JP2008216001A - Weatherability testing machine - Google Patents

Weatherability testing machine Download PDF

Info

Publication number
JP2008216001A
JP2008216001A JP2007052903A JP2007052903A JP2008216001A JP 2008216001 A JP2008216001 A JP 2008216001A JP 2007052903 A JP2007052903 A JP 2007052903A JP 2007052903 A JP2007052903 A JP 2007052903A JP 2008216001 A JP2008216001 A JP 2008216001A
Authority
JP
Japan
Prior art keywords
substrate
tested
test
radiant flux
remote plasma
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007052903A
Other languages
Japanese (ja)
Inventor
Hiroyuki Matsumoto
裕之 松本
Mikihiko Matsuoka
幹彦 松岡
Yoshio Imamura
嘉男 今村
Mitsuo Hayasaka
三生 早坂
Hiroaki Fujifuchi
弘章 藤淵
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Iwasaki Denki KK
Original Assignee
Iwasaki Denki KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Iwasaki Denki KK filed Critical Iwasaki Denki KK
Priority to JP2007052903A priority Critical patent/JP2008216001A/en
Publication of JP2008216001A publication Critical patent/JP2008216001A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Testing Resistance To Weather, Investigating Materials By Mechanical Methods (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a weatherability testing machine capable of performing a weatherability evaluation test in a more markedly short time than a conventional testing machine utilizing ultraviolet irradiation and imparting a weatherability evaluation test results higher in correlation with outdoor natural exposure than those of the conventional methods that use irradiation of radicals formed by remote plasma. <P>SOLUTION: The weatherability testing machine has a test chamber, constituted so that its inside is held to pressure lower than atmospheric pressure enabling exhaustion, and the test chamber includes a remote plasma source for forming atomic or molecular radical radiation flux and a light source for forming an ultraviolet radiation flux and the base material to be tested, arranged in the inside of the testing chamber, is arranged at a position where the radical radiation flux and the ultraviolet radiation flux can be emitted at the same time. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、プラスチック、塗膜、紙、といった有機系、若しくは、有機/無機複合材質の基材を短時間で促進劣化させて、評価試験を行う耐候性試験装置に関する。   The present invention relates to a weather resistance testing apparatus for performing an evaluation test by accelerating and degrading an organic or organic / inorganic composite material such as plastic, coating film, and paper in a short time.

従来から、プラスチックや塗膜のような有機物を主成分として含む材料を屋外曝露よりも短時間で促進劣化させて、材料の耐久性や寿命などの評価試験を行う耐候性試験装置が存在する。   2. Description of the Related Art Conventionally, there exists a weather resistance test apparatus that accelerates and degrades a material containing an organic substance such as a plastic or a coating film as a main component in a shorter time than outdoor exposure, and performs an evaluation test on the durability and life of the material.

このような装置としては、例えば、各種のランプ光源から発する紫外放射束を含むような擬似太陽光を基材へ照射して、数ヶ月から数十年間に亘る長い時間を要する屋外自然曝露試験を1000時間以内の時間で評価が可能な促進劣化試験装置が一般的に知られている。   As such an apparatus, for example, a substrate is irradiated with pseudo-sunlight including ultraviolet radiation emitted from various lamp light sources, and an outdoor natural exposure test that takes a long time from several months to several decades is performed. An accelerated deterioration test apparatus that can be evaluated in a time within 1000 hours is generally known.

さらには、別の手法として、減圧下、プラズマ発生部とプラズマ照射部(被試験基材)とが距離を置いて設置され、プラズマから生成される酸素ラジカル(原子状酸素)を基材に照射するリモートプラズマ装置を用いることで、劣化促進を数時間以内に評価可能な促進試験方法が提案され、特許文献1、2などに開示されている。
特開2003−322607号公報 特開2004−212380号公報
Furthermore, as another method, under reduced pressure, the plasma generation unit and the plasma irradiation unit (substrate to be tested) are placed at a distance, and the substrate is irradiated with oxygen radicals (atomic oxygen) generated from the plasma. By using a remote plasma device, an accelerated test method that can evaluate degradation acceleration within several hours has been proposed and disclosed in Patent Documents 1 and 2 and the like.
JP 2003-322607 A JP 2004-212380 A

しかしながら、前者の方法では、屋外曝露との相関性はあるものの、依然として評価に要する時間が数100時間以上と長いため、有機系、特にプラスチックや塗料材料の開発期間短縮や開発コスト低減につながらないという欠点があった。   However, with the former method, although there is a correlation with outdoor exposure, the time required for evaluation is still several hundred hours or more, so it does not lead to shortening the development period and development cost of organic systems, especially plastics and paint materials. There were drawbacks.

また、後者の特許文献1、2に開示されている方法においては、発明者らが、文献等から類推して作製した装置により各種条件で実施した詳細な追試によると、リモートプラズマ源からの輻射熱による被試験基材の熱劣化を避けるために、リモートプラズマ源と被試験基材との距離をおよそ20cm以上離す必要性があり、その結果、折角、上流域で高密度なプラズマ、及びラジカルを生成しても、被試験基材を配置した下流域でその量が半減してしまうためプラズマの利用効率が悪く、さらに装置自体が大型化してしまい、プラズマ源、及び減圧装置に要するコストを考えると、費用対効果という面で未だ改善する余地があった。   Further, in the latter method disclosed in Patent Documents 1 and 2, according to detailed supplementary tests conducted by the inventors on various conditions using an apparatus prepared by analogy with the literature, the radiant heat from the remote plasma source is obtained. In order to avoid thermal degradation of the substrate to be tested due to, it is necessary to increase the distance between the remote plasma source and the substrate to be tested by about 20 cm or more. Even if it is generated, the amount of the plasma will be halved in the downstream area where the substrate to be tested is placed, so that the plasma utilization efficiency will be poor, and the device itself will be enlarged, and the cost required for the plasma source and the decompression device will be considered. There was still room for improvement in terms of cost effectiveness.

さらに、後者の方法においては、発明者らの追試によれば、自然環境に存在する重要な劣化因子である紫外放射(UV光)の影響がほとんど考慮されていないため、酸素ラジカル(原子状酸素)による基材のごく表面層の酸化のみが優先的に促進されてしまい、実際の屋外自然曝露で発生する劣化、例えば、表面荒れ、チョーキング、黄変といった複合的な劣化を再現できず、屋外自然曝露との相関性を得難いという欠点が存在することが判明した。   Furthermore, in the latter method, according to the follow-up experiment by the inventors, the influence of ultraviolet radiation (UV light), which is an important deterioration factor existing in the natural environment, is hardly taken into consideration, so oxygen radicals (atomic oxygen) ) Is preferentially promoted to oxidize the very surface layer of the base material, and it cannot reproduce the degradation that occurs due to actual outdoor natural exposure, such as surface degradation, choking, yellowing, and so on. It has been found that there is a drawback that it is difficult to obtain a correlation with natural exposure.

本発明は上記のような問題点を鑑み、まず、第一の側面では、従来手法であるランプ光源からの紫外線の照射を利用した試験装置よりも非常に短時間で評価試験が可能な耐候性試験装置の提供を目的とする。さらに、第二の側面では、従来手法のリモートプラズマにより生成したラジカルの照射を用いた方法よりも屋外自然曝露との相関性が高い耐候性試験装置の提供を目的とするものである。   In view of the above problems, the first aspect of the present invention is weather resistance capable of performing an evaluation test in a much shorter time than a conventional test apparatus using ultraviolet irradiation from a lamp light source, which is a conventional method. The purpose is to provide test equipment. Furthermore, the second aspect aims to provide a weather resistance test apparatus having a higher correlation with outdoor natural exposure than the conventional method using irradiation of radicals generated by remote plasma.

