JP4873299B2 - Inspection and production method of inorganic insulator and apparatus therefor - Google Patents

Inspection and production method of inorganic insulator and apparatus therefor Download PDF

Info

Publication number
JP4873299B2
JP4873299B2 JP2006167470A JP2006167470A JP4873299B2 JP 4873299 B2 JP4873299 B2 JP 4873299B2 JP 2006167470 A JP2006167470 A JP 2006167470A JP 2006167470 A JP2006167470 A JP 2006167470A JP 4873299 B2 JP4873299 B2 JP 4873299B2
Authority
JP
Japan
Prior art keywords
insulating layer
reflectance
firing
bubbles
inorganic insulator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006167470A
Other languages
Japanese (ja)
Other versions
JP2007333631A (en
Inventor
美也子 人見
静安 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2006167470A priority Critical patent/JP4873299B2/en
Publication of JP2007333631A publication Critical patent/JP2007333631A/en
Application granted granted Critical
Publication of JP4873299B2 publication Critical patent/JP4873299B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)

Description

本発明は、鉄やステンレス鋼などの基板面に生成したセラミック、酸化金属及びガラス上薬混合材料等から構成される無機系絶縁体の焼成状態検査方法及び製作方法、並びにその装置に関する。   The present invention relates to a firing state inspection method and manufacturing method of an inorganic insulator composed of a ceramic, metal oxide, glass mixture material and the like produced on a substrate surface such as iron or stainless steel, and an apparatus therefor.

セラミックなどで形成される絶縁体は、薄膜構造を成しており、積層セラミックコンデンサや電子部品、電源装置、オゾン発生器などに用いられている。これらの絶縁体には、高電圧が印加されるため、当然、耐電圧性に優れた均一な層を形成できる技術の提供が求められている。
従来、このような絶縁体の層形成は、セラミックやガラス等を溶剤、水等で混合してスラリー化したものをスプレー、スピンコート、スクリーン印刷等で厚さ100〜1000μm程度に塗布し、700〜1000℃の高温焼結炉で焼結していた。このスラリーには、酸化金属を混ぜ合わせても良い。なお、上記高温焼結炉には、バッチ式の電気炉、トンネル型焼成炉、ガス炉等が用いられている。
An insulator formed of ceramic or the like has a thin film structure and is used for a multilayer ceramic capacitor, an electronic component, a power supply device, an ozone generator, and the like. Since a high voltage is applied to these insulators, it is naturally required to provide a technique capable of forming a uniform layer having excellent voltage resistance.
Conventionally, such an insulator layer is formed by applying a slurry of ceramic or glass mixed with a solvent, water, etc. to a thickness of about 100 to 1000 μm by spraying, spin coating, screen printing, etc. It was sintered in a high temperature sintering furnace at ˜1000 ° C. This slurry may be mixed with metal oxide. As the high-temperature sintering furnace, a batch type electric furnace, a tunnel-type firing furnace, a gas furnace or the like is used.

上記絶縁層は、ステンレス、鉄などの金属基板上に、1層以上の複数層で構成されている。また、前記金属基板と接触する層には、金属基板面との密着性を上げるため、反応性の良好な材料が用いられている。絶縁性を付与する層の材料としては、気泡の発生が少ない材料や厚みを持たせることができる材料が要求されている。
このような観点から、絶縁体には機能向上のため、通常1種類以上の材料が適用されており、基板と密着した下地層と、絶縁性を付与する表面層に対して異なる材料が用いられている。
The insulating layer is composed of one or more layers on a metal substrate such as stainless steel or iron. In addition, a material having good reactivity is used for the layer in contact with the metal substrate in order to improve adhesion to the metal substrate surface. As a material for the layer imparting insulating properties, a material that generates less bubbles and a material that can have a thickness are required.
From this point of view, one or more types of materials are usually applied to the insulator to improve its function, and different materials are used for the base layer in close contact with the substrate and the surface layer that provides insulation. ing.

特許文献1には、上述のような絶縁性を付与する層において、絶縁性の障害となる誘電体層内の気泡を少なくして高い絶縁性を得ることと、乾燥工程が100〜130℃、焼成工程が300〜600℃であり、焼成温度による変色が発生することが記載されている。
また、特許文献2には、焼成温度を高くすると、気泡の形成が抑えられなくなることから、気泡の発生を抑える観点よりガラス材料の焼成する温度を500〜650℃とすることが記載されている。
以上のように、従来は、絶縁体の絶縁性を良好に保持する手段として、当該絶縁体の絶縁性を付与する表面層についての焼成条件、気泡状態及び測定方法についての技術が提供されていた。
特開2002−133947号公報 特開平11−345564号公報
In Patent Document 1, in a layer that imparts insulation as described above, bubbles in the dielectric layer that become an obstacle to insulation are reduced to obtain high insulation, and a drying step is performed at 100 to 130 ° C. It is described that the firing step is 300 to 600 ° C. and discoloration due to the firing temperature occurs.
Patent Document 2 describes that when the firing temperature is increased, the formation of bubbles cannot be suppressed, so that the temperature at which the glass material is fired is 500 to 650 ° C. from the viewpoint of suppressing the generation of bubbles. .
As described above, conventionally, as a means for maintaining the insulation of the insulator satisfactorily, techniques for firing conditions, bubble states and measurement methods for the surface layer imparting the insulation of the insulator have been provided. .
JP 2002-133947 A Japanese Patent Laid-Open No. 11-345564

かかる絶縁体において、各種塗布装置により塗布及び焼成した絶縁性のスラリーは、焼成開始から終了段階までの過程において、スラリーからのガス(水蒸気、二酸化炭素、有機ガスなど)の発生により、絶縁層内にしばしば気泡が発生していた。発生した気泡は焼成段階で層外へ放出されるものもあるが、一部はそのまま絶縁層内部に残留することになる。これは、スラリーの粘性が高いために気泡が抜けにくく、また気泡が抜け切る前に焼成が終了し絶縁層が冷却されてしまうためである。
これらの絶縁層内に残留した気泡は、絶縁体に高電圧を印加した際に、当該気泡の内部で放電が生じ、この放電により熱が発生し、熱による絶縁層の破壊を誘発していた。かかる放電は気泡径が小さく、また気泡が少ない緻密な層ほど生じ難いことが分かっている。
上記のような気泡の発生時において、絶縁層の焼成温度によって気泡数及び気泡体積が変化する。そのため、焼成炉の温度管理が重要であるが、炉内温度と実際の絶縁層の温度とでは、輻射熱などの影響によってずれが生じるので、焼成炉の設定温度を管理するのみでは気泡の状態を厳密に制御・管理するのは困難であった。
In such an insulator, the insulating slurry applied and baked by various coating apparatuses is generated in the insulating layer due to generation of gas (water vapor, carbon dioxide, organic gas, etc.) from the slurry in the process from the start to the end of baking. Air bubbles were often generated. Although some of the generated bubbles are discharged out of the layer in the firing stage, some remain in the insulating layer as they are. This is because bubbles are difficult to escape due to the high viscosity of the slurry, and before the bubbles are completely removed, the firing is completed and the insulating layer is cooled.
The bubbles remaining in these insulating layers generated a discharge inside the bubbles when a high voltage was applied to the insulator, and heat was generated by this discharge, and the insulation layer was destroyed by the heat. . It has been found that such discharges are less likely to occur in dense layers with smaller bubble diameters and fewer bubbles.
When bubbles are generated as described above, the number of bubbles and the bubble volume change depending on the firing temperature of the insulating layer. For this reason, it is important to control the temperature of the firing furnace. However, the temperature inside the furnace and the actual temperature of the insulation layer may vary due to the effects of radiant heat. It was difficult to strictly control and manage.

