JP4872397B2 - Method for producing (meth) acrylic acid ester - Google Patents
Method for producing (meth) acrylic acid ester Download PDFInfo
- Publication number
- JP4872397B2 JP4872397B2 JP2006072831A JP2006072831A JP4872397B2 JP 4872397 B2 JP4872397 B2 JP 4872397B2 JP 2006072831 A JP2006072831 A JP 2006072831A JP 2006072831 A JP2006072831 A JP 2006072831A JP 4872397 B2 JP4872397 B2 JP 4872397B2
- Authority
- JP
- Japan
- Prior art keywords
- acrylic acid
- meth
- reaction
- mol
- viscosity
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- CERQOIWHTDAKMF-UHFFFAOYSA-N Methacrylic acid Chemical compound CC(=C)C(O)=O CERQOIWHTDAKMF-UHFFFAOYSA-N 0.000 title claims description 66
- 238000004519 manufacturing process Methods 0.000 title claims description 27
- 238000006243 chemical reaction Methods 0.000 claims description 53
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 claims description 30
- 150000005846 sugar alcohols Polymers 0.000 claims description 22
- WMYINDVYGQKYMI-UHFFFAOYSA-N 2-[2,2-bis(hydroxymethyl)butoxymethyl]-2-ethylpropane-1,3-diol Chemical compound CCC(CO)(CO)COCC(CC)(CO)CO WMYINDVYGQKYMI-UHFFFAOYSA-N 0.000 claims description 18
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 14
- 125000002887 hydroxy group Chemical group [H]O* 0.000 claims description 13
- 238000006482 condensation reaction Methods 0.000 claims description 11
- 238000006386 neutralization reaction Methods 0.000 claims description 11
- 238000000034 method Methods 0.000 claims description 10
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 claims description 9
- -1 acrylic ester Chemical class 0.000 claims description 7
- 238000005406 washing Methods 0.000 claims description 7
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical compound CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 claims description 6
- 241001550224 Apha Species 0.000 claims description 5
- 239000003054 catalyst Substances 0.000 claims description 5
- 230000002378 acidificating effect Effects 0.000 claims description 4
- 238000004737 colorimetric analysis Methods 0.000 claims description 4
- 239000003960 organic solvent Substances 0.000 claims description 4
- XDTMQSROBMDMFD-UHFFFAOYSA-N Cyclohexane Chemical compound C1CCCCC1 XDTMQSROBMDMFD-UHFFFAOYSA-N 0.000 claims description 3
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 claims description 3
- 239000012295 chemical reaction liquid Substances 0.000 claims description 3
- 239000008096 xylene Substances 0.000 claims description 3
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 description 27
- NIXOWILDQLNWCW-UHFFFAOYSA-N 2-Propenoic acid Natural products OC(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 27
- NIXOWILDQLNWCW-UHFFFAOYSA-M Acrylate Chemical compound [O-]C(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-M 0.000 description 27
- 239000000243 solution Substances 0.000 description 18
- 230000000052 comparative effect Effects 0.000 description 15
- 239000010410 layer Substances 0.000 description 13
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 12
- 238000004040 coloring Methods 0.000 description 9
- 230000018044 dehydration Effects 0.000 description 9
- 238000006297 dehydration reaction Methods 0.000 description 9
- 238000005886 esterification reaction Methods 0.000 description 9
- 238000011282 treatment Methods 0.000 description 9
- 239000002253 acid Substances 0.000 description 8
- 238000005259 measurement Methods 0.000 description 8
- 239000002994 raw material Substances 0.000 description 8
- 238000006116 polymerization reaction Methods 0.000 description 7
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 6
- ORTQZVOHEJQUHG-UHFFFAOYSA-L copper(II) chloride Chemical compound Cl[Cu]Cl ORTQZVOHEJQUHG-UHFFFAOYSA-L 0.000 description 6
- 239000003112 inhibitor Substances 0.000 description 6
- TXBCBTDQIULDIA-UHFFFAOYSA-N 2-[[3-hydroxy-2,2-bis(hydroxymethyl)propoxy]methyl]-2-(hydroxymethyl)propane-1,3-diol Chemical compound OCC(CO)(CO)COCC(CO)(CO)CO TXBCBTDQIULDIA-UHFFFAOYSA-N 0.000 description 5
- 239000012153 distilled water Substances 0.000 description 5
- 239000000203 mixture Substances 0.000 description 5
- 230000035484 reaction time Effects 0.000 description 5
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- NWVVVBRKAWDGAB-UHFFFAOYSA-N p-methoxyphenol Chemical compound COC1=CC=C(O)C=C1 NWVVVBRKAWDGAB-UHFFFAOYSA-N 0.000 description 4
- 239000002904 solvent Substances 0.000 description 4
- AFVFQIVMOAPDHO-UHFFFAOYSA-N Methanesulfonic acid Chemical compound CS(O)(=O)=O AFVFQIVMOAPDHO-UHFFFAOYSA-N 0.000 description 3
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 3
- 239000007864 aqueous solution Substances 0.000 description 3
- 239000011248 coating agent Substances 0.000 description 3
- 238000000576 coating method Methods 0.000 description 3
- 229960003280 cupric chloride Drugs 0.000 description 3
- 238000002156 mixing Methods 0.000 description 3
- 238000003756 stirring Methods 0.000 description 3
- AZQWKYJCGOJGHM-UHFFFAOYSA-N 1,4-benzoquinone Chemical compound O=C1C=CC(=O)C=C1 AZQWKYJCGOJGHM-UHFFFAOYSA-N 0.000 description 2
- QPLDLSVMHZLSFG-UHFFFAOYSA-N Copper oxide Chemical compound [Cu]=O QPLDLSVMHZLSFG-UHFFFAOYSA-N 0.000 description 2
- QIGBRXMKCJKVMJ-UHFFFAOYSA-N Hydroquinone Chemical compound OC1=CC=C(O)C=C1 QIGBRXMKCJKVMJ-UHFFFAOYSA-N 0.000 description 2
- 238000007664 blowing Methods 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 238000010790 dilution Methods 0.000 description 2
- 239000012895 dilution Substances 0.000 description 2
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 description 2
- DMBHHRLKUKUOEG-UHFFFAOYSA-N diphenylamine Chemical compound C=1C=CC=CC=1NC1=CC=CC=C1 DMBHHRLKUKUOEG-UHFFFAOYSA-N 0.000 description 2
- 150000002148 esters Chemical class 0.000 description 2
- 238000001914 filtration Methods 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 239000012044 organic layer Substances 0.000 description 2