発明者らは、耐候性試験において、被試験基材に対して、ランプ光源からの紫外線照射とリモートプラズマによるラジカル照射とを同時に行なうと、屋外自然曝露試験はもちろん、従来の紫外線照射による方法よりも格段に短い時間で、屋外自然曝露との相関性が高い試験結果が得られることを発見し、本発明を構築したものである。   In the weather resistance test, the inventors simultaneously performed ultraviolet irradiation from a lamp light source and radical irradiation by remote plasma on a substrate to be tested, as well as outdoor natural exposure tests, as well as conventional ultraviolet irradiation methods. The present invention was constructed by discovering that a test result having a high correlation with outdoor natural exposure can be obtained in a particularly short time.

すなわち、上記の課題を解決するため、本発明の耐候性試験装置においては、内部が大気圧以下の圧力に排気、保持可能に構成された試験室を有し、前記試験室は原子状または分子状ラジカル放射束を生成するリモートプラズマ源と、紫外放射束を生成する光源とを備えると共に、該試験室内部に配置する被試験基材が、前記ラジカル放射束と前記紫外放射束とを同時に照射可能な位置に配置されるようにする。   That is, in order to solve the above-described problems, the weather resistance test apparatus of the present invention has a test chamber configured such that the inside can be evacuated and maintained at a pressure equal to or lower than atmospheric pressure, and the test chamber is atomic or molecular A remote plasma source that generates a radical radiant flux and a light source that generates an ultraviolet radiant flux, and a substrate to be tested disposed inside the test chamber simultaneously irradiates the radical radiant flux and the ultraviolet radiant flux. Try to be placed where possible.

また、本発明の装置では、前記紫外放射束が400nm以下の波長域の紫外線を含むようにする。   In the apparatus of the present invention, the ultraviolet radiant flux includes ultraviolet rays having a wavelength range of 400 nm or less.

また、前記試験室内に配置される前記被試験基材と前記リモートプラズマ源との距離、及び前記被試験基材と前記光源との距離をいずれも15cm以内とする。   Further, the distance between the substrate to be tested and the remote plasma source arranged in the test chamber and the distance between the substrate to be tested and the light source are all within 15 cm.

また、前記リモートプラズマ源に供給される原料ガスが、酸素、水蒸気の何れか単体、又はこれらの混合ガスが用いられるようにする。   The source gas supplied to the remote plasma source may be either oxygen or water vapor alone or a mixed gas thereof.

また、前記被試験基材を載置する試料台が、温度測定手段と温度調節機構を具備し、前記被試験基材の温度が10℃から70℃の範囲内に保持されるようにする。   Further, the sample stage on which the substrate to be tested is placed includes a temperature measuring means and a temperature adjusting mechanism, and the temperature of the substrate to be tested is maintained within a range of 10 ° C to 70 ° C.

さらに本発明の装置では、前記光源からの紫外放射束を測定する照度計が具備されるようにする。   Furthermore, in the apparatus of the present invention, an illuminometer for measuring the ultraviolet radiant flux from the light source is provided.

本発明によれば、従来の紫外線照射単独による耐候性試験装置、又は酸素ラジカルのみを照射するリモートプラズマによる耐候性試験装置よりも、短時間に、且つ屋外自然曝露との高い相関性を有する促進劣化評価試験が可能である。   According to the present invention, acceleration having a high correlation with outdoor natural exposure in a shorter time than a conventional weathering test apparatus using ultraviolet irradiation alone or a remote weathering test apparatus using remote plasma that irradiates only oxygen radicals. A deterioration evaluation test is possible.

以下、本発明を実施するための最良の形態について、図面を参照して説明を行う。   Hereinafter, the best mode for carrying out the present invention will be described with reference to the drawings.

図1、2は本発明の実施の態様に係わる耐候性試験装置を示す概略模式図である。本発明の耐候性試験装置1は、被試験基材4がラジカル放射束11と紫外放射束12とを同時に照射可能な位置に配置される特徴を有している。まず試験室10内の試料台5の所定位置に被試験基材4を載置し、ここでは図示されない排気手段によって、試験室10内部を所定の圧力まで排気した後、後述するリモートプラズマ源2から生成されるラジカル放射束11を被試験基材4に対して照射し、それと同時に、光源3から放射される紫外放射束12を被試験基材4に対して照射する。   1 and 2 are schematic views showing a weather resistance test apparatus according to an embodiment of the present invention. The weather resistance test apparatus 1 of the present invention is characterized in that the substrate to be tested 4 is arranged at a position where the radical radiant flux 11 and the ultraviolet radiant flux 12 can be irradiated simultaneously. First, the substrate to be tested 4 is placed at a predetermined position of the sample stage 5 in the test chamber 10, and the inside of the test chamber 10 is evacuated to a predetermined pressure by an evacuation unit (not shown), and then the remote plasma source 2 described later. The substrate to be tested 4 is irradiated with the radical radiant flux 11 generated from the above, and at the same time, the substrate to be tested 4 is irradiated with the ultraviolet radiant flux 12 emitted from the light source 3.

このときの試験室10内部の圧力は、所望の試験条件によって適宜決定されるが、プラズマ生成が困難とならない圧力、概ね、大気圧から10−2Pa程度の範囲内の圧力に排気、保持される。 The pressure inside the test chamber 10 at this time is appropriately determined depending on the desired test conditions, but is exhausted and maintained at a pressure at which plasma generation is not difficult, generally within a range of about atmospheric pressure to 10 −2 Pa. The

本発明で用いるリモートプラズマ源は、減圧装置に装備された公知の技術であるラジカル源等の内部に、酸素、水蒸気を原料ガスとして導入された後に、プラズマが励起される様式のものである。   The remote plasma source used in the present invention is of a type in which plasma is excited after oxygen or water vapor is introduced as a raw material gas into a radical source or the like which is a known technique equipped in a decompression device.

リモートプラズマ源2は、図3に例示したように、石英ガラスやアルミナ製の筒状誘電体30の周囲に誘導コイル31を密着配置し、高周波の外部空間への漏洩防止のため、誘導コイル31の外周をさらに金属カバー32で覆って構成し、筒状誘電体30内部に原料ガス8を導入した後、誘導コイル31へ高周波を印加することで所望のプラズマを生成するように構成されている。   As illustrated in FIG. 3, the remote plasma source 2 has an induction coil 31 disposed in close contact with a cylindrical dielectric 30 made of quartz glass or alumina, and the induction coil 31 prevents leakage to a high frequency external space. Further, the outer periphery is covered with a metal cover 32, and after introducing the raw material gas 8 into the cylindrical dielectric 30, a high frequency is applied to the induction coil 31 to generate desired plasma. .

尚、リモートプラズマ源の構成としては、ここでは図示されていないが、例えば、平板や円筒状の形状で、各々、一定の間隙を隔てた一対の金属製対向電極に電界を印加することによって電極間間隙にプラズマを生成する構成や、誘電体の窓材を介した減圧放電室内へのマイクロ波供給によってプラズマ生成を行う構成を常套手段として用いることができる。   Although the configuration of the remote plasma source is not shown here, for example, the electrode is formed by applying an electric field to a pair of metal counter electrodes each having a certain gap in a flat plate or cylindrical shape. A configuration for generating plasma in an interstitial gap or a configuration for generating plasma by supplying microwaves into a reduced-pressure discharge chamber through a dielectric window material can be used as conventional means.