従来、絶縁層の絶縁特性を把握するには、次の2つの方法が取られていた。なお、ここで絶縁特性とは、絶縁体に電圧を印加したときに、該絶縁体が破壊しない状態(特性、耐電圧に相当する)をいう。
(1)実際に、絶縁層に高電圧を印加して、絶縁層が目的の電圧に耐えられるか否かの確認試験を行う。
(2)絶縁層内の気泡を顕微鏡で観察し、気泡径から絶縁層が破壊に至る電圧を推定する。
しかしながら、かかる2つの方法は作業時間を要し、絶縁層の試料(試験片)の採取を必要とし、また試験の手順も複雑であり、試料全数の絶縁特性を把握する方法としては実用的ではなかった。また、上述のように炉内温度と実際の絶縁層にかかる温度ではずれがあるため、炉の設定温度の管理を行っても気泡の制御・管理は不十分であった。
さらには、上記特許文献1及び特許文献2には、絶縁層の焼成温度と絶縁層内の気泡の発生状態との関係が開示されているにとどまり、絶縁層内の気泡の混入状態を簡便に検知する手法及び気泡の発生を抑制する手法については開示されていない。
Conventionally, the following two methods have been taken to grasp the insulating characteristics of the insulating layer. Note that here, the insulating characteristic means a state in which the insulator does not break down when a voltage is applied to the insulator (corresponding to characteristics and withstand voltage).
(1) Actually, a high voltage is applied to the insulating layer, and a confirmation test is performed to determine whether the insulating layer can withstand a target voltage.
(2) The bubbles in the insulating layer are observed with a microscope, and the voltage at which the insulating layer breaks is estimated from the bubble diameter.
However, these two methods require working time, require the collection of a sample (test piece) of the insulating layer, and the test procedure is complicated, and it is not practical as a method for grasping the insulation characteristics of the total number of samples. There wasn't. Further, as described above, since there is a difference between the temperature in the furnace and the temperature applied to the actual insulating layer, even if the set temperature of the furnace is managed, the control and management of bubbles are insufficient.
Furthermore, Patent Document 1 and Patent Document 2 only disclose the relationship between the firing temperature of the insulating layer and the generation state of bubbles in the insulating layer, and the state of mixing of bubbles in the insulating layer can be simplified. There is no disclosure of a method for detecting or a method for suppressing the generation of bubbles.

本発明は、このような実状に鑑みてなされたものであって、その目的は、絶縁層の試料(試験片)の採取を不要とし、きわめて簡単な方法で且つ短時間で、絶縁体の気泡の発生状態を正確に検知可能とするとともに、簡便な方法で気泡の発生を抑制することを可能とした無機系絶縁体の焼成状態検査方法及び製作方法、並びにその装置を提供することにある。   The present invention has been made in view of such a situation, and an object thereof is to eliminate the need to collect a sample (test piece) of an insulating layer, and to make a bubble of an insulator in a very simple method and in a short time. It is an object of the present invention to provide a method and apparatus for inspecting the firing state of an inorganic insulator, and a device for the same, which can accurately detect the occurrence state of the inorganic insulator and suppress the generation of bubbles by a simple method.

本発明は、絶縁体の気泡の発生原因が、金属基板との密着性を向上させる機能をもつ下地絶縁層にあることに着目し、この下地絶縁層の焼成条件、気泡の発生状態を該下地絶縁層への光の反射率の測定値と関連付け、簡便に下地絶縁層の性能を評価するとともに、該下地絶縁層に積層した耐電圧性を付与する表面絶縁層の気泡発生を抑えることを可能とするものである。   The present invention pays attention to the fact that the cause of the generation of bubbles in the insulator is the base insulating layer having a function of improving the adhesion to the metal substrate. It is possible to easily evaluate the performance of the base insulating layer by correlating with the measured value of the reflectance of light to the insulating layer, and to suppress the generation of bubbles in the surface insulating layer that provides withstand voltage laminated on the base insulating layer It is what.

すなわち、請求項1の本発明は、セラミック等の無機系絶縁物からなる絶縁層を金属基板の表面に焼成してなる無機系絶縁体の検査方法及び製作方法であって、焼成後での前記絶縁層の表面における光の反射率を測定し、該反射率と前記絶縁層内における気泡の状態とを関係付けておき、前記反射率の測定結果から前記絶縁層内に発生している気泡の混入状態を推定している。
この発明において、好ましくは、前記絶縁層を、前記金属基板の表面に焼成される下地絶縁層と、該下地絶縁層の外側に焼成される表面絶縁層とにより形成し、前記金属基板の表面に下地絶縁層を焼成してなる下地絶縁層焼成体における前記反射率を、前記下地絶縁層焼成体の複数箇所において測定する(請求項2)。
That is, the present invention of claim 1 is an inspection method and a manufacturing method of an inorganic insulator formed by firing an insulating layer made of an inorganic insulator such as ceramic on the surface of a metal substrate, and the method after the firing The reflectance of light on the surface of the insulating layer is measured, the reflectance is related to the state of the bubbles in the insulating layer, and the bubble generated in the insulating layer is determined from the measurement result of the reflectance. The contamination state is estimated.
In the present invention, preferably, the insulating layer is formed of a base insulating layer fired on the surface of the metal substrate and a surface insulating layer fired outside the base insulating layer, and is formed on the surface of the metal substrate. The reflectance of the base insulating layer fired body obtained by firing the base insulating layer is measured at a plurality of locations of the base insulating layer fired body.

また、この発明において、次のように構成するのが好ましい。
(1)前記反射率と前記絶縁層内における気泡の混入状態との関係を前記絶縁層の焼成温度、焼成時間等の焼成条件をパラメータにして設定し、前記反射率の測定結果を前記気泡の混入状態及び焼成条件の設定値に対応させて、気泡の混入が最小となる最適焼成条件を算出し、該最適焼成条件によって前記絶縁層を前記金属基板の表面に焼成する(請求項3)。
In the present invention, the following configuration is preferable.
(1) The relationship between the reflectance and the state of mixing of bubbles in the insulating layer is set with parameters of firing conditions such as the firing temperature and firing time of the insulating layer, and the measurement result of the reflectivity is measured for the bubbles. Corresponding to the set values of the mixing state and the baking conditions, the optimum baking conditions that minimize the mixing of bubbles are calculated, and the insulating layer is fired on the surface of the metal substrate according to the optimum baking conditions.

(2)前記反射率と前記絶縁層内における気泡の混入状態との関係を前記焼成条件をパラメータとして、前記焼成条件における焼成温度が高く、前記焼成時間が長くなるに従い前記反射率が小さく気泡の混入量が少なくなるように設定された設定テーブルを作製し、前記反射率の測定結果を前記設定テーブルに対応させて、前記反射率が最小になり前記気泡の混入量が最小になるような前記焼成条件で前記絶縁層を前記金属基板の表面に焼成する(請求項4)。   (2) The relationship between the reflectivity and the mixed state of bubbles in the insulating layer, with the firing condition as a parameter, the firing temperature under the firing condition is high, and as the firing time becomes longer, the reflectance becomes smaller and A setting table set to reduce the mixing amount is prepared, and the reflectance measurement result is made to correspond to the setting table so that the reflectance is minimized and the mixing amount of the bubbles is minimized. The insulating layer is fired on the surface of the metal substrate under firing conditions.

(3)前記反射率の測定に、標準照明光源、分光機能、反射率測定および演算機能を内蔵する色彩色差計、あるいは分光測色計を用いる(請求項5)。   (3) A standard illumination light source, a spectral function, a reflectance measurement and calculation function, or a spectrocolorimeter with a built-in calculation function is used for the reflectance measurement.