- 230000000704 physical effect Effects 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 238000011085 pressure filtration Methods 0.000 description 2
- 239000013558 reference substance Substances 0.000 description 2
- 238000007086 side reaction Methods 0.000 description 2
- 239000012086 standard solution Substances 0.000 description 2
- WJFKNYWRSNBZNX-UHFFFAOYSA-N 10H-phenothiazine Chemical compound C1=CC=C2NC3=CC=CC=C3SC2=C1 WJFKNYWRSNBZNX-UHFFFAOYSA-N 0.000 description 1
- OPLCSTZDXXUYDU-UHFFFAOYSA-N 2,4-dimethyl-6-tert-butylphenol Chemical compound CC1=CC(C)=C(O)C(C(C)(C)C)=C1 OPLCSTZDXXUYDU-UHFFFAOYSA-N 0.000 description 1
- QYXHDJJYVDLECA-UHFFFAOYSA-N 2,5-diphenylcyclohexa-2,5-diene-1,4-dione Chemical compound O=C1C=C(C=2C=CC=CC=2)C(=O)C=C1C1=CC=CC=C1 QYXHDJJYVDLECA-UHFFFAOYSA-N 0.000 description 1
- XRCRJFOGPCJKPF-UHFFFAOYSA-N 2-butylbenzene-1,4-diol Chemical compound CCCCC1=CC(O)=CC=C1O XRCRJFOGPCJKPF-UHFFFAOYSA-N 0.000 description 1
- JIGUICYYOYEXFS-UHFFFAOYSA-N 3-tert-butylbenzene-1,2-diol Chemical compound CC(C)(C)C1=CC=CC(O)=C1O JIGUICYYOYEXFS-UHFFFAOYSA-N 0.000 description 1
- 229910021591 Copper(I) chloride Inorganic materials 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 239000003377 acid catalyst Substances 0.000 description 1
- 150000001252 acrylic acid derivatives Chemical class 0.000 description 1
- 125000005396 acrylic acid ester group Chemical group 0.000 description 1
- 238000007259 addition reaction Methods 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 125000000217 alkyl group Chemical group 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- OXBLHERUFWYNTN-UHFFFAOYSA-M copper(I) chloride Chemical compound [Cu]Cl OXBLHERUFWYNTN-UHFFFAOYSA-M 0.000 description 1
- BERDEBHAJNAUOM-UHFFFAOYSA-N copper(I) oxide Inorganic materials [Cu]O[Cu] BERDEBHAJNAUOM-UHFFFAOYSA-N 0.000 description 1
- 229960004643 cupric oxide Drugs 0.000 description 1
- 229940045803 cuprous chloride Drugs 0.000 description 1
- KRFJLUBVMFXRPN-UHFFFAOYSA-N cuprous oxide Chemical compound [O-2].[Cu+].[Cu+] KRFJLUBVMFXRPN-UHFFFAOYSA-N 0.000 description 1
- 229940112669 cuprous oxide Drugs 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 230000032050 esterification Effects 0.000 description 1
- 229960004337 hydroquinone Drugs 0.000 description 1
- 125000005397 methacrylic acid ester group Chemical group 0.000 description 1
- 229940098779 methanesulfonic acid Drugs 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 229950000688 phenothiazine Drugs 0.000 description 1
- ACVYVLVWPXVTIT-UHFFFAOYSA-N phosphinic acid Chemical compound O[PH2]=O ACVYVLVWPXVTIT-UHFFFAOYSA-N 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 230000010287 polarization Effects 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- JOXIMZWYDAKGHI-UHFFFAOYSA-N toluene-4-sulfonic acid Chemical compound CC1=CC=C(S(O)(=O)=O)C=C1 JOXIMZWYDAKGHI-UHFFFAOYSA-N 0.000 description 1
- 238000005809 transesterification reaction Methods 0.000 description 1
Landscapes
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
Description
本発明は、(メタ)アクリル酸と多価アルコールとを縮合反応して、着色を抑えてかつ粘度を調節できる(メタ)アクリル酸エステルを製造する方法に関する。 The present invention relates to a method for producing a (meth) acrylic ester capable of controlling the viscosity while suppressing coloration by subjecting (meth) acrylic acid and a polyhydric alcohol to a condensation reaction.
従来より、(メタ)アクリル酸エステルの製造方法としては、(メタ)アクリル酸とアルコールとの脱水エステル化反応や、(メタ)アクリル酸アルキルとアルコールとのエステル交換反応、あるいはエポキシ化合物への(メタ)アクリル酸の付加反応が一般的に行われている。これらのうち、特に、脱水エステル化反応は、(メタ)アクリル酸エステルの製造が容易であると共に、製造可能な(メタ)アクリル酸エステルが多様であることから、有用な製造方法である(例えば、特許文献1〜6を参照)。 Conventionally, production methods of (meth) acrylic acid esters include dehydration esterification reaction of (meth) acrylic acid and alcohol, transesterification reaction of alkyl (meth) acrylate and alcohol, or ( Addition reaction of (meth) acrylic acid is generally performed. Among these, the dehydration esterification reaction is a useful production method because (meth) acrylic acid ester is easy to produce and there are a variety of manufacturable (meth) acrylic acid esters (for example, , See Patent Documents 1 to 6).
この脱水エステル化反応を用いた(メタ)アクリル酸エステルの製造方法においては、製造条件によって、製造される(メタ)アクリル酸エステルの着色が顕著になる場合があった。かかる着色が生じると、光学材料に使用された場合に透過光の偏光、特定波長の吸収や反応率低下、コーティング材に使用された場合に調色不良等の不都合が生じる。 In the manufacturing method of (meth) acrylic acid ester using this dehydration esterification reaction, coloring of the (meth) acrylic acid ester manufactured may become remarkable depending on manufacturing conditions. When such coloring occurs, inconveniences such as polarization of transmitted light, absorption of a specific wavelength, reduction in reaction rate when used in an optical material, and poor toning when used in a coating material occur.
また、脱水エステル化反応を用いた(メタ)アクリル酸エステルを製造方法においては、通常、製品の着色に影響を及ぼす副反応を抑えるために、原料の配合量等の製造条件は固定されており、そのため原料の多価アルコールの構造に応じて製品となる(メタ)アクリル酸エステルの粘度はほぼ一定のものとなっていた。 In addition, in the production method of (meth) acrylic acid ester using dehydration esterification reaction, production conditions such as the amount of raw materials are usually fixed in order to suppress side reactions that affect product coloration. For this reason, the viscosity of the (meth) acrylic acid ester which is a product according to the structure of the polyhydric alcohol as a raw material is almost constant.
しかしながら、近年、(メタ)アクリル酸エステルの使用目的に応じて、広範な粘度を有する同種の(メタ)アクリル酸エステルを供給してほしいという市場からの強い要望がある。もちろん、脱水エステル化における副反応を極力抑えて、着色の少ない低色調の製品とすることも重要である。
本発明は、(メタ)アクリル酸と多価アルコールとを縮合反応して(メタ)アクリル酸エステルを製造する方法であって、縮合反応における着色を抑えてかつ粘度の調節(特に、高粘度領域における調節)が可能な(メタ)アクリル酸エステルの製造方法を提供することを目的とする。 The present invention is a method for producing a (meth) acrylic acid ester by a condensation reaction of (meth) acrylic acid and a polyhydric alcohol, which suppresses coloring in the condensation reaction and adjusts the viscosity (particularly in a high viscosity region). It is an object of the present invention to provide a method for producing a (meth) acrylic acid ester capable of being adjusted).