また、ここで用いられる放電プラズマ生成用の電源としては、例えば、直流(DC)やkHz、MHz、GHzの周波数帯を出力可能なものが挙げられ、圧力条件、電極構成、形状などに応じて適宜選択が可能である。   In addition, examples of the power source for generating discharge plasma used here include those capable of outputting a direct current (DC) or a frequency band of kHz, MHz, and GHz, depending on pressure conditions, electrode configuration, shape, and the like. Appropriate selection is possible.

図3に例示したリモートプラズマ源2の構成についてさらに詳細を説明する。放電室21の減圧空間側、即ち、出射口には、複数のオリフィスを有する金属製若しくは誘電体製のオリフィスプレート33が密着配置される。ここで、これらのオリフィスの孔径を、プラズマ20のイオンシースの厚みよりも十分小さい寸法、例えば0.5mm以下とすることによって、プラズマ20で生成されるイオン種は放電室21内部に補足され、減圧空間へ拡散するのが阻止される。一方、プラズマ20から生成する電荷を持たないラジカルは放射束11として減圧空間へ出射され、被試験基材3へ照射されることとなるため、イオン種による基材表面の不要な物理変化(スパッタリング)やそれに起因する不要な基材温度の上昇を大幅に低減することが可能である。   Further details of the configuration of the remote plasma source 2 illustrated in FIG. 3 will be described. A metal or dielectric orifice plate 33 having a plurality of orifices is arranged in close contact with the decompression space side of the discharge chamber 21, that is, on the emission port. Here, by setting the hole diameter of these orifices to a dimension sufficiently smaller than the thickness of the ion sheath of the plasma 20, for example, 0.5 mm or less, ion species generated in the plasma 20 are captured inside the discharge chamber 21, Diffusion to the decompression space is prevented. On the other hand, radicals having no charge generated from the plasma 20 are emitted as a radiant flux 11 to the reduced pressure space and irradiated onto the substrate 3 to be tested. ) And an unnecessary increase in the substrate temperature due to it can be greatly reduced.

さらに、ここでは詳しく図示されていないが、イオンや電子による影響を完全になくすために、ラジカル放射束11の出射口であるプレート33の下側に、所定のバイアス電圧を印加した金属製メッシュを配置し、イオンや電子を被試験基材4まで到達させないように、金属製メッシュ部分で誘引、除去する構成としても良い。被試験基材4の酸化劣化の観点からは、イオン種や電子よりも非常に活性な原子状酸素(・O)や、さらに強い酸化力を有する水酸基ラジカル(・OH)が好適に用いられ、各々単独、若しくは混合して被試験基材4に対して照射される構成となっている。   Furthermore, although not shown in detail here, in order to completely eliminate the influence of ions and electrons, a metal mesh to which a predetermined bias voltage is applied is provided below the plate 33 that is the exit of the radical radiant flux 11. It is good also as a structure which arrange | positions and attracts and removes by a metal mesh part so that ion and an electron may not reach to the to-be-tested base material 4. FIG. From the viewpoint of oxidative degradation of the substrate 4 to be tested, atomic oxygen (.O) which is much more active than ionic species and electrons, and hydroxyl radicals (.OH) having a stronger oxidizing power are preferably used. Each of them is configured to be irradiated on the substrate to be tested 4 alone or in combination.

尚、本発明でいうラジカルとは、不対電子を持つ活性化学種の総称であり、非常に反応力が強いという性質を持つ。また、ラジカルの観測には、ここでは特に図示されていないが、プラズマからの発光励起種をモニター可能な発光分光分析法(OES)や、銀薄膜をコーティングした水晶素子の周波数変動を利用した水晶振動子微小天秤法(QCM)による計測が好適に用いられる。   In addition, the radical as used in the field of this invention is a general term for the active chemical species which have an unpaired electron, and has the property that it is very reactive. For observation of radicals, although not particularly shown here, an emission spectroscopic analysis method (OES) that can monitor emission excited species from plasma, or a quartz crystal using a frequency fluctuation of a crystal element coated with a silver thin film. Measurement by a vibrator microbalance method (QCM) is preferably used.

次に、本発明の装置において、光源3として、波長400nm以下の紫外放射束(図中点線矢印で表示)を発生可能なランプ光源、例えば、低圧水銀ランプ、高圧水銀ランプ、キセノンランプ、メタルハライドランプ、キセノンエキシマランプなどが好適に用いられる。上記波長以下の放射光を含む必要がある理由としては、特にプラスチック樹脂やインク塗料など有機物の酸化劣化の40%以上が290〜345nm、30%程度が300〜400nmの紫外放射光照射によって起こり、この範囲以上の波長400nmを超える可視放射光はほとんど劣化に寄与しないことが検証されている(参考文献;「高分子材料の物性評価技術」、橋本著、工業調査会)ためである。   Next, in the apparatus of the present invention, as the light source 3, a lamp light source capable of generating an ultraviolet radiant flux (indicated by a dotted arrow in the figure) having a wavelength of 400 nm or less, for example, a low pressure mercury lamp, a high pressure mercury lamp, a xenon lamp, a metal halide lamp. Xenon excimer lamps are preferably used. The reason why it is necessary to include synchrotron radiation of the above wavelength or less is caused by irradiation with ultraviolet radiation of 290 to 345 nm, about 30% of oxidative deterioration of organic substances such as plastic resin and ink paint, This is because it has been verified that visible radiation light having a wavelength of 400 nm or more exceeding this range hardly contributes to deterioration (reference document: “material property evaluation technology of polymer material”, Hashimoto, Industrial Research Committee).

このため、本発明では、上記範囲の紫外放射であれば、特定の単一波長でも連続スペクトルでも構わず、例えば単一波長光源として、UV−LED等を用いても良い。さらに、上記範囲の紫外放射に混じって、可視放射や赤外放射を含んでいても構わない。また、上記範囲外の放射束によって被試験基材の不要な温度上昇等を招く恐れがある場合は、ランプ光源のガラス表面に400nm以下の波長放射束のみを透過するバンドパスフィルター(光学多層薄膜等)を被覆して用いても良い。   For this reason, in this invention, if it is ultraviolet radiation of the said range, a specific single wavelength or a continuous spectrum may be sufficient, for example, UV-LED etc. may be used as a single wavelength light source. Further, it may include visible radiation or infrared radiation mixed with ultraviolet radiation in the above range. In addition, when there is a risk that the radiant flux outside the above range may cause an unnecessary increase in temperature of the substrate to be tested, a band-pass filter (optical multilayer thin film) that transmits only the radiant flux of 400 nm or less on the glass surface of the lamp light source. Etc.) may be used.

紫外放射束としては、具体的には、水銀発光線365nm、254nm、185nm、キセノン二量体の発光線172nmの波長光などが好適に用いられる。これら紫外放射は、上述の酸化劣化以外にも、E(eV)=λ(nm)/1240の関係式から、放射波長λ(nm)が短い光ほどそのエネルギーE(eV)が高いため、基材表面の各種化学結合を切断し易く、さらに劣化促進性が得られ易い。各波長の放射束については、試験室10に具備された各波長対応の照度計によって、その照度が常に測定、監視される。   As the ultraviolet radiant flux, specifically, light having a wavelength of mercury emission lines of 365 nm, 254 nm, 185 nm, xenon dimer emission line of 172 nm, and the like are preferably used. In addition to the above-mentioned oxidative degradation, these ultraviolet radiations are based on the relationship E (eV) = λ (nm) / 1240, and the light E having shorter radiation wavelength λ (nm) has higher energy E (eV). Various chemical bonds on the surface of the material can be easily cut, and further, deterioration promoting properties can be easily obtained. The illuminance of each wavelength is always measured and monitored by the illuminance meter corresponding to each wavelength provided in the test chamber 10.

光源3の配置箇所としては、直接、真空内へ配置する図1に示すような構成の他、図2に示したように、波長400nm以下の紫外放射を透過可能であり大気と真空を隔てる光学窓40を介して、大気側に配置した光源3から被試験基材4に対して紫外放射束12を照射するような構成としても良い。   In addition to the configuration shown in FIG. 1 arranged directly in the vacuum, the light source 3 can be arranged to transmit ultraviolet radiation having a wavelength of 400 nm or less and separate the atmosphere from the vacuum, as shown in FIG. It is good also as a structure which irradiates the ultraviolet radiation flux 12 with respect to the to-be-tested substrate 4 from the light source 3 arrange | positioned through the window 40 at the atmosphere side.

さらに本発明では、前記リモートプラズマ源2から生成されるラジカル放射束11と光源3からの紫外放射束12を同時に被試験基材へ照射可能な位置に配置することで、各々単独で照射する構成の従来手法の装置と比較して、屋外曝露に非常に近い状態の劣化を再現することができる。すなわち、屋外自然曝露では頻繁に発生する複合的な劣化、例えば、紫外放射束12の照射によって起こる基材表面の化学結合基の切断に起因する基材表面の色変化(色差)といった劣化、及びラジカル束11照射によって起こる基材表面の酸化に起因するチョーキングといった劣化は従来手法の装置では同時に複合して再現することが難しかったが、上述のような装置構成とすることで、これらを同時に発生させることが可能である。   Further, in the present invention, the radical radiant flux 11 generated from the remote plasma source 2 and the ultraviolet radiant flux 12 from the light source 3 are arranged at positions where the substrate to be tested can be irradiated simultaneously, thereby irradiating each independently. Compared with the conventional apparatus, the deterioration in a state very close to outdoor exposure can be reproduced. That is, complex degradation that frequently occurs in outdoor natural exposure, for example, degradation such as a color change (color difference) on the substrate surface due to the cleavage of chemical bonding groups on the substrate surface caused by irradiation of the ultraviolet radiation flux 12, and Deterioration such as choking caused by oxidation of the substrate surface caused by irradiation of the radical bundle 11 was difficult to be combined and reproduced at the same time by the conventional method apparatus. It is possible to make it.

また、本発明によれば、被試験基材の種類によっては、水酸基ラジカル(・OH)を用いることで、屋外自然曝露の加湿状態に近い環境を擬似的に再現でき、劣化促進に加え、屋外自然曝露との高い相関性を得ることができる。尚、本発明装置による促進劣化の相乗効果については、後の実施例で詳述する。   In addition, according to the present invention, depending on the type of substrate to be tested, by using a hydroxyl radical (.OH), an environment close to the humidified state of natural outdoor exposure can be simulated, and in addition to promoting deterioration, High correlation with natural exposure can be obtained. The synergistic effect of accelerated deterioration by the device of the present invention will be described in detail in a later example.

本発明装置では屋外自然曝露との相関性を確保するために、被試験基材4とそれを載置する試料台5とに、それぞれ温度測定手段6及び温度調節機構7を具備し、被試験基材4を10〜70℃の範囲内の所定温度に保持することが可能である。   In the apparatus of the present invention, in order to ensure the correlation with outdoor natural exposure, the substrate to be tested 4 and the sample stage 5 on which the substrate is placed are provided with temperature measuring means 6 and a temperature adjusting mechanism 7, respectively. It is possible to hold the base material 4 at a predetermined temperature within the range of 10 to 70 ° C.

基材温度を上記範囲内とする理由は、10℃未満では、被試験基材4に結露が生じる場合があり、70℃を超える温度では、劣化促進性は得られ易い傾向にあるものの、有機系の被処理基材の場合、熱劣化により、溶融、変質を起し、屋外自然曝露との相関性がなくなるためである。尚、ここでは被試験基材4を直接温度測定した場合を示したが、本発明ではこの限りではなく、例えば試料台5の温度を間接的に測定する構成でも良い。   The reason for setting the substrate temperature within the above range is that dew condensation may occur on the substrate 4 to be tested if it is less than 10 ° C., and if the temperature exceeds 70 ° C., deterioration promoting properties tend to be easily obtained, but organic This is because, in the case of a base material to be treated, melting and alteration occur due to thermal degradation, and there is no correlation with outdoor natural exposure. Here, the case where the temperature of the substrate to be tested 4 is directly measured is shown, but the present invention is not limited to this. For example, the temperature of the sample stage 5 may be indirectly measured.

尚、図1では、被試験基材4の温度測定手段6として一般的な熱電対を、温度調節機構7として試料台5への循環式水冷機構を用いる場合を示したが、この他に例えば、図2に示したように温度測定手段6として放射温度計70のような間接的温度計測器を用いても良く、また、温度調節機構7には、冷却手段としてペルチェ素子やヒートパイプ等を、結露防止の加熱手段として電熱ヒーター、ハロゲンランプ等をそれぞれ単独、若しくは複合して用い、温度測定手段6に連動させて、温度調節ができる機構としても良い。これにより、処理の促進性を図るため被試験基材4の温度を室温以上に保持することや、リモートプラズマ源2、光源3からの輻射熱による被試験基材4の不要な温度上昇を防ぐことが可能となる。   1 shows a case where a general thermocouple is used as the temperature measuring means 6 of the substrate 4 to be tested and a circulating water cooling mechanism to the sample stage 5 is used as the temperature adjusting mechanism 7. As shown in FIG. 2, an indirect temperature measuring instrument such as a radiation thermometer 70 may be used as the temperature measuring means 6, and the temperature adjusting mechanism 7 is provided with a Peltier element or a heat pipe as a cooling means. Further, an electric heater, a halogen lamp, or the like may be used alone or in combination as heating means for preventing condensation, and the temperature may be adjusted in conjunction with the temperature measuring means 6. Thereby, in order to promote processing, the temperature of the substrate to be tested 4 is kept at room temperature or higher, and unnecessary temperature rise of the substrate to be tested 4 due to radiant heat from the remote plasma source 2 and the light source 3 is prevented. Is possible.

温度測定手段6、温度調節機構7によって被試験基材4が10〜70℃の温度範囲に保持されることによって、従来手法で問題となっていたリモートプラズマ源2からの輻射熱による被試験基材4の熱劣化は皆無となるため、被試験基材4とリモートプラズマ源2、及び被試験基材4と光源3との距離を十分近づけることができる。具体的には、被試験基材4とリモートプラズマ源2、被試験基材4と光源3の各距離を15cm以内とすることができ、発生するラジカル放射束11、紫外放射束12の有効利用に加え、試験装置自体の小型化が図れるため、経済的に有利となる。   The substrate to be tested due to radiant heat from the remote plasma source 2, which has been a problem in the conventional technique, is maintained by the temperature measuring means 6 and the temperature adjusting mechanism 7 in the temperature range of 10 to 70 ° C. Therefore, the distance between the substrate under test 4 and the remote plasma source 2 and between the substrate under test 4 and the light source 3 can be sufficiently reduced. Specifically, each distance between the substrate under test 4 and the remote plasma source 2 and between the substrate under test 4 and the light source 3 can be within 15 cm, and the generated radical radiant flux 11 and ultraviolet radiant flux 12 are effectively used. In addition, the test apparatus itself can be downsized, which is economically advantageous.