また、請求項6の発明は、前記方法発明を実施する装置の発明であり、
セラミック等の無機系絶縁物からなる絶縁層を金属基板の表面に焼成してなる無機系絶縁体の検査を行う無機系絶縁体の検査装置において、前記絶縁層の表面における光の反射率の基準となる基準反射率を予め格納する手段と、反射率測定装置によって新たに測定された測定反射率を格納する手段と、前記基準反射率と前記測定反射率とを比較して前記絶縁層の合否を判定する手段とを備えている。
The invention of claim 6 is an invention of an apparatus for carrying out the method invention,
In an inorganic insulator inspection apparatus for inspecting an inorganic insulator formed by firing an insulating layer made of an inorganic insulator such as ceramic on the surface of a metal substrate, a reference for the reflectance of light on the surface of the insulating layer Means for preliminarily storing the reference reflectance, means for storing the measured reflectance newly measured by the reflectance measuring device, and comparing the reference reflectance with the measured reflectance to determine whether the insulating layer is acceptable or not. And means for judging.

この発明において、好ましくは、前記反射率測定装置は、前記絶縁層の表面に沿って移動可能に構成され、前記絶縁体表面の反射率を断続または連続的に検知する移動式反射率測定装置からなっている(請求項7)。   In this invention, Preferably, the said reflectance measuring apparatus is comprised so that a movement along the surface of the said insulating layer is possible, From the mobile reflectance measuring apparatus which detects the reflectance of the said insulator surface intermittently or continuously. (Claim 7).

絶縁層であるセラミック材は、金属基板との密着性を上げ、金属基板との熱膨張係数を揃え、耐熱性に富み、耐温度変化が小さいなどの特徴を持っている。
かかるセラミック材は、ガラスやアルミナを主成分として、他に酸化銅や酸化コバルト、酸化ニッケル、酸化チタンなどの金属酸化物を微量に含んでいる。
金属基板への密着性を上げるための下地となる絶縁材料には、金属基板との反応性を良くするため、酸化銅や酸化コバルトなどの酸化物を入れていることが知られている。このように金属基板との反応性を良くすると、それにより金属表面と絶縁層の界面で反応によるガス(二酸化炭素など)の発生が起こり、かかるガスによる気泡が絶縁層に発生し易くなる。
上記絶縁層内に発生する気泡の大きさ及び体積は、絶縁層の焼成温度、焼成時間等の焼成条件に関係している。この下地絶縁層の焼成条件、気泡の発生状態は、該下地絶縁層への光の反射率と関連付けることが可能である。
The ceramic material that is an insulating layer has features such as improved adhesion to the metal substrate, uniform thermal expansion coefficient with the metal substrate, high heat resistance, and small temperature resistance change.
Such a ceramic material contains glass or alumina as a main component, and also contains trace amounts of metal oxides such as copper oxide, cobalt oxide, nickel oxide, and titanium oxide.
It is known that an insulating material serving as a base for improving adhesion to a metal substrate contains an oxide such as copper oxide or cobalt oxide in order to improve the reactivity with the metal substrate. When the reactivity with the metal substrate is improved in this manner, gas (carbon dioxide or the like) is generated by the reaction at the interface between the metal surface and the insulating layer, and bubbles due to the gas are easily generated in the insulating layer.
The size and volume of bubbles generated in the insulating layer are related to firing conditions such as the firing temperature and firing time of the insulating layer. The firing conditions of the base insulating layer and the generation state of bubbles can be correlated with the reflectance of light to the base insulating layer.

本発明は、以上の知見に基づき、焼成後での絶縁層の表面における光の反射率を測定し、該反射率と絶縁層内における気泡の状態とを関係付けておき、反射率の測定結果から絶縁層内に発生している気泡の混入状態を推定するように構成し、具体的には、前記絶縁層を、金属基板の表面に焼成される下地絶縁層と、該下地絶縁層の外側に焼成される表面絶縁層とにより形成し、前記金属基板の表面に下地絶縁層を焼成してなる下地絶縁層焼成体における前記反射率を、前記下地絶縁層焼成体の複数箇所において測定するように構成している(請求項1、2、5、6)。   Based on the above knowledge, the present invention measures the reflectance of light on the surface of the insulating layer after firing, correlates the reflectance with the state of bubbles in the insulating layer, and the reflectance measurement results In particular, it is configured to estimate the mixed state of bubbles generated in the insulating layer. Specifically, the insulating layer includes a base insulating layer fired on the surface of the metal substrate, and an outer side of the base insulating layer. The reflectance in a base insulating layer fired body formed by firing a base insulating layer on the surface of the metal substrate is measured at a plurality of locations of the base insulating layer fired body. (Claims 1, 2, 5, and 6).

従って、本発明によれば、絶縁層、具体的には金属基板の表面に焼成される下地絶縁層における光の反射率を測定し、該反射率と絶縁層内における気泡の状態とを関係付けて作製した設定テーブルに該反射率の測定値を対応させることにより、絶縁層内における気泡の発生状態を、光の反射率を測定して該反射率と気泡の状態とを関係付けた設定テーブルに該反射率の測定値を対応させるのみで、正確に把握することができる。
これにより、従来技術のような絶縁層の試料(試験片)の採取が不要となり、きわめて簡単な方法で且つ短時間で、絶縁体の気泡の発生状態を正確に検知できる。
Therefore, according to the present invention, the reflectance of light in the insulating layer, specifically the underlying insulating layer fired on the surface of the metal substrate, is measured, and the reflectance is related to the state of bubbles in the insulating layer. By setting the reflectance measurement value to correspond to the setting table prepared in this manner, the bubble generation state in the insulating layer is measured, the light reflectance is measured, and the reflectance and the bubble state are related to each other. It is possible to accurately grasp the reflectance only by corresponding to the measured value.
Thereby, it is not necessary to collect a sample (test piece) of the insulating layer as in the prior art, and it is possible to accurately detect the generation state of the bubbles in the insulator in a very simple method and in a short time.

また、本発明によれば、前記反射率と前記絶縁層内における気泡の混入状態との関係を、焼成温度、焼成時間等の焼成条件をパラメータとして、焼成温度が高く、また前記焼成温度が長くなるに従い前記反射率が小さく気泡の混入量が少なくなるように予め設定した設定テーブルを作製しておき、前記反射率の測定結果を前記設定テーブルに対応させて、前記反射率が最小になり前記気泡の混入量が最小になるような焼成温度、及び焼成時間で絶縁層を金属基板の表面に焼成することにより(請求項3〜5)、簡便に下地絶縁層の性能を評価して該下地絶縁層への気泡の混入を最小限に抑制するとともに、該下地絶縁層に積層した耐電圧性を付与する表面絶縁層の気泡発生を抑えることも可能となる。   Further, according to the present invention, the relationship between the reflectance and the mixed state of bubbles in the insulating layer is set such that the firing temperature is high and the firing temperature is long with the firing conditions such as firing temperature and firing time as parameters. A setting table that is set in advance so that the reflectance is small and the amount of bubbles mixed in is reduced, and the measurement result of the reflectance is made to correspond to the setting table so that the reflectance is minimized. By firing the insulating layer on the surface of the metal substrate at a firing temperature and firing time that minimizes the amount of bubbles mixed in (Claims 3 to 5), the performance of the underlying insulating layer can be simply evaluated and the base It is possible to suppress the mixing of bubbles into the insulating layer to the minimum, and to suppress the generation of bubbles in the surface insulating layer that provides voltage resistance stacked on the base insulating layer.

また、前記反射率測定装置を、前記絶縁層の表面に沿って移動可能に構成され、絶縁体表面の反射率を断続または連続的に検知する移動式反射率測定装置に構成すれば(請求項7)、反射率の測定時間を短縮可能となって評価実験工数を低減できるとともに、該移動式反射率測定装置を下地絶縁層焼成体の軸方向及び円周方向に自在に移動させることにより、該下地絶縁層焼成体の全表面について万遍なく反射率を測定できて評価実験の測定精度を向上させることができる。   Further, if the reflectance measuring device is configured to be movable along the surface of the insulating layer and configured to be a mobile reflectance measuring device that intermittently or continuously detects the reflectance of the insulator surface (claim). 7) The reflectance measurement time can be shortened and the number of evaluation experiment steps can be reduced, and the movable reflectance measuring device can be moved freely in the axial direction and the circumferential direction of the base insulating layer fired body, The reflectance can be measured uniformly over the entire surface of the base insulating layer fired body, and the measurement accuracy of the evaluation experiment can be improved.

