JP2009068909A - Method for measuring thin-film thermophysical property, and device for measuring the thin-film thermophysical property - Google Patents

Method for measuring thin-film thermophysical property, and device for measuring the thin-film thermophysical property Download PDF

Info

Publication number
JP2009068909A
JP2009068909A JP2007235679A JP2007235679A JP2009068909A JP 2009068909 A JP2009068909 A JP 2009068909A JP 2007235679 A JP2007235679 A JP 2007235679A JP 2007235679 A JP2007235679 A JP 2007235679A JP 2009068909 A JP2009068909 A JP 2009068909A
Authority
JP
Japan
Prior art keywords
thin film
heating
temperature
history curve
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007235679A
Other languages
Japanese (ja)
Inventor
Naoyuki Taketoshi
尚之 竹歳
Tetsuya Baba
哲也 馬場
Takashi Yagi
貴志 八木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
PICOTHERM CORP
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
PICOTHERM CORP
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by PICOTHERM CORP, National Institute of Advanced Industrial Science and Technology AIST filed Critical PICOTHERM CORP
Priority to JP2007235679A priority Critical patent/JP2009068909A/en
Priority to PCT/JP2008/063630 priority patent/WO2009034787A1/en
Publication of JP2009068909A publication Critical patent/JP2009068909A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N25/00Investigating or analyzing materials by the use of thermal means
    • G01N25/18Investigating or analyzing materials by the use of thermal means by investigating thermal conductivity
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K11/00Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00
    • G01K11/12Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00 using changes in colour, translucency or reflectance
    • G01K11/125Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00 using changes in colour, translucency or reflectance using changes in reflectance
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K3/00Thermometers giving results other than momentary value of temperature
    • G01K3/08Thermometers giving results other than momentary value of temperature giving differences of values; giving differentiated values
    • G01K3/10Thermometers giving results other than momentary value of temperature giving differences of values; giving differentiated values in respect of time, e.g. reacting only to a quick change of temperature

Abstract

<P>PROBLEM TO BE SOLVED: To provide a thin film thermal diffusivity measuring device of a surface heating/surface temperature measuring type, into which an analysis model that takes into consideration the film thickness is incorporated. <P>SOLUTION: When the surface of a thin film 2 formed on a substrate 1 is heated instantaneously by using heating pulsed light 3, such as, laser pulsed beam to the substrate 1, the surface temperature rises instantaneously. Then, the heat diffuses to the inside of the thin film 2 and penetrates into the substrate 1, and the surface temperature of the thin film 2 is attenuated. Temperature-measuring pulsed light 4 (P2) is irradiated to the same domain as for the heating pulsed light 3 (P3). Light intensity of its reflected light (4b) changes slightly, depending on the surface temperature of the thin film 2. The intensity of the reflected light is detected by a detector 5, and the temperature change of the thin film 2 surface is detected. The detector 5 is equipped with a light intensity sensor 5a for measuring the intensity of the reflected light, and an information processing device 5b for determining and recording the actual temperature and its change, based on a signal from the light intensity sensor 5a. An operation part for calculating a thermal diffusivity of the thin film from the analysis model that takes into consideration the film thickness is integrated into the information processing device. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、薄膜熱物性測定技術に関し、特に、薄膜表面に周期的にパルス加熱する際に発生する温度履歴曲線から薄膜熱物性値を計測する測定装置全般に適用可能な技術に関する。   The present invention relates to a thin film thermophysical property measurement technique, and more particularly, to a technique applicable to all measuring devices that measure a thin film thermophysical property value from a temperature history curve generated when pulse heating is periodically performed on a thin film surface.

薄膜の熱物性値は、光ディスク、ハードディスク、半導体デバイスなど微細構造化、高集積化が進む先端エレクトロニクス分野の熱設計において重要なパラメータである。多くの薄膜は、金属、半導体、絶縁体など多様な材質の基板上に成膜される。任意の基板上に成膜された薄膜に対して、薄膜の熱物性値を定量的に測定する技術が必要となる。   The thermophysical property value of a thin film is an important parameter in the thermal design of the advanced electronics field where fine structures and high integration such as optical disks, hard disks and semiconductor devices are progressing. Many thin films are formed on substrates of various materials such as metals, semiconductors, and insulators. A technique for quantitatively measuring the thermophysical value of a thin film formed on an arbitrary substrate is required.

Eesley、Paddockらはピコ秒パルスレーザで薄膜試料表面を加熱し、試料表面の温度減衰曲線と薄膜の加熱パルス光の波長に対する吸収係数から基板に成膜された単層薄膜の熱拡散率を単一パルス加熱による薄膜は半無限に厚いと仮定したときの温度履歴曲線から算出したが、吸収係数の不確かさや表面状態に対して敏感で定量的な測定は困難であった(非特許文献1参照)。   Eesley, Paddock et al. Heated the thin film sample surface with a picosecond pulse laser, and calculated the thermal diffusivity of the single layer thin film formed on the substrate from the temperature decay curve of the sample surface and the absorption coefficient with respect to the wavelength of the heating pulse light of the thin film. Although it was calculated from the temperature history curve when it was assumed that the thin film by one-pulse heating was semi-infinitely thick, it was difficult to measure quantitatively because it was sensitive to the uncertainty of the absorption coefficient and the surface condition (see Non-Patent Document 1). ).

また、Capinski、Cahill、Norrisらは同様の表面加熱・表面測温型薄膜熱物性測定装置を開発し、加熱パルスを繰り返し照射することの寄与を数値的に足し上げて解析している(特許文献1、非特許文献2、3、4参照)。また、その時には対象の表面に金属膜を成膜し、金属薄膜の熱容量と膜厚は既知として金属薄膜から下地の膜への熱浸透から下地の薄膜の熱伝導率を算出している。表面に金属膜を付けたことで適用できる対象の範囲は広いが薄膜内部の熱拡散による寄与が温度履歴曲線のどの部分かが分かりにくく、金属膜・薄膜間界面熱抵抗の寄与と薄膜内部での熱拡散の寄与を分離することも難しい。   Capinski, Cahill, Norris, et al. Have developed a similar surface heating and surface temperature measurement type thin film thermophysical property measurement device, and analyzed by adding numerically the contribution of repeated irradiation of heating pulses (Patent Literature). 1, see Non-Patent Documents 2, 3, and 4). At that time, a metal film is formed on the surface of the object, and the thermal conductivity of the base thin film is calculated from heat penetration from the metal thin film to the base film assuming that the heat capacity and film thickness of the metal thin film are known. The range of objects that can be applied by attaching a metal film to the surface is wide, but it is difficult to tell which part of the temperature history curve the contribution of thermal diffusion inside the thin film, the contribution of the thermal resistance between the metal film and the thin film and the inside of the thin film It is also difficult to separate the thermal diffusion contributions.

馬場、竹歳らは裏面加熱・表面測温方式の測定装置を開発した(特許文献2・3参照)。膜を横切る熱エネルギー移動を直接観測できる方法であるが、基板が加熱光、測温光に対して透明であることが制約となっていて、任意の基板に対して測定することはできない。   Baba and Taketoshi et al. Developed a backside heating / surface temperature measuring system (see Patent Documents 2 and 3). Although this method can directly observe thermal energy transfer across the film, it is restricted that the substrate is transparent to heating light and temperature measuring light, and cannot be measured for any substrate.

米国特許公報:US 7,182,510 B2US Patent Publication: US 7,182,510 B2 特許第3252155号公報Japanese Patent No. 3252155 特開2003−322628号公報JP 2003-322628 A C.A.Paddock and G.A.Eesley, “Transient thermoreflectance from thin metal films”, J.Appl.Phys. (1986),vol.60, p.285C.A.Paddock and G.A.Eesley, “Transient thermoreflectance from thin metal films”, J.Appl.Phys. (1986), vol.60, p.285 W.S.Capinski, H.J. Maris, “Improved apparatus for picosecond pump-and-probe optical measurements”, Rev. Sci. Instrum.(1996),vol.67, p.388W.S.Capinski, H.J.Maris, “Improved apparatus for picosecond pump-and-probe optical measurements”, Rev. Sci. Instrum. (1996), vol.67, p.388 D.G.Cahill, “Analysis of heat flow in layered structures for time-domain thermoreflectance”, Rev. Sci. Instrum., (2004),vol.75, p.5119D.G.Cahill, “Analysis of heat flow in layered structures for time-domain thermoreflectance”, Rev. Sci. Instrum., (2004), vol.75, p.5119 R.J. Stevens, A.N. Smith and P.M. Norris, “Signal analysis and characterization of experimental setup for the thermoreflectance technique”,Rev.Sci.Instrum.,(2006), vol.77, 084901.R.J. Stevens, A.N. Smith and P.M.Norris, “Signal analysis and characterization of experimental setup for the thermoreflectance technique”, Rev. Sci. Instrum., (2006), vol. 77, 084901.

しかしながら、従来の解析方法では、繰り返し加熱することによる寄与を考慮してはいても、膜の厚みを考慮していないため、薄膜内部の熱拡散のみを抽出することが困難であった。   However, in the conventional analysis method, it is difficult to extract only the thermal diffusion inside the thin film because the thickness of the film is not considered even though the contribution due to repeated heating is taken into consideration.

本発明の目的は、膜厚を考慮した解析モデルを組み込んだ表面加熱・表面測温型の薄膜熱拡散率測定装置を構築し、任意の基板上に成膜された薄膜に対して定量的かつ簡便に測定を実現しようとすることである。   An object of the present invention is to construct a surface heating / surface temperature measurement type thin film thermal diffusivity measuring apparatus incorporating an analysis model in consideration of the film thickness. It is to try to realize the measurement easily.

本発明によれば、膜の厚さを解析に取り入れることで、表面加熱・表面測温型の高速温度測定においても、裏面加熱・表面測温型の薄膜熱拡散率測定方法と同様に膜を横切る熱エネルギー移動の寄与を考慮することが可能となり、表面加熱・表面測温型配置においても定量的な熱拡散率測定を実現できる。   According to the present invention, by incorporating the thickness of the film into the analysis, even in the surface heating / surface temperature measurement type high-speed temperature measurement, the film is formed in the same manner as the thin film thermal diffusivity measurement method of the back surface heating / surface temperature measurement type. It is possible to take into account the contribution of thermal energy transfer across, and quantitative thermal diffusivity measurement can be realized even in surface heating / surface temperature measurement type arrangements.

すなわち、本発明の一観点によれば、基板に成膜された薄膜の表面を周期的なパルス列で加熱するステップと、前記薄膜の表面の加熱されている加熱領域の温度変化を検出するステップと、前記薄膜の周期的な表面温度変化を時間の関数として取得するステップと、
取得した前記薄膜の表面温度の時間変化と薄膜の膜厚とに基づいて、対象となる薄膜の膜厚を考慮した解析モデルから前記薄膜の熱拡散率を算出するステップと、を有することを特徴とする薄膜熱物性測定方法が提供される。
That is, according to one aspect of the present invention, the step of heating the surface of the thin film formed on the substrate with a periodic pulse train, and the step of detecting the temperature change of the heated heating area of the surface of the thin film; Obtaining a periodic surface temperature change of the thin film as a function of time;
Calculating the thermal diffusivity of the thin film from an analysis model that takes into account the film thickness of the target thin film based on the obtained temporal change in the surface temperature of the thin film and the film thickness of the thin film. A thin film thermophysical property measurement method is provided.

前記薄膜の熱拡散率を算出するステップは、前記加熱領域における温度履歴曲線と、膜厚と加熱光の浸透深さとに基づいて、対象となる薄膜の膜厚と加熱パルスの膜内浸透深さを考慮した解析モデルから前記薄膜の熱拡散率を算出するステップを有することが好ましい。前記加熱するステップにおいて、前記薄膜の表面を繰り返し加熱することにより、前記加熱領域が周囲に対して定常的に温度が高いために生じる温度減衰成分を、観測される温度履歴曲線から差し引くことにより、周期的なパルス加熱による温度履歴曲線を単一パルス加熱による温度履歴曲線に変換した後に、熱拡散率を算出するステップを有することが好ましい。前記周期的なパルス加熱による温度履歴曲線を、前記単一パルス加熱による温度履歴曲線に変換するために、前記温度履歴曲線から直線的に温度減衰する成分を差し引くステップを有することが好ましい。単一パルス加熱による温度履歴曲線に変換せずに、前記周期的なパルス加熱による温度履歴曲線を、前記単一パルス加熱による温度履歴曲線と、前記温度履歴曲線から直線的に温度減衰する成分を同時に考慮したモデルから解析する手段を有しても良い。前記加熱するステップにおいて、周期的に発振するパルスレーザを用いて加熱するステップを有することが好ましい。尚、加熱されている領域の温度変化を検出するステップとして、cwレーザを用いて加熱領域に照射し、その反射光強度の表面温度依存性から、膜表面の温度履歴曲線を得るステップを有するようにしても良い。また、加熱パルスレーザと同じ繰り返し周期で、かつ、同期して発振する別のパルスレーザを加熱領域に照射し、その反射光強度の表面温度依存性から、膜表面の温度履歴曲線を得るステップを有するようにしても良い。   The step of calculating the thermal diffusivity of the thin film is based on the temperature history curve in the heating region, the film thickness, and the penetration depth of the heating light. It is preferable to include a step of calculating the thermal diffusivity of the thin film from an analysis model considering the above. In the heating step, by repeatedly heating the surface of the thin film, by subtracting from the observed temperature history curve the temperature decay component that occurs because the heating region is constantly hot relative to the surroundings, It is preferable to have a step of calculating a thermal diffusivity after converting a temperature history curve by periodic pulse heating into a temperature history curve by single pulse heating. In order to convert the temperature history curve by the periodic pulse heating into the temperature history curve by the single pulse heating, it is preferable to have a step of subtracting a linearly temperature decay component from the temperature history curve. Without converting to a temperature history curve by single pulse heating, the temperature history curve by periodic pulse heating is divided into a temperature history curve by the single pulse heating and a component that linearly attenuates temperature from the temperature history curve. Means for analyzing from the model considered at the same time may be provided. The heating step preferably includes a step of heating using a pulsed laser that periodically oscillates. It should be noted that the step of detecting the temperature change of the heated region has a step of irradiating the heated region using a cw laser and obtaining a temperature history curve of the film surface from the surface temperature dependence of the reflected light intensity. Anyway. In addition, the step of irradiating the heating region with another pulse laser that oscillates synchronously with the same repetition period as the heating pulse laser and obtains the temperature history curve of the film surface from the surface temperature dependence of the reflected light intensity You may make it have.

尚、本発明は、上記ステップに関する機器の制御をコンピュータに実行させるプログラムであっても良く、このようなプログラムを記録したコンピュータ読みとり可能な記録媒体であっても良い。   Note that the present invention may be a program that causes a computer to execute control of devices related to the above steps, or may be a computer-readable recording medium that records such a program.

本発明の他の観点によれば、基板に成膜された薄膜表面を周期的なパルス列で加熱する加熱手段と、薄膜表面の加熱されている領域の温度変化を検出する温度検出手段と、薄膜の周期的な表面温度変化を時間の関数として取得する手段と、取得した表面温度の時間変化と薄膜の膜厚とに基づいて、熱拡散率を算出する手段と、を備えたことを特徴とする薄膜熱物性測定装置が提供される。薄膜の周期的な表面温度変化を時間の関数として記憶する手段を有していても良い。   According to another aspect of the present invention, a heating means for heating a thin film surface formed on a substrate with a periodic pulse train, a temperature detection means for detecting a temperature change in a heated region of the thin film surface, and a thin film A means for obtaining a periodic surface temperature change as a function of time, and a means for calculating a thermal diffusivity based on the obtained time change of the surface temperature and the film thickness of the thin film. An apparatus for measuring thin film thermophysical properties is provided. There may be means for storing periodic surface temperature changes of the thin film as a function of time.

前記加熱する領域における前記温度履歴曲線、前記膜厚と前記加熱光の浸透深さに基づいて、薄膜の熱拡散率を算出する手段を備えていても良い。また、繰り返し加熱することで加熱領域が周囲に対して定常的に温度が高いために生じる温度減衰成分を観測される温度履歴曲線から差し引くことにより、周期的なパルス加熱による温度履歴曲線を単一パルス加熱による温度履歴曲線に変換してから熱拡散率を算出する手段を有するようにしても良い。さらに、単一パルス加熱による温度履歴曲線に変換するために、前記温度履歴曲線から直線的に温度減衰する成分を差し引く演算部を有するようにするのが好ましい。単一パルス加熱による温度履歴曲線に変換せずに、前記周期的なパルス加熱による温度履歴曲線を、前記単一パルス加熱による温度履歴曲線と、前記温度履歴曲線から直線的に温度減衰する成分を同時に考慮したモデルから解析する演算部を有しても良い。前記加熱する手段として周期的に発振するパルスレーザを用いるようにすると良い。また、加熱されている領域の温度変化を検出する手段として、cwレーザを用いて加熱領域に照射し、その反射光強度の表面温度依存性から、膜表面の温度履歴曲線を得ることが好ましい。加熱パルスレーザと同じ繰り返し周期で、かつ、同期して発振する別のパルスレーザを加熱領域に照射し、その反射光強度の表面温度依存性から、膜表面の温度履歴曲線を得ることが好ましい。   There may be provided means for calculating the thermal diffusivity of the thin film based on the temperature history curve, the film thickness and the penetration depth of the heating light in the region to be heated. In addition, by subtracting from the observed temperature history curve the temperature decay component that occurs because the heating area is constantly hot relative to the surroundings due to repeated heating, a single temperature history curve due to periodic pulse heating is obtained. You may make it have a means to calculate a thermal diffusivity after converting into the temperature history curve by pulse heating. Furthermore, it is preferable to have a calculation unit that subtracts a component that linearly attenuates temperature from the temperature history curve in order to convert the temperature history curve by single pulse heating. Without converting to a temperature history curve by single pulse heating, the temperature history curve by periodic pulse heating is divided into a temperature history curve by the single pulse heating and a component that linearly attenuates temperature from the temperature history curve. You may have the calculating part analyzed from the model considered simultaneously. A pulsed laser that periodically oscillates may be used as the heating means. As a means for detecting a temperature change in the heated region, it is preferable to irradiate the heated region using a cw laser and obtain a temperature history curve on the film surface from the surface temperature dependence of the reflected light intensity. It is preferable to irradiate the heating region with another pulse laser that oscillates synchronously with the same repetition period as the heating pulse laser, and obtains a temperature history curve of the film surface from the surface temperature dependence of the reflected light intensity.

従来の技術では、温度履歴曲線の減衰部分のわずかな変化が熱拡散率の結果に反映されやすく、定量的に熱拡散率を求めることは困難であったが、本発明では、膜厚の寄与を考慮した温度履歴曲線モデルを導入し、かつ、繰り返しパルスによる加熱特有の寄与を差し引くことにより、温度履歴曲線全体を高い信頼性でフィッティングすることが可能となり、測定精度が向上するという利点がある。   In the prior art, slight changes in the decay portion of the temperature history curve are easily reflected in the thermal diffusivity results, and it is difficult to quantitatively determine the thermal diffusivity. By introducing a temperature history curve model that takes into account and subtracting the contribution specific to heating by repetitive pulses, it is possible to fit the entire temperature history curve with high reliability and to improve measurement accuracy .

以下、本発明の実施の形態による薄膜熱物性測定技術について図面を参照しながら説明を行う。
図1は、本実施の形態による薄膜熱物性測定技術であり、表面加熱・表面測温型の高速パルス加熱サーモリフレクタンス法の原理を示す図である。基板1をパルス的に加熱する手段として、例えばレーザパルス光などの加熱パルス光3を用いることにより、基板1上に設けられている(例えば成膜されている)薄膜2の表面を瞬間的に加熱することができる。加熱により、薄膜2の表面における温度が瞬間的に上昇する。その後、熱は、薄膜2の内部へと拡散し基板1内へと浸透していくため、薄膜2の表面温度は減衰していく。
Hereinafter, a thin film thermophysical property measurement technique according to an embodiment of the present invention will be described with reference to the drawings.
FIG. 1 is a diagram showing the principle of a surface heating / surface temperature measurement type high-speed pulse heating thermoreflectance method, which is a thin film thermophysical property measurement technique according to the present embodiment. As means for heating the substrate 1 in a pulsed manner, the surface of the thin film 2 provided (for example, formed) on the substrate 1 is instantaneously applied by using, for example, heating pulse light 3 such as laser pulse light. Can be heated. Due to the heating, the temperature at the surface of the thin film 2 rises instantaneously. Thereafter, the heat diffuses into the thin film 2 and penetrates into the substrate 1, so that the surface temperature of the thin film 2 is attenuated.

測温パルス光4(P2)は、加熱パルス光3(P1)と同じ領域に照射される(4a)。その反射光(4b)の光強度は、薄膜2の表面温度に依存してわずかに変化する(この現象を、サーモリフレクタンスと称する。)。この反射光(4b)の強度の、温度に依存した変化を検知器5により検知することにより、薄膜2表面の温度変化を検出することができる。検知器5は、反射光(4b)の強度を測定する光強度センサ5aと、光強度センサ5aからの信号に基づいて実際の温度とその変化を求め、記録する情報処理装置5bとを備えている。   The temperature measuring pulse light 4 (P2) is irradiated to the same region as the heating pulse light 3 (P1) (4a). The light intensity of the reflected light (4b) slightly changes depending on the surface temperature of the thin film 2 (this phenomenon is referred to as thermoreflectance). By detecting the temperature-dependent change in the intensity of the reflected light (4b) with the detector 5, the temperature change on the surface of the thin film 2 can be detected. The detector 5 includes a light intensity sensor 5a that measures the intensity of the reflected light (4b), and an information processing device 5b that obtains and records the actual temperature and its change based on a signal from the light intensity sensor 5a. Yes.

図2は、実際の測定に用いた薄膜熱物性測定装置Aの機能ブロック図である。図2に示す薄膜熱物性測定装置Aは、加熱(励起)パルス光L2とプローブ光L3とを別々の光源から得て、パルス光の発振時における両光L2・L3のタイミングを電気的な信号で制御するように構成されている。   FIG. 2 is a functional block diagram of the thin-film thermophysical property measuring apparatus A used for actual measurement. The thin-film thermophysical property measuring apparatus A shown in FIG. 2 obtains heating (excitation) pulsed light L2 and probe light L3 from separate light sources, and uses an electrical signal to determine the timing of both lights L2 and L3 when the pulsed light is oscillated. It is configured to control with.

光源は、具体的には、レーザパルスを生成するピコ秒TiS(チタンサファイア)レーザ21・23と、パルスの繰り返し周期を一定、且つ、安定に制御するコントローラ15・17とを含んで構成されている。   Specifically, the light source includes picosecond TiS (titanium sapphire) lasers 21 and 23 that generate laser pulses, and controllers 15 and 17 that stably and stably control the repetition period of the pulses. Yes.

図2に示すピコ秒TiSレーザ(1)21は、試料加熱光L1・L2として用いられ、ピコ秒TiSレーザ(2)23は、プローブ光L3として用いられる。パルス光のパルス幅は、それぞれ2psであり、発振周波数は76MHz(繰り返し周期13.2ns)である。ピコ秒TiSレーザ(1)21の発振周波数を76MHzに維持するために、コントローラ(1)15によってピコ秒チタンサファイアレーザ(1)21の共振器長を一定に制御する。制御するための76MHzの基準信号は、コントローラ(1)15から供給される。同様に、ピコ秒TiSレーザ(2)23の発振周波数を76MHzで維持するために、コントローラ(2)17によってピコ秒TiSレーザ(2)23の共振器長を一定に制御する。制御するための76MHzの基準信号は、コントローラ(2)17から供給される。基準信号とパルス発振の位相の関係は各レーザで一定に保たれる。コントローラ(1)15とコントローラ(2)17の出力の位相差は、コントローラ(2)17の信号波形を設定する設定パネル、又はパーソナルコンピュータ11などにより遠隔制御することが可能である。   The picosecond TiS laser (1) 21 shown in FIG. 2 is used as the sample heating light L1 and L2, and the picosecond TiS laser (2) 23 is used as the probe light L3. The pulse width of the pulsed light is 2 ps each, and the oscillation frequency is 76 MHz (repetition period 13.2 ns). In order to maintain the oscillation frequency of the picosecond TiS laser (1) 21 at 76 MHz, the resonator length of the picosecond titanium sapphire laser (1) 21 is controlled to be constant by the controller (1) 15. A 76 MHz reference signal for control is supplied from the controller (1) 15. Similarly, in order to maintain the oscillation frequency of the picosecond TiS laser (2) 23 at 76 MHz, the controller (2) 17 controls the resonator length of the picosecond TiS laser (2) 23 to be constant. A 76 MHz reference signal for control is supplied from the controller (2) 17. The relationship between the reference signal and the pulse oscillation phase is kept constant for each laser. The phase difference between the outputs of the controller (1) 15 and the controller (2) 17 can be remotely controlled by a setting panel for setting the signal waveform of the controller (2) 17 or the personal computer 11 or the like.

尚、図2に示す構成では2台のピコ秒チタンサファイアレーザ21・23を用いたが、等しい周期でパルスを発振する光源であれば、上記の光源に限定されるものではなく光源の種類は任意である。   In the configuration shown in FIG. 2, two picosecond titanium sapphire lasers 21 and 23 are used. However, the light source is not limited to the above-described light source as long as the light source oscillates a pulse with an equal period. Is optional.

加熱光L1は、音響光変調素子25を通過する際に、周波数1MHzで強度変調される。1MHzの強度変調用の信号S2は、信号発生器(1)47によって供給される。強度変調用の信号S2はロックインアンプ41に参照信号S5の入力としても用いられる。変調の方法として、本実施の形態では、音響光変調素子25を用いた例を示したが、その他、例えば、機械式のチョッパや電気光学結晶素子を用いても良い。   The heating light L1 is intensity-modulated at a frequency of 1 MHz when passing through the acoustic light modulator 25. The signal S2 for intensity modulation of 1 MHz is supplied by a signal generator (1) 47. The signal S2 for intensity modulation is also used as an input for the reference signal S5 to the lock-in amplifier 41. As an example of the modulation method, the acoustic light modulation element 25 is used in the present embodiment. However, for example, a mechanical chopper or an electro-optic crystal element may be used.

また、変調周波数は、ここでは、1MHzの信号を用いたが、パルスの繰り返し周波数より遅い周波数であることが必要であり、例えば76MHzの繰り返しでパルスが発振する場合に対しては500kHzから10MHz程度の間の変調周波数が適している。音響光変調素子25により変調された加熱光L2は、薄膜2・基板1界面に集光される。また、プローブ光L3は、加熱された上記領域と同じ薄膜2の表面上に集光されるようになっている。   The modulation frequency used here is a signal of 1 MHz, but it must be slower than the pulse repetition frequency. For example, when the pulse oscillates at a repetition rate of 76 MHz, about 500 kHz to 10 MHz. A modulation frequency between is suitable. The heating light L <b> 2 modulated by the acoustic light modulation element 25 is condensed on the interface between the thin film 2 and the substrate 1. The probe light L3 is condensed on the same surface of the thin film 2 as the heated region.

試料1の表面で反射したプローブ光L6・L7は、例えば、シリコンフォトダイオードによって構成することのできる検知器37によって検出される。検出された光に基づく電気信号S1は、ロックインアンプ41の信号入力端子41aに送られる。試料1の表面の温度は、加熱光L2の強度変調により1MHzで変化する成分があるため、試料1で反射したプローブ光L6においても、微小ながら1MHzの周期的成分を含む。この強度変調周波数1MHzに同期したプローブ光の交流成分が、ロックインアンプ41によって検出される。   The probe lights L6 and L7 reflected by the surface of the sample 1 are detected by a detector 37 that can be constituted by, for example, a silicon photodiode. The electric signal S1 based on the detected light is sent to the signal input terminal 41a of the lock-in amplifier 41. Since the surface temperature of the sample 1 has a component that changes at 1 MHz due to the intensity modulation of the heating light L2, the probe light L6 reflected by the sample 1 also includes a periodic component of 1 MHz although it is minute. The AC component of the probe light synchronized with the intensity modulation frequency of 1 MHz is detected by the lock-in amplifier 41.

温度変化に比例した反射率変化(サーモリフレクタンス)の時間変化は、加熱光に対するプローブ光の試料到達時間の遅れを、コンピュータ11を用いて制御することにより、コンピュータのハードディスクなどに記録させることができる。コンピュータ11には、記録された温度履歴曲線と、以下の実施例1に示すような薄膜の膜厚を考慮した解析モデルと解析手順から、薄膜の熱拡散率を算出する演算処理部が組み込まれている。   The time change of the reflectance change (thermoreflectance) proportional to the temperature change can be recorded on a hard disk or the like of the computer by controlling the delay of the sample arrival time of the probe light with respect to the heating light by using the computer 11. it can. The computer 11 incorporates an arithmetic processing unit for calculating the thermal diffusivity of the thin film from the recorded temperature history curve and the analysis model and analysis procedure taking into consideration the film thickness of the thin film as shown in Example 1 below. ing.

[実施例1]
以下に、上記の構成により得られた測定結果について説明する。
図3は、周期的な加熱パルスによる温度履歴曲線を実線で示した図であり、縦軸がサーモリフレクタンス信号、横軸が時間である。測定対象の試料は、ガラス基板1上にモリブデン薄膜2が成膜された構造であり、モリブデン薄膜2の膜厚は約400nmである。図3に示すように、急激な温度上昇の前の直線的に減少しているように見える時間範囲は、周囲への定常的な熱の逃げがあると仮定し、直線で近似して差し引く。差し引くための直線f(t)=at+bを、加熱パルス光が到達した時刻tより早いt<t(ここでは実験的に定めたt=3.68×10−9s)における観測された温度履歴曲線から決定した(図4参照)。
[Example 1]
Below, the measurement result obtained by said structure is demonstrated.
FIG. 3 is a diagram showing a temperature history curve by periodic heating pulses as a solid line, where the vertical axis represents the thermoreflectance signal and the horizontal axis represents time. The sample to be measured has a structure in which a molybdenum thin film 2 is formed on a glass substrate 1, and the film thickness of the molybdenum thin film 2 is about 400 nm. As shown in FIG. 3, the time range that appears to decrease linearly before the rapid temperature rise is assumed to be a steady heat escape to the surroundings and is approximated and subtracted with a straight line. A straight line f (t) = at + b for subtraction is observed at t <t 0 (here, t 0 = 3.68 × 10 −9 s determined experimentally) earlier than time t 0 when the heating pulse light arrives. The temperature history curve was determined (see FIG. 4).

図4における実線から、鎖線を引いたものが図5における実線で示した温度履歴曲線であり、単一パルス加熱による温度履歴曲線とみなすことができる。   A temperature history curve indicated by a solid line in FIG. 5 is obtained by subtracting a chain line from the solid line in FIG. 4 and can be regarded as a temperature history curve by single pulse heating.

次に、図5の実線で示される温度履歴曲線を以下の単一パルスに対する温度履歴曲線の式(1)を用いてt<t<t+trepに含まれる全域または一部の範囲に対し、カーブフィッティングを実施する。但し、一部の範囲でフィッティングする際には、初期の急峻に温度が減衰する領域と、熱が基板まで到達したために、温度の減衰が緩やかになっている領域双方が含まれていることが望ましい。 Next, the temperature history curve shown by the solid line in FIG. 5 is converted into the entire range or a part of the range included in t 0 <t <t 0 + t rep using the following equation (1) of the temperature history curve for a single pulse. On the other hand, curve fitting is performed. However, when fitting in a part of the range, both the initial steeply decaying temperature region and the region where the temperature decays slowly due to the heat reaching the substrate are included. desirable.

Figure 2009068909
Figure 2009068909

加熱パルス光が到達した時刻tは、ここでは実験的に定めたt=3.68×10−9sを用いる。図5では、n=±4までを計算した上記理論曲線をt−t>0の範囲でカーブフィッティングを実施した。未知のパラメータは、温度振幅ΔT、吸収係数(加熱光パルスの浸透深さの逆数)αと膜厚dとの積α・dであり、熱拡散時間τ=d/κである。ここでκは熱拡散率である。γは、加熱源の鏡像の温度振幅係数であり、−1〜1の間で変化する値であり、薄膜と基板の熱浸透率を用いて記述できる。γ=1のとき、薄膜と基板との間の界面で断熱である。 Here, t 0 = 3.68 × 10 −9 s determined experimentally is used as the time t 0 when the heating pulse light arrives. In FIG. 5, curve fitting was performed in the range of t−t 0 > 0 for the theoretical curve calculated up to n = ± 4. The unknown parameters are the temperature amplitude ΔT, the absorption coefficient (reciprocal of the penetration depth of the heating light pulse) α and the film thickness d α · d, and the thermal diffusion time τ f = d 2 / κ f . Here, κ f is a thermal diffusivity. γ is a temperature amplitude coefficient of the mirror image of the heating source, and is a value that varies between −1 and 1, and can be described using the thermal permeability of the thin film and the substrate. When γ = 1, heat is insulated at the interface between the thin film and the substrate.

膜厚と吸収係数とが既知であるとすれば、未知のパラメータは温度振幅ΔTと薄膜の熱拡散率κとなり、2つの未知のパラメータフィッティングとなる。膜厚dを実測値4.059×10−7m、吸収係数αの実測値4.82×10−1を用いて、2つの未知数をフィッティングすることにより決めたところ、薄膜の熱拡散率は3.3×10−5−1となり、同じ試料に対し、裏面加熱表面測温型の測定を実施した時の値3.0×10−5−1とほぼ一致する。実際にカーブフィットした結果は、実線と点線で示すように、実験結果を良く再現したカーブとなっている。基板の熱浸透率が薄膜の熱浸透率よりも小さく、断熱的な条件に近いほど有効である。 If the film thickness and the absorption coefficient are known, the unknown parameters are the temperature amplitude ΔT and the thermal diffusivity κ f of the thin film, and two unknown parameter fittings. The film thickness d was determined by fitting two unknowns using the measured value of 4.059 × 10 −7 m and the measured value of the absorption coefficient α of 4.82 × 10 7 m −1. The rate is 3.3 × 10 −5 m 2 s −1 , which is almost the same as the value of 3.0 × 10 −5 m 2 s −1 when the back surface heated surface temperature measurement type is performed on the same sample. To do. The actual curve fitting result is a curve that reproduces the experimental result well, as shown by the solid line and the dotted line. It is more effective that the thermal permeability of the substrate is smaller than that of the thin film and is closer to adiabatic conditions.

また、吸収係数が未知の場合、吸収係数と膜厚の積を未知のパラメータとして、3つの未知数をカーブフィッティングで決めても良い。   When the absorption coefficient is unknown, three unknowns may be determined by curve fitting using the product of the absorption coefficient and the film thickness as an unknown parameter.

吸収係数αの逆数(加熱光の浸透深さ)が膜厚dに比べて無視できる場合、上記式(1)の代わりに以下の式(2)を用いても良い。   When the reciprocal of the absorption coefficient α (the penetration depth of the heating light) can be ignored as compared with the film thickness d, the following formula (2) may be used instead of the above formula (1).

Figure 2009068909
Figure 2009068909

(2)式が成り立つ条件において、さらにγ=1とみなせる場合、ある時刻以上のT(t)は一定となる。その一定値の1.5倍となる時刻t1.5を単一パルス加熱の温度履歴曲線に変換されたデータにおいて決定し、以下の式から薄膜の熱拡散率を算出しても良い。 If it is possible to consider that γ = 1 under the condition that the expression (2) holds, T (t) at a certain time or more is constant. The time t1.5 which is 1.5 times the constant value may be determined in the data converted into the temperature history curve of single pulse heating, and the thermal diffusivity of the thin film may be calculated from the following equation.

Figure 2009068909
Figure 2009068909

温度の減衰曲線が常に下に凸な曲率を有した形状をしており、直線的な領域を決めにくい場合には、以下の式を用いて、直線的な寄与フィッティングに含めて、解析しても良い。観測された生データの図3に対し、   If the temperature decay curve always has a downward convex curvature and it is difficult to determine the linear region, use the following formula to analyze it by including it in the linear contribution fitting. Also good. In contrast to the observed raw data in Figure 3,

Figure 2009068909
としてt<t<t+τrに含まれる全域または一部の範囲でS(t)をカーブフィットすることもできる。ここでτは加熱パルスの周期である。
Figure 2009068909
As t 0 <t <t 0 + τ in the range of the whole or a part contained in r can be curve fit to S (t). Here, τ r is the period of the heating pulse.

以下に式(4)の右辺第2項の傾きの導出方法を述べる。ここでは式の表現を簡略化するため、便宜的に加熱パルスが照射される時刻t=0として計算する。観測される温度履歴曲線S(t)は、単一パルス温度履歴曲線の過去の成分の重ね合わせとして以下の式で表わされる。 A method for deriving the slope of the second term on the right side of Equation (4) will be described below. Here, in order to simplify the expression, the calculation is made assuming that the time t 0 = 0 when the heating pulse is irradiated for convenience. The observed temperature history curve S (t) is expressed by the following equation as a superposition of past components of the single pulse temperature history curve.

Figure 2009068909
Figure 2009068909

S(τ)をオフセットとして、観測される信号S(t)から差し引き、単一パルス加熱による温度応答との違いを調べてみる。 Let S (τ r ) be an offset and subtract from the observed signal S (t) to examine the difference from the temperature response due to single pulse heating.

Figure 2009068909
式(6)の右辺第2項をtについて一次までテーラー展開すると
Figure 2009068909
When the second term on the right side of equation (6) is Taylor-expanded to the first order with respect to t

Figure 2009068909
式(7)の右辺の微分を以下の式(8)で近似すると、以下のように式(4)に示した傾きが得られる。
Figure 2009068909
When the derivative on the right side of Equation (7) is approximated by Equation (8) below, the slope shown in Equation (4) is obtained as follows.

Figure 2009068909
Figure 2009068909

このように、直線的な寄与の傾きもまた、単一パルス加熱の温度履歴曲線を表すモデルから算出できるが、測定信号に熱伝導以外の原因によるドリフト(例えば照射位置のわずかなズレなど)が含まれているとすると、(8)式で示される傾きとドリフトによる傾きとの分離は難しいので、傾きの係数もまた、未知のパラメータとしてカーブフィットしてもよい。ここで示した実験例では、測温にパルス光を用い、加熱パルス光に対して遅延時間制御を行うことで温度履歴曲線を得ているが、観測時間スケールが100ns以上であれば、cwレーザや放射温度計を用いて観測する手段を用いることも可能である。また、SPM(Scanning Probe Microscope 走査型プローブ顕微鏡)のような、探針を使う接触式のプローブを用いた装置に対しても適用可能である。従来の技術では、温度履歴曲線の減衰部分のわずかな変化が熱拡散率の結果に反映されやすく、定量的な熱拡散率を論じることは困難であったが、本実施の形態による技術を用いることにより、膜厚の寄与を考慮した温度履歴曲線モデルを導入し、かつ、繰り返しパルスによる加熱特有の寄与を差し引くことにより、温度履歴曲線全体を高い信頼性で薄膜の熱拡散率を算出することが可能となる。   In this way, the slope of the linear contribution can also be calculated from the model representing the temperature history curve of single pulse heating, but the measurement signal has drifts due to causes other than heat conduction (for example, slight deviation of the irradiation position). If it is included, it is difficult to separate the inclination shown by the equation (8) from the inclination due to drift, so the coefficient of the inclination may also be curve-fitted as an unknown parameter. In the experimental example shown here, a temperature history curve is obtained by using pulsed light for temperature measurement and performing delay time control on the heated pulsed light. However, if the observation time scale is 100 ns or more, the cw laser It is also possible to use observation means using a radiation thermometer. Further, the present invention can be applied to an apparatus using a contact type probe using a probe, such as SPM (Scanning Probe Microscope). In the conventional technique, a slight change in the decay portion of the temperature history curve is easily reflected in the thermal diffusivity result, and it is difficult to discuss the quantitative thermal diffusivity, but the technique according to the present embodiment is used. By introducing a temperature history curve model that takes into account the contribution of film thickness, and subtracting the contribution specific to heating by repeated pulses, the thermal diffusivity of the thin film can be calculated with high reliability over the entire temperature history curve. Is possible.

本発明は、光ディスク、ハードディスク、半導体デバイスなど微細構造化、高集積化が進む先端エレクトロニクス分野の熱設計において利用可能である。   The present invention can be used in thermal design in the advanced electronics field where fine structures and high integration are progressing such as optical disks, hard disks, and semiconductor devices.

本発明の一実施の形態による表面加熱・表面測温の原理図である。It is a principle figure of surface heating and surface temperature measurement by one embodiment of the present invention. 本実施の形態による表面加熱・表面測温装置の一の構成例を示す機能ブロック図である。It is a functional block diagram which shows one structural example of the surface heating and surface temperature measuring apparatus by this Embodiment. 上記装置を用いて得られた繰り返しパルス加熱の温度履歴曲線の例を示す図である。It is a figure which shows the example of the temperature history curve of the repetition pulse heating obtained using the said apparatus. 繰り返しパルス加熱の温度履歴曲線例を示す図である。It is a figure which shows the temperature history curve example of repeated pulse heating. 膜厚を考慮して解析した例を示す図である。It is a figure which shows the example analyzed in consideration of the film thickness.

符号の説明Explanation of symbols

1…基板、2…薄膜、3…加熱パルス光、4…測温パルス光、5…検知器。 DESCRIPTION OF SYMBOLS 1 ... Board | substrate, 2 ... Thin film, 3 ... Heating pulse light, 4 ... Temperature measurement pulse light, 5 ... Detector.

Claims (18)

基板に成膜された薄膜の表面を周期的なパルス列で加熱するステップと、
前記薄膜の表面の加熱されている加熱領域の温度変化を検出するステップと、
前記薄膜の周期的な表面温度変化を時間の関数として取得するステップと、
取得した前記薄膜の表面温度の時間変化と薄膜の膜厚とに基づいて、対象となる薄膜の膜厚を考慮した解析モデルから、前記薄膜の熱拡散率を算出するステップと、を有することを特徴とする薄膜熱物性測定方法。
Heating the surface of the thin film deposited on the substrate with a periodic pulse train;
Detecting a temperature change in a heated region on the surface of the thin film; and
Obtaining a periodic surface temperature change of the thin film as a function of time;
Calculating the thermal diffusivity of the thin film from an analysis model that takes into account the thickness of the target thin film, based on the obtained temporal change in the surface temperature of the thin film and the film thickness of the thin film. A method for measuring thin film thermophysical properties.
前記薄膜の熱拡散率を算出するステップは、
前記加熱領域における温度履歴曲線と、膜厚と加熱パルスの浸透深さとに基づいて、対象となる薄膜の膜厚と加熱パルスの膜内浸透深さを考慮した解析モデルから、前記薄膜の熱拡散率を算出するステップを有することを特徴とする請求項1に記載の薄膜熱物性測定方法。
Calculating the thermal diffusivity of the thin film,
Based on the temperature history curve in the heating region, the film thickness and the penetration depth of the heating pulse, the thermal diffusion of the thin film from the analysis model considering the thickness of the target thin film and the penetration depth of the heating pulse in the film The thin film thermophysical property measurement method according to claim 1, further comprising a step of calculating a rate.
前記加熱するステップにおいて、前記薄膜の表面を繰り返し加熱することにより、前記加熱領域が周囲に対して定常的に温度が高いために生じる温度減衰成分を、観測される温度履歴曲線から差し引くことにより、周期的なパルス加熱による温度履歴曲線を単一パルス加熱による温度履歴曲線に変換した後に、熱拡散率を算出するステップを有することを特徴とする請求項1又は2に記載の薄膜熱拡散率測定方法。   In the heating step, by repeatedly heating the surface of the thin film, by subtracting from the observed temperature history curve the temperature decay component that occurs because the heating region is constantly hot relative to the surroundings, The thin film thermal diffusivity measurement according to claim 1, further comprising a step of calculating a thermal diffusivity after converting a temperature history curve by periodic pulse heating into a temperature history curve by single pulse heating. Method. 前記周期的なパルス加熱による温度履歴曲線を、前記単一パルス加熱による温度履歴曲線に変換するために、前記温度履歴曲線から直線的に温度減衰する成分を差し引くステップを有することを特徴とする請求項3に記載の薄膜熱物性測定方法。   A step of subtracting a linearly temperature-decaying component from the temperature history curve in order to convert the temperature history curve due to the periodic pulse heating into the temperature history curve due to the single pulse heating. Item 4. The method for measuring thin-film thermophysical properties according to Item 3. 前記周期的なパルス加熱による温度履歴曲線を、前記単一パルス加熱による温度履歴曲線と直線的に温度減衰する成分を同時に考慮したモデルから解析するステップを有することを特徴とする請求項1又は2に記載の薄膜熱物性測定方法。   3. The step of analyzing the temperature history curve by the periodic pulse heating from a model that simultaneously considers a component that linearly attenuates the temperature with the temperature history curve by the single pulse heating. The thin film thermophysical property measuring method described in 1. 前記加熱するステップにおいて、周期的に発振するパルスレーザを用いて加熱するステップを有することを特徴とする請求項1から5までのいずれか1項に記載の薄膜熱物性測定方法。   The thin film thermophysical property measuring method according to any one of claims 1 to 5, wherein the heating step includes a step of heating using a pulse laser that periodically oscillates. 加熱されている領域の温度変化を検出するステップとして、cwレーザを用いて加熱領域に照射し、その反射光強度の表面温度依存性から、膜表面の温度履歴曲線を得るステップを有することを特徴とする請求項6に記載の薄膜熱物性測定方法。   The step of detecting the temperature change of the heated region has a step of irradiating the heated region using a cw laser and obtaining a temperature history curve of the film surface from the surface temperature dependence of the reflected light intensity. The thin film thermophysical property measuring method according to claim 6. 加熱パルスレーザと同じ繰り返し周期で、かつ、同期して発振する別のパルスレーザを加熱領域に照射し、その反射光強度の表面温度依存性から、膜表面の温度履歴曲線を得るステップを有することを特徴とする請求項6に記載の薄膜熱物性測定方法。   A step of irradiating the heating region with another pulse laser that oscillates synchronously with the same repetition period as the heating pulse laser and obtains a temperature history curve of the film surface from the surface temperature dependence of the reflected light intensity. The thin film thermophysical property measuring method according to claim 6. 基板に成膜された薄膜表面を周期的なパルス列で加熱する加熱手段と、
薄膜表面の加熱されている領域の温度変化を検出する温度検出手段と、
薄膜の周期的な表面温度変化を時間の関数として取得する手段と、
取得した表面温度の時間変化と薄膜の膜厚とに基づいて、対象となる薄膜の膜厚を考慮した解析モデルから熱拡散率を算出する手段と
を備えたことを特徴とする薄膜熱物性測定装置。
Heating means for heating the surface of the thin film formed on the substrate with a periodic pulse train;
Temperature detecting means for detecting a temperature change in the heated area of the thin film surface;
Means for obtaining a periodic surface temperature change of the thin film as a function of time;
Thin-film thermophysical property measurement, comprising means for calculating thermal diffusivity from an analytical model that takes into account the thickness of the target thin film based on the obtained time variation of the surface temperature and the film thickness of the thin film apparatus.
前記加熱する領域における前記温度履歴曲線、前記膜厚と前記加熱光の浸透深さに基づいて、対象となる薄膜の膜厚と加熱パルスの膜内浸透深さを考慮した解析モデルから薄膜の熱拡散率を算出する手段を備えたことを特徴とする請求項9に記載の薄膜熱物性測定装置。   Based on the temperature history curve in the region to be heated, the film thickness, and the penetration depth of the heating light, the heat of the thin film is obtained from an analysis model that takes into account the thickness of the target thin film and the penetration depth of the heating pulse in the film. The thin film thermophysical property measuring apparatus according to claim 9, further comprising means for calculating a diffusivity. 繰り返し加熱することで加熱領域が周囲に対して定常的に温度が高いために生じる温度減衰成分を観測される温度履歴曲線から差し引くことにより、周期的なパルス加熱による温度履歴曲線を単一パルス加熱による温度履歴曲線に変換してから熱拡散率を算出する手段を有することを特徴とする請求項9又は10に記載の薄膜熱物性測定装置。   By subtracting from the observed temperature history curve the temperature decay component that occurs because the heating area is constantly hot relative to the surroundings due to repeated heating, the temperature history curve due to periodic pulse heating is heated by a single pulse. The thin film thermophysical property measuring apparatus according to claim 9 or 10, further comprising means for calculating a thermal diffusivity after conversion into a temperature history curve according to claim 11. 単一パルス加熱による温度履歴曲線に変換するために、前記温度履歴曲線から直線的に温度減衰する成分を差し引く演算部を有することを特徴とする請求項11に記載の薄膜熱物性測定装置。   The thin-film thermophysical property measuring apparatus according to claim 11, further comprising a calculation unit that subtracts a linearly decaying component from the temperature history curve in order to convert the temperature history curve by single pulse heating. 前記周期的なパルス加熱による温度履歴曲線を、前記単一パルス加熱による温度履歴曲線と直線的に温度減衰する成分を同時に考慮したモデルから解析する手段を有することを特徴とする請求項9又は10に記載の薄膜熱物性測定装置。   11. The apparatus according to claim 9, further comprising means for analyzing the temperature history curve due to the periodic pulse heating from a model that simultaneously takes into account the temperature decay curve linearly with the temperature history curve due to the single pulse heating. Thin film thermophysical property measuring apparatus according to 1. 前記加熱する手段として周期的に発振するパルスレーザを用いることを特徴とした請求項9から13までのいずれか1項に記載の薄膜熱物性測定装置。   The thin film thermophysical property measuring apparatus according to any one of claims 9 to 13, wherein a pulsed laser that periodically oscillates is used as the heating means. 加熱されている領域の温度変化を検出する手段として、cwレーザを用いて加熱領域に照射し、その反射光強度の表面温度依存性から、膜表面の温度履歴曲線を得ることを特徴とする請求項14に記載の薄膜熱物性測定装置。   A means for detecting a temperature change in a heated region is to irradiate the heated region using a cw laser and obtain a temperature history curve of the film surface from the surface temperature dependence of the reflected light intensity. Item 15. The thin-film thermophysical property measuring apparatus according to Item 14. 加熱パルスレーザと同じ繰り返し周期で、かつ、同期して発振する別のパルスレーザを加熱領域に照射し、その反射光強度の表面温度依存性から、膜表面の温度履歴曲線を得ることを特徴とする請求項14に記載の薄膜熱物性測定装置。   It is characterized by irradiating the heating region with another pulse laser that oscillates in synchronization with the same repetition period as the heating pulse laser, and obtains the temperature history curve of the film surface from the surface temperature dependence of the reflected light intensity. The thin film thermophysical property measuring apparatus according to claim 14. 基板に形成され厚さが既知の薄膜の表面を周期的なパルス列で加熱するステップと、
前記薄膜の表面の加熱されている加熱領域の温度変化を検出するステップと、
前記薄膜の周期的な表面温度変化を時間の関数として取得するステップと、
取得した前記薄膜の表面温度の時間変化と薄膜の膜厚とに基づいて、対象となる薄膜の膜厚を考慮した解析モデルから、前記薄膜の熱拡散率を算出するステップであって、周期的な熱パルスによる温度履歴曲線のサーモリフレクタンス信号の測定値から、急激な温度上昇前の期間におけるサーモリフレクタンス信号の測定値を減算することにより、周期的な熱パルスによる温度履歴曲線を単一パルス加熱による温度履歴曲線に変換し、薄膜の熱拡散率を算出するステップと
を有することを特徴とする薄膜熱物性測定方法。
Heating the surface of a thin film of known thickness formed on a substrate with a periodic pulse train;
Detecting a temperature change in a heated region on the surface of the thin film; and
Obtaining a periodic surface temperature change of the thin film as a function of time;
Calculating the thermal diffusivity of the thin film from an analytical model considering the thickness of the target thin film based on the obtained temporal change in the surface temperature of the thin film and the film thickness of the thin film, By subtracting the measured value of the thermoreflectance signal during the period before the rapid temperature rise from the measured value of the thermoreflectance signal of the temperature history curve due to a simple heat pulse, a single temperature history curve due to a periodic heat pulse is obtained. A method of measuring a thermal property of a thin film, comprising the step of calculating a thermal diffusivity of the thin film by converting into a temperature history curve by pulse heating.
基板に形成され厚さが既知の薄膜の表面を周期的なパルス列で加熱するステップと、
前記薄膜の表面の加熱されている加熱領域の温度変化を検出するステップと、
前記薄膜の周期的な表面温度変化を時間の関数として取得するステップと、
取得した前記薄膜の表面温度の時間変化と薄膜の膜厚とに基づいて、対象となる薄膜の膜厚を考慮した解析モデルから、前記薄膜の熱拡散率を算出するステップであって、単一パルス加熱による温度履歴曲線と、前記薄膜の表面を繰り返し加熱することにより、加熱領域が周囲に対して定常的に温度が高いために生じる温度減衰成分とを足し合わせたモデル曲線が観測された温度履歴曲線に合うように、薄膜の熱拡散率を算出するステップと
を有することを特徴とする薄膜熱物性測定方法。
Heating the surface of a thin film of known thickness formed on a substrate with a periodic pulse train;
Detecting a temperature change in a heated region on the surface of the thin film; and
Obtaining a periodic surface temperature change of the thin film as a function of time;
A step of calculating the thermal diffusivity of the thin film from an analysis model that takes into account the thickness of the target thin film based on the obtained temporal change in the surface temperature of the thin film and the film thickness of the thin film, The temperature at which a model curve is observed, which is the sum of the temperature history curve by pulse heating and the temperature decay component that occurs because the surface of the thin film is repeatedly heated to the surroundings by repeatedly heating the surface of the thin film. And a step of calculating a thermal diffusivity of the thin film so as to fit the hysteresis curve.
JP2007235679A 2007-09-11 2007-09-11 Method for measuring thin-film thermophysical property, and device for measuring the thin-film thermophysical property Pending JP2009068909A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2007235679A JP2009068909A (en) 2007-09-11 2007-09-11 Method for measuring thin-film thermophysical property, and device for measuring the thin-film thermophysical property
PCT/JP2008/063630 WO2009034787A1 (en) 2007-09-11 2008-07-30 Thin film thermophysical property measuring method and thin film thermophysical property measuring apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007235679A JP2009068909A (en) 2007-09-11 2007-09-11 Method for measuring thin-film thermophysical property, and device for measuring the thin-film thermophysical property

Publications (1)

Publication Number Publication Date
JP2009068909A true JP2009068909A (en) 2009-04-02

Family

ID=40451799

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007235679A Pending JP2009068909A (en) 2007-09-11 2007-09-11 Method for measuring thin-film thermophysical property, and device for measuring the thin-film thermophysical property

Country Status (2)

Country Link
JP (1) JP2009068909A (en)
WO (1) WO2009034787A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11175249B2 (en) 2017-11-07 2021-11-16 Netzsch Japan K.K. Physical property value measurement device, physical property value measurement method, and recording medium

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107941850B (en) * 2017-11-21 2020-08-04 宁波英飞迈材料科技有限公司 Device and method for rapidly measuring heat capacity of thin film material
CN109557129B (en) * 2018-10-29 2021-05-11 同济大学 Method for measuring film thermal diffusion coefficient
CN114384118B (en) * 2022-01-28 2023-08-29 同济大学 Thermal diffusion coefficient measuring method and device for dielectric film with substrate

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4710030A (en) * 1985-05-17 1987-12-01 Bw Brown University Research Foundation Optical generator and detector of stress pulses
US5706094A (en) * 1995-08-25 1998-01-06 Brown University Research Foundation Ultrafast optical technique for the characterization of altered materials
JP3252155B2 (en) * 1999-09-14 2002-01-28 独立行政法人産業技術総合研究所 Thermal diffusivity measurement method by thermoreflectance method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11175249B2 (en) 2017-11-07 2021-11-16 Netzsch Japan K.K. Physical property value measurement device, physical property value measurement method, and recording medium

Also Published As

Publication number Publication date
WO2009034787A1 (en) 2009-03-19

Similar Documents

Publication Publication Date Title
US7182510B2 (en) Apparatus and method for measuring thermal conductivity
Wang et al. Thermal conductivity measurements of non-metals via combined time-and frequency-domain thermoreflectance without a metal film transducer
US7044636B2 (en) Method of measuring fast time response using fast pulse and system of the same
Hua et al. The study of frequency-scan photothermal reflectance technique for thermal diffusivity measurement
JP2009068909A (en) Method for measuring thin-film thermophysical property, and device for measuring the thin-film thermophysical property
Yuan et al. Nanosecond transient thermoreflectance method for characterizing anisotropic thermal conductivity
JP3252155B2 (en) Thermal diffusivity measurement method by thermoreflectance method
Martan et al. Thermal properties characterization of conductive thin films and surfaces by pulsed lasers
JP2007093509A (en) Thermal physical property measurement method and device
KR20210048539A (en) Steady-state heat reflectance method and system for measuring thermal conductivity
JP4025369B2 (en) Optical method for discriminating mechanical properties of materials
US20070024871A1 (en) Method and apparatus for measuring thickness of thin films via transient thermoreflectance
JP4817328B2 (en) Thermophysical property measurement method
JP2004333262A (en) Method and instrument for measuring thermophysical properties of membrane
Reese et al. Examination of the epicentral waveform for laser ultrasound in the melting regime
Maliński Comparison of three nondestructive and contactless techniques for investigations of recombination parameters on an example of silicon samples
JP4873489B2 (en) Thin-film thermophysical property measuring device
JP5061055B2 (en) Temperature measuring device and temperature measuring method
US11175249B2 (en) Physical property value measurement device, physical property value measurement method, and recording medium
JP2002303597A (en) Device and method for measuring thermal property
JP2001108641A (en) Measuring method for contact thermal resistance
JP7477500B2 (en) Steady-state thermoreflectance method and system for measuring thermal conductivity - Patents.com
JP6399329B1 (en) Physical property value measuring apparatus, physical property value measuring method and program
Autrique et al. Finite element modelling for micro-scale thermal investigations using photo-thermal microscopy data inversion
Ivanov et al. Self-normalized front photopyroelectric technique for thermal effusivity measurements in liquids