さらに本発明の装置としては、ラジカル放射束11と紫外放射束12とを同時に被試験基材4に対して照射できる構成であれば、図1、図2に例示したようなリモートプラズマ源2、光源3を各々1基ずつ具備する構成に限ったものではなく、図4に例示したように、リモートプラズマ源を2基(2A、2B)、光源を複数基(3A、3B、3C)具備する構成とすることが可能であり、試験目的によっては例えば、1つのリモートプラズマ源2Aからは酸素ラジカル(・O)を、他のリモートプラズマ源2Bからは水酸基ラジカル(・OH)を生成させた状態として、一方、光源3A、3B、3Cからはそれぞれ365nm、254nm、185nm各波長の紫外放射を光学窓40越しに、各々、照度計50によって適宜、照度をモニターしながら、被処理基材4に照射する構成としても良い。   Furthermore, as an apparatus of the present invention, a remote plasma source 2 as illustrated in FIGS. 1 and 2 can be used as long as it can irradiate the substrate 4 to be tested with the radical radiant flux 11 and the ultraviolet radiant flux 12 simultaneously. The present invention is not limited to the configuration having one light source 3 each, and as shown in FIG. 4, two remote plasma sources (2A, 2B) and a plurality of light sources (3A, 3B, 3C) are provided. Depending on the test purpose, for example, oxygen radical (.O) is generated from one remote plasma source 2A, and hydroxyl radical (.OH) is generated from another remote plasma source 2B. On the other hand, from the light sources 3A, 3B, and 3C, ultraviolet rays having wavelengths of 365 nm, 254 nm, and 185 nm are respectively monitored through the optical window 40, and the illuminance is appropriately monitored by the illuminometer 50. While, it may be configured to irradiate the object to be treated substrate 4.

以下、本発明の具体的態様の例を示す。   Examples of specific embodiments of the present invention are shown below.

図1に示した構成の試験室10に、図3で示した構造のリモートプラズマ源2をセットして用いた。まず試験室10のステンレス製チャンバー内部をロータリーポンプ(図示せず)によって10−1Pa台まで排気後、リモートプラズマ源2から原料ガス8として酸素ガスを圧力2×10Pa台まで導入し、図3に示した誘導コイル31へ13.56MHzの高周波100Wを印加することで、放電室21内に酸素プラズマを生成させた。 The remote plasma source 2 having the structure shown in FIG. 3 was set and used in the test chamber 10 having the configuration shown in FIG. First, the inside of the stainless steel chamber of the test chamber 10 is evacuated to a level of 10 −1 Pa by a rotary pump (not shown), and then oxygen gas is introduced as a source gas 8 from the remote plasma source 2 to a pressure of 2 × 10 2 Pa level. An oxygen plasma was generated in the discharge chamber 21 by applying a high frequency of 1006 MHz of 13.56 MHz to the induction coil 31 shown in FIG.

酸素ラジカルの生成有無を調べるため、試験室10に附属の光学窓(図示せず)を通して発光分光分析を行った結果、φ0.5mm複数孔を有するアルミナ製誘電体プレート33から約50mmの距離の空間において、原子状酸素(O)に帰属される波長777nmの発光ピークのみが観測され、酸素ラジカルが選択的に試験室10内に出射されていることを確認した。その時の発光分光分析結果の一例を図5に示す。   In order to examine whether oxygen radicals are generated or not, an emission spectroscopic analysis was performed through an optical window (not shown) attached to the test chamber 10, and as a result, a distance of about 50 mm from the alumina dielectric plate 33 having a plurality of holes of φ0.5 mm was obtained. Only an emission peak having a wavelength of 777 nm attributed to atomic oxygen (O) was observed in the space, and it was confirmed that oxygen radicals were selectively emitted into the test chamber 10. An example of the emission spectral analysis result at that time is shown in FIG.

尚、上記説明では酸素のラジカルを使用した場合のみを例示したが、上述の通り、酸素ラジカルよりも酸化力の強い水酸基ラジカル(・OH)を用いることも可能である。水酸基ラジカル(・OH)を生成するには、原料ガスに水蒸気を用いると良い。但し、原料ガスとして、水蒸気のみを導入すると、プラズマが生成しづらくなる場合があるため、例えば、加湿した酸素ガスや、キャリアガスとしての窒素やアルゴン等の不活性ガスを水蒸気と混合し、これらの混合ガスを原料ガスとして用いることも可能である。   In the above description, only the case where an oxygen radical is used is illustrated, but as described above, a hydroxyl radical (.OH) having a stronger oxidizing power than an oxygen radical can also be used. In order to generate a hydroxyl radical (.OH), water vapor is preferably used as a raw material gas. However, if only water vapor is introduced as a raw material gas, it may be difficult to generate plasma. For example, a humidified oxygen gas or an inert gas such as nitrogen or argon as a carrier gas is mixed with water vapor. It is also possible to use a mixed gas of

次に、試験室10内部に予め、紫外放射波長365nm、放射照度60mW/cmの高圧水銀ランプ(100W)を光源3としてセットし、ここでは図示されない専用の安定器に接続、電源を投入することで点灯状態にし、リモートプラズマ源2と光源3の各中心軸(図中では1点鎖線で示す)が試料台5上で交差する付近(各照射源の端面から距離15cmの位置)に、液晶パネル用バックライト反射材である硫酸バリウム含有ポリエチレンテレフタレートシート(以下、PETシート)を被試験基材4として配置し、リモートプラズマ源2から生成された酸素のラジカル束11、及び光源3から放射された紫外放射束12を同時に基材4に対して30分間照射した。 Next, a high-pressure mercury lamp (100 W) having an ultraviolet radiation wavelength of 365 nm and an irradiance of 60 mW / cm 2 is set as the light source 3 in the test chamber 10 in advance, connected to a dedicated ballast not shown here, and turned on. In this state, the central axes of the remote plasma source 2 and the light source 3 (indicated by the alternate long and short dash line in the figure) intersect on the sample stage 5 (at a distance of 15 cm from the end face of each irradiation source), A barium sulfate-containing polyethylene terephthalate sheet (hereinafter referred to as PET sheet), which is a backlight reflector for a liquid crystal panel, is arranged as a substrate to be tested 4 and radiated from the oxygen radical bundle 11 generated from the remote plasma source 2 and the light source 3. The base material 4 was simultaneously irradiated with the ultraviolet ray flux 12 thus formed for 30 minutes.

このとき使用したランプ光源3の分光分布の一例を図6に示す。尚、被試験基材4を支持しているアルミ製の試料台5の内部(点線)には、内部を冷却水が流通し、図示されない冷却水循環装置と接続している温度調節手段7が配備され、試験中、熱電対(温度測定手段6)による温度計測との連動によって、被試験基材4の表面温度が35〜40℃の範囲内に維持されるようにした。   An example of the spectral distribution of the lamp light source 3 used at this time is shown in FIG. In addition, inside the aluminum sample stage 5 supporting the substrate to be tested 4 (dotted line), there is provided temperature adjusting means 7 through which cooling water flows and is connected to a cooling water circulation device (not shown). During the test, the surface temperature of the substrate to be tested 4 was maintained within the range of 35 to 40 ° C. by interlocking with the temperature measurement by the thermocouple (temperature measuring means 6).