以下、図面を参照し且つ実験結果に基づいて本発明の実施形態につき詳細に説明する。
図1は本発明の実施形態が適用されるオゾン発生器の構成図であって、(A)は円筒管の長手方向に切断した断面図、(B)は(A)におけるA−A線断面図である。
本発明の実施形態が適用されるオゾン発生器の構成を示す図1において、1は金属材料からなる円筒管(金属基板)であり、この円筒管1の外周面には下地絶縁層2及び該下地絶縁層2の外側の表面絶縁層3の2層のセラミック材からなる絶縁層が形成されている。
上記下地絶縁層2及び表面絶縁層3を構成するセラミック材は、基板である円筒管1との密着性を上げ、円筒管1との膨張係数を揃え、耐熱性を有するなどの特性を備え、ガラスやアルミナを主成分とし、酸化銅や酸化コバルト、酸化ニッケル、酸化チタンなどの金属酸化物を微量に含んでいる。
絶縁層に用いられるセラミック材のスラリーは、ソーダガラスやホウケイ酸ガラスの粉末を主体に、アルミナ、酸化銅、酸化ニッケル、酸化コバルト、酸化チタンなどの酸化物を含有し、これらの粉末を水で溶いたものである。このガラスは珪酸を主成分とする無機酸化物ガラスであれば良い。
この実施形態に係るセラミック材におけるガラスは、全体の約60%を占め、アルミナは約10%、金属酸化物は合計で約20%、残りはナトリウム、カリウムなどのアルカリ成分としている。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings and based on experimental results.
FIG. 1 is a configuration diagram of an ozone generator to which an embodiment of the present invention is applied, in which (A) is a cross-sectional view cut in the longitudinal direction of a cylindrical tube, and (B) is a cross-sectional view taken along line AA in (A). FIG.
In FIG. 1 showing a configuration of an ozone generator to which an embodiment of the present invention is applied, reference numeral 1 denotes a cylindrical tube (metal substrate) made of a metal material. An insulating layer made of a ceramic material of two layers of the surface insulating layer 3 outside the base insulating layer 2 is formed.
The ceramic material constituting the base insulating layer 2 and the surface insulating layer 3 has characteristics such as improving adhesion with the cylindrical tube 1 as a substrate, aligning an expansion coefficient with the cylindrical tube 1, and having heat resistance, It contains glass and alumina as the main components, and contains trace amounts of metal oxides such as copper oxide, cobalt oxide, nickel oxide, and titanium oxide.
The ceramic material slurry used for the insulating layer mainly contains soda glass and borosilicate glass powders, and contains oxides such as alumina, copper oxide, nickel oxide, cobalt oxide and titanium oxide. It is melted. This glass may be an inorganic oxide glass mainly composed of silicic acid.
Glass in the ceramic material according to this embodiment accounts for about 60% of the total, alumina is about 10%, metal oxides are about 20% in total, and the remainder is an alkali component such as sodium and potassium.

また、上記円筒管1(金属基板)への密着性を上げるための下地となる下地絶縁層2の材料には、円筒管1(金属基板)との反応性を良好にするため、酸化銅や酸化コバルトなどの酸化物が入れられている。
従って、上記のような酸化物を入れて反応性を良好にすることにより、円筒管1(金属基板)の金属表面と下地絶縁層2との界面では、反応によるガス(二酸化炭素など)の発生及びこれによる気泡が発生し易い状態となる。
本発明の実施形態は、上述のような円筒管1(金属基板)の金属表面と絶縁体つまり下地絶縁層2の界面で発生する気泡の発生原因が、円筒管1(金属基板)との密着性を向上させる機能をもつ下地絶縁層2にあることに着目し、この下地絶縁層2の焼成条件、気泡の発生状態を下地絶縁層2への光の反射率と関連付けることにより、簡便に性能を評価し、この評価結果を用いて、該絶縁層に積層した耐電圧性を付与する表面絶縁層3の気泡発生を抑える手段を提供するものである。
Moreover, in order to improve the reactivity with the cylindrical tube 1 (metal substrate), the material of the base insulating layer 2 as a base for improving the adhesion to the cylindrical tube 1 (metal substrate) may be copper oxide or Oxides such as cobalt oxide are contained.
Therefore, by adding the above oxide to improve the reactivity, gas (carbon dioxide etc.) is generated by reaction at the interface between the metal surface of the cylindrical tube 1 (metal substrate) and the base insulating layer 2. And it will be in the state where the bubble by this tends to generate.
In the embodiment of the present invention, the cause of generation of bubbles at the interface between the metal surface of the cylindrical tube 1 (metal substrate) and the insulator, that is, the base insulating layer 2 as described above, is in close contact with the cylindrical tube 1 (metal substrate). Focusing on the fact that it is in the base insulating layer 2 having a function of improving the performance, the firing condition of the base insulating layer 2 and the generation state of bubbles are related to the reflectance of light to the base insulating layer 2 to easily perform the performance. This means is used to provide means for suppressing the generation of bubbles in the surface insulating layer 3 that imparts voltage resistance and is laminated on the insulating layer.

図1において、円筒管1には鉄やステンレス等の金属材料が用いられている。この円筒管(金属基板)1の表面には、金属基板との密着性を向上させる目的で反応性のよい下地絶縁層2が塗布・焼成されている。かかる下地絶縁層2が形成された後に、耐電圧を付与する反応性の低い材料で構成された表面絶縁層3が塗布・焼成されるようになっている。このときの表面絶縁層3の塗布は、スプレー噴霧でも良いし、ディップ方式でも良い。絶縁層2,3を形成する基板には、本実施形態のような円筒型のほかに、平板、湾曲板などが用いられても良い。また、層の塗布方向は片面でも両面でも可能である。
また、下地絶縁層2の厚さは、基板との密着が目的なので、厚くする必要はなく、10〜100μm、好ましくは30〜80μmが適当である。
さらに、表面絶縁層3の厚さは、200〜600μm、好ましくは300〜500μmが適当である。これは、絶縁性能を持たせるために厚さが200μmより薄くすると、形成層の際にピンホールが発生し易く、厚さが600μmより厚過ぎると、膜厚むらが生じてくることを考慮したものである。
In FIG. 1, a metal material such as iron or stainless steel is used for the cylindrical tube 1. On the surface of the cylindrical tube (metal substrate) 1, a base insulating layer 2 having good reactivity is applied and baked for the purpose of improving adhesion to the metal substrate. After the base insulating layer 2 is formed, the surface insulating layer 3 made of a low-reactive material that imparts withstand voltage is applied and baked. At this time, the surface insulating layer 3 may be applied by spraying or dipping. As the substrate on which the insulating layers 2 and 3 are formed, a flat plate, a curved plate, or the like may be used in addition to the cylindrical shape as in the present embodiment. Moreover, the application direction of the layer can be single-sided or double-sided.
Further, since the thickness of the base insulating layer 2 is intended to adhere to the substrate, it is not necessary to increase the thickness, and 10 to 100 μm, preferably 30 to 80 μm is appropriate.
Furthermore, the thickness of the surface insulating layer 3 is 200 to 600 μm, preferably 300 to 500 μm. This is because if the thickness is less than 200 μm in order to provide insulation performance, pinholes are likely to occur in the formation layer, and if the thickness is more than 600 μm, the film thickness unevenness occurs. Is.

上記のような下地絶縁層2及び表面絶縁層3の寸法となるように、円筒管1(金属基板)の外周面にセラミック材のスラリーを塗布後、下地絶縁層2及び表面絶縁層3は、以下の工程によって形成される。
(1)図1に示すような、円筒管1に下地絶縁層2及び表面絶縁層3を形成するためのセラミック材のスラリーを塗布した筒体を100〜200℃予備乾燥して、水分を除去する。
(2)上記スラリーを塗布した筒体を700〜1000℃の高温炉で1〜20min程度焼成する。
(3)焼成後の筒体を徐々に冷却する。
After applying the slurry of the ceramic material to the outer peripheral surface of the cylindrical tube 1 (metal substrate) so as to have the dimensions of the base insulating layer 2 and the surface insulating layer 3 as described above, the base insulating layer 2 and the surface insulating layer 3 are It is formed by the following steps.
(1) As shown in FIG. 1, a cylindrical body coated with a slurry of a ceramic material for forming a base insulating layer 2 and a surface insulating layer 3 on a cylindrical tube 1 is preliminarily dried at 100 to 200 ° C. to remove moisture. To do.
(2) The cylinder coated with the slurry is baked for about 1 to 20 minutes in a high temperature furnace at 700 to 1000 ° C.
(3) The fired cylinder is gradually cooled.

図2(A)及び(B)は、円筒管(金属基板)1にセラミック材のスラリーを塗布し、下地絶縁層2を焼成した下地絶縁層焼成体20の成形品を示す図であり、(A)は軸方向に沿う断面図、(B)は(A)におけるB−B線断面図である。
図2(A)及び(B)に示すように、円筒管(金属基板)1にセラミック材のスラリーを塗布した下地絶縁層焼成体20の焼成時に、下地絶縁層2には、金属基板からなる円筒体1との反応性の高さからガスが発生し、かかるガスの放出が不十分なまま焼成を完了し、表面絶縁層3を塗布・焼成した場合、下地絶縁層2が再び反応を起こしてガスを発生し、これが多数の気泡4を形成させる原因になる。
そのため、下地絶縁層2はガスの放出が十分となるよう焼成温度を高く、且つ及び/または焼成時間を長くして、焼成温度800〜1000℃、焼成時間10〜20minとすることが望ましい。
2A and 2B are views showing a molded product of the base insulating layer fired body 20 obtained by applying a ceramic material slurry to the cylindrical tube (metal substrate) 1 and firing the base insulating layer 2. FIG. (A) is sectional drawing in alignment with an axial direction, (B) is BB sectional drawing in (A).
As shown in FIGS. 2A and 2B, the base insulating layer 2 is made of a metal substrate during firing of the base insulating layer fired body 20 in which the ceramic material slurry is applied to the cylindrical tube (metal substrate) 1. When gas is generated due to high reactivity with the cylindrical body 1 and firing is completed with insufficient release of the gas, and the surface insulating layer 3 is applied and fired, the base insulating layer 2 reacts again. Gas is generated, which causes a large number of bubbles 4 to be formed.
Therefore, it is desirable that the base insulating layer 2 has a baking temperature of 800 to 1000 ° C. and a baking time of 10 to 20 minutes with a high baking temperature and / or a long baking time so that gas can be released sufficiently.

ここで、上記のように、絶縁体の表面に光を照射した場合、絶縁体の表面からの光の反射率は該絶縁体の表面の明度に従い変化する。この絶縁体の表面が白に近く明度が大きい場合は反射率が大きくなり、該表面が黒に近い暗い色になり明度が小さくなるに従い反射率が小さくなる。
一方、絶縁体の焼成温度が低くあるいは焼成時間が短くて焼成が不充分な場合は、絶縁体の内部からのガスの放出が不充分となって、絶縁体の内部における気泡の発生量が多くなる。
表1は、図1及び図2に示されるようなオゾン発生器(絶縁体形成物)における円筒管(金属基板)1に下地絶縁層2を焼成した下地絶縁層焼成体20において、焼成条件と光の反射率及び下地絶縁層2の気泡体積との関係の測定結果を示す表である。また、図3は表1に基づくものであって、下地絶縁層焼成体20の焼成時間及び焼成温度と光の反射率との関係の測定結果を示す線図、図4は表1に基づくものであって、下地絶縁層焼成体20の焼成時間及び焼成温度と下地絶縁層2の気泡体積との関係の測定結果を示す線図である。
Here, as described above, when light is irradiated on the surface of the insulator, the reflectance of light from the surface of the insulator changes according to the brightness of the surface of the insulator. When the surface of this insulator is close to white and has high brightness, the reflectance increases, and as the surface becomes a dark color close to black and the brightness decreases, the reflectance decreases.
On the other hand, when the firing temperature of the insulator is low or the firing time is short and firing is insufficient, the gas is not sufficiently released from the inside of the insulator, and the amount of bubbles generated inside the insulator is large. Become.
Table 1 shows the firing conditions and the firing conditions in the base insulating layer fired body 20 obtained by firing the base insulating layer 2 on the cylindrical tube (metal substrate) 1 in the ozone generator (insulator formation product) as shown in FIGS. It is a table | surface which shows the measurement result of the relationship between the reflectance of light, and the bubble volume of the base | substrate insulating layer 2. FIG. 3 is based on Table 1, and is a diagram showing the measurement results of the relationship between the firing time and firing temperature of the base insulating layer fired body 20 and the light reflectance, and FIG. 4 is based on Table 1. It is a diagram showing the measurement results of the relationship between the firing time and firing temperature of the base insulating layer fired body 20 and the bubble volume of the base insulating layer 2.

Figure 0004873299
Figure 0004873299

表1、図3及び図4に示すように、上記下地表面層2の焼成状態を気泡体積で表わし、反射率と関連付けしている。
表1、図3及び図4に示される反射率の測定は、上記(1)〜(3)のようにして下地絶縁層2を形成した後に行った。反射率の測定に用いた装置は、色彩色差計(コニカミノルタ製、CR−400)であり、表色系はY,x,yを用いた。反射率はYで表わされている(x,yは色度を表わすが、この実施形態ではこれを用いない)。この他にもマンセル表色系、ハンターLab表色系など表色系はいくつかあり、それぞれ反射率の数値が異なるが、反射率を表わすという意味では同じ用途である。
上記反射率の測定には、前記色彩色差計に限らず、標準照明光源、分光機能、反射率測定及び演算機能を内蔵する色彩色差計、あるいは分光測色計を用いることができる。
また、下地絶縁層2の気泡体積(cm3)は、断面を光学顕微鏡で撮影し、観察視野における気泡径と気泡数から、絶縁層の単位体積(cm3)あたりの数値で求めた。
なお、図5は前記下地絶縁層2に実際に認められるボイドの断面形状の撮像の一例を示している。
表1、図3及び図4で明らかなように、下地絶縁層2の焼成温度が上昇するほど、あるいは焼成時間が長くなるほど反射率は低下し、これにより気泡体積が小さくなって、気泡の発生量が少なくなる。
As shown in Table 1, FIG. 3 and FIG. 4, the firing state of the base surface layer 2 is represented by the bubble volume and is associated with the reflectance.
The reflectivity measurements shown in Table 1, FIG. 3 and FIG. 4 were performed after the base insulating layer 2 was formed as described in the above (1) to (3). The apparatus used for the measurement of the reflectance was a color difference meter (manufactured by Konica Minolta, CR-400), and Y, x, and y were used as the color system. The reflectance is represented by Y (x and y represent chromaticity, which is not used in this embodiment). In addition to these, there are several color systems such as Munsell color system and Hunter Lab color system, each of which has a different numerical value of reflectance, but it has the same use in terms of representing reflectance.
The reflectance measurement is not limited to the color / color difference meter, but a standard illumination light source, a spectral function, a reflectance / measurement function and a color / color difference meter with a built-in calculation function, or a spectral colorimeter can be used.
Further, the bubble volume (cm 3 ) of the base insulating layer 2 was obtained as a numerical value per unit volume (cm 3 ) of the insulating layer based on the bubble diameter and the number of bubbles in the observation field by photographing a cross section with an optical microscope.
FIG. 5 shows an example of imaging of a cross-sectional shape of a void actually recognized in the base insulating layer 2.
As apparent from Table 1, FIG. 3 and FIG. 4, the reflectivity decreases as the firing temperature of the underlying insulating layer 2 increases or the firing time increases, thereby reducing the bubble volume and generating bubbles. The amount is reduced.

このようにして下地絶縁層焼成体20を形成し、当該下地絶縁層焼成体20に表面絶縁層3を該下地絶縁層2に積層する形態で塗布・焼成を行う。
表面絶縁層3は反応性の低い材料を用いていること、上記の手段によって下地絶縁層2のガスを十分に放出させて気泡4を低減することにより、焼成条件の幅を広くとることができ、焼成条件の管理は設定値で行う程度で良い。表面絶縁層3の焼成温度700〜900℃、焼成時間3〜10min程度に取るのが望ましい。
In this manner, the base insulating layer fired body 20 is formed, and the base insulating layer fired body 20 is coated and fired in such a manner that the surface insulating layer 3 is laminated on the base insulating layer 2.
The surface insulating layer 3 is made of a low-reactivity material, and the gas of the base insulating layer 2 is sufficiently released by the above-described means to reduce the bubbles 4 so that the firing conditions can be widened. The management of the firing conditions may be performed at a set value. It is desirable that the firing temperature of the surface insulating layer 3 is 700 to 900 ° C. and the firing time is about 3 to 10 minutes.

Figure 0004873299
Figure 0004873299

表2は上記円筒管(金属基板)1に下地絶縁層2を焼成条件を変えて焼成し、これに表面絶縁層3を同一の焼成条件として焼成し絶縁層を形成してオゾン発生器(絶縁体形成物)を製作して破壊試験を行った結果であり、下地絶縁層2の焼成条件と反射率及び破壊電圧との関係を示す表である。また、図6は表2に基づくものであって、円筒管(金属基板)1に下地絶縁層2を焼成条件を変えて焼成し、これに表面絶縁層3を同一の焼成条件として焼成し絶縁層を形成してオゾン発生器(絶縁体形成物)を製作して破壊試験を行った結果であり、下地絶縁層2の焼成条件と反射率及び破壊電圧との関係を示す線図である。
表2及び図6で明らかなように、上記下地絶縁層2の反射率が低いほどオゾン発生器(絶縁体形成物)全体の破壊に至る電圧が高く、絶縁性が優れている結果が得られた。
従って、表2及び図6より、上記破壊電圧を15kv以上とした場合には、反射率を5.0程度よりの小さい値を合格ラインとすればよいことが分かる。
Table 2 shows that the base insulating layer 2 is fired on the cylindrical tube (metal substrate) 1 while changing the firing conditions, and the surface insulating layer 3 is fired under the same firing conditions to form an insulating layer. This is a table showing the relationship between the firing conditions of the base insulating layer 2, the reflectance, and the breakdown voltage. FIG. 6 is based on Table 2, and the base insulating layer 2 is fired on the cylindrical tube (metal substrate) 1 while changing the firing conditions, and the surface insulating layer 3 is fired under the same firing conditions for insulation. FIG. 3 is a diagram showing a result of a breakdown test performed by forming an ozone generator (insulator formation product) by forming a layer, and is a diagram showing a relationship between a firing condition of the base insulating layer 2, a reflectance, and a breakdown voltage.
As apparent from Table 2 and FIG. 6, the lower the reflectivity of the base insulating layer 2, the higher the voltage leading to the destruction of the entire ozone generator (insulator formation), and the better the insulation. It was.
Therefore, it can be seen from Table 2 and FIG. 6 that when the breakdown voltage is set to 15 kv or more, a reflectance smaller than about 5.0 may be taken as the pass line.

[実施例1]
上述した本発明の実施形態で用いたセラミック材のスラリーにより形成した下地絶縁層2で、絶縁性に必要な電圧のしきい値を15kvとし、下地絶縁層2の反射率を測定し、その測定結果に基づき合否の評価を行った。
この評価実験には、図2(A)及び(B)に示される下地絶縁層焼成体20を用い、下地絶縁層2の焼成温度を900℃、焼成時間を10minとし、50本の試作を行い、合格基準を反射率Y=5.0以下とした基準値との比較を行った。また、表面絶縁層は、焼成温度800℃、焼成時間5minで行った。
図7は、かかる評価実験における下地絶縁層2の破壊電圧の測定結果を示している。
熱電対による焼成温度の測定では、実際の温度は780〜820℃と幅があったが、図7に示されるように、破壊に至る電圧は全て許容電圧15kv(しきい値)以上を満足した。
[Example 1]
In the base insulating layer 2 formed of the ceramic material slurry used in the embodiment of the present invention described above, the threshold value of the voltage necessary for insulation is set to 15 kv, and the reflectance of the base insulating layer 2 is measured, and the measurement is performed. Pass / fail was evaluated based on the results.
In this evaluation experiment, the base insulating layer fired body 20 shown in FIGS. 2A and 2B was used. The base insulating layer 2 was fired at 900 ° C. and the firing time was 10 minutes. A comparison was made with a reference value where the acceptance criterion was a reflectance Y = 5.0 or less. The surface insulating layer was formed at a baking temperature of 800 ° C. and a baking time of 5 minutes.
FIG. 7 shows the measurement result of the breakdown voltage of the base insulating layer 2 in this evaluation experiment.
In the measurement of the firing temperature with a thermocouple, the actual temperature ranged from 780 to 820 ° C., but as shown in FIG. 7, all the voltages leading to breakdown satisfied the allowable voltage of 15 kv (threshold) or more. .

[実施例2]
図8は、上記実施例1における反射率を、連続または断続的測定可能な移動式反射率測定機5を用いて測定する状況を示し、(A)は軸方向の測定状況を示す断面図、(B)は円周方向の測定状況を示す断面図である。
図8に示される移動式反射率測定機5は、好ましくは下地絶縁層2と当接する先端部にゴムシートなどの緩衝材が装着されている。そして、この実施例では、移動式反射率測定機5を図8(A)に示すように下地絶縁層焼成体20の軸方向に移動させ、あるいは図8(B)に示すように下地絶縁層焼成体20の円周方向に移動させて反射率の測定を行った。
かかる移動式反射率測定機5を用いることにより、反射率の測定時間が短縮可能となって評価実験工数を低減できるとともに、移動式反射率測定機5を下地絶縁層焼成体20の軸方向及び円周方向に自在に移動させることにより、下地絶縁層焼成体20の全表面について万遍なく反射率を測定でき、評価実験の測定精度を向上させることができる。
[Example 2]
FIG. 8 shows a situation in which the reflectance in Example 1 is measured using a mobile reflectance measuring machine 5 capable of continuous or intermittent measurement, (A) is a cross-sectional view showing an axial measurement situation, (B) is sectional drawing which shows the measurement condition of the circumferential direction.
The mobile reflectivity measuring machine 5 shown in FIG. 8 is preferably provided with a cushioning material such as a rubber sheet at the tip that contacts the base insulating layer 2. In this embodiment, the movable reflectance measuring machine 5 is moved in the axial direction of the base insulating layer fired body 20 as shown in FIG. 8A, or the base insulating layer as shown in FIG. 8B. The reflectance was measured by moving the fired body 20 in the circumferential direction.
By using the mobile reflectance measuring machine 5, the reflectance measurement time can be shortened and the number of evaluation experiment steps can be reduced, and the mobile reflectance measuring machine 5 can be used in the axial direction of the base insulating layer fired body 20 and By freely moving in the circumferential direction, the reflectance can be measured uniformly over the entire surface of the base insulating layer fired body 20, and the measurement accuracy of the evaluation experiment can be improved.

以上、本発明の実施の形態につき述べたが、本発明は既述の実施の形態に限定されるものではなく、本発明の技術的思想に基づいて各種の変形及び変更が可能である。
例えば、既述の実施形態では、円筒型のオゾン発生器に本発明を適用したが、本発明は円筒型のオゾン発生器に限られることなく、金属基板に絶縁層を有する平板型オゾン発生器や電子部品に搭載される電子絶縁基板等においても、既述の実施形態と同様な方法によって絶縁性能を評価し、絶縁層を形成することができる。
While the embodiments of the present invention have been described above, the present invention is not limited to the above-described embodiments, and various modifications and changes can be made based on the technical idea of the present invention.
For example, in the above-described embodiment, the present invention is applied to a cylindrical ozone generator. However, the present invention is not limited to a cylindrical ozone generator, and a flat plate ozone generator having an insulating layer on a metal substrate. In addition, even in an electronic insulating substrate or the like mounted on an electronic component, the insulating performance can be evaluated and the insulating layer can be formed by the same method as the above-described embodiment.

本発明によれば、絶縁層の試料(試験片)の採取を不要とし、きわめて簡単な方法で且つ短時間で、絶縁体の気泡の発生状態を正確に検知可能とするとともに、簡便な方法で気泡の発生を抑制する可能とした無機系絶縁体の焼成状態検査方法及び製作方法、並びにその装置を提供できる。   According to the present invention, it is not necessary to collect a sample (test piece) of the insulating layer, and it is possible to accurately detect the state of generation of bubbles in the insulator in a very simple method and in a short time, and also by a simple method. It is possible to provide a firing state inspection method and manufacturing method of an inorganic insulator capable of suppressing the generation of bubbles, and an apparatus therefor.

本発明の実施形態が適用されるオゾン発生器の構成図であって、(A)は円筒管の長手方向に切断した断面図、(B)は(A)におけるA−A線断面図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a block diagram of the ozone generator with which embodiment of this invention is applied, Comprising: (A) is sectional drawing cut | disconnected in the longitudinal direction of a cylindrical tube, (B) is AA sectional view taken on the line in (A). . 円筒管にセラミック材のスラリーを塗布し、下地絶縁層を焼成した下地絶縁層焼成体の成形品を示すものであり、(A)は軸方向に沿う断面図、(B)は(A)におけるB−B線断面図である。1 shows a molded article of a base insulating layer fired body obtained by applying a ceramic material slurry to a cylindrical tube and firing the base insulating layer, (A) is a sectional view along the axial direction, and (B) is in (A). It is a BB sectional view. 表1に基づくものであって、下地絶縁層焼成体の焼成時間及び焼成温度と光の反射率との関係の測定結果を示す線図である。It is based on Table 1, Comprising: It is a diagram which shows the measurement result of the relationship between the baking time and baking temperature of a base insulating layer baking body, and the reflectance of light. 表1に基づくものであって、下地絶縁層焼成体の焼成時間及び焼成温度と下地絶縁層の気泡体積との関係の測定結果を示す線図である。It is based on Table 1, Comprising: It is a diagram which shows the measurement result of the relationship between the baking time and baking temperature of a base insulating layer baking body, and the bubble volume of a base insulating layer. 下地絶縁層に実際に認められるボイドの断面形状の撮像の一例を示す説明図である。It is explanatory drawing which shows an example of the imaging of the cross-sectional shape of the void actually recognized by the base | substrate insulating layer. 表2に基づくものであって、オゾン発生器(絶縁体形成物)を製作して破壊試験を行った結果であり、下地絶縁層の焼成条件と反射率及び破壊電圧との関係を示す線図である。A diagram showing the relationship between the firing conditions of the underlying insulating layer, the reflectivity, and the breakdown voltage, based on Table 2, which is the result of a destructive test performed by producing an ozone generator (insulator formation). It is. 上記評価実験における下地絶縁層の破壊電圧の測定結果を示す線図である。It is a diagram which shows the measurement result of the breakdown voltage of the base insulating layer in the said evaluation experiment. 上記反射率を、連続または断続的測定可能な移動式反射率測定機を用いて測定する状況を示し、(A)は軸方向の測定状況を示す断面図、(B)は円周方向の測定状況を示す断面図である。The situation where the reflectance is measured using a mobile reflectance measuring machine capable of continuous or intermittent measurement is shown, (A) is a cross-sectional view showing the measurement situation in the axial direction, and (B) is a measurement in the circumferential direction. It is sectional drawing which shows a condition.

符号の説明Explanation of symbols

1 円筒管(金属基板)
2 下地絶縁層
3 表面絶縁層
4 気泡
5 移動式反射率測定機
1 Cylindrical tube (metal substrate)
2 Insulating base layer 3 Surface insulating layer 4 Bubble 5 Mobile reflectance measuring machine

Claims (7)

セラミック等の無機系絶縁物からなる絶縁層を金属基板の表面に焼成してなる無機系絶縁体の検査方法及び製作方法であって、焼成後での前記絶縁層の表面における光の反射率を測定し、該反射率と前記絶縁層内における気泡の状態とを関係付けておき、前記反射率の測定結果から前記絶縁層内に発生している気泡の混入状態を推定することを特徴とする無機系絶縁体の検査及び製作方法。   A method for inspecting and manufacturing an inorganic insulator obtained by firing an insulating layer made of an inorganic insulator such as ceramic on the surface of a metal substrate, wherein the reflectance of light on the surface of the insulating layer after firing is determined. Measure, correlate the reflectance and the state of bubbles in the insulating layer, and estimate the mixed state of bubbles generated in the insulating layer from the measurement result of the reflectance Inspection and production method for inorganic insulators. 前記絶縁層を、前記金属基板の表面に焼成される下地絶縁層と、該下地絶縁層の外側に焼成される表面絶縁層とにより形成し、前記金属基板の表面に下地絶縁層を焼成してなる下地絶縁層焼成体における前記反射率を、前記下地絶縁層焼成体の複数箇所において測定することを特徴とする請求項1に記載の無機系絶縁体の検査及び製作方法。   The insulating layer is formed by a base insulating layer fired on the surface of the metal substrate and a surface insulating layer fired outside the base insulating layer, and the base insulating layer is fired on the surface of the metal substrate. 2. The method for inspecting and manufacturing an inorganic insulator according to claim 1, wherein the reflectance in the underlying insulating layer fired body is measured at a plurality of locations of the underlying insulating layer fired body. 前記反射率と前記絶縁層内における気泡の混入状態との関係を前記絶縁層の焼成温度、焼成時間等の焼成条件をパラメータにして設定し、前記反射率の測定結果を前記気泡の混入状態及び焼成条件の設定値に対応させて、気泡の混入が最小となる最適焼成条件を算出し、該最適焼成条件によって前記絶縁層を前記金属基板の表面に焼成することを特徴とする請求項1に記載の無機系絶縁体の検査及び製作方法。   The relationship between the reflectance and the mixed state of bubbles in the insulating layer is set by setting the baking conditions such as the baking temperature and baking time of the insulating layer as parameters, and the measurement result of the reflectance is mixed with the bubbles and The optimum firing condition that minimizes the mixing of bubbles is calculated in accordance with the set value of the firing condition, and the insulating layer is fired on the surface of the metal substrate according to the optimum firing condition. Inspection and production method of the inorganic insulator described. 前記反射率と前記絶縁層内における気泡の混入状態との関係を前記焼成条件をパラメータとして、前記焼成条件における焼成温度が高く、前記焼成時間が長くなるに従い前記反射率が小さく気泡の混入量が少なくなるように設定された設定テーブルを作製し、前記反射率の測定結果を前記設定テーブルに対応させて、前記反射率が最小になり前記気泡の混入量が最小になるような前記焼成条件で前記絶縁層を前記金属基板の表面に焼成することを特徴とする請求項3に記載の無機系絶縁体の検査及び製作方法。   Using the firing condition as a parameter, the relationship between the reflectivity and the state of air bubbles in the insulating layer as a parameter, the firing temperature under the firing condition is high, and the reflectance decreases with increasing firing time, and the amount of air bubbles mixed in increases. A setting table set to be reduced is prepared, the measurement result of the reflectance is made to correspond to the setting table, and the baking condition is such that the reflectance is minimized and the amount of bubbles mixed is minimized. The method for inspecting and manufacturing an inorganic insulator according to claim 3, wherein the insulating layer is fired on a surface of the metal substrate. 前記反射率の測定に、標準照明光源、分光機能、反射率測定および演算機能を内蔵する色彩色差計、あるいは分光測色計を用いることを特徴とする請求項1に記載の無機系絶縁体の検査及び製作方法。   2. The inorganic insulator according to claim 1, wherein a standard illumination light source, a spectral function, a reflectance measurement and calculation function, or a spectral colorimeter is used for the reflectance measurement. Inspection and production method. セラミック等の無機系絶縁物からなる絶縁層を金属基板の表面に焼成してなる無機系絶縁体の検査を行う無機系絶縁体の検査装置において、前記絶縁層の表面における光の反射率の基準となる基準反射率を予め格納する手段と、反射率測定装置によって新たに測定された測定反射率を格納する手段と、前記基準反射率と前記測定反射率とを比較して前記絶縁層の合否を判定する手段とを備えていることを特徴とする無機系絶縁体の検査装置。   In an inorganic insulator inspection apparatus for inspecting an inorganic insulator formed by firing an insulating layer made of an inorganic insulator such as ceramic on the surface of a metal substrate, a reference for the reflectance of light on the surface of the insulating layer Means for preliminarily storing the reference reflectance, means for storing the measured reflectance newly measured by the reflectance measuring device, and comparing the reference reflectance with the measured reflectance to determine whether the insulating layer is acceptable or not. An inspection apparatus for an inorganic insulator, characterized by comprising: 前記反射率測定装置は、前記絶縁層の表面に沿って移動可能に構成され、前記絶縁体表面の反射率を断続または連続的に検知する移動式反射率測定装置からなっていることを特徴とする請求項6に記載の無機系絶縁体の検査装置。   The reflectance measuring device is configured to be movable along the surface of the insulating layer, and includes a mobile reflectance measuring device that intermittently or continuously detects the reflectance of the insulator surface. The inspection apparatus for an inorganic insulator according to claim 6.
JP2006167470A 2006-06-16 2006-06-16 Inspection and production method of inorganic insulator and apparatus therefor Active JP4873299B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006167470A JP4873299B2 (en) 2006-06-16 2006-06-16 Inspection and production method of inorganic insulator and apparatus therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006167470A JP4873299B2 (en) 2006-06-16 2006-06-16 Inspection and production method of inorganic insulator and apparatus therefor

Publications (2)

Publication Number Publication Date
JP2007333631A JP2007333631A (en) 2007-12-27
JP4873299B2 true JP4873299B2 (en) 2012-02-08

Family

ID=38933235

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006167470A Active JP4873299B2 (en) 2006-06-16 2006-06-16 Inspection and production method of inorganic insulator and apparatus therefor

Country Status (1)

Country Link
JP (1) JP4873299B2 (en)

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5558538A (en) * 1978-10-24 1980-05-01 Fuji Electric Co Ltd Glass molding for high voltage semiconductor device
JPH07128394A (en) * 1993-11-01 1995-05-19 Hitachi Ltd Dielectric deterioration monitoring/diagnosing system for electric equipment
JPH085586A (en) * 1994-06-21 1996-01-12 Showa Electric Wire & Cable Co Ltd Defect detection method for rubber-plastic cable
JP3269288B2 (en) * 1994-10-31 2002-03-25 松下電器産業株式会社 Optical inspection method and optical inspection device
JPH09127182A (en) * 1995-10-26 1997-05-16 Mitsubishi Electric Corp Insulation test method for high voltage electric apparatus and insulation tester
JPH09311109A (en) * 1996-05-22 1997-12-02 Matsushita Electric Ind Co Ltd Defect inspection method and device utilizing light
NO302915B1 (en) * 1996-09-18 1998-05-04 Alcatel Kabel Norge As Cable test equipment
JP3234567B2 (en) * 1998-06-02 2001-12-04 松下電器産業株式会社 Method for manufacturing plasma display panel
JP4017816B2 (en) * 2000-10-19 2007-12-05 松下電器産業株式会社 Manufacturing method of plasma display
JP2002243550A (en) * 2001-02-20 2002-08-28 Minolta Co Ltd Optical characteristic measuring device
JP5288705B2 (en) * 2005-12-28 2013-09-11 メタウォーター株式会社 Method and apparatus for evaluating insulation of insulating structure

Also Published As

Publication number Publication date
JP2007333631A (en) 2007-12-27

Similar Documents

Publication Publication Date Title
US12053906B2 (en) Integrated additive manufacturing and laser processing systems and methods for ceramic, glass, and silicon carbide applications
Zhang et al. Effect of pores on dielectric breakdown strength of alumina ceramics via surface and volume effects
KR101957661B1 (en) Apparatus and method for evaluating arcing of plasma-resistant coating parts
Mieller Influence of test procedure on dielectric breakdown strength of alumina
BR112019002098B1 (en) PASSIVE ELECTRICAL COMPONENT HAVING AN INTERMEDIATE LAYER, USE OF PLASMA POLYMERIC COATING AND PROCESS FOR THE PRODUCTION OF A PASSIVE ELECTRICAL COMPONENT HAVING AN INTERMEDIATE LAYER
JP4873299B2 (en) Inspection and production method of inorganic insulator and apparatus therefor
CN104048913B (en) A kind of RTV material degree of aging determination methods
JP6212731B2 (en) Measuring method of sample made of inorganic material with heating history
KR20100016217A (en) Method for production of ceramic molded material
JP2008216001A (en) Weatherability testing machine
JP2019536199A (en) Method for manufacturing light extraction substrate for organic light emitting diode and product comprising the same
JP5288705B2 (en) Method and apparatus for evaluating insulation of insulating structure
CN103630248A (en) Black-body radiation cavity for sapphire high-temperature fiber-optic sensor
US8531106B2 (en) High-pressure discharge lamp with starting aid and method for producing the same
JP6679023B2 (en) Organic conductive film and method for manufacturing the same
JP2010048618A (en) Method for measuring phase transition conditions of sample to be subjected to phase transition, and measuring apparatus therefor
US20070229808A1 (en) Plasma generating electrode inspection device
CN111751277A (en) Detection method for improving adhesion performance of wire enamel
KR100876539B1 (en) FPD electrode pattern plastic inspection apparatus and plastic inspection method using emissivity
WO2020081306A1 (en) Graphene doping by thermal poling
JP2007161556A (en) Paste composition, inorganic film, and partition member for plasma display panel using the inorganic film
JP2022176795A (en) Manufacturing method of stainless foil with flattened film
Samano Measurements of conductive film
Chen et al. In situ Micro‐Arc Oxidation‐Induced Growth of Black Ceramic ZrO2 and CuO Coatings on Magnesium Alloys and their Electrochemical Analysis
US11594350B2 (en) Thermistor and method for manufacturing thermistor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090415

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111028

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111110

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141202

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4873299

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141202

Year of fee payment: 3

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141202

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250