JP4873489B2 - Thin-film thermophysical property measuring device - Google Patents

Thin-film thermophysical property measuring device Download PDF

Info

Publication number
JP4873489B2
JP4873489B2 JP2007235520A JP2007235520A JP4873489B2 JP 4873489 B2 JP4873489 B2 JP 4873489B2 JP 2007235520 A JP2007235520 A JP 2007235520A JP 2007235520 A JP2007235520 A JP 2007235520A JP 4873489 B2 JP4873489 B2 JP 4873489B2
Authority
JP
Japan
Prior art keywords
thin film
light
heating pulse
pulse light
measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007235520A
Other languages
Japanese (ja)
Other versions
JP2009068904A (en
Inventor
貴志 八木
尚之 竹歳
哲也 馬場
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
PICOTHERM CORPORATION
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
PICOTHERM CORPORATION
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by PICOTHERM CORPORATION, National Institute of Advanced Industrial Science and Technology AIST filed Critical PICOTHERM CORPORATION
Priority to JP2007235520A priority Critical patent/JP4873489B2/en
Priority to PCT/JP2008/066332 priority patent/WO2009034999A1/en
Publication of JP2009068904A publication Critical patent/JP2009068904A/en
Application granted granted Critical
Publication of JP4873489B2 publication Critical patent/JP4873489B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N25/00Investigating or analyzing materials by the use of thermal means
    • G01N25/18Investigating or analyzing materials by the use of thermal means by investigating thermal conductivity
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K3/00Thermometers giving results other than momentary value of temperature
    • G01K3/08Thermometers giving results other than momentary value of temperature giving differences of values; giving differentiated values
    • G01K3/10Thermometers giving results other than momentary value of temperature giving differences of values; giving differentiated values in respect of time, e.g. reacting only to a quick change of temperature

Description

本発明は、サーモリフレクタンス法を用いて薄膜の熱拡散率や熱伝導率を測定する装置に関し、加熱用パルスレーザ光を測定対象に照射する一方、連続光のプローブ光を該測定対象に照射して、その反射光を検知することにより温度変化を観測する高速パルス高速時間応答測定装置に関する。   The present invention relates to an apparatus for measuring the thermal diffusivity and thermal conductivity of a thin film using a thermoreflectance method, and irradiates a measurement pulse with laser light for heating while irradiating the measurement object with continuous probe light. The present invention also relates to a high-speed pulse high-speed time response measuring apparatus that observes a temperature change by detecting the reflected light.

ピコ秒サーモリフレクタンス法は薄膜の熱拡散率を測定する有力な方法の一つである。加熱用パルス光として超短パルス光を薄膜の片面に照射すると、薄膜の照射面の温度は瞬間的に上昇し、その後は薄膜内部へ熱が拡散していく。薄膜面の温度変化を観測するために、測温用パルス光を測定する面に照射し、温度変化に依存したプローブ光の反射率変化から薄膜表面温度の変化を観測する。   The picosecond thermoreflectance method is one of the powerful methods for measuring the thermal diffusivity of thin films. When one side of the thin film is irradiated with ultrashort pulse light as heating pulse light, the temperature of the irradiated surface of the thin film instantaneously rises, and then heat diffuses into the thin film. In order to observe the temperature change of the thin film surface, the surface to be measured is irradiated with the temperature measuring pulse light, and the change in the thin film surface temperature is observed from the change in the reflectance of the probe light depending on the temperature change.

本測定法の例として、下記非特許文献1に記載されたピコ秒サーモリフレクタンス装置は、2台のレーザから繰り返し発光するパルス光をそれぞれ加熱用パルス光と測温用パルス光として用い、それぞれのパルスの繰り返し周期をお互いに同期して位相を制御することで加熱用パルス光と測温用パルス光が薄膜へと到着する時間差を変えることができる。しかし、本測定装置にはパルス間のジッターが少なくかつパルスの周期を外部の基準周波数に同期するための特別な機構を有するレーザ以外を用いることができない。なお、ピコ秒サーモリフレクタンス法に関連した技術として、下記特許文献1〜4が存在する。
特開2003−322628号公報 特開2001−116711号公報 特開2001−83113号公報 特開2002−122559号公報 Naoyuki Taketoshi, Tetsuya Baba, and Akira Ono, REVIEW OF SCIENTIFIC INSTRUMENTS 76,(2005)094903 Naoyuki Taketoshi, Tetsuya Baba and Akira Ono, Meas. Sci. Technol. 12 (2001) 2064-2073
As an example of this measurement method, the picosecond thermoreflectance device described in Non-Patent Document 1 below uses pulse light repeatedly emitted from two lasers as heating pulse light and temperature measurement pulse light, respectively. By controlling the phase in synchronization with each other, the time difference between the arrival of the heating pulse light and the temperature measurement pulse light on the thin film can be changed. However, this measuring apparatus can be used only with a laser that has little jitter between pulses and has a special mechanism for synchronizing the pulse period with an external reference frequency. In addition, the following patent documents 1-4 exist as a technique relevant to the picosecond thermoreflectance method.
JP 2003-322628 A JP 2001-116711 A JP 2001-83113 A JP 2002-122559 A Naoyuki Taketoshi, Tetsuya Baba, and Akira Ono, REVIEW OF SCIENTIFIC INSTRUMENTS 76, (2005) 094903 Naoyuki Taketoshi, Tetsuya Baba and Akira Ono, Meas. Sci. Technol. 12 (2001) 2064-2073

本発明の目的は、前記背景技術の問題点を解消し、ジッターを有し特別なパルス光の発光時刻の制御機構を持たないパルスレーザを加熱用パルス光として用いて、薄膜の熱物性値を測定することができる薄膜熱物性測定装置を提供することにある。   An object of the present invention is to solve the problems of the background art described above, and to use a pulsed laser that has jitter and does not have a special pulsed light emission time control mechanism as a heating pulsed light. An object of the present invention is to provide a thin film thermophysical property measuring apparatus capable of measuring.

請求項1の発明は、前記課題を解決するために、薄膜を瞬間的に加熱するための加熱用パルス光を発する加熱用パルスレーザと、前記加熱用パルス光を導くための複数の出射端をもつ屈折率nの光ファイバと、前記光ファイバから出射される前記加熱用パルス光の発光時刻を計測するための手段と、前記薄膜表面の反射率の温度依存性を用いて該薄膜の温度変化を検出するために、該薄膜の測定部へと照射される連続光の測温用レーザ光を発する測温用レーザと、前記測温用レーザ光の反射光を検出する手段と、前記測温用レーザ光の反射光の強度を測定する手段と、加熱用パルス光の発光時刻からの経過時間の関数として反射光の強度を記録する手段と、記録された該測温用レーザの反射光の強度の時間変化に基づいて熱物性値を算出する手段を備えており、また、前記加熱用パルス光が前記発光時刻を計測するための手段に到達してから、前記反射光の強度を記録する手段が、実際に前記測温用レーザ光の反射光の強度を記録し始めるまでの最短時間がtsであり、真空中の光速がcであるとき、前記光ファイバの入射端から前記加熱用パルス光の発光時刻を計測するための手段までの距離L1に対して、前記入射端から前記薄膜を照射するために用いられる出射端までの距離L2は、c×t/n以上長いことを特徴とする薄膜熱物性測定装置として構成される。 In order to solve the above problem, the invention of claim 1 includes a heating pulse laser that emits a heating pulse light for instantaneously heating a thin film, and a plurality of emission ends for guiding the heating pulse light. An optical fiber having a refractive index n, means for measuring the emission time of the heating pulsed light emitted from the optical fiber, and temperature change of the thin film using the temperature dependence of the reflectance of the thin film surface In order to detect the temperature measurement laser, the temperature measurement laser that emits continuous temperature measurement laser light irradiated to the measurement unit of the thin film, the means for detecting the reflected light of the temperature measurement laser light, and the temperature measurement Means for measuring the intensity of the reflected laser light, means for recording the intensity of the reflected light as a function of the elapsed time from the emission time of the heating pulse light, and the recorded reflected light of the temperature measuring laser. Calculate thermophysical property value based on time change of intensity And a means for recording the intensity of the reflected light after the heating pulsed light has reached the means for measuring the emission time is actually reflecting the temperature measuring laser light. The distance from the incident end of the optical fiber to the means for measuring the emission time of the heating pulse light when the shortest time to start recording the intensity of light is ts and the speed of light in vacuum is c A distance L2 from the incident end to the exit end used for irradiating the thin film with respect to L1 is longer than c × t s / n, and is configured as a thin film thermophysical property measuring apparatus.

請求項2の発明は、請求項1の発明において、繰り返し発光する加熱パルスレーザを用いた構成にある。   According to a second aspect of the present invention, in the first aspect of the invention, a heating pulse laser that repeatedly emits light is used.