被試験基材4として、SPCC鋼板にリン酸塩化成処理を施した後、溶剤アクリル系樹脂塗料を片面に膜厚約20μmスプレー吹付けし、105℃、3時間で焼付け塗装した白色塗装板(以下、アクリル系白色塗装板)を用いた以外、実施例1と同じ条件にて試験を実施した。   As a substrate to be tested 4, a SPCC steel plate is subjected to a phosphate chemical conversion treatment, and then a solvent-acrylic resin paint is sprayed on one side with a film thickness of about 20 μm, and a white painted plate (baked at 105 ° C. for 3 hours) Hereinafter, the test was carried out under the same conditions as in Example 1 except that an acrylic white painted plate) was used.

被試験基材4として、SPCC鋼板にリン酸塩化成処理を施した後、溶剤ウレタン系樹脂塗料を膜厚約40μm吹付け後、1時間自然乾燥した白色塗装板(以下、ウレタン系白色塗装板)を用いた以外、実施例1、2と同一条件にて試験を実施した。   As a base material 4 to be tested, a SPCC steel sheet is subjected to a phosphate chemical conversion treatment, and then a solvent urethane resin paint is sprayed on a film thickness of about 40 μm, and then naturally dried for 1 hour (hereinafter referred to as a urethane white paint board). ) Was used under the same conditions as in Examples 1 and 2.

<比較例1>
被処理基材4として、実施例1から3で使用したPETシート、アクリル系白色塗装板、ウレタン系白色塗装板をそれぞれ、屋外自然曝露との相関性が高いとされているメタルハライドランプ式耐候性促進試験機、岩崎電気製アイスーパーUVテスター(SUV−W151)にセットし、温度63℃、湿度60%、紫外線照度150mW/cmの条件下、PETシートについては100時間、アクリル系白色塗装板、ウレタン系白色塗装板については1000時間、各々、曝露試験を実施した。尚、本曝露試験の100時間は屋外自然曝露の約1年間に、1000時間は約10年間に相当することが知られている。
<Comparative Example 1>
Metal halide lamp type weather resistance, which is said to have a high correlation with outdoor natural exposure, as the treated substrate 4, the PET sheet, acrylic white painted plate, and urethane white painted plate used in Examples 1 to 3. Accelerated testing machine, set on Iwasaki Electric Eye Super UV Tester (SUV-W151), temperature 63 ° C, humidity 60%, UV illumination 150mW / cm 2 , PET sheet 100 hours, acrylic white painted plate The urethane-based white painted plate was subjected to an exposure test for 1000 hours. In addition, it is known that 100 hours of this exposure test corresponds to about one year of outdoor natural exposure, and 1000 hours corresponds to about 10 years.

<比較例2>
図1に示す構成の装置を用い、酸素導入圧力2×10Pa台、13.56MHz高周波100Wの条件で酸素ラジカルを生成させ、光源3を点灯させずに、リモートプラズマ源2から15cmの距離に配置したPETシートに対して、酸素ラジカル束11のみを30分間照射することで試験を実施した。尚、実施例1同様、試験中、被試験基材4の表面温度が35〜40℃の範囲内に維持されるようにした。
<Comparative example 2>
The apparatus shown in FIG. 1 is used, oxygen radicals are generated under conditions of oxygen introduction pressure level of 2 × 10 2 Pa level, 13.56 MHz high frequency 100 W, and the light source 3 is not turned on, and the distance from the remote plasma source 2 is 15 cm. The test was carried out by irradiating only the oxygen radical bundle 11 for 30 minutes with respect to the PET sheet placed on the surface. As in Example 1, the surface temperature of the substrate to be tested 4 was maintained within the range of 35 to 40 ° C. during the test.

<比較例3>
比較例2と同様の装置を用い、酸素導入圧力2×10Pa台で、紫外放射波長365nm、放射照度60mW/cmの光源3のみを点灯させ、光源3の端面から15cmの距離に配置したPETシートに対して、紫外放射束12のみを減圧酸素雰囲気下で30分間照射することで試験を実施した。尚、実施例1同様、試験中、被試験基材4の表面温度が35〜40℃の範囲内に維持されるようにした。
<Comparative Example 3>
Using the same apparatus as in Comparative Example 2, only the light source 3 with an ultraviolet radiation wavelength of 365 nm and an irradiance of 60 mW / cm 2 is turned on at an oxygen introduction pressure level of 2 × 10 2 Pa, and placed at a distance of 15 cm from the end face of the light source 3. The test was carried out by irradiating only the ultraviolet radiant flux 12 in a reduced pressure oxygen atmosphere for 30 minutes to the PET sheet. As in Example 1, the surface temperature of the substrate to be tested 4 was maintained within the range of 35 to 40 ° C. during the test.

<測定1>
試験後のPET基材の色変化を調べるため、日本電色工業製分光色差計(SE2000)にて未処理品に対する色差(ΔE*a*b)測定した。結果を表1に示す。
<Measurement 1>
In order to examine the color change of the PET base material after the test, a color difference (ΔE * a * b) with respect to an untreated product was measured with a spectral color difference meter (SE2000) manufactured by Nippon Denshoku Industries Co., Ltd. The results are shown in Table 1.

<測定2>
試験後のアクリル系白色塗装板、ウレタン系白色塗装板の色変化を調べるため、測定1同様、日本電色工業製分光色差計(SE2000)にて未処理品に対する色差(ΔE*a*b)を測定した。結果を表2に示す。
<Measurement 2>
In order to investigate the color change of the acrylic white paint board and urethane white paint board after the test, the color difference (ΔE * a * b) with respect to the untreated product was measured with a spectrophotometer (SE2000) manufactured by Nippon Denshoku Industries, as in Measurement 1. Was measured. The results are shown in Table 2.

<測定3>
さらに、試験後のアクリル系白色塗装板、ウレタン系白色塗装板の表面粗化による反射状況の変化を調べるため、村上色彩製反射率計(HR100)にて拡散反射率を測定した。結果を表3に示す。
<Measurement 3>
Furthermore, in order to examine the change in the reflection state due to the roughening of the surface of the acrylic white painted plate and urethane white painted plate after the test, the diffuse reflectance was measured with a Murakami color reflectometer (HR100). The results are shown in Table 3.

Figure 2008216001
Figure 2008216001

被試験基材である液晶パネル用バックライト光反射材のPETシートは、初期状態で白色を呈し、高い反射率を有していたが、表1に示した通り、比較例1の方法で試験を行った後は、目視で顕著に黄変して、光沢感がなくなり、測定の結果、その色差は6.1であった。一方、実施例1の方法で試験を行った後は、色差7.5となり、目視観察では、黄変に加え、チョーキング劣化(白亜化)が認められ、表面を軽く擦ると粉が落ちる状態となった。   The PET sheet of the backlight light reflecting material for a liquid crystal panel, which is a substrate to be tested, was white in the initial state and had a high reflectance, but as shown in Table 1, it was tested by the method of Comparative Example 1. After the test, the yellow color was noticeable and the glossiness was lost. As a result of the measurement, the color difference was 6.1. On the other hand, after performing the test by the method of Example 1, the color difference becomes 7.5, and in visual observation, in addition to yellowing, choking deterioration (chalking) is recognized, and when the surface is rubbed lightly, the powder falls. became.

これに対して、比較例2による酸素ラジカルのみの照射では、目視でほとんど色変化はなく色差は0.9であったが、チョーキング劣化を起していた。比較例3による紫外放射光のみの照射では、目視でうっすら黄変(色差2.8)しているのみであった。   In contrast, the irradiation with only oxygen radicals according to Comparative Example 2 caused almost no color change and a color difference of 0.9, but caused choking deterioration. In the irradiation with only the ultraviolet radiation according to Comparative Example 3, only a slight yellowing (color difference 2.8) was observed visually.

そして、本発明の装置による試験方法(実施例1)と、従来の手法に対応する比較例2及び3の試験方法とでは、同一試験時間(30分間)で、色差で評価される色調変化に顕著な相違があり、本発明の装置による試験方法の方が、屋外自然曝露による試験結果に格段に近い色差を与えることを示していた。   In the test method (Example 1) using the apparatus of the present invention and the test methods of Comparative Examples 2 and 3 corresponding to the conventional method, the color change evaluated by the color difference is obtained in the same test time (30 minutes). There was a significant difference, indicating that the test method using the apparatus of the present invention gives a color difference much closer to the test result of outdoor natural exposure.

以上の結果から、本発明の装置による30分間の試験(実施例1)で、比較例1のUVテスター100時間の試験、即ち、屋外自然曝露の約1年間以上に相当する試験結果が得られ、評価試験の時間を大幅に短縮可能であることが明らかとなった。   From the above results, the test for 100 minutes of the UV tester of Comparative Example 1, that is, the test result corresponding to about one year or more of outdoor natural exposure is obtained in the test for 30 minutes (Example 1) using the apparatus of the present invention. It was revealed that the time required for the evaluation test can be greatly shortened.

さらに、有機系材料において色差変化と等しく重要な劣化現象であり、長期間の屋外自然曝露で頻繁に発生するチョーキング(白亜化)が、酸素ラジカルと紫外放射との同時照射の複合効果によって、短時間のうちに再現可能であることが明らかとなった。このことは、本発明の装置を用いた耐候性試験を行なえば、実際に屋外自然暴露で生じる試料表面の変化との相関性を確保できることを示している。   Furthermore, in organic materials, it is an equally important deterioration phenomenon as a change in color difference. Chalking (chalking) that frequently occurs in long-term outdoor natural exposure is reduced by the combined effect of simultaneous irradiation with oxygen radicals and ultraviolet radiation. It became clear that it was reproducible in time. This indicates that if a weather resistance test using the apparatus of the present invention is performed, a correlation with a change in the sample surface actually caused by outdoor natural exposure can be secured.

Figure 2008216001
Figure 2008216001

表2から、実施例2、3による酸素ラジカルと紫外放射の同時照射により、アクリル系、ウレタン系の各白色塗装板の色差が30分間で5.7〜6.8に変化した。一方、従来の手法である比較例1(UVテスター曝露試験)では、試験時間1000時間(屋外自然暴露の約10年間に相当)で色差5.1以下であり、本発明の装置を用いて非常に短時間で劣化促進試験が実施可能であることが判明した。   From Table 2, by simultaneous irradiation of oxygen radicals and ultraviolet radiation according to Examples 2 and 3, the color difference of the acrylic and urethane white coated plates changed from 5.7 to 6.8 in 30 minutes. On the other hand, in Comparative Example 1 (UV tester exposure test) which is a conventional technique, the test time is 1000 hours (equivalent to about 10 years of outdoor natural exposure), and the color difference is 5.1 or less. It was found that the deterioration acceleration test can be performed in a short time.

Figure 2008216001
Figure 2008216001

表3から、アクリル系白色塗装板、ウレタン系白色塗装板の表面粗化状態を示す拡散反射率測定の結果、従来手法の比較例1、UVテスターによる1000時間試験(屋外自然暴露10年間相当)ではほとんど拡散反射率に増加が認められなかったが、実施例2、3、酸素ラジカルと紫外放射の同時照射によって、30分間の短時間で3%以上の拡散反射率の増加が認められ、本発明の装置によってチョーキング劣化による表面粗化が発生させることができることが判明した。   From Table 3, as a result of diffuse reflectance measurement showing the surface roughened state of acrylic white paint board and urethane white paint board, Comparative Example 1 of the conventional method, 1000 hours test by UV tester (equivalent to outdoor natural exposure for 10 years) In Example 2, 3, an increase in diffuse reflectance of 3% or more was observed in a short period of 30 minutes by the simultaneous irradiation of oxygen radicals and ultraviolet radiation. It has been found that surface roughening due to choking degradation can occur with the inventive apparatus.

以上説明したように、本発明の装置によって、従来手法による装置よりも屋外自然曝露との相関性が非常に高い促進劣化試験が格段に短い時間で実施可能である。   As described above, with the apparatus of the present invention, an accelerated deterioration test having a much higher correlation with outdoor natural exposure can be performed in a significantly shorter time than the apparatus according to the conventional method.

本発明の実施態様の一例を示す装置の概略模式図である。It is a schematic diagram of an apparatus showing an example of an embodiment of the present invention. 本発明の実施態様の別の一例を示す装置の概略模式図である。It is a schematic diagram of the apparatus which shows another example of the embodiment of this invention. 本発明で使用するリモートプラズマ源の一例を示す概略模式図である。It is a schematic diagram which shows an example of the remote plasma source used by this invention. 本発明の実施態様の別の一例を示す装置の概略模式図である。It is a schematic diagram of the apparatus which shows another example of the embodiment of this invention. 本発明で用いたリモートプラズマの発光分光分析結果の一例を示す図である。It is a figure which shows an example of the emission-spectral-analysis result of the remote plasma used by this invention. 本発明で用いたランプ光源の分光分布の一例を示す図である。It is a figure which shows an example of the spectral distribution of the lamp light source used by this invention.

符号の説明Explanation of symbols

1… 耐候性試験装置
2、2A、2B… リモートプラズマ源
3、3A、3B、3C… 光源
4… 被試験基材
5… 試料台
6… 温度測定手段
7… 温度調節機構
8… 導入ガス
10…試験室
11…ラジカル放射束
12…紫外放射束
20…プラズマ
21…放電室
30…筒状誘電体
31…誘導コイル
32…金属カバー
33…オリフィスプレート
40…光学窓
50…照度計
70…放射温度計
DESCRIPTION OF SYMBOLS 1 ... Weather resistance test apparatus 2, 2A, 2B ... Remote plasma source 3, 3A, 3B, 3C ... Light source 4 ... Substrate to be tested 5 ... Sample stand 6 ... Temperature measuring means 7 ... Temperature control mechanism 8 ... Introduced gas 10 ... Test chamber 11 ... Radical radiant flux 12 ... Ultraviolet radiant flux 20 ... Plasma 21 ... Discharge chamber 30 ... Cylindrical dielectric 31 ... Inductive coil 32 ... Metal cover 33 ... Orifice plate 40 ... Optical window 50 ... Illuminance meter 70 ... Radiation thermometer

Claims (6)

内部を大気圧以下の圧力に排気、保持可能に構成された試験室を有する耐候性試験装置において、前記試験室は原子状若しくは分子状ラジカル放射束を生成するリモートプラズマ源と、紫外放射束を生成する光源とを備えると共に、前記試験室内部に配置する被試験基材は、前記ラジカル放射束と前記紫外放射束とを同時に照射可能な位置に配置したことを特徴とする耐候性試験装置。 In a weather resistance test apparatus having a test chamber configured to be evacuated and maintained at a pressure below atmospheric pressure, the test chamber includes a remote plasma source that generates atomic or molecular radical radiant flux, and an ultraviolet radiant flux. A weathering test apparatus comprising: a light source to be generated; and a substrate to be tested arranged in the inside of the test chamber arranged at a position where the radical radiant flux and the ultraviolet radiant flux can be irradiated simultaneously. 前記紫外放射束は400nm以下の波長域の紫外線を含んでいることを特徴とする請求項1に記載の耐候性試験装置。 The weather resistance test apparatus according to claim 1, wherein the ultraviolet radiant flux includes ultraviolet rays having a wavelength region of 400 nm or less. 前記試験室内に配置する被試験基材と前記リモートプラズマ源との距離、及び被試験基材と前記光源との距離が各々15cm以内であることを特徴とする請求項1又は2記載の耐候性試験装置。 The weather resistance according to claim 1 or 2, wherein the distance between the substrate to be tested and the remote plasma source disposed in the test chamber and the distance between the substrate to be tested and the light source are each within 15 cm. Test equipment. 前記リモートプラズマ源に供給される原料ガスが、酸素又は水蒸気の何れか単体、あるいはこれらの混合ガスであることを特徴とする請求項1から3までのいずれかに記載の耐候性試験装置。 4. The weather resistance test apparatus according to claim 1, wherein the source gas supplied to the remote plasma source is either oxygen or water vapor alone or a mixed gas thereof. 前記被試験基材を載置する試料台が、温度測定手段と温度調節機構を具備し、前記被試験基材の温度が10℃から70℃の範囲内に保持されることを特徴とする請求項1から4までのいずれかに記載の耐候性試験装置。 The sample stage on which the substrate to be tested is placed comprises a temperature measuring means and a temperature adjusting mechanism, and the temperature of the substrate to be tested is maintained within a range of 10 ° C to 70 ° C. Item 5. The weather resistance test apparatus according to any one of Items 1 to 4. 前記光源からの紫外放射束を測定する照度計が具備されていることを特徴とする請求項1から5までのいずれかに記載の耐候性試験装置。 The weather resistance test apparatus according to any one of claims 1 to 5, further comprising an illuminometer for measuring an ultraviolet radiant flux from the light source.
JP2007052903A 2007-03-02 2007-03-02 Weatherability testing machine Pending JP2008216001A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007052903A JP2008216001A (en) 2007-03-02 2007-03-02 Weatherability testing machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007052903A JP2008216001A (en) 2007-03-02 2007-03-02 Weatherability testing machine

Publications (1)

Publication Number Publication Date
JP2008216001A true JP2008216001A (en) 2008-09-18

Family

ID=39836218

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007052903A Pending JP2008216001A (en) 2007-03-02 2007-03-02 Weatherability testing machine

Country Status (1)

Country Link
JP (1) JP2008216001A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013503415A (en) * 2009-08-31 2013-01-31 ミレニアータ、インク. Reliability testing of optical media using heat, humidity and light simultaneously
WO2013109050A1 (en) * 2012-01-16 2013-07-25 한국화학연구원 Apparatus and method for testing promoted photo-degradation using light-emitting plasma light source
DE102012103777A1 (en) * 2012-05-22 2013-11-28 Reinhausen Plasma Gmbh METHOD AND DEVICE FOR RESISTANCE TESTING OF A MATERIAL
DE102013219199A1 (en) * 2013-09-24 2015-03-26 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. New weathering procedure for samples
KR20180076035A (en) * 2016-12-27 2018-07-05 코오롱글로텍주식회사 Method of ultra accelaerated weathering test
KR101936946B1 (en) * 2018-02-19 2019-01-11 한국화학연구원 Test apparatus for indoor solar ultraviolet light simulation and method for test using the same

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013503415A (en) * 2009-08-31 2013-01-31 ミレニアータ、インク. Reliability testing of optical media using heat, humidity and light simultaneously
CN104053982A (en) * 2012-01-16 2014-09-17 韩国化学研究院 Apparatus And Method For Testing Promoted Photo-degradation Using Light-emitting Plasma Light Source
WO2013109050A1 (en) * 2012-01-16 2013-07-25 한국화학연구원 Apparatus and method for testing promoted photo-degradation using light-emitting plasma light source
KR101303691B1 (en) 2012-01-16 2013-09-06 한국화학연구원 Accelerated weathering test apparatus and method using light emitting plasma
CN104053982B (en) * 2012-01-16 2016-12-14 韩国化学研究院 Electrodeless plasma light source is used to accelerate photodegradative test apparatus and method
US9250224B2 (en) 2012-01-16 2016-02-02 Korea Research Institute Of Chemical Technology Test apparatus and method of accelerated photo-degradation using plasma light source
DE102012103777A1 (en) * 2012-05-22 2013-11-28 Reinhausen Plasma Gmbh METHOD AND DEVICE FOR RESISTANCE TESTING OF A MATERIAL
EP2667179B1 (en) * 2012-05-22 2015-01-28 Maschinenfabrik Reinhausen GmbH Method and device for testing a material for resistance
US9234832B2 (en) 2012-05-22 2016-01-12 Maschinenfabrik Reinhausen Gmbh Method and apparatus for the weatherability testing of a material
CN103424352A (en) * 2012-05-22 2013-12-04 莱茵豪森等离子有限公司 Method and apparatus for the weatherability testing of a material
US20130316459A1 (en) * 2012-05-22 2013-11-28 Reinhausen Plasma Gmbh Method and apparatus for the weatherability testing of a material
DE102013219199A1 (en) * 2013-09-24 2015-03-26 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. New weathering procedure for samples
KR20180076035A (en) * 2016-12-27 2018-07-05 코오롱글로텍주식회사 Method of ultra accelaerated weathering test
KR101883490B1 (en) * 2016-12-27 2018-08-30 코오롱글로텍주식회사 Method of ultra accelaerated weathering test
KR101936946B1 (en) * 2018-02-19 2019-01-11 한국화학연구원 Test apparatus for indoor solar ultraviolet light simulation and method for test using the same

Similar Documents

Publication Publication Date Title
Cheng et al. On the dose of plasma medicine: Equivalent total oxidation potential (ETOP)
JP2008216001A (en) Weatherability testing machine
Kim et al. Measurement of reactive hydroxyl radical species inside the biosolutions during non-thermal atmospheric pressure plasma jet bombardment onto the solution
Offerhaus et al. Spatially resolved measurements of the physical plasma parameters and the chemical modifications in a twin surface dielectric barrier discharge for gas flow purification
US20060097657A1 (en) Excimer lamp apparatus
JP2008241292A (en) Weatherability testing device and weatherability testing method
TWI621374B (en) Dual-bulb lamphead control methodology
US20050168149A1 (en) Flash lamp with high irradiance
Popović et al. Review on vacuum ultraviolet generation in low‐pressure plasmas
Chiper et al. Argon versus helium dielectric barrier discharge for surface modification of polypropylene and poly (methyl methacrylate) films
JP2004031557A (en) Optical heating device
Jiang et al. Spatially resolved absolute densities of reactive species and positive ion flux in He-O2 RF-driven atmospheric pressure plasma jet: touching and non-touching with dielectric substrate
TWI620479B (en) Desmear treatment device and desmear treatment method
Pokorný et al. Surface processes on thin layers of black aluminum in ultra-high vacuum
JP5408499B2 (en) Light irradiation device
Gordeev et al. Surface DBD for Deposition of PEO‐Like Plasma Polymers
Hong Atmospheric pressure plasma chemical deposition by using dielectric barrier discharge system
TWI421902B (en) Excimer lamp
JP2014135406A (en) Low dielectric constant material cure treatment method
Jebali et al. Unique combination of spatial and temporal control of maleic anhydride plasma polymerization
Upadhyay et al. Surface recovery and degradation of air dielectric barrier discharge processed poly (methyl methacrylate) and poly (ether ether ketone) films
JP2004041843A (en) Ultraviolet rays irradiation apparatus
Buda et al. Pulsed atmospheric-pressure DBD plasma produced in small-diameter tubes
JP2016165014A (en) Desmear treatment device and desmear treatment method
JP7021583B2 (en) Sterilization method and sterilization equipment