本発明者は、上記の課題を解決するため鋭意研究を行った結果、多価アルコールと(メタ)アクリル酸とを縮合反応して(メタ)アクリル酸エステルを製造する工程において、原料の仕込み比率を特定の範囲とし、かつ、(メタ)アクリル酸の消費量をベースとした反応率を特定の範囲とすることにより、製品の着色を抑制し、かつ、粘度を広範囲に調製できることを見出した。かかる知見に基づき、さらに検討を重ねて本発明を完成するに至った。 As a result of intensive studies to solve the above problems, the present inventor has made a raw material charge ratio in the step of producing a (meth) acrylic acid ester by condensation reaction of a polyhydric alcohol and (meth) acrylic acid. It was found that by setting the reaction rate based on the consumption amount of (meth) acrylic acid within a specific range, the coloration of the product can be suppressed and the viscosity can be adjusted in a wide range. Based on this knowledge, further studies have been made and the present invention has been completed.
即ち、本発明は、以下の(メタ)アクリル酸エステルの製造方法を提供する。 That is, this invention provides the manufacturing method of the following (meth) acrylic acid esters.
項1.酸性触媒の存在下に、(メタ)アクリル酸とジトリメチロールプロパンとを縮合反応して(メタ)アクリル酸エステルを製造する方法であって、
ジトリメチロールプロパン中の水酸基1モルに対する(メタ)アクリル酸のモル比が0.9〜1.10であり、(メタ)アクリル酸の消費量をベースとした反応率を95%以下であり、製造される(メタ)アクリル酸エステルの円錐平板型粘度計(25℃)で測定される粘度が500mPa・s以上であることを特徴とする(メタ)アクリル酸エステルの製造方法。
項2.多価アルコール中の水酸基1モルに対する(メタ)アクリル酸のモル比が0.93〜1.10である請求項1に記載の製造方法。
項3.(メタ)アクリル酸の消費量をベースとした反応率が80〜95%である請求項1又は2に記載の製造方法。
項4.前記縮合反応の終了後に、反応液の中和処理及び水洗処理を行う請求項1〜3のいずれかに記載の製造方法。
項5.製造される(メタ)アクリル酸エステルのJIS−K−0071−1に則した比色法にて測定される色調(APHA)が50以下である請求項1〜4のいずれかに記載の製造方法。
項6.ベンゼン、トルエン、キシレン、シクロヘキサン及びn−ブタノールから選ばれる有機溶媒を用いる請求項1〜5のいずれかに記載の製造方法。
Item 1. A method of producing a (meth) acrylic acid ester by condensation reaction of (meth) acrylic acid and ditrimethylolpropane in the presence of an acidic catalyst ,
The molar ratio of (meth) acrylic acid to 1 mol of hydroxyl group in ditrimethylolpropane is 0.9 to 1.10 . The reaction rate based on the consumption of ( meth) acrylic acid is 95% or less , The (meth) acrylic ester production method, wherein the viscosity is 500 mPa · s or more measured with a (meth) acrylic ester conical plate viscometer (25 ° C.) .
Item 2. The production method according to claim 1, wherein the molar ratio of (meth) acrylic acid to 1 mol of hydroxyl group in the polyhydric alcohol is 0.93 to 1.10.
Item 3. The production method according to claim 1 or 2, wherein the reaction rate based on consumption of (meth) acrylic acid is 80 to 95%.
Item 4. The manufacturing method in any one of Claims 1-3 which performs the neutralization process and the water washing process of a reaction liquid after completion | finish of the said condensation reaction.
Item 5. The color tone (APHA) measured by the colorimetric method according to JIS-K-0071-1 of the (meth) acrylic acid ester to be produced is 50 or less. .
Item 6. The manufacturing method in any one of Claims 1-5 using the organic solvent chosen from benzene, toluene, xylene, a cyclohexane, and n-butanol.
尚、本明細書において、「(メタ)アクリル酸」とは、アクリル酸及び/又はメタクリル酸を意味し、「(メタ)アクリル酸エステル」とは、アクリル酸エステル及び/又はメタクリル酸エステルを意味する。 In the present specification, “(meth) acrylic acid” means acrylic acid and / or methacrylic acid, and “(meth) acrylic acid ester” means acrylic acid ester and / or methacrylic acid ester. To do.
以下、本発明を詳述する。 The present invention is described in detail below.
本発明の(メタ)アクリル酸と多価アルコールとを縮合反応して(メタ)アクリル酸エステルを製造する方法では、多価アルコール中の水酸基1モルに対する(メタ)アクリル酸のモル比を0.9〜1.15とし、かつ、(メタ)アクリル酸の消費量をベースとした反応率が95%以下とすることを特徴とする。 In the method for producing a (meth) acrylic acid ester by the condensation reaction of (meth) acrylic acid and a polyhydric alcohol according to the present invention, the molar ratio of (meth) acrylic acid to 1 mol of hydroxyl group in the polyhydric alcohol is set to 0.00. 9 to 1.15, and the reaction rate based on the consumption of (meth) acrylic acid is 95% or less.
本発明においては、多価アルコールとしてジトリメチロールプロパン(融点:105〜115℃)を使用する。 In the present invention, of ditrimethylolpropane (mp: 105 to 115 ° C.) as the polyhydric alcohol used.
本発明の(メタ)アクリル酸エステルを製造する方法は、次に示す条件下にて、酸性触媒の存在下、(メタ)アクリル酸と多価アルコールとを加熱・攪拌して実施する。 The method for producing the (meth) acrylic acid ester of the present invention is carried out under the following conditions by heating and stirring (meth) acrylic acid and a polyhydric alcohol in the presence of an acidic catalyst.
多価アルコールと(メタ)アクリル酸の配合割合は、多価アルコール中の水酸基1モルに対する(メタ)アクリル酸のモル比が0.9〜1.15の範囲とする。好ましくは0.93〜1.1、より好ましくは0.95〜1.0である。 The mixing ratio of the polyhydric alcohol and (meth) acrylic acid is such that the molar ratio of (meth) acrylic acid to 1 mol of hydroxyl group in the polyhydric alcohol is in the range of 0.9 to 1.15. Preferably it is 0.93-1.1, More preferably, it is 0.95-1.0.
酸性触媒としては、硫酸、パラトルエンスルホン酸、メタンスルホン酸等が挙げられる。触媒の使用量は、多価アルコールと(メタ)アクリル酸の合計量に対して、0.01〜10.0重量%、好ましくは0.1〜3重量%の範囲であればよい。 Examples of the acidic catalyst include sulfuric acid, paratoluenesulfonic acid, methanesulfonic acid and the like. The usage-amount of a catalyst should just be the range of 0.01-10.0 weight% with respect to the total amount of a polyhydric alcohol and (meth) acrylic acid, Preferably it is 0.1-3 weight%.
本発明で用いる有機溶媒としてはベンゼン、トルエン、キシレン、シクロヘキサン、n−ブタノール等が挙げられ、これらを単独でまたは二種以上を組合せて用いることができるが、取扱いの点からトルエン単独が好ましい。 Examples of the organic solvent used in the present invention include benzene, toluene, xylene, cyclohexane, n-butanol, and the like. These can be used alone or in combination of two or more, but from the viewpoint of handling, toluene alone is preferable.
また、反応温度は、使用する化合物及び目的に応じて適宜設定すればよいが、70℃〜140℃程度、好ましくは70〜90℃程度である。反応圧力は、例えば、45kPa〜常圧、好ましくは50〜60kPa程度である。反応時間は、通常、後述する(メタ)アクリル酸の消費量をベースとした反応率に応じて調節すればよく、例えば、8〜20時間程度であればよい。 Moreover, what is necessary is just to set reaction temperature suitably according to the compound to be used and the objective, About 70 to 140 degreeC, Preferably it is about 70 to 90 degreeC. The reaction pressure is, for example, about 45 kPa to normal pressure, preferably about 50 to 60 kPa. The reaction time may be usually adjusted according to the reaction rate based on the consumption amount of (meth) acrylic acid described later, and may be, for example, about 8 to 20 hours.
上記反応においては、得られる(メタ)アクリル酸エステルの重合を防止する目的で、反応液に重合防止剤を添加することができる。このような重合防止剤としては、例えば、酸化第一銅、酸化第二銅、塩化第一銅、塩化第二銅などの無機重合防止剤、ヒドロキノン、ヒドロキノンモノメチルエーテル、tert−ブチルカテコール、t−ブチルヒドロキノン、2,4-ジメチル-6-tert-ブチルフェノール、2,6-tertブチル−p−クレゾール、パラベンゾキノン、2,5-ジフェニルパラベンゾキノン、フェノチアジン、ジフェニルアミンなどの有機重合防止剤が使用される。この中では、製品の貯蔵時、及び使用時に着色の少ない重合禁止剤としてヒドロキノンモノメチルエーテルが好適に使用される。これらの重合防止剤の使用量は、反応液に対して、100〜2000質量ppm程度であればよい。 In the above reaction, a polymerization inhibitor can be added to the reaction solution for the purpose of preventing polymerization of the resulting (meth) acrylic acid ester. Examples of such polymerization inhibitors include inorganic polymerization inhibitors such as cuprous oxide, cupric oxide, cuprous chloride, cupric chloride, hydroquinone, hydroquinone monomethyl ether, tert-butylcatechol, t- Organic polymerization inhibitors such as butylhydroquinone, 2,4-dimethyl-6-tert-butylphenol, 2,6-tertbutyl-p-cresol, parabenzoquinone, 2,5-diphenylparabenzoquinone, phenothiazine, diphenylamine are used. . Among these, hydroquinone monomethyl ether is preferably used as a polymerization inhibitor with little coloration during product storage and use. The usage-amount of these polymerization inhibitors should just be about 100-2000 mass ppm with respect to the reaction liquid.
また、脱水エステル化反応(脱水縮合反応)は、原料の(メタ)アクリル酸の消費量をベースとした反応率を95%以下に制御することが重要である。ここで、「(メタ)アクリル酸の消費量をベースとした反応率」とは、原料の多価アルコールの水酸基のモル数に対する消費された(メタ)アクリル酸のモル数の割合(モル%)を意味する。 In the dehydration esterification reaction (dehydration condensation reaction), it is important to control the reaction rate based on the consumption of the raw material (meth) acrylic acid to 95% or less. Here, the “reaction rate based on the consumption of (meth) acrylic acid” is the ratio (mol%) of the number of moles of (meth) acrylic acid consumed to the number of moles of hydroxyl groups of the starting polyhydric alcohol. Means.
この反応率は、反応液中の酸価を測定することにより算出される。つまり、反応液中の酸価を測定することにより、残存する(メタ)アクリル酸と酸触媒の量が明らかとなり、そこから消費された(メタ)アクリル酸の量が算出される。 This reaction rate is calculated by measuring the acid value in the reaction solution. That is, by measuring the acid value in the reaction solution, the amount of remaining (meth) acrylic acid and the acid catalyst is clarified, and the amount of consumed (meth) acrylic acid is calculated therefrom.
具体例として、水酸基を4個有する多価アルコール1モルとアクリル酸4.2モルを仕込んだ場合、反応率の分母はジトリメチロールプロパン1モル×4個(水酸基)=4モルとなり、分子は、アクリル酸の消費量(モル)、即ち、反応液の酸価測定により0.6モル残っていたら、4.2−0.6=3.6モルとなり、反応率は、(3.6/4)*100=90%となる。 As a specific example, when 1 mol of a polyhydric alcohol having 4 hydroxyl groups and 4.2 mol of acrylic acid are charged, the denominator of the reaction rate is 1 mol of ditrimethylolpropane × 4 (hydroxyl groups) = 4 mol. If 0.6 mol of acrylic acid was consumed (mol), that is, 0.6 mol remained after measuring the acid value of the reaction solution, 4.2-0.6 = 3.6 mol, and the reaction rate was (3.6 / 4). ) * 100 = 90%.
(メタ)アクリル酸の消費量をベースとした反応率は、好ましくは80〜95%、より好ましくは80〜93%、特に好ましくは82〜92%である。 The reaction rate based on the consumption of (meth) acrylic acid is preferably 80 to 95%, more preferably 80 to 93%, and particularly preferably 82 to 92%.
エステル化反応の終了後、反応液の酸分の中和処理を行う。アルカリ水溶液で中和時のエステル分解(ケン価)を抑えるため、中和処理の前に、水(蒸留水)又は中性塩水溶液を加えて水洗処理を行うことが好ましい。中和処理工程は常法に従って行えばよく、例えば、反応液に水酸化ナトリウム、水酸化カリウム等のアルカリ性の水溶液を添加し、攪拌、混合する方法等が挙げられる。この場合、アルカリ成分の量は、通常は、反応液の酸分に対してモル比にて1倍以上、好ましくは1.1〜1.6倍であればよい。さらに、水洗処理工程も常法に従って行えばよく、上記中和処理後の反応液に水を添加し、攪拌、混合する方法等が挙げられる。 After completion of the esterification reaction, the acid content of the reaction solution is neutralized. In order to suppress ester decomposition (sapon value) at the time of neutralization with an alkaline aqueous solution, it is preferable to add water (distilled water) or a neutral salt aqueous solution and perform a water washing treatment before the neutralization treatment. The neutralization treatment step may be performed according to a conventional method, and examples thereof include a method in which an alkaline aqueous solution such as sodium hydroxide or potassium hydroxide is added to the reaction solution, followed by stirring and mixing. In this case, the amount of the alkali component is usually 1 time or more, preferably 1.1 to 1.6 times in molar ratio with respect to the acid content of the reaction solution. Furthermore, the water washing treatment process may be performed according to a conventional method, and examples thereof include a method of adding water to the reaction solution after the neutralization treatment, stirring and mixing.
上記水洗処理及び中和処理後、生成した(メタ)アクリル酸エステル類を含有する有機層を分離し、次いで、この有機層から有機溶媒を公知の方法で除去することにより、(メタ)アクリル酸エステルを得る。 After the water washing treatment and the neutralization treatment, the organic layer containing the (meth) acrylic acid ester produced is separated, and then the organic solvent is removed from the organic layer by a known method to obtain (meth) acrylic acid. The ester is obtained.
上記のように、本発明の製法では、多価アルコール中の水酸基1モルに対する(メタ)アクリル酸のモル比、及び(メタ)アクリル酸の消費量をベースとした反応率を、上記の範囲に設定することにより、製品である(メタ)アクリル酸エステルの着色を抑えて、かつ広範囲の粘度を任意に調製することができる。特に、着色を抑えて、従来では調製が難しかった高粘度領域のアクリレートが調製可能となった点は特筆すべきである。 As described above, in the production method of the present invention, the molar ratio of (meth) acrylic acid to 1 mol of hydroxyl group in the polyhydric alcohol and the reaction rate based on the consumption of (meth) acrylic acid are within the above range. By setting, coloring of (meth) acrylic acid ester which is a product can be suppressed and a wide range of viscosities can be arbitrarily prepared. In particular, it should be noted that acrylates in the high-viscosity region, which has been difficult to prepare in the past, can be prepared while suppressing coloring.
例えば、本発明の製法で得られる(メタ)アクリル酸エステルの色調(APHA)は200以下、好ましくは100以下、より好ましくは50以下となる。色調(APHA)は、JIS−K−0071−1に則した比色法にて測定した値である。 For example, the color tone (APHA) of the (meth) acrylic acid ester obtained by the production method of the present invention is 200 or less, preferably 100 or less, more preferably 50 or less. The color tone (APHA) is a value measured by a colorimetric method according to JIS-K-0071-1.
また、(メタ)アクリル酸エステルの粘度は、原料の多価アルコールの種類によって大きく変動するが、同一原料の場合、多価アルコール中の水酸基1モルに対する(メタ)アクリル酸のモル比を徐々に下げるに従い、上昇していく傾向にある。なお、粘度は、JIS−Z−8803に従い円錐平板型粘度計(25℃)を用いて測定した値を意味する。 The viscosity of (meth) acrylic acid ester varies greatly depending on the type of polyhydric alcohol used as the raw material. In the case of the same raw material, the molar ratio of (meth) acrylic acid to 1 mol of hydroxyl group in the polyhydric alcohol is gradually increased. It tends to rise as it falls. In addition, a viscosity means the value measured using the cone-plate type | mold viscosity meter (25 degreeC) according to JIS-Z-8803.
具体例として、多価アルコールがジトリメチロールプロパンの場合は、製造される(メタ)アクリル酸エステルの粘度は500mPa・s以上(特に、500〜1400Pa・s)となり、多価アルコール中の水酸基1モルに対する(メタ)アクリル酸のモル比を、0.9〜1.15の範囲で減少させると粘度は上昇する。 As a specific example, when the polyhydric alcohol is ditrimethylolpropane, the viscosity of the (meth) acrylic ester produced is 500 mPa · s or more (particularly, 500 to 1400 Pa · s), and 1 mol of hydroxyl group in the polyhydric alcohol. When the molar ratio of (meth) acrylic acid to is reduced in the range of 0.9 to 1.15, the viscosity increases.
また、多価アルコールがジペンタエリスリトールの場合は、製造される(メタ)アクリル酸エステルの粘度は7000mPa・s以上(特に、7000〜10000mPa・s)となり、多価アルコール中の水酸基1モルに対する(メタ)アクリル酸のモル比を、0.9〜1.15の範囲で減少させると粘度は上昇する。 When the polyhydric alcohol is dipentaerythritol, the viscosity of the (meth) acrylic ester produced is 7000 mPa · s or more (particularly, 7000 to 10000 mPa · s). When the molar ratio of (meth) acrylic acid is decreased in the range of 0.9 to 1.15, the viscosity increases.
本発明の製法で製造される低色調かつ高粘度の(メタ)アクリル酸エステルは、コート時や成形時に粘度調製が簡便でありしかも厚膜化できるため、例えば、クリアコーティング材料や光学材料等の用途に好適に用いられる。 The low-color tone and high-viscosity (meth) acrylic acid ester produced by the production method of the present invention is easy to adjust the viscosity at the time of coating and molding and can be thickened. For example, clear coating materials, optical materials, etc. It is suitably used for applications.
本発明の(メタ)アクリル酸エステルの製造方法によれば、縮合反応における着色を抑えてかつ粘度の調節(特に、高粘度領域における調節)が可能となる。 According to the method for producing a (meth) acrylic acid ester of the present invention, it is possible to suppress coloring in the condensation reaction and adjust the viscosity (particularly, adjustment in a high viscosity region).
次に、本発明を比較例と共に実施例によって更に詳述するが、本発明はこれに限定されるものではない。 Next, the present invention will be described in more detail with reference to comparative examples, but the present invention is not limited thereto.
実施例1
(1)反応工程
攪拌機及び温度計、ディーンスターク装置を備えた2L反応器に、ジトリメチロールプロパン590g(2.36モル)、アクリル酸663g(9.21モル)、トルエン425g、塩化第二銅1.7g、70%メタンスルフォン酸水溶液34g及び50%次亜リン酸水溶液3.4gを仕込み、53kPaの圧力下、反応器を加熱して脱水エステル化反応を行った。アクリル酸消費量をベースとした反応率は90%であった。本条件における反応時間は8時間であった。
Example 1
(1) Reaction process In a 2 L reactor equipped with a stirrer, a thermometer and a Dean-Stark apparatus, 590 g (2.36 mol) of ditrimethylolpropane, 663 g (9.21 mol) of acrylic acid, 425 g of toluene, cupric chloride 1 0.7 g, 34 g of a 70% aqueous methanesulfonic acid solution and 3.4 g of a 50% aqueous hypophosphorous acid solution were charged, and the dehydration esterification reaction was carried out by heating the reactor under a pressure of 53 kPa. The reaction rate based on the consumption of acrylic acid was 90%. The reaction time under these conditions was 8 hours.
なお、この「アクリル酸消費量をベースとした反応率」は、次のようにして算出した。反応液の酸価は0.60meq./gであり、これから計算される消費アクリル酸は、8.5molとなる。よって反応率は、8.5/(2.36×4)*100=90%となる。
(2)中和工程
反応液を冷却した後、トルエン1400gを加えて希釈した。このようにして得られた反応液を中和処理用の槽に移し、蒸留水200gを加えて充分攪拌した後静置し、分離した下層を除去した。
The “reaction rate based on acrylic acid consumption” was calculated as follows. The acid value of the reaction solution is 0.60 meq. / G, and the consumed acrylic acid calculated from this is 8.5 mol. Therefore, the reaction rate is 8.5 / (2.36 × 4) * 100 = 90%.
(2) Neutralization step After cooling the reaction solution, 1400 g of toluene was added for dilution. The reaction solution thus obtained was transferred to a tank for neutralization treatment, 200 g of distilled water was added and the mixture was sufficiently stirred and then allowed to stand to remove the separated lower layer.
上層の酸分を中和するために20%水酸化ナトリウム水溶液600gを加えて充分攪拌した後静置し、分離した下層を除去した。
(3)水洗浄工程
上層に、蒸留水500gを加え充分攪拌した後静置し、分離した下層を除去した。
(4)溶剤除去工程
上層にハイドロキノンモノメチルエーテル400ppmを添加して、空気を吹き込みながら、減圧下でトルエン濃度1%以下になるまで脱溶剤処理を行った。得られた粗アクリレート500gに対して、ラヂオライト#200(昭和化学工業製)8.4gを添加し、よく攪拌混合した。その混合物を、定性ろ紙No.2を備えた加圧濾過装置にて濾過しアクリレートを得た。
In order to neutralize the acid content of the upper layer, 600 g of a 20% aqueous sodium hydroxide solution was added and stirred sufficiently, and then allowed to stand to remove the separated lower layer.
(3) Water Washing Step 500 g of distilled water was added to the upper layer and stirred sufficiently, and then allowed to stand to remove the separated lower layer.
(4) Solvent removal step 400 ppm of hydroquinone monomethyl ether was added to the upper layer, and the solvent was removed under reduced pressure until the toluene concentration was 1% or less while blowing air. 8.4 g of Radiolite # 200 (manufactured by Showa Kagaku Kogyo) was added to 500 g of the obtained crude acrylate, and the mixture was well stirred and mixed. The mixture was passed through qualitative filter paper no. An acrylate was obtained by filtration with a pressure filtration apparatus equipped with 2.
こうして得られたアクリレートは、2100AN型濁度計(HACH社製)を用いて濁度測定に供した。なお、かかる測定では、ホルマジンを基準物質として装置校正し、90°側方散乱光方式を測定原理として濁度(NTU;Nephelometric Turbidity Unit)を測定した。アクリレートの濁度が7NTU以下であれば透明と判断し、物性測定に供した。 The acrylate thus obtained was subjected to turbidity measurement using a 2100AN turbidimeter (manufactured by HACH). In this measurement, the apparatus was calibrated using formazine as a reference substance, and turbidity (NTU; Nephelometric Turbidity Unit) was measured using the 90 ° side scattered light method as a measurement principle. If the turbidity of the acrylate was 7 NTU or less, it was judged to be transparent and subjected to physical property measurement.
実施例2
実施例1記載の反応工程において、ジトリメチロールプロパンを574g(2.30モル)、アクリル酸661g(9.18モル)に変更した以外は、実施例1と同様の操作を行い、透明なアクリレートを得た。
Example 2
In the reaction step described in Example 1, except that ditrimethylolpropane was changed to 574 g (2.30 mol) and 661 g (9.18 mol) of acrylic acid, the same operation as in Example 1 was performed, and a transparent acrylate was obtained. Obtained.
実施例3
実施例1記載の反応工程において、ジトリメチロールプロパンを559g(2.24モル)、アクリル酸676g(9.39モル)に変更した以外は、実施例1と同様の操作を行い、透明なアクリレートを得た。
Example 3
In the reaction step described in Example 1, except that ditrimethylolpropane was changed to 559 g (2.24 mol) and 676 g (9.39 mol) of acrylic acid, the same operation as in Example 1 was carried out to obtain a transparent acrylate. Obtained.
実施例4
実施例1記載の反応工程において、ジトリメチロールプロパンを545g(2.18モル)、アクリル酸691g(9.60モル)に変更した以外は、実施例1と同様の操作を行い、透明なアクリレートを得た。
Example 4
In the reaction step described in Example 1, except that ditrimethylolpropane was changed to 545 g (2.18 mol) and acrylic acid 691 g (9.60 mol), the same operation as in Example 1 was carried out to obtain a transparent acrylate. Obtained.
参考例5
実施例1記載の反応工程において、ジトリメチロールプロパンを538g(2.15モル)、アクリル酸713g(9.90モル)に変更した以外は、実施例1と同様の操作を行い、透明なアクリレートを得た。
Reference Example 5
In the reaction step described in Example 1, except that ditrimethylolpropane was changed to 538 g (2.15 mol) and 713 g (9.90 mol) of acrylic acid, the same operation as in Example 1 was performed, and a transparent acrylate was obtained. Obtained.
実施例6
実施例1記載の反応工程において、ジトリメチロールプロパンを613g(2.45モル)、アクリル酸640g(8.89モル)に変更した以外は、実施例1と同様の操作を行い、透明なアクリレートを得た。
Example 6
In the reaction step described in Example 1, except that ditrimethylolpropane was changed to 613 g (2.45 mol) and acrylic acid 640 g (8.89 mol), the same operation as in Example 1 was performed, and a transparent acrylate was obtained. Obtained.
比較例1
実施例1記載の反応工程において、ジトリメチロールプロパンを525g(2.10モル)、アクリル酸726g(10.08モル)に変更した以外は、実施例1と同様の操作を行い、透明なアクリレートを得た。
Comparative Example 1
In the reaction step described in Example 1, except that ditrimethylolpropane was changed to 525 g (2.10 mol) and 726 g (10.08 mol) of acrylic acid, the same operation as in Example 1 was performed, and a transparent acrylate was obtained. Obtained.
比較例2
比較例1記載の反応工程において、アクリル酸消費量をベースとした反応率を99%に変更した以外は、比較例1と同様の操作を行い、透明なアクリレートを得た。このときの反応工程における反応時間は12時間であった。
Comparative Example 2
A transparent acrylate was obtained in the same manner as in Comparative Example 1 except that the reaction rate based on the acrylic acid consumption was changed to 99% in the reaction step described in Comparative Example 1. The reaction time in the reaction process at this time was 12 hours.
比較例3
実施例4記載の反応工程において、アクリル酸消費量をベースとした反応率を98%に変更した以外は、実施例4と同様の操作を行い、透明なアクリレートを得た。このときの反応工程における反応時間は12時間であった。
Comparative Example 3
A transparent acrylate was obtained in the same manner as in Example 4 except that in the reaction step described in Example 4, the reaction rate based on the acrylic acid consumption was changed to 98%. The reaction time in the reaction process at this time was 12 hours.
参考例7
(1)反応工程
攪拌機及び温度計、ディーンスターク装置を備えた2L反応器に、ジペンタエリスリトール402g(1.58モル)、アクリル酸684g(9.50モル)、トルエン595g、塩化第二銅1.7g及び78%硫酸17gを仕込み、54kPaの圧力下、反応器を加熱して脱水エステル化反応を行った。アクリル酸消費量をベースとした反応率は90%であった。本条件における反応時間は10時間であった。
(2)中和工程
反応液を冷却した後、トルエン1000gを加えて希釈した。このようにして得られた反応液を中和処理用の槽に移し、蒸留水400gを加えて充分攪拌した後静置し、分離した下層を除去した。
Reference Example 7
(1) Reaction process In a 2 L reactor equipped with a stirrer, a thermometer and a Dean-Stark apparatus, 402 g (1.58 mol) of dipentaerythritol, 684 g (9.50 mol) of acrylic acid, 595 g of toluene, cupric chloride 1 7 g and 17 g of 78% sulfuric acid were charged, and the reactor was heated under a pressure of 54 kPa to carry out a dehydration esterification reaction. The reaction rate based on the consumption of acrylic acid was 90%. The reaction time under these conditions was 10 hours.
(2) Neutralization step After cooling the reaction solution, 1000 g of toluene was added for dilution. The reaction solution thus obtained was transferred to a tank for neutralization treatment, added with 400 g of distilled water, sufficiently stirred and then allowed to stand to remove the separated lower layer.
上層の酸分を中和するために20%水酸化ナトリウム水溶液400gを加えて充分攪拌した後静置し、分離した下層を除去した。更に20%水酸化ナトリウム水溶液400gを加えて充分攪拌した後静置し、分離した下層を除去した。
(3)水洗浄工程
上層に、蒸留水500gを加え充分攪拌した後静置し、分離した下層を除去した。
(4)溶剤除去工程
上層にハイドロキノンモノメチルエーテル400ppmを添加して、空気を吹き込みながら、減圧下でトルエン濃度1%以下になるまで脱溶剤処理を行った。得られた粗アクリレート500gに対して、ラヂオライト#200(昭和化学工業製)8.4gを添加し、よく攪拌混合した。その混合物を、定性ろ紙No.2を備えた加圧濾過装置にて濾過しアクリレートを得た。
In order to neutralize the acid content of the upper layer, 400 g of a 20% aqueous sodium hydroxide solution was added and stirred sufficiently, and then allowed to stand to remove the separated lower layer. Further, 400 g of a 20% aqueous sodium hydroxide solution was added and stirred sufficiently, and then allowed to stand to remove the separated lower layer.
(3) Water Washing Step 500 g of distilled water was added to the upper layer and stirred sufficiently, and then allowed to stand to remove the separated lower layer.
(4) Solvent removal step 400 ppm of hydroquinone monomethyl ether was added to the upper layer, and the solvent was removed under reduced pressure until the toluene concentration was 1% or less while blowing air. 8.4 g of Radiolite # 200 (manufactured by Showa Kagaku Kogyo) was added to 500 g of the obtained crude acrylate, and the mixture was well stirred and mixed. The mixture was passed through qualitative filter paper no. An acrylate was obtained by filtration with a pressure filtration apparatus equipped with 2.
こうして得られたアクリレートは、2100AN型濁度計(HACH社製)を用いて濁度測定に供した。なお、かかる測定では、ホルマジンを基準物質として装置校正し、90°側方散乱光方式を測定原理として濁度(NTU)を測定した。アクリレートの濁度が7NTU以下であれば透明と判断し、物性測定に供した。 The acrylate thus obtained was subjected to turbidity measurement using a 2100AN turbidimeter (manufactured by HACH). In this measurement, the apparatus was calibrated using formazine as a reference substance, and turbidity (NTU) was measured using the 90 ° side scattered light method as a measurement principle. If the turbidity of the acrylate was 7 NTU or less, it was judged to be transparent and subjected to physical property measurement.
比較例4
参考例7記載の反応工程において、ジペンタエリスリトールを357g(1.41モル)、アクリル酸729g(10.13モル)に変更した以外は、実施例6と同様の操作を行い、透明なアクリレートを得た。
Comparative Example 4
In the reaction step described in Reference Example 7, the same operation as in Example 6 was performed except that dipentaerythritol was changed to 357 g (1.41 mol) and 729 g (10.13 mol) of acrylic acid. Obtained.
上記実施例及び比較例における、原料アルコールとアクリル酸のモル比、原料アルコールの持つ水酸基1モルあたりのアクリル酸のモル比、及びアクリル酸の消費量をベースとした反応率を表1に示す。 Table 1 shows the reaction rate based on the molar ratio of raw material alcohol and acrylic acid, the molar ratio of acrylic acid per mole of hydroxyl group of the raw material alcohol, and the consumption of acrylic acid in the above Examples and Comparative Examples.
試験例1
上記実施例及び比較例で得られた各アクリレートの色調(APHA)を、JIS−K−0071−1に則した比色法にて測定した。具体的には白金とコバルトの試薬を溶解して調製した標準液を用い、試料の色と同等の濃さの標準液稀釈液を比較により求め、その「度数」として表示するものである。その結果を表1に示す。
Test example 1
The color tone (APHA) of each acrylate obtained in the above Examples and Comparative Examples was measured by a colorimetric method according to JIS-K-0071-1. Specifically, using a standard solution prepared by dissolving platinum and cobalt reagents, a standard solution diluted solution having a concentration equivalent to the color of the sample is obtained by comparison and displayed as the “frequency”. The results are shown in Table 1.
また、上記実施例及び比較例で得られた各アクリレートの25℃における粘度(JIS−Z−8803)を、円錐平板型回転粘度計を用いて測定した。その結果を表1に示す。 Moreover, the viscosity (JIS-Z-8803) in 25 degreeC of each acrylate obtained by the said Example and comparative example was measured using the cone-plate type rotational viscometer. The results are shown in Table 1.
アクリレートの色調が200以下であれば着色の程度が低いため適しており、200を越えると目視でかなり褐色〜赤褐色に着色が確認されるため不適とした。 If the color tone of the acrylate is 200 or less, it is suitable because the degree of coloring is low, and if it exceeds 200, it is not suitable because the coloration is confirmed from brown to reddish brown.
アルコールとしてジトリメチロールプロパンを用いた場合、アクリレートの粘度が500mPa・s以上を有効であるとした。また、アルコールとしてジペンタエリスリトールを用いた場合、アクリレートの粘度が7000mPa・s以上を有効であるとした。 When ditrimethylolpropane was used as the alcohol, an acrylate viscosity of 500 mPa · s or more was considered effective. In addition, when dipentaerythritol was used as the alcohol, it was considered that an acrylate having a viscosity of 7000 mPa · s or more was effective.
表1より、実施例1〜6では、色調が低く着色の程度が低いことが分かった。しかも、アクリル酸の仕込み比率を減少させることによって、得られるアクリレートの粘度は上昇した。しかも、その比率の減少が大きくなるに従って、得られるアクリレートの粘度は上昇する傾向にある。即ち、アクリル酸比率を調整することにより、目的とする粘度のアクリレートを得ることが出来ることが分かった。 From Table 1, in Examples 1-6, it turned out that a color tone is low and the grade of coloring is low. In addition, the viscosity of the resulting acrylate increased by reducing the charging ratio of acrylic acid. Moreover, the viscosity of the resulting acrylate tends to increase as the ratio decreases. That is, it was found that an acrylate having a target viscosity can be obtained by adjusting the acrylic acid ratio.
これに対し、比較例1のように、ジトリメチロールプロパンに対し一定比率以上のアクリル酸を仕込んだ場合には、粘度は500mPa・s以下となり、目的の粘度にはならなかった。 On the other hand, as in Comparative Example 1, when acrylic acid of a certain ratio or more with respect to ditrimethylolpropane was charged, the viscosity was 500 mPa · s or less, and the target viscosity was not achieved.
また、比較例2のように、ジトリメチロールプロパンに対し一定比率以上のアクリル酸を仕込み、粘度を上げるためにアクリル酸の反応率を上げる場合には、粘度は上がるがアクリレートの色調は300となり顕著な着色が確認された。 Further, as in Comparative Example 2, when acrylic acid of a certain ratio or more is charged with respect to ditrimethylolpropane and the reaction rate of acrylic acid is increased in order to increase the viscosity, the viscosity increases, but the color tone of acrylate becomes 300, which is remarkable. Coloration was confirmed.
さらに、比較例3のように、アクリル酸の反応率が高い場合には、アクリレートの色調は600となり顕著な着色の悪化が確認された。 Further, as in Comparative Example 3, when the reaction rate of acrylic acid was high, the color tone of acrylate was 600, and a marked deterioration in coloring was confirmed.
上記の傾向は、多価アルコールをジトリメチロールプロパンからジペンタエリスリトールに変えた参考例7及び比較例4の結果からも容易に理解できる。なお、比較例4では、粘度は7000mPa・s以下となり、目的の粘度にはならなかった。 The above tendency can be easily understood from the results of Reference Example 7 and Comparative Example 4 in which the polyhydric alcohol is changed from ditrimethylolpropane to dipentaerythritol. In Comparative Example 4, the viscosity was 7000 mPa · s or less, and the target viscosity was not achieved.
Claims (6)
ジトリメチロールプロパン中の水酸基1モルに対する(メタ)アクリル酸のモル比が0.9〜1.10であり、(メタ)アクリル酸の消費量をベースとした反応率を95%以下であり、製造される(メタ)アクリル酸エステルの円錐平板型粘度計(25℃)で測定される粘度が500mPa・s以上であることを特徴とする(メタ)アクリル酸エステルの製造方法。 A method of producing a (meth) acrylic acid ester by condensation reaction of (meth) acrylic acid and ditrimethylolpropane in the presence of an acidic catalyst ,
The molar ratio of (meth) acrylic acid to 1 mol of hydroxyl group in ditrimethylolpropane is 0.9 to 1.10 . The reaction rate based on the consumption of ( meth) acrylic acid is 95% or less , The (meth) acrylic ester production method, wherein the viscosity is 500 mPa · s or more measured with a (meth) acrylic ester conical plate viscometer (25 ° C.) .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006072831A JP4872397B2 (en) | 2006-03-16 | 2006-03-16 | Method for producing (meth) acrylic acid ester |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006072831A JP4872397B2 (en) | 2006-03-16 | 2006-03-16 | Method for producing (meth) acrylic acid ester |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2007246445A JP2007246445A (en) | 2007-09-27 |
JP4872397B2 true JP4872397B2 (en) | 2012-02-08 |
Family
ID=38591112
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006072831A Active JP4872397B2 (en) | 2006-03-16 | 2006-03-16 | Method for producing (meth) acrylic acid ester |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4872397B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112194579A (en) * | 2020-10-10 | 2021-01-08 | 湖南创大玉兔化工有限公司 | Method capable of efficiently removing multi-acrylate impurities |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0768167B2 (en) * | 1989-04-19 | 1995-07-26 | 荒川化学工業株式会社 | Method for producing emulsion-resistant dipentaerythritol polyacrylate |
JP2898689B2 (en) * | 1990-03-16 | 1999-06-02 | 荒川化学工業株式会社 | Method for producing pentaerythritol polyfunctional acrylate |
JP2914075B2 (en) * | 1992-04-30 | 1999-06-28 | 大日本インキ化学工業株式会社 | Method for producing (meth) acrylic acid ester |
JP2546124B2 (en) * | 1993-01-25 | 1996-10-23 | 荒川化学工業株式会社 | Method for producing polyfunctional (meth) acrylate |
US6175037B1 (en) * | 1998-10-09 | 2001-01-16 | Ucb, S.A. | Process for the preparation of (meth)acrylate esters and polyester (meth)acrylates using microwave energy as a heating source |
EP0995738A1 (en) * | 1998-10-19 | 2000-04-26 | Ucb, S.A. | Process for the preparation of (meth)acrylate esters and polyester (meth)acrylates |
JP4110714B2 (en) * | 2000-06-26 | 2008-07-02 | 東亞合成株式会社 | Method for producing polymerizable (meth) acrylate |
JP2002173465A (en) * | 2000-09-29 | 2002-06-21 | Sanyo Chem Ind Ltd | Method for producing condensed dehydration product |
-
2006
- 2006-03-16 JP JP2006072831A patent/JP4872397B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2007246445A (en) | 2007-09-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102203048B (en) | Method for producing methacrylated benzophenones | |
CN101712739B (en) | Preparation method of rosin modified phenolic resin | |
JP6322193B2 (en) | polyester | |
JP2009215467A (en) | Manufacturing method of polyethylene-2,5-furan dicarboxylate | |
JP7038495B2 (en) | Production of N, N- (di) alkylaminoalkyl (meth) acrylamide or N, N- (di) alkylaminoalkyl (meth) acrylates and quaternary ammonium salts thereof as agglutination aids and gelling agents. | |
CN110041238A (en) | A method of reducing more mercapto-carboxylic ester smells | |
CN111871432A (en) | Preparation method of mesoporous solid acid catalyst and application of mesoporous solid acid catalyst in antioxidant BHT synthesis | |
JP4872397B2 (en) | Method for producing (meth) acrylic acid ester | |
JP2009191051A (en) | Preparation method of ester solvent | |
JP2546124B2 (en) | Method for producing polyfunctional (meth) acrylate | |
CN1043892C (en) | Polyester compounds and organic gelling agents comprising same | |
JP5003676B2 (en) | Method for producing (meth) acrylic acid ester | |
WO2019193925A1 (en) | Isobornyl (meth)acrylate-containing composition and method for production thereof | |
US20140142220A1 (en) | Fluorine-containing polymer, the preparation process and use thereof, pigment dispersion and the preparation process | |
JP2008308466A (en) | Method for producing (meth)acrylic ester | |
CN103980456B (en) | UV glue, urethane acrylate oligomer and preparation method thereof | |
JP4876651B2 (en) | Method for producing (meth) acrylic acid ester | |
RU2492188C1 (en) | Anti-agglomerator for separating synthetic rubber | |
JP2007176881A (en) | Method for producing polyfunctional (meth)acrylate | |
JP2898689B2 (en) | Method for producing pentaerythritol polyfunctional acrylate | |
CN113956460B (en) | Petroleum resin-based surfactant and preparation method thereof | |
DE10349972A1 (en) | Production of triol mono(meth)acrylate, e.g. glycerol monomethacrylate for use in contact lens production, involves hydrolytic cleavage of an alkylidene-ether derivative with water on an acid ion exchange resin | |
JP2005213218A (en) | Method for producing (meth)acrylate derivative of polyoxyalkylene glycol | |
KR100650143B1 (en) | A method for preparing alkoxy polyalkyleneglycol (meth)acrylate | |
JP4951967B2 (en) | Production method of polyfunctional (meth) acrylate |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20080806 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110802 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20110803 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110929 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20111025 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20111107 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20141202 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4872397 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |