center support member 6B and a support member 6C from below . The method of holding the light-transmitting ceramic plate 7 by the support member is not particularly limited. For example, as shown in FIGS. 3 and 4, a method of holding the light-transmitting ceramic plate 7 using a bolt, an outer peripheral end support member 6A. A method of holding by the center support member 6B can be performed.

尚、図1、図2に示す気相成長装置の例では、断熱板9、光透過性セラミックス板7、及び支持部材6A、6Bによりヒータ3を囲む構造となっている。このヒータを囲む構造には、別途不活性ガスを導入する導入管を接続し、該構造内を不活性ガスで満たすことができるようにしておくことが好ましい。不活性ガスとしては、窒素ガス、ヘリウムガス、ネオンガス、アルゴンガス、クリプトンガス、キセノンガス、あるいはラドンガス等があり、通常は窒素ガスが多用される。また、該構造は成膜に用いられる腐食性の強いガスが侵入しにくいように、密閉性の高い構造としておくことが望ましい。尚、ヒータ3と光透過性セラミックス板7の間隙、光透過性セラミックス板7とサセプタ2の間隙は、いずれも通常は1〜20mm、好ましくは3〜15mm、さらに好ましくは5〜10mmである。1〜20mmであればヒータの保護が可能である。間隙が20mmを超えるとヒータの効果が低減する。   In the example of the vapor phase growth apparatus shown in FIGS. 1 and 2, the heater 3 is surrounded by the heat insulating plate 9, the light-transmitting ceramic plate 7, and the supporting members 6A and 6B. It is preferable that an inlet pipe for introducing an inert gas is connected to the structure surrounding the heater so that the structure can be filled with the inert gas. Examples of the inert gas include nitrogen gas, helium gas, neon gas, argon gas, krypton gas, xenon gas, and radon gas, and nitrogen gas is usually used frequently. Further, it is desirable that the structure has a highly sealed structure so that a highly corrosive gas used for film formation does not easily enter. The gap between the heater 3 and the light transmissive ceramic plate 7 and the gap between the light transmissive ceramic plate 7 and the susceptor 2 are usually 1 to 20 mm, preferably 3 to 15 mm, and more preferably 5 to 10 mm. If the thickness is 1 to 20 mm, the heater can be protected. When the gap exceeds 20 mm, the effect of the heater is reduced.

また、図5に例示したセラミックス板7は環状、円板状となっているが、実際の使用状況によっては面内方向に大きな温度分布が生じる場合がある。このような場合、セラミックス板7に用いる材料の熱膨張係数によっては大きな弾性変形が生じたり、さらにはこの変形による破損が生じる場合がある。例えば、直径600mmのセラミックス板が室温より1000℃高い温度に保持され、その材質の熱膨張係数が5×10−6/℃である場合、直径方向に3mm膨張することになる。従って、このような場合、光透過性セラミックス板7の保持部分にはこのような熱変形が生じても問題が生じないような構造としておく必要がある。このような問題を避けるためには、セラミックス板7を熱変形が緩和できるように分割製作することが望ましい。具体的な分割方法としては、環状、円板状のセラミックス板の場合、同心円状、扇型状に分割する方法、あるいは同心円状に分割した上で、そのうちの一部または全部を円周方向に分割した形状、さらには扇型状に分割した上でそのうちに一部または全部を半径方向に分割する方法等が挙げられる。 Moreover, although the ceramic plate 7 illustrated in FIG. 5 has an annular shape and a disc shape, a large temperature distribution may occur in the in-plane direction depending on the actual use situation. In such a case, depending on the thermal expansion coefficient of the material used for the ceramic plate 7, a large elastic deformation may occur, or damage due to this deformation may occur. For example, when a ceramic plate having a diameter of 600 mm is maintained at a temperature 1000 ° C. higher than room temperature and the thermal expansion coefficient of the material is 5 × 10 −6 / ° C., the ceramic plate expands by 3 mm in the diameter direction. Therefore, in such a case, the holding portion of the light-transmitting ceramic plate 7 needs to have a structure that does not cause a problem even if such thermal deformation occurs. In order to avoid such a problem, it is desirable to divide the ceramic plate 7 so that thermal deformation can be mitigated. As a specific dividing method, in the case of an annular or disk-shaped ceramic plate, a method of dividing it into concentric circles or a fan shape, or dividing into concentric circles, and partially or all of them in the circumferential direction For example, there may be a method of dividing the shape into a fan shape and then partially or entirely dividing it into a radial shape.

図1に示す本発明の気相成長装置は、前述のように光透過性セラミックス板7が周辺部と中央部において支持部材6A、6Bにより固定されているので、その外周端の部分のみを支持部材により保持した場合と比較して、光透過性セラミックス板の塑性変形による垂れ下がりを抑制することができる。その結果、例えば光透過性セラミックス板として石英板を用いた場合、石英板の垂れ下がりによるその他の部分への接触や破損の虞がなくなり、長期的に安定した気相成長を行なうことができる。   In the vapor phase growth apparatus of the present invention shown in FIG. 1, the light-transmitting ceramic plate 7 is fixed at the peripheral part and the central part by the supporting members 6A and 6B as described above, so that only the outer peripheral end part is supported. Compared with the case where it is held by a member, it is possible to suppress sagging due to plastic deformation of the light-transmitting ceramic plate. As a result, for example, when a quartz plate is used as the light-transmitting ceramic plate, there is no risk of contact or damage to other parts due to the drooping of the quartz plate, and stable vapor phase growth can be performed for a long time.