請求項3の発明は、請求項1または2の発明において、加熱用パルスレーザから繰り返されるパルス光の時間間隔がtrepであり、真空中の光速度がcであるとき、前記光ファイバのL2がc×trep/n−L1よりも短いことを特徴とする構成にある。 According to a third aspect of the present invention, in the first or second aspect of the present invention, when the time interval of the pulse light repeated from the heating pulse laser is t rep and the light velocity in vacuum is c, L2 of the optical fiber Is shorter than c × t rep / n−L1.

請求項4の発明は、請求項1から3のいずれかの発明において、繰り返し発光する加熱用パルス光のある一つのパルス光が発光時刻を計測するための手段に到達し、前記tの時間経過後から所定の時間範囲において測温用レーザ光の反射光の強度を記録し、その後、次の加熱パルス光が到達するたびに同様な記録を所定の回数だけ繰り返し、前記記録の平均化を行うようにした構成にある。 A fourth aspect of the present invention, in the invention of any one of claims 1 to 3, reaches the means for one pulse light with a heating pulse light to emit light repeatedly measures the emission time, time of the t s After the lapse of time, the reflected light intensity of the temperature measuring laser beam is recorded in a predetermined time range, and thereafter the same recording is repeated a predetermined number of times each time the next heating pulse light arrives, and the recording is averaged. It is in the structure made to do.

請求項5の発明は、請求項1から4のいずれかの発明において、光ファイバが、薄膜の測定部と同一位置の表面に照射するための出射端と、薄膜を挟んで測定部と反対位置である裏面に照射するための出射端と、前記薄膜の表面への照射か該薄膜の裏面への照射のどちらかを任意に選択する手段とを備えることを特徴とした構成にある。   The invention of claim 5 is the invention according to any one of claims 1 to 4, wherein the optical fiber irradiates the surface at the same position as the measurement part of the thin film, and the position opposite to the measurement part across the thin film. And an exit end for irradiating the back surface, and means for arbitrarily selecting either irradiation on the surface of the thin film or irradiation on the back surface of the thin film.

本発明によれば、薄膜を加熱するために用いる加熱用パルスレーザが発光時刻の制御機構を持たない場合やパルス発光周期のジッターが大きい場合であっても、加熱パルス光の経路に適当な長さの差をもつように出射側が分岐した光ファイバを用いることにより、ある一つの加熱パルス光が薄膜に照射されるよりも早くその加熱パルス光の発光を計測することができ、その加熱パルス光の発光時刻を基準として測定を開始することで、薄膜がその加熱パルス光で照射されるよりも前の時刻から薄膜の温度変化を記録することができる。また、分岐した光ファイバを用いることにより、なんら切り替え装置を有することなく加熱パルス光を測定部と同一位置と、薄膜を挟んで反対位置に同時に配置することが可能である。   According to the present invention, even when the heating pulse laser used to heat the thin film does not have a light emission time control mechanism or when the jitter of the pulse light emission period is large, the heating pulse light path has an appropriate length. By using an optical fiber whose output side is branched so as to have a difference in thickness, it is possible to measure the emission of the heating pulse light faster than a single heating pulse light is applied to the thin film. By starting the measurement based on the light emission time, the temperature change of the thin film can be recorded from the time before the thin film is irradiated with the heating pulse light. Further, by using a branched optical fiber, it is possible to simultaneously arrange the heating pulse light at the same position as the measurement unit and at the opposite position across the thin film without having any switching device.

本発明の実施例について図面を参照しながら説明する。図1は本発明の実施形態に係る薄膜熱物性測定装置の概念図である。   Embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a conceptual diagram of a thin-film thermophysical property measuring apparatus according to an embodiment of the present invention.

試料1の測定部に測温用レーザ2から発した測温用連続レーザ光12が照射される。測温用レーザ2は、例えば波長780nm、出力2mWのCW半導体レーザで構成される。測定部から反射した測温用連続光レーザ12は測定用光検出器3によって電圧信号に変換されA/D変換器18へ入力される。   A temperature measuring continuous laser beam 12 emitted from the temperature measuring laser 2 is irradiated to the measuring portion of the sample 1. The temperature measuring laser 2 is composed of, for example, a CW semiconductor laser having a wavelength of 780 nm and an output of 2 mW. The temperature measuring continuous light laser 12 reflected from the measuring section is converted into a voltage signal by the measuring photodetector 3 and input to the A / D converter 18.

加熱用パルス光11は測定部と同一位置に照射される(表面加熱表面測温)。一方で加熱用パルス光10は測定部と薄膜1を挟んで反対位置に照射される(裏面加熱表面測温)。加熱用パルス光10、11はシャッター4、5によりどちらかが選択される。加熱用パルスレーザ6は、例えば波長1064nm、パルス幅2ns、繰り返し周波数20kHz、ジッター10%のNd:YAGレーザで構成される。   The heating pulsed light 11 is irradiated to the same position as the measurement unit (surface heating surface temperature measurement). On the other hand, the heating pulsed light 10 is irradiated to the opposite position across the measurement part and the thin film 1 (back surface heating surface temperature measurement). One of the heating pulse lights 10 and 11 is selected by the shutters 4 and 5. The heating pulse laser 6 is composed of, for example, an Nd: YAG laser having a wavelength of 1064 nm, a pulse width of 2 ns, a repetition frequency of 20 kHz, and a jitter of 10%.

加熱用パルスレーザ6から発せられた加熱用パルス光8は光ファイバ7の入射端14から入射する。光ファイバ7は、例えば入射端13から出射端14までの距離は2mであり、入射端13から出射端15までの距離と入射端13から出射端16までの距離は、どちらも31mである屈折率1.4の3分割光ファイバカプラで構成される。   The heating pulse light 8 emitted from the heating pulse laser 6 enters from the incident end 14 of the optical fiber 7. In the optical fiber 7, for example, the distance from the entrance end 13 to the exit end 14 is 2 m, and the distance from the entrance end 13 to the exit end 15 and the distance from the entrance end 13 to the exit end 16 are both 31 m. It is composed of a split optical fiber coupler with a ratio of 1.4.

入射端13から入射した加熱用パルス光8の一部は、加熱用パルス光9となり、およそ9ns後にトリガ用光検出器17へと到達する。一方、残りの加熱パルス光10、11は、およそ145ns後に薄膜へと到達する。   A part of the heating pulsed light 8 incident from the incident end 13 becomes the heating pulsed light 9 and reaches the triggering photodetector 17 after about 9 ns. On the other hand, the remaining heating pulse lights 10 and 11 reach the thin film after about 145 ns.

トリガ用検出器17で検出された加熱用パルス光9は電気パルスに変換されて、A/D変換器18のトリガとして入力される。A/D変換器18は、トリガが入力されてから指定のサンプリング数だけ測定用光検出器3からの電気信号を取得し、測定用連続レーザ光12の反射強度変化を電圧変化として内蔵のメモリに蓄積する。これを1回の測定とし、繰り返しトリガが入力されるたびに、同様に内蔵メモリに蓄積され、指定の測定回数が終了後に平均化して制御用コンピュータ19に記録される。   The heating pulse light 9 detected by the trigger detector 17 is converted into an electric pulse and input as a trigger of the A / D converter 18. The A / D converter 18 acquires an electrical signal from the measurement photodetector 3 for a specified number of samplings after the trigger is input, and incorporates a built-in memory with a change in reflection intensity of the measurement continuous laser beam 12 as a voltage change. To accumulate. This is regarded as one measurement, and each time a repeated trigger is input, it is similarly stored in the built-in memory, averaged after the specified number of measurements is completed, and recorded in the control computer 19.

平均化処理はA/Dボード内蔵のメモリに蓄えられたデータを制御用コンピュータ19に読みだしてから行ってもよいが、A/Dボード18にFPGA等の回路が内蔵されている場合にはA/Dボード18上で平均化処理を行うことで高速な処理が可能である。   The averaging process may be performed after the data stored in the memory built in the A / D board is read out to the control computer 19, but when the A / D board 18 includes a circuit such as an FPGA. High-speed processing is possible by performing averaging processing on the A / D board 18.

A/Dボード18による測定用連続レーザ光12の反射強度変化の記録は、加熱用パルス光10または加熱パルス光11が薄膜へと到達する前の時刻から開始される。加熱パルス光12が試料1に照射された瞬間を時間の原点として測定部の温度の時間変化を解析し薄膜の熱物性値を得る。   Recording of the reflection intensity change of the continuous laser light for measurement 12 by the A / D board 18 is started from the time before the heating pulse light 10 or the heating pulse light 11 reaches the thin film. The time change of the temperature of the measurement part is analyzed with the moment when the sample 1 is irradiated with the heating pulse light 12 as the time origin to obtain the thermophysical value of the thin film.

パルス加熱による温度の時間変化を表す関係は、例えば上記非特許文献2に記載されており、裏面加熱表面測温の構成での測定部の温度TRFは、下記の式(1)で表わされる。 The relationship representing the temporal change in temperature due to pulse heating is described in, for example, Non-Patent Document 2 described above, and the temperature T RF of the measurement unit in the configuration of the back surface heating surface temperature measurement is expressed by the following equation (1). .

Figure 0004873489
Figure 0004873489

ここで、tは薄膜に加熱パルス光が到達してからの経過時間、Qは1つの加熱パルス光について薄膜に吸収される単位面積当たりのエネルギー、ρは薄膜の密度、Cpは薄膜の比熱容量、dは薄膜の膜厚、κfは薄膜の熱拡散率、αは薄膜の吸収係数、bは薄膜の熱浸透率、bは薄膜が成膜されている基板の熱浸透率である。また、表面加熱表面測温の構成での測定部の温度TFFは、下記の式(6)で表わされる。 Here, t is the elapsed time after the heating pulse light reaches the thin film, Q is the energy per unit area absorbed by the thin film for one heating pulse light, ρ is the density of the thin film, and Cp is the specific heat capacity of the thin film. , D is the thickness of the thin film, κ f is the thermal diffusivity of the thin film, α is the absorption coefficient of the thin film, b f is the thermal permeability of the thin film, and b s is the thermal permeability of the substrate on which the thin film is formed. . Further, the temperature T FF measurement part in the configuration of the measuring surface heating surface temperature is represented by the following formula (6).

Figure 0004873489
Figure 0004873489

図2に、ガラス基板上に成膜された膜厚600nmの窒化チタン薄膜の温度変化を示す。測定部の薄膜を挟んで反対位置から加熱を行うために、加熱パルス光10が試料1に照射され、このとき加熱パルス光11はシャッター4により遮蔽されている。時間0においてパルス幅2nsの加熱パルス光が薄膜の測定部の反対側に到達し、照射された薄膜面の温度は瞬間的に加熱される。その後、測定部に向かって薄膜内を熱が拡散していき、測定部の温度が上昇する。式(1)によるフィッティングを行った結果が図1の解析曲線であり本窒化チタン薄膜の熱拡散率は2.2×10−6/sと計算される。 FIG. 2 shows a temperature change of a titanium nitride thin film having a thickness of 600 nm formed on a glass substrate. In order to heat from the opposite position across the thin film of the measurement unit, the heating pulse light 10 is irradiated to the sample 1, and at this time, the heating pulse light 11 is shielded by the shutter 4. At time 0, the heating pulse light having a pulse width of 2 ns reaches the opposite side of the thin film measurement portion, and the temperature of the irradiated thin film surface is instantaneously heated. Thereafter, heat diffuses in the thin film toward the measurement unit, and the temperature of the measurement unit rises. The result of fitting by equation (1) is the analytical curve of FIG. 1, and the thermal diffusivity of this titanium nitride thin film is calculated to be 2.2 × 10 −6 m 2 / s.

図3は、ガラス基板上に成膜された膜厚400nmの窒化チタン薄膜の温度変化である。加熱パルス光10を用いた場合(裏面加熱表面測温)と加熱パルス光11を用いた場合(表面加熱表面測温)の両方を示した。薄膜が不透明な基板上に成膜されている場合には、表面加熱表面測温の構成で測定を行うことができる。   FIG. 3 shows temperature changes of a 400 nm thick titanium nitride thin film formed on a glass substrate. Both the case where the heating pulse light 10 was used (back surface heating surface temperature measurement) and the case where the heating pulse light 11 was used (surface heating surface temperature measurement) were shown. When the thin film is formed on an opaque substrate, the measurement can be performed with the configuration of surface heating surface temperature measurement.

また、また、図1では、測定部の温度変化を測定するために、測温用連続光レーザを用いたが、その代りに、放射温度計や熱電対等を用いてもよい。   In FIG. 1, a continuous-temperature laser for temperature measurement is used to measure the temperature change of the measurement unit, but a radiation thermometer, a thermocouple, or the like may be used instead.

以上のように本発明によれば、薄膜を加熱するために用いる加熱用パルスレーザが発光時刻の制御機構を持たない場合やパルス発光周期のジッターが大きい場合であっても、加熱パルス光の経路に適当な長さの差をもつように出射側が分岐した光ファイバを用いることにより、ある一つの加熱パルス光が薄膜に照射されるよりも早くその加熱パルス光の発光を計測することができ、その加熱パルス光の発光時刻を基準として測定を開始することで、薄膜がその加熱パルス光で照射されるよりも前の時刻から薄膜の温度変化を記録することができる。また、分岐した光ファイバを用いることにより、なんら切り替え装置を有することなく加熱パルス光を測定部と同一位置と、薄膜を挟んで反対位置に同時に配置することが可能である。   As described above, according to the present invention, even when the heating pulse laser used for heating the thin film has no emission time control mechanism or when the jitter of the pulse emission period is large, the path of the heating pulse light By using an optical fiber whose output side is branched so as to have an appropriate difference in length, it is possible to measure the emission of the heating pulse light faster than a single heating pulse light is applied to the thin film, By starting the measurement based on the emission time of the heating pulse light, the temperature change of the thin film can be recorded from a time before the thin film is irradiated with the heating pulse light. Further, by using a branched optical fiber, it is possible to simultaneously arrange the heating pulse light at the same position as the measurement unit and at the opposite position across the thin film without having any switching device.

本発明は、先端産業で広く用いられている薄膜材料の熱物性値を計測するために直接利用可能である。薄膜の熱物性値は、CPU、光ディスク、メモリなど薄膜により構成されている製品の熱設計に使用される。   The present invention can be directly used to measure thermophysical values of thin film materials widely used in advanced industries. The thermophysical property value of the thin film is used for the thermal design of products made up of thin films such as CPU, optical disk and memory.

本発明の薄膜熱物性測定装置の構成を示す概念図The conceptual diagram which shows the structure of the thin film thermophysical property measuring apparatus of this invention 加熱パルス光が薄膜の測定部位の反対面に照射された時刻を0とし、経過時間と薄膜の温度変化を示す図である。It is a figure which shows the elapsed time and the temperature change of a thin film with the time when the heating pulse light was irradiated to the opposite surface of the measurement site | part of the thin film being set to 0. 加熱パルス光が薄膜の測定部位に照射された場合(表面加熱表面測温)と、反対面に照射された場合(裏面加熱表面測温)における、経過時間と薄膜の温度変化を示す図である。It is a figure which shows the elapsed time and the temperature change of a thin film when a heating pulse light is irradiated to the measurement site | part of a thin film (surface heating surface temperature measurement), and a case where it is irradiated to the opposite surface (back surface heating surface temperature measurement). .

符号の説明Explanation of symbols

1:薄膜試料
2:測温用連続光レーザ
3:測定用光検出器
4,5:シャッター
6:加熱用パルスレーザ
7:光ファイバ
8,9,10,11:加熱用パルス光
12:測温用レーザ光
13:入射端
14:出射端1
15:出射端2
16:出射端3
17:トリガ用光検出器
18:A/D変換器
19:制御用コンピュータ
1: Thin film sample 2: Continuous laser for temperature measurement 3: Photodetector for measurement 4, 5: Shutter 6: Pulse laser for heating 7: Optical fiber 8, 9, 10, 11: Pulse light for heating 12: Temperature measurement Laser beam 13: incident end 14: exit end 1
15: Output end 2
16: Output end 3
17: Photodetector for trigger 18: A / D converter 19: Computer for control

Claims (5)

薄膜を瞬間的に加熱するための加熱用パルス光を発する加熱用パルスレーザと、
前記加熱用パルス光を入射するための入射端と、該加熱用パルス光の発光時刻を計測するために用いられる出射端と、該加熱用パルス光を薄膜へ照射するために用いられる出射端を備える屈折率nの光ファイバと、
前記光ファイバから出射される前記加熱用パルス光の発光時刻を計測するための手段と、
前記薄膜表面の反射率の温度依存性を用いて該薄膜の温度変化を検出するために、該薄膜の測定部へと照射される連続光の測温用レーザ光を発する測温用レーザと、
前記測温用レーザ光の反射光を検出する手段と、
前記加熱用パルス光の発光時刻からの経過時間の関数として反射光の強度を記録する手段と、
前記記録された反射光の強度の時間変化に基づいて熱物性値を算出する手段とを、備えた薄膜熱物性測定装置であって、
前記加熱用パルス光が前記発光時刻を計測するための手段に到達してから、前記反射光の強度を記録する手段が、実際に前記測温用レーザ光の反射光の強度を記録し始めるまでの最短時間がtsであり、真空中の光速がcであるとき、
前記光ファイバの入射端から前記加熱用パルス光の発光時刻を計測するために用いられる出射端までの長さL1に対して、該入射端から前記加熱用パルス光を薄膜へ照射するために用いられる出射端までの長さL2は、c×t/n以上長いことを特徴とする薄膜熱物性測定装置。
A heating pulse laser that emits heating pulse light for instantaneously heating the thin film; and
An incident end for entering the heating pulse light, an emission end used for measuring the emission time of the heating pulse light, and an emission end used for irradiating the thin film with the heating pulse light. An optical fiber having a refractive index n,
Means for measuring the emission time of the heating pulsed light emitted from the optical fiber;
In order to detect the temperature change of the thin film using the temperature dependence of the reflectance of the thin film surface, a temperature measuring laser that emits a continuous temperature temperature measuring laser beam irradiated to the measurement unit of the thin film;
Means for detecting reflected light of the temperature measuring laser beam;
Means for recording the intensity of the reflected light as a function of the elapsed time from the emission time of the heating pulse light;
Means for calculating a thermophysical value based on a temporal change in intensity of the recorded reflected light, and a thin-film thermophysical property measuring apparatus comprising:
After the heating pulse light reaches the means for measuring the emission time, until the means for recording the intensity of the reflected light actually starts recording the intensity of the reflected light of the temperature measuring laser light When the shortest time of ts is ts and the speed of light in vacuum is c,
Used to irradiate the thin film with the heating pulse light from the incident end with respect to the length L1 from the incident end of the optical fiber to the emission end used for measuring the emission time of the heating pulse light. exit end to a length that is L2, the thin film thermal physical property measurement apparatus, characterized in that c × t s / n over long.
前記加熱用パルスレーザが、繰り返しパルス光を用いることを特徴とする請求項1に記載の薄膜熱物性測定装置。   The thin film thermophysical property measuring apparatus according to claim 1, wherein the heating pulse laser uses repetitively pulsed light. 前記加熱用パルスレーザから繰り返されるパルス光の時間間隔がtrepであるとき、前記光ファイバの長さL2がc×trep/n−L1よりも短いことを特徴とする請求項1または2に記載の薄膜熱物性測定装置。 3. The length L <b> 2 of the optical fiber is shorter than c × t rep / n−L <b> 1 when the time interval of pulse light repeated from the heating pulse laser is t rep. The thin film thermophysical property measuring apparatus described. 繰り返し発光する前記加熱用パルス光のある一つのパルス光が前記発光時刻を計測するための手段に到達し、前記tの時間経過後から所定の時間範囲において前記測温用レーザ光の反射光の強度を記録し、その後、次の前記加熱パルス光が到達するたびに同様な記録を所定の回数だけ繰り返し、前記記録の平均化を行うことを特徴とする請求項1から3のいずれかに記載の薄膜熱物性測定装置。 Repeat one pulse light with the heating pulse light emitted reaches to the means for measuring the light emission time, the t the measuring of temperature laser light reflected in a predetermined time range after lapse of time s 4. The recording is then averaged, and the same recording is repeated a predetermined number of times each time the next heating pulse light arrives, and the recording is averaged. 5. The thin film thermophysical property measuring apparatus described. 前記光ファイバが、前記加熱パルス光を前記薄膜の測定部と同一位置の表面に照射するための出射端と、該薄膜を挟んで測定部と反対位置である裏面に照射するための出射端と、該加熱用パルス光の発光時刻を計測するために用いられる出射端と、前記薄膜の表面への照射と該薄膜の裏面への照射のどちらかを任意に選択する手段とを、備えることを特徴とする請求項1から4のいずれかに記載の薄膜熱物性測定装置。   The optical fiber has an emission end for irradiating the surface of the thin film with the heating pulse light at the same position as the measurement portion, and an emission end for irradiating the back surface opposite to the measurement portion with the thin film interposed therebetween. And an emission end used for measuring the emission time of the heating pulse light, and means for arbitrarily selecting either irradiation on the surface of the thin film or irradiation on the back surface of the thin film. The thin-film thermophysical property measuring apparatus according to any one of claims 1 to 4.
JP2007235520A 2007-09-11 2007-09-11 Thin-film thermophysical property measuring device Active JP4873489B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2007235520A JP4873489B2 (en) 2007-09-11 2007-09-11 Thin-film thermophysical property measuring device
PCT/JP2008/066332 WO2009034999A1 (en) 2007-09-11 2008-09-10 Thin film thermal property measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007235520A JP4873489B2 (en) 2007-09-11 2007-09-11 Thin-film thermophysical property measuring device

Publications (2)

Publication Number Publication Date
JP2009068904A JP2009068904A (en) 2009-04-02
JP4873489B2 true JP4873489B2 (en) 2012-02-08

Family

ID=40452006

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007235520A Active JP4873489B2 (en) 2007-09-11 2007-09-11 Thin-film thermophysical property measuring device

Country Status (2)

Country Link
JP (1) JP4873489B2 (en)
WO (1) WO2009034999A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU181470U1 (en) * 2016-04-08 2018-07-16 Российская Федерация, от имени которой выступает Государственная корпорация по атомной энергии "Росатом" (Госкорпорация "Росатом") SYSTEM FOR DETERMINING MATERIAL TEMPERATURE CONDUCTIVITY
JP6399329B1 (en) * 2017-11-07 2018-10-03 株式会社ピコサーム Physical property value measuring apparatus, physical property value measuring method and program
WO2019092898A1 (en) * 2017-11-07 2019-05-16 株式会社ピコサーム Physical property value measurement device, physical property value measurement method, and program

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5706094A (en) * 1995-08-25 1998-01-06 Brown University Research Foundation Ultrafast optical technique for the characterization of altered materials
JP2006071424A (en) * 2004-09-01 2006-03-16 National Institute Of Advanced Industrial & Technology Nano-thin film thermophysical property measuring method and measuring device

Also Published As

Publication number Publication date
JP2009068904A (en) 2009-04-02
WO2009034999A1 (en) 2009-03-19

Similar Documents

Publication Publication Date Title
JP5105903B2 (en) Laser annealing apparatus and annealing method
US4243327A (en) Double-beam optical method and apparatus for measuring thermal diffusivity and other molecular dynamic processes in utilizing the transient thermal lens effect
Taketoshi et al. Observation of heat diffusion across submicrometer metal thin films using a picosecond thermoreflectance technique
JP5058180B2 (en) Method and apparatus for characterizing a thin layer material constructed on a substrate using active pyrometry
US7044636B2 (en) Method of measuring fast time response using fast pulse and system of the same
JP4873489B2 (en) Thin-film thermophysical property measuring device
CN106872415A (en) With reference to the measurement apparatus and measuring method of the multi-wavelength sample optical limiting properties of micro-imaging
JP3252155B2 (en) Thermal diffusivity measurement method by thermoreflectance method
US20070024871A1 (en) Method and apparatus for measuring thickness of thin films via transient thermoreflectance
JP2006292424A (en) Optical fiber monitoring system and laser beam machining system
JP2007170960A (en) Apparatus and method for measuring thermoelastic property
JP4817328B2 (en) Thermophysical property measurement method
JP2009068909A (en) Method for measuring thin-film thermophysical property, and device for measuring the thin-film thermophysical property
US11175249B2 (en) Physical property value measurement device, physical property value measurement method, and recording medium
JP6892086B1 (en) Thermophysical property value measuring device and thermophysical characteristic value measuring method
Diez et al. Time-Resolved Reflectivity and Temperature Measurements During Laser Irradiation of Crystalline Silicon.
CN104913853B (en) Method and system for measuring ultra-short intense laser prepulsing
JP5889061B2 (en) Apparatus and method for measuring solid surface temperature by light heating
CN115420687B (en) System and method for measuring temperature-dependent shear modulus of solid material based on surface wave TOF (time of flight) delay
JP2012002758A (en) Measuring method of thermal constant using optical heating method
JP6399329B1 (en) Physical property value measuring apparatus, physical property value measuring method and program
JP2006071424A (en) Nano-thin film thermophysical property measuring method and measuring device
KR100733539B1 (en) Apparatus and method of laser-ultrasonic measurement for hot object
Bonse et al. Phase transitions induced by femtosecond laser pulse irradiation of indium phosphide
JP2022037825A (en) Temperature measurement device, method for measuring temperature, laser intensity distribution measurement device, method for measuring laser intensity distribution, semiconductor circuit evaluation device, and method for evaluating semiconductor circuit

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20090128

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20090128

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20090128

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100806

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111108

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111116

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141202

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4873489

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250