本発明の気相成長装置において、支持部材6Cの構成としては、例えば図6及び図7(1)(2)に示すように、外周部材14、中心部材15、及びこれらを結合する部材16あるいは幾何学模様状の結合部材17からなる構成を例示することができる。外周部材14、中心部材15は、主に光透過性セラミックス板7を補強するとともに下から支える役目を成し、結合部材16あるいは幾何学模様状の結合部材17は、主に光透過性セラミックス板7の塑性変形による垂れ下がりを抑制する役目を成す。尚、結合部材16あるいは幾何学模様状部材17の形態としては、例えば、網目状、放射状、螺旋状、縦縞模様状、横縞模様状、これらを組合せた形状のものを例示することができる。この支持部材Cの外周の形状は、通常は光透過性セラミックス板と合ったものであり円形であるが、これに限定されることなく、四角形、五角形、六角形、八角形、多角形等であってもよい。このような支持部材6Cは、外径の大きさも通常は光透過性セラミックス板7と同じ、あるいは近似するものである。尚、支持部材6Cも、光透過性セラミックス板7と同様に熱変形が緩和できるように分割製作することが望ましい。具体的な分割方法としても、光透過性セラミックス板7と同様である。 In the vapor phase growth apparatus of the present invention, as the structure of the support member 6C, for example, as shown in FIGS. 6 and 7 (1) (2), the outer peripheral member 14, the central member 15, and the member 16 that couples them, The structure which consists of the connection member 17 of geometric pattern shape can be illustrated. The outer peripheral member 14 and the central member 15 mainly serve to reinforce and support the light-transmitting ceramic plate 7 from below, and the connecting member 16 or the geometrically-shaped connecting member 17 is mainly a light-transmitting ceramic plate. 7 serves to suppress sagging due to plastic deformation. Examples of the shape of the coupling member 16 or the geometric pattern member 17 include a mesh shape, a radial shape, a spiral shape, a vertical stripe shape, a horizontal stripe shape, and a combination thereof. The shape of the outer periphery of the support member 6 C is normally a circular are those that meet the light-transmitting ceramic plate, without being limited thereto, square, pentagonal, hexagonal, octagonal, polygonal, etc. It may be. Such a support member 6 </ b> C is usually the same as or close to the outer diameter of the light-transmitting ceramic plate 7. The support member 6C is desirably divided and manufactured so that thermal deformation can be mitigated in the same manner as the light-transmitting ceramic plate 7. The specific dividing method is the same as that of the light-transmitting ceramic plate 7.

本発明の気相成長装置において、光透過性セラミックス板の構成材料としては、通常は、酸化ケイ素(石英を含む)、アルミナ、マグネシア、酸化イットリウムのほか、MgAl、アルミニウムオキシナイトライド等の酸化物系セラミックス、または窒化アルミニウム等の窒化物系セラミックスが用いられるが、これらに限られることなく、1200℃程度の温度に対する耐熱性があり、ヒータから放出される熱線を透過し、原料ガス及び反応ガスに対する耐腐食性を有するものであれば使用することができる。光透過性セラミックス板の厚みは、通常は0.5〜10mm程度、外径は通常は100〜1000mm程度、孔を設ける場合、孔径は通常は2〜200mm程度である。 In the vapor phase growth apparatus of the present invention, the constituent material of the light-transmitting ceramic plate is usually silicon oxide (including quartz), alumina, magnesia, yttrium oxide, MgAl 2 O 4 , aluminum oxynitride, etc. Oxide-based ceramics or nitride-based ceramics such as aluminum nitride are used, but are not limited to these, have heat resistance to a temperature of about 1200 ° C., transmit heat rays emitted from the heater, and feed gas In addition, any material having corrosion resistance to the reaction gas can be used. The thickness of the light-transmitting ceramic plate is usually about 0.5 to 10 mm, the outer diameter is usually about 100 to 1000 mm, and when holes are provided, the hole diameter is usually about 2 to 200 mm.

また、支持部材の構成材料としては、炭素鋼、マンガン鋼、クロム鋼、モリブデン鋼、ステンレス鋼、ニッケル鋼、タングステン鋼等の金属のほか、合金、金属酸化物、セラミックス、及び炭素材料等が用いられる。
特に、支持部材6Cには、800〜1300℃における機械的強度が光透過性セラミックス板7より優れた耐熱性部材が用いられる。このような耐熱性の支持部材の構成材料としては、モリブデン、タングステン等の金属、インコネル等の耐熱合金、アルミナ、アルミニウムオキシナイトライド、マグネシア、ジルコニア等の金属酸化物、窒化ホウ素、窒化ケイ素、窒化ジルコニウム、窒化チタン、窒化タングステン、窒化アルミニウム等の窒化物系セラミックス、炭化ホウ素、炭化ケイ素、炭化ジルコニウム、炭化チタン、炭化タングステン、炭化タンタル等の炭化物系セラミックス、窒化ホウ素、炭化ホウ素、ホウ化チタン等のホウ化物系セラミックス、及び炭素材料を挙げることができる。
In addition, as a constituent material of the support member, metals such as carbon steel, manganese steel, chromium steel, molybdenum steel, stainless steel, nickel steel, tungsten steel, alloys, metal oxides, ceramics, and carbon materials are used. It is done.
In particular, a heat-resistant member having a mechanical strength at 800 to 1300 ° C. superior to the light-transmitting ceramic plate 7 is used for the support member 6C. The constituent materials of such a heat-resistant support member include metals such as molybdenum and tungsten, heat-resistant alloys such as Inconel, metal oxides such as alumina, aluminum oxynitride, magnesia, and zirconia, boron nitride, silicon nitride, and nitride Nitride ceramics such as zirconium, titanium nitride, tungsten nitride, and aluminum nitride, carbide ceramics such as boron carbide, silicon carbide, zirconium carbide, titanium carbide, tungsten carbide, and tantalum carbide, boron nitride, boron carbide, titanium boride, etc. And boride-based ceramics and carbon materials.

尚、炭素材料としては、通常の等方性黒鉛の場合、耐腐食性が高くない場合があり、気相成長により得られる炭素(熱分解炭素)、または黒鉛を熱分解炭素で被覆したもの、ガラス状炭素、黒鉛をガラス状炭素で被覆したもの、黒鉛を炭化タンタルで被覆したもの、黒鉛を炭化ケイ素で被覆したもの等を用いることが好ましい。また、これらのうち2種類以上を用いてもよい。また、支持部材6Cが光透過性でない場合には、ヒータからの熱線が効率的にサセプタに達するのを妨げるため、支持部材6Cはヒータから見た断面積がなるべく小さくなるようにすべきであるが、一方、ヒータから見た断面積を小さくすると機械的強度が小さくなり好ましくない。一般的な耐熱性金属を支持部材6Cに用いる場合に好ましい補強材の形状の例としては、直径が0.5mm以上、5mm以下の線状、網状のものが挙げられ、また、ヒータから見た好ましい補強材の断面積の例としては50%以下、好ましくは40%以下、さらに好ましくは20%以下のものが挙げられる。   In addition, as a carbon material, in the case of normal isotropic graphite, the corrosion resistance may not be high, carbon obtained by vapor phase growth (pyrolytic carbon), or graphite coated with pyrolytic carbon, It is preferable to use glassy carbon, graphite coated with glassy carbon, graphite coated with tantalum carbide, graphite coated with silicon carbide, or the like. Two or more of these may be used. Further, when the support member 6C is not light-transmitting, the support member 6C should have a cross-sectional area viewed from the heater as small as possible in order to prevent the heat rays from the heater from efficiently reaching the susceptor. However, if the cross-sectional area viewed from the heater is reduced, the mechanical strength is reduced, which is not preferable. Examples of the shape of a preferable reinforcing material when a general heat-resistant metal is used for the support member 6C include linear and net-like ones having a diameter of 0.5 mm or more and 5 mm or less, as viewed from the heater. Examples of a preferable cross-sectional area of the reinforcing material include 50% or less, preferably 40% or less, and more preferably 20% or less.

ところで、石英は光透過性セラミックスのなかでも非常に小さい熱膨張係数を有するため、大きな部材を作製しても熱的な弾性変形が小さく、本発明に好適に用いることができる。
支持部材6Cの構成材料としては、大きく分けて、光透過性の良好な材料と光透過性の小さい材料とに分けられる。前者の例としては、サファイア、アルミナ、アルミニウムオキシナイトライド、窒化アルミニウム等が、後者の例としては耐熱性金属等が挙げられる。耐熱性金属は、熱的衝撃、機械的衝撃に強く、その点で本発明の支持部材として好適に用いることができる。さらに、これらの支持部材と光透過性セラミックスとの間に、前記の光透過性の良好な補強材を設置することで、熱線の透過をほとんど損なうことなく、補強の効果を向上させることができる点で、本発明に好適に用いることができる。さらにこのような構造とした場合、光透過性の補強材の熱膨張係数が小さくない場合でも、分割した補強材をいくつも組み合わせ、これを光透過性の小さい材質の補強材でさらに支持することができる点でも好ましい。
By the way, quartz has a very small thermal expansion coefficient among light-transmitting ceramics. Therefore, even if a large member is produced, thermal elastic deformation is small and can be suitably used in the present invention.
The constituent material of the support member 6C is roughly classified into a material having good light transmission and a material having low light transmission. Examples of the former include sapphire, alumina, aluminum oxynitride, aluminum nitride, and the like, and examples of the latter include a refractory metal. The heat-resistant metal is resistant to thermal shock and mechanical shock, and can be suitably used as the support member of the present invention in that respect. Furthermore, the reinforcing effect can be improved without substantially impairing the transmission of heat rays by installing the above-described reinforcing material having good light transmitting property between the supporting member and the light transmitting ceramics. In this respect, it can be suitably used in the present invention. Furthermore, in such a structure, even if the thermal expansion coefficient of the light-transmitting reinforcing material is not small, a number of divided reinforcing materials are combined and further supported by a reinforcing material having a low light-transmitting material. It is also preferable in that it can be.

尚、使用温度、使用雰囲気にもよるが、石英は、高温で蒸発することがある。たとえば石英を光透過性セラミックスとして用い、水素雰囲気中で1100℃程度またはそれ以上に加熱すると、サセプタに石英の粉末が付着する場合がある。このような場合、サセプタのヒータ側の面が変色し、熱線の吸収率が変化するため、サセプタの加熱に要するパワーが経時変化することになり、長期間にわたる安定した成膜ができなくなる。石英とともに石英以外の光透過性のセラミックスの材料を用いた場合、石英の蒸発を抑制する効果があり、長期間の安定した成膜ができるようになるため、本発明の具体例として好適に用いることができる。   Depending on the operating temperature and operating atmosphere, quartz may evaporate at high temperatures. For example, when quartz is used as a light-transmitting ceramic and heated to about 1100 ° C. or higher in a hydrogen atmosphere, quartz powder may adhere to the susceptor. In such a case, the surface of the susceptor on the heater side changes color and the absorption factor of the heat rays changes, so that the power required for heating the susceptor changes with time, and stable film formation over a long period of time becomes impossible. When a light-transmitting ceramic material other than quartz is used together with quartz, it has an effect of suppressing the evaporation of quartz and enables stable film formation for a long period of time. Therefore, it is suitably used as a specific example of the present invention. be able to.

本発明に用いることができるヒータの材質の具体例としては、モリブデン、タングステン等の高融点金属、黒鉛、炭化ケイ素等の耐熱性電導性セラミックス等が挙げられる。炭化ケイ素は高温の還元雰囲気で昇華性があるため、加熱時には窒素、アルゴン等の不活性ガス雰囲気に保持することが望ましい。本発明により、黒鉛のような高温でアンモニアに対して耐腐食性が低いものでもヒータとして用いることができるが、これに耐アンモニア性材料を被覆して用いることで、不慮の事態に対しても信頼性を高めることができる。ヒータとして用いる黒鉛に好適な耐アンモニア性材料の具体例としては、熱分解炭素、ガラス状炭素、炭化タンタル、炭化ケイ素、窒化ホウ素等が挙げられる。   Specific examples of the heater material that can be used in the present invention include refractory metals such as molybdenum and tungsten, and heat-resistant conductive ceramics such as graphite and silicon carbide. Since silicon carbide is sublimable in a high-temperature reducing atmosphere, it is desirable to keep it in an inert gas atmosphere such as nitrogen or argon during heating. According to the present invention, it is possible to use a heater having a low corrosion resistance against ammonia at a high temperature such as graphite, but by coating it with an ammonia-resistant material, it can be used against unexpected situations. Reliability can be increased. Specific examples of the ammonia-resistant material suitable for graphite used as a heater include pyrolytic carbon, glassy carbon, tantalum carbide, silicon carbide, boron nitride, and the like.

次に、本発明を実施例により具体的に説明するが、本発明がこれらにより限定されるものではない。   EXAMPLES Next, although an Example demonstrates this invention concretely, this invention is not limited by these.

(気相成長装置の製作)
ステンレス製の反応容器の内部に、円板状サセプタ(直径560mm、厚さ11mm)、ヒータ、原料ガスの導入部、ガス案内部材、反応ガス排出部を設け、さらに、外周端支持部材6A(窒化ホウ素)により外周端が、中心部支持部材6B(窒化ホウ素)により中心孔の周端が保持された環状の光透過性セラミックス板(石英板)を設けて、図1に示すような気相成長装置を製作した。尚、光透過性セラミックス板は、直径650mm、厚さ3mm、中心孔の直径が32mmであった。また、炭素材料からなる外周部材(外径650mm、幅30mm、厚さ3mm)、中心部材(外径62mm、幅30mm、厚さ3mm)、及びモリブデンからなる網目構造(間隔10mm)の結合部材により構成された図6(3)に示すような支持部材6Cを用いて、光透過性セラミックス板を下から支えて補強した。また、光透過性セラミックス板とヒータの間隙は7mmであり、光透過性セラミックス板とサセプタの間隙も7mmであった。
(Production of vapor phase growth equipment)
A stainless steel reaction vessel is provided with a disk-shaped susceptor (diameter 560 mm, thickness 11 mm), a heater, a source gas introduction part, a gas guide member, and a reaction gas discharge part. Further, an outer peripheral end support member 6A (nitriding) 1 is provided with an annular light-transmitting ceramic plate (quartz plate) in which the outer peripheral end is held by boron) and the peripheral end of the central hole is held by the center support member 6B (boron nitride). A device was made. The light-transmitting ceramic plate had a diameter of 650 mm, a thickness of 3 mm, and a center hole diameter of 32 mm. In addition, by a peripheral member (outer diameter 650 mm, width 30 mm, thickness 3 mm) made of carbon material, a central member (outer diameter 62 mm, width 30 mm, thickness 3 mm), and a mesh structure (interval 10 mm) made of molybdenum. Using the support member 6C as shown in FIG. 6 (3), the light-transmitting ceramic plate was supported and reinforced from below. The gap between the light transmissive ceramic plate and the heater was 7 mm, and the gap between the light transmissive ceramic plate and the susceptor was also 7 mm.

(加熱実験)
この気相成長装置を用いて、以下の加熱実験を行なった。すなわち反応室内を窒素ガスで置換した後、ヒータ近傍に設置した熱電対の温度が1200℃になるように加熱し、この温度を合計で18時間保持した。
温度を室温まで低下させた後、光透過性セラミックス板の垂れ下がり状態を測定した。その結果、光透過性セラミックス板の垂れ下がりはほとんど見られず最大値でも1mm以下であった。
(Heating experiment)
The following heating experiment was performed using this vapor phase growth apparatus. That is, after replacing the reaction chamber with nitrogen gas, the temperature of the thermocouple installed near the heater was heated to 1200 ° C., and this temperature was maintained for a total of 18 hours.
After the temperature was lowered to room temperature, the sagging state of the light-transmitting ceramic plate was measured. As a result, the sagging of the light-transmitting ceramic plate was hardly observed, and the maximum value was 1 mm or less.

(耐腐食性実験)
次に、ヒータ近傍に設置した熱電対の温度が1200℃になるように加熱した後、反応室内にアンモニアガス(20vol%)と水素ガス(80vol%)の混合ガスを200時間流通した。
温度を室温まで低下させた後、ヒータの表面状態を測定した。その結果、窒化ホウ素膜により被覆されたヒータの表面には、腐食性ガス(アンモニアガス)による損傷は確認できなかった。
さらに、前記の窒化ホウ素膜により被覆されたヒータを、表面に何も耐アンモニア被覆していないグラファイト製のヒータに替えて、気相成長装置を製作し、前記と同様な耐腐食性実験を行なったが、同様にヒータの表面には、腐食性ガス(アンモニアガス)による損傷は確認できなかった。
(Corrosion resistance experiment)
Next, after heating so that the temperature of the thermocouple installed in the vicinity of the heater was 1200 ° C., a mixed gas of ammonia gas (20 vol%) and hydrogen gas (80 vol%) was circulated in the reaction chamber for 200 hours.
After the temperature was lowered to room temperature, the surface condition of the heater was measured. As a result, no damage due to corrosive gas (ammonia gas) could be confirmed on the surface of the heater covered with the boron nitride film.
Further, the heater coated with the boron nitride film was replaced with a graphite heater whose surface was not coated with ammonia, and a vapor phase growth apparatus was manufactured, and the same corrosion resistance experiment was performed. However, similarly, no damage due to corrosive gas (ammonia gas) could be confirmed on the surface of the heater.

[実施例2〜4]
実施例1の気相成長装置の製作において、光透過性セラミックス板の外周端及び中心孔の周端を保持する支持部材6A、6Bの構成材料を、各々ステンレスとアルミナ、ステンレスとインコネル、ステンレスと炭素材に替えたほかは実施例1と同様にして気相成長装置を製作した。
これらの気相成長装置を用いたほかは実施例1と同様にして各々加熱実験を行なった。その結果、いずれも光透過性セラミックス板の垂れ下がりはほとんど見られず最大値でも1mm以下であった。
[Examples 2 to 4]
In the manufacture of the vapor phase growth apparatus of Example 1, the constituent materials of the supporting members 6A and 6B that hold the outer peripheral end of the light-transmitting ceramic plate and the peripheral end of the center hole are stainless steel and alumina, stainless steel and inconel, and stainless steel, respectively. A vapor phase growth apparatus was manufactured in the same manner as in Example 1 except that the carbon material was used.
Each heating experiment was performed in the same manner as in Example 1 except that these vapor phase growth apparatuses were used. As a result, almost no sagging of the light-transmitting ceramic plate was observed, and the maximum value was 1 mm or less.

[実施例5〜8]
実施例1の気相成長装置の製作において、光透過性セラミックス板を下から支える支持部材6Cの構成を、各々図6(2)(モリブデン線の径3mm)、図6(4)(網目の間隔10mm)、図7(1)(モリブデン線の径3mm)、図7(2)(モリブデン線の径3mm)に示すようなものに替えたほかは実施例1と同様にして気相成長装置を製作した。
これらの気相成長装置を用いたほかは実施例1と同様にして各々加熱実験を行なった。その結果、いずれも光透過性セラミックス板の垂れ下がりはほとんど見られず最大値でも1mm以下であった。
[Examples 5 to 8]
In the manufacture of the vapor phase growth apparatus of Example 1, the structure of the support member 6C that supports the light-transmitting ceramic plate from below is shown in FIGS. 6 (2) (molybdenum wire diameter 3 mm) and FIG. 6 (4) (mesh). Vapor phase growth apparatus in the same manner as in Example 1, except that the distance is 10 mm), FIG. 7 (1) (molybdenum wire diameter 3 mm), and FIG. 7 (2) (molybdenum wire diameter 3 mm). Was made.
Each heating experiment was performed in the same manner as in Example 1 except that these vapor phase growth apparatuses were used. As a result, almost no sagging of the light-transmitting ceramic plate was observed, and the maximum value was 1 mm or less.

[実施例9〜11]
実施例1の気相成長装置の製作において、光透過性セラミックス板を下から支える支持部材6Cの結合部材16の構成材料を、各々タングステン、インコネル、窒化ホウ素に替えたほかは実施例1と同様にして気相成長装置を製作した。
これらの気相成長装置を用いたほかは実施例1と同様にして各々加熱実験を行なった。その結果、いずれも光透過性セラミックス板の垂れ下がりはほとんど見られず最大値でも1mm以下であった。
[Examples 9 to 11]
In the manufacture of the vapor phase growth apparatus of Example 1, the constituent material of the coupling member 16 of the supporting member 6C that supports the light-transmitting ceramic plate from below is changed to tungsten, Inconel, and boron nitride, respectively, and is the same as Example 1. Thus, a vapor phase growth apparatus was manufactured.
Each heating experiment was performed in the same manner as in Example 1 except that these vapor phase growth apparatuses were used. As a result, almost no sagging of the light-transmitting ceramic plate was observed, and the maximum value was 1 mm or less.

[実施例12〜14]
実施例1の気相成長装置の製作において、光透過性セラミックス板を、各々サファイア、アルミナ、アルミニウムオキシナイトライドに替えたほかは実施例1と同様にして気相成長装置を製作した。
これらの気相成長装置を用いたほかは実施例1と同様にして各々加熱実験を行なった。その結果、いずれも光透過性セラミックス板の垂れ下がりはほとんど見られず最大値でも1mm以下であった。
[Examples 12 to 14]
In the production of the vapor phase growth apparatus of Example 1, a vapor phase growth apparatus was produced in the same manner as in Example 1 except that the light-transmitting ceramic plates were replaced with sapphire, alumina, and aluminum oxynitride, respectively.
Each heating experiment was performed in the same manner as in Example 1 except that these vapor phase growth apparatuses were used. As a result, almost no sagging of the light-transmitting ceramic plate was observed, and the maximum value was 1 mm or less.

[実施例15]
ステンレス製の反応容器の内部に、環状サセプタ(直径560mm、厚さ11mm)、ヒータ、原料ガスの導入部、ガス案内部材、反応ガス排出部を設け、さらに、外周端支持部材6Aにより外周端が、中心部支持部材6Bにより中心孔の周端が保持された環状の光透過性セラミックス板を設けて、図2に示すような気相成長装置を製作した。また、光透過性セラミックス板を、石英とサファイアを重ね合わせたもの(厚さは各々1.5mm)にして、サファイアを下側にセットした。そのほかは実施例1と同様にして気相成長装置を製作した。
この気相成長装置を用いたほかは実施例1と同様にして各々加熱実験を行なった。その結果、いずれも光透過性セラミックス板の垂れ下がりはほとんど見られず最大値でも1mm以下であった。
[Example 15]
An annular susceptor (diameter 560 mm, thickness 11 mm), a heater, a source gas introduction part, a gas guide member, and a reaction gas discharge part are provided inside a stainless steel reaction vessel, and the outer peripheral end is supported by the outer peripheral end support member 6A. Then, an annular light-transmitting ceramic plate in which the peripheral end of the center hole was held by the center support member 6B was provided to manufacture a vapor phase growth apparatus as shown in FIG. Further, the light-transmitting ceramic plate was made by superimposing quartz and sapphire (thickness was 1.5 mm each), and sapphire was set on the lower side. Otherwise, a vapor phase growth apparatus was manufactured in the same manner as in Example 1.
Each heating experiment was performed in the same manner as in Example 1 except that this vapor phase growth apparatus was used. As a result, almost no sagging of the light-transmitting ceramic plate was observed, and the maximum value was 1 mm or less.

比較例1
ステンレス製の反応容器の内部に、環状サセプタ(直径280mm、厚さ11mm)、ヒータ、原料ガスの導入部、ガス案内部材、反応ガス排出部を設け、さらに、支持部材6A、6B(窒化ホウ素)により外周端及び中心部が保持された中心部に孔がない円板状の光透過性セラミックス板(石英板)を設けて、図1に示すような気相成長装置を製作した。尚、光透過性セラミックス板は、直径300mm、厚さ5mmであった。また、耐熱性の支持部材6Cは用いなかった。また、光透過性セラミックス板とヒータの間隙は7mmであり、光透過性セラミックス板とサセプタの間隙も7mmであった。この気相成長装置を用いたほかは実施例1と同様にして加熱実験を行なった。その結果、光透過性セラミックス板の垂れ下がりは最大値で1〜2mm程度であった。
[ Comparative Example 1 ]
An annular susceptor (diameter 280 mm, thickness 11 mm), a heater, a source gas introduction part, a gas guide member, and a reaction gas discharge part are provided inside a stainless steel reaction vessel, and support members 6A and 6B (boron nitride) 1 was provided with a disc-shaped light-transmitting ceramic plate (quartz plate) having no holes in the central portion where the outer peripheral end and the central portion were held, and a vapor phase growth apparatus as shown in FIG. 1 was manufactured. The light-transmitting ceramic plate had a diameter of 300 mm and a thickness of 5 mm. Moreover, the heat resistant support member 6C was not used. The gap between the light transmissive ceramic plate and the heater was 7 mm, and the gap between the light transmissive ceramic plate and the susceptor was also 7 mm. A heating experiment was conducted in the same manner as in Example 1 except that this vapor phase growth apparatus was used. As a result, the maximum sag of the light-transmitting ceramic plate was about 1 to 2 mm.

比較例2〜4
比較例1の気相成長装置の製作において、光透過性セラミックス板を、各々サファイア、アルミナ、アルミニウムオキシナイトライドに替えたほかは比較例1と同様にして気相成長装置を製作した。これらの気相成長装置を用いたほかは実施例1と同様にして各々加熱実験を行なった。その結果、いずれも光透過性セラミックス板の垂れ下がりは最大値で1〜2mm程度であった。
[ Comparative Examples 2 to 4 ]
In the production of the vapor phase growth apparatus of Comparative Example 1, a vapor phase growth apparatus was produced in the same manner as in Comparative Example 1 except that the light-transmitting ceramic plate was replaced with sapphire, alumina, and aluminum oxynitride, respectively. Each heating experiment was performed in the same manner as in Example 1 except that these vapor phase growth apparatuses were used. As a result, the maximum sag of the light-transmitting ceramic plate was about 1 to 2 mm.

[比較例
実施例1の気相成長装置の製作において、光透過性セラミックス板を設けなかったほかは実施例1と同様にして気相成長装置を製作した。 この気相成長装置を用いて、以下の耐腐食性実験を行なった。すなわちヒータ近傍に設置した熱電対の温度が1200℃になるように加熱した後、反応室内にアンモニアガス(20vol%)と水素ガス(80vol%)の混合ガスを20時間流通した。温度を室温まで低下させた後、ヒータの表面状態を測定した。その結果、窒化ホウ素膜により被覆されたヒータの表面には、腐食性ガス(アンモニアガス)により微小な孔(直径1mm程度)が多数発生していることが確認できた。
[Comparative Example 5 ]
In the production of the vapor phase growth apparatus of Example 1, a vapor phase growth apparatus was produced in the same manner as in Example 1 except that the light-transmitting ceramic plate was not provided. The following corrosion resistance experiment was performed using this vapor phase growth apparatus. That is, after heating the thermocouple installed in the vicinity of the heater to 1200 ° C., a mixed gas of ammonia gas (20 vol%) and hydrogen gas (80 vol%) was circulated in the reaction chamber for 20 hours. After the temperature was lowered to room temperature, the surface condition of the heater was measured. As a result, it was confirmed that a large number of minute holes (diameter of about 1 mm) were generated by the corrosive gas (ammonia gas) on the surface of the heater covered with the boron nitride film.

実施例1〜15及び比較例1〜4の加熱実験をまとめた結果を各々表1及び表2に、実施例1と比較例5の耐腐食性実験の結果を表3に示した。以上のように、支持部材6Cを用いた本発明の気相成長装置は、塑性変形による垂れ下がりを抑制できることがわかった。 The results of summarizing the heating experiments of Examples 1 to 15 and Comparative Examples 1 to 4 are shown in Tables 1 and 2, respectively, and the results of the corrosion resistance experiment of Example 1 and Comparative Example 5 are shown in Table 3, respectively. As described above, it has been found that the vapor phase growth apparatus of the present invention using the support member 6C can suppress sagging due to plastic deformation.

Figure 0004874743
Figure 0004874743

Figure 0004874743
Figure 0004874743

Figure 0004874743
Figure 0004874743

本発明の気相成長装置の一例を示す垂直断面図Vertical sectional view showing an example of the vapor phase growth apparatus of the present invention 本発明の図1以外の気相成長装置の一例を示す垂直断面図Vertical sectional view showing an example of a vapor phase growth apparatus other than FIG. 1 of the present invention 環状の光透過性セラミックス板の外周端または中心孔の周端を支持部材により保持した部分の例を示す拡大断面図An enlarged sectional view showing an example of a portion in which the outer peripheral end of the annular light-transmitting ceramic plate or the peripheral end of the center hole is held by a support member 環状または円板状の光透過性セラミックス板の中心部を支持部材により保持した部分の例を示す拡大断面図An enlarged cross-sectional view showing an example of a portion in which a central portion of an annular or disc-shaped light-transmitting ceramic plate is held by a support member 光透過性セラミックス板の例を示す構成図Configuration diagram showing examples of light-transmitting ceramic plates 光透過性セラミックス板を下から保持または補強する支持部材の例を示す構成図Configuration diagram showing an example of a support member for holding or reinforcing a light-transmitting ceramic plate from below 光透過性セラミックス板を下から保持または補強する図6以外の支持部材の例を示す構成図Configuration diagram showing an example of a support member other than FIG. 6 that holds or reinforces a light-transmitting ceramic plate from below.

符号の説明Explanation of symbols

1 基板
2 サセプタ
3 ヒータ
4 原料ガス導入部
5 反応ガス排出部
6A 外周端支持部材
6B 中心部支持部材
6C 下からの支持部材
7 光透過性セラミックス板
8 ギア部
9 断熱板
10 ガス案内部材
11 サセプタ回転軸
12 外周端
13 中心孔の周端
14 外周部材
15 中心部材
16 結合部材
17 幾何学模様状の結合部材
DESCRIPTION OF SYMBOLS 1 Board | substrate 2 Susceptor 3 Heater 4 Raw material gas introduction part 5 Reaction gas discharge part 6A Outer peripheral edge support member 6B Center part support member 6C Support member from the bottom 7 Light-transmitting ceramic board 8 Gear part 9 Heat insulation board 10 Gas guide member 11 Susceptor Rotating shaft 12 Outer peripheral end 13 Peripheral end of center hole 14 Outer peripheral member 15 Central member 16 Connecting member 17 Geometric pattern-shaped connecting member

Claims (6)

基板を載置するためのサセプタ、該基板を加熱するヒータ、該基板に原料ガスを供給する原料ガス導入部、及び反応ガス排出部を有し、該ヒータと基板の載置位置の間に、ヒータと空間を隔てて、外周部材、中心部材、及びこれらを結合する部材からなる支持部材により、下から保持または補強された光透過性セラミックス板であって、光透過性セラミックス板の中央に中心孔を形成している環状の光透過性セラミックスを備え、
光透過性セラミックス板は、扇形状の複数の光透過性セラミックス板片で構成されていること特徴とする窒化ガリウム系化合物半導体の気相成長装置。
A susceptor for mounting the substrate, a heater for heating the substrate, a source gas introduction unit for supplying source gas to the substrate, and a reactive gas discharge unit, between the heater and the substrate mounting position, A light-transmitting ceramic plate that is held or reinforced from below by a support member comprising a peripheral member, a central member, and a member that couples these members with a space from the heater, and is centered in the center of the light-transmitting ceramic plate It has an annular light-transmitting ceramic that forms holes ,
The light-transmitting ceramic plate is composed of a plurality of fan-shaped light-transmitting ceramic plate pieces .
前記光透過性セラミックス板は、前記光透過性セラミックス板が熱変形によって中心孔から離れる半径方向の伸び縮みすることができる隙間が前記光透過性セラミックス板の外周端と支持部材との間に形成されるように、支持部材により、下から保持または補強されている請求項1に記載の気相成長装置。 The light-transmitting ceramic plate has a gap between the outer peripheral end of the light-transmitting ceramic plate and the support member that allows the light-transmitting ceramic plate to expand and contract in the radial direction away from the center hole by thermal deformation. The vapor phase growth apparatus according to claim 1, wherein the vapor deposition apparatus is held or reinforced from below by a support member . 光透過性セラミックス板の構成材料が、サファイア、アルミナ、またはアルミニウムオキシナイトライドである請求項1又は2に記載の気相成長装置。   The vapor phase growth apparatus according to claim 1 or 2, wherein the constituent material of the light-transmitting ceramic plate is sapphire, alumina, or aluminum oxynitride. 支持部材の構成材料が、金属、合金、金属酸化物、セラミックス、及び炭素材料から選ばれる1種以上である請求項1又は2に記載の気相成長装置。   The vapor phase growth apparatus according to claim 1 or 2, wherein the constituent material of the support member is one or more selected from metals, alloys, metal oxides, ceramics, and carbon materials. サセプタが複数枚の基板を載置する構成である請求項1又は2に記載の気相成長装置。   The vapor phase growth apparatus according to claim 1 or 2, wherein the susceptor is configured to place a plurality of substrates. 光透過性セラミックス板とヒータの空間に、不活性ガスを導入する手段が設けられた請求項1又は2に記載の気相成長装置。   The vapor phase growth apparatus according to claim 1 or 2, wherein means for introducing an inert gas is provided in a space between the light-transmitting ceramic plate and the heater.
JP2006225542A 2005-09-05 2006-08-22 Gallium nitride compound semiconductor vapor phase growth system Expired - Fee Related JP4874743B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006225542A JP4874743B2 (en) 2005-09-05 2006-08-22 Gallium nitride compound semiconductor vapor phase growth system

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2005256001 2005-09-05
JP2005256001 2005-09-05
JP2006225542A JP4874743B2 (en) 2005-09-05 2006-08-22 Gallium nitride compound semiconductor vapor phase growth system

Publications (3)

Publication Number Publication Date
JP2007096280A JP2007096280A (en) 2007-04-12
JP2007096280A5 JP2007096280A5 (en) 2009-09-10
JP4874743B2 true JP4874743B2 (en) 2012-02-15

Family

ID=37981543

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006225542A Expired - Fee Related JP4874743B2 (en) 2005-09-05 2006-08-22 Gallium nitride compound semiconductor vapor phase growth system

Country Status (1)

Country Link
JP (1) JP4874743B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009084686A (en) * 2007-09-11 2009-04-23 Tokyo Electron Ltd Substrate-placing mechanism, apparatus for processing substrate, method for suppressing film deposition on substrate placing mechanism, and storage medium
JP5409413B2 (en) 2010-01-26 2014-02-05 日本パイオニクス株式会社 III-nitride semiconductor vapor phase growth system
US8910644B2 (en) * 2010-06-18 2014-12-16 Applied Materials, Inc. Method and apparatus for inducing turbulent flow of a processing chamber cleaning gas
JP5785065B2 (en) * 2011-11-22 2015-09-24 大陽日酸株式会社 Method of purging resistance heater of vapor phase growth apparatus, vapor phase growth apparatus
WO2014132948A1 (en) * 2013-02-27 2014-09-04 東洋炭素株式会社 Susceptor

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03122282A (en) * 1989-10-04 1991-05-24 Nec Corp Laser cvd device
JP3611780B2 (en) * 1992-09-07 2005-01-19 三菱電機株式会社 Semiconductor manufacturing equipment
JPH06151413A (en) * 1992-11-02 1994-05-31 Nippon Telegr & Teleph Corp <Ntt> Heat treatment furnace
JPH10102257A (en) * 1996-09-27 1998-04-21 Nippon Process Eng Kk Coating forming device by chemical vapor deposition
JP2004146811A (en) * 2002-09-30 2004-05-20 Advanced Lcd Technologies Development Center Co Ltd Substrate processing apparatus and substrate processing method

Also Published As

Publication number Publication date
JP2007096280A (en) 2007-04-12

Similar Documents

Publication Publication Date Title
KR20070026265A (en) Chemical vapor deposition apparatus
US7312422B2 (en) Semiconductor batch heating assembly
US7645342B2 (en) Restricted radiated heating assembly for high temperature processing
US6217662B1 (en) Susceptor designs for silicon carbide thin films
JP4874743B2 (en) Gallium nitride compound semiconductor vapor phase growth system
JP2006066432A (en) Quartz jig and semiconductor manufacturing apparatus
US6384383B2 (en) Ceramic heating jig
JPH1174064A (en) Wafer heating device
WO2007055381A1 (en) Film forming apparatus and placing table for film forming apparatus
JP2010034372A (en) Susceptor for vapor deposition apparatus, and vapor deposition apparatus
JP2007096280A5 (en) Gallium nitride compound semiconductor vapor phase growth system
KR20150001781U (en) Heater assembly
US20010052324A1 (en) Device for producing and processing semiconductor substrates
JP3693739B2 (en) High frequency induction furnace
JP2011100844A (en) Device having electrostatic chucking function and method of manufacturing the same
JP4923667B2 (en) CVD equipment
EP2633096B1 (en) Thermal shield for silicon production reactors
CN111218672A (en) MOCVD heater
JP2001313260A (en) Disc-like heater and apparatus for processing wafer
WO2009106942A1 (en) Semiconductor growth system which includes a boron carbide reactor component
JP6478364B2 (en) Coated graphite member and assembly thereof with holding means
JP2013157502A (en) Substrate holding tool and vapor growth device using the same
JP2007208199A (en) Molecular beam cell crucible for silicon
JP2002317261A (en) SiC COATED CARBON HEATER FURNACE AND FILM DEPOSITION SYSTEM
JP2013030633A (en) Vapor growth device

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090723

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090723

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110616

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110822

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20111011

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111017

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20111012

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111115

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111124

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141202

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees