KR100650143B1 - A method for preparing alkoxy polyalkyleneglycol (meth)acrylate - Google Patents

A method for preparing alkoxy polyalkyleneglycol (meth)acrylate Download PDF

Info

Publication number
KR100650143B1
KR100650143B1 KR1020050128972A KR20050128972A KR100650143B1 KR 100650143 B1 KR100650143 B1 KR 100650143B1 KR 1020050128972 A KR1020050128972 A KR 1020050128972A KR 20050128972 A KR20050128972 A KR 20050128972A KR 100650143 B1 KR100650143 B1 KR 100650143B1
Authority
KR
South Korea
Prior art keywords
acrylate
meth
reaction
glycol
lithium hydroxide
Prior art date
Application number
KR1020050128972A
Other languages
Korean (ko)
Inventor
송희봉
최병길
강동규
송종근
이창엽
노동덕
김대중
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to KR1020050128972A priority Critical patent/KR100650143B1/en
Application granted granted Critical
Publication of KR100650143B1 publication Critical patent/KR100650143B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/26Esters containing oxygen in addition to the carboxy oxygen
    • C08F220/28Esters containing oxygen in addition to the carboxy oxygen containing no aromatic rings in the alcohol moiety
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/12Esters of monohydric alcohols or phenols
    • C08F220/14Methyl esters, e.g. methyl (meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/12Esters of monohydric alcohols or phenols
    • C08F220/16Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms
    • C08F220/18Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms with acrylic or methacrylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/26Esters containing oxygen in addition to the carboxy oxygen
    • C08F220/28Esters containing oxygen in addition to the carboxy oxygen containing no aromatic rings in the alcohol moiety
    • C08F220/285Esters containing oxygen in addition to the carboxy oxygen containing no aromatic rings in the alcohol moiety and containing a polyether chain in the alcohol moiety
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/46Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides selected from alkali metals
    • C08F4/48Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides selected from alkali metals selected from lithium, rubidium, caesium or francium
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/50Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides selected from alkaline earth metals, zinc, cadmium, mercury, copper or silver
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F6/00Post-polymerisation treatments
    • C08F6/001Removal of residual monomers by physical means
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • C08F8/14Esterification
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/02Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
    • C08G65/32Polymers modified by chemical after-treatment

Abstract

A method for preparing an alkoxypolyalkylene glycol (meth)acrylate is provided to inhibit undesired side reactions, to obtain excellent reaction stability, and to improve purity of the final product. The method for preparing an alkoxypolyalkylene glycol (meth)acrylate represented by the following formula 3 comprises a step of carrying out transesterification of an alkoxypolyethylene glycol represented by the following formula 1 with a (meth)acrylate represented by the following formula 2 in the presence of a mixed catalyst containing lithium hydroxide and calcium oxide. In the above formulae 1-3, R1 is a C1-C4 alkyl; R2O is a polyalkylene group formed by block or random addition of at least one C2-C4 oxyalkylene group; R3 is H or CH3; R4 is a C1-C4 alkyl; and each of m and n represents an average addition mole number, each being an integer of 1-50.

Description

알콕시폴리알킬렌글리콜(메타)아크릴레이트의 제조방법{A METHOD FOR PREPARING ALKOXY POLYALKYLENEGLYCOL (METH)ACRYLATE}Method for producing alkoxypolyalkylene glycol (meth) acrylate {A METHOD FOR PREPARING ALKOXY POLYALKYLENEGLYCOL (METH) ACRYLATE}

[산업상 이용분야][Industrial use]

본 발명은 알콕시폴리알킬렌글리콜(메타)아크릴레이트의 제조방법에 관한 것으로서, 보다 상세하게는 고순도의 알콕시폴리알킬렌글리콜(메타)아크릴레이트를 제조하는 방법에 관한 것이다.The present invention relates to a method for producing alkoxypolyalkylene glycol (meth) acrylate, and more particularly to a method for producing a high purity alkoxypolyalkylene glycol (meth) acrylate.

[종래기술][Private Technology]

일반적으로, 알콕시폴리알킬렌글리콜(메타)아크릴레이트를 얻을 수 있는 방법으로는 산촉매의 존재하에 알콕시폴리알킬렌글리콜과 (메타)아크릴산을 반응시키고 생성된 물을 계외로 제거하는 직접 에스테르화 방법과 염기성 촉매 하에서 알콕시폴리알킬렌글리콜과 (메타)아크릴레이트를 반응시키고 생성된 알코올을 계외로 제거하는 에스테르 교환 반응이 있다. In general, a method for obtaining an alkoxypolyalkylene glycol (meth) acrylate includes a direct esterification method in which an alkoxypolyalkylene glycol and (meth) acrylic acid are reacted in the presence of an acid catalyst and the resulting water is removed out of the system. There is a transesterification reaction in which an alkoxypolyalkylene glycol and (meth) acrylate are reacted under a basic catalyst and the resulting alcohol is removed out of the system.

산촉매 존재 하에서 실시하는 직접 에스테르화 반응은 부산물로 생성된 물을 제거하기 위하여 벤젠이나 사이클로헥산과 같은 탄화수소 용매를 공비용매로 사용하며, 반응 후에는 황산이나 파라톨루엔술폰산 등과 같은 강산성 촉매 및 미반응의 (메타)아크릴산을 제거해야 하기 때문에 중화, 및 수세로 인한 다량의 폐수가 발생하고 공정이 길어지는 문제점이 있다. The direct esterification reaction in the presence of an acid catalyst uses a hydrocarbon solvent such as benzene or cyclohexane as a co-solvent to remove water produced as a by-product, and after the reaction, a strong acid catalyst such as sulfuric acid or paratoluenesulfonic acid, and an unreacted Since (meth) acrylic acid has to be removed, a large amount of wastewater is generated due to neutralization and washing with water, and there is a problem in that the process is long.

이러한 이유로 현재 무기 염기 촉매를 사용하는 에스테르 교환 반응이 주로 사용되고 있다. For this reason, transesterification reactions using inorganic base catalysts are currently mainly used.

일본 공개 특허 1979-041815호는 메틸메타크릴레이트와 2-에틸헥산올을 리튬하이드라이드, 알킬리튬, 페닐리튬, 리튬알루미늄 하이드라이드 등과 같은 리튬 화합물, 유기산 또는 무기산 리튬염, 리튬아세틸아세토네이트, 리튬옥사이드, 또는 리튬 금속 등의 촉매로 가속화된 에스테르 치환반응을 일으키는 방법을 소개하고 있다. Japanese Patent Laid-Open No. 1979-041815 discloses methyl methacrylate and 2-ethylhexanol in combination with lithium compounds such as lithium hydride, alkyl lithium, phenyl lithium, lithium aluminum hydride, lithium salts of organic or inorganic acids, lithium acetylacetonate, lithium A method for causing an accelerated ester substitution reaction with an oxide or a catalyst such as lithium metal is introduced.

일본 공개 특허 1980-105676호는 메틸(메타)아크릴레이트와 글리시돌을 할로겐화 알카리 금속 촉매, 특히 염화리튬 존재 하에서 에스테르 교환반응을 하여 글리시딜(메타)아크릴레이트를 합성하는 방법을 소개하고 있다. Japanese Patent Application Laid-Open No. 1980-105676 introduces a method for synthesizing glycidyl (meth) acrylate by transesterification of methyl (meth) acrylate and glycidol in the presence of a halogenated alkali metal catalyst, particularly lithium chloride. .

일본 공개 특허 1980-127380호는 할로겐화 알카리 금속 촉매, 브롬화 나트륨 존재 하에서 글리시돌과 다른 유기 카르복실산 에스테르를 에스테르 교환반응 시키는 방법을 소개하고 있다.Japanese Laid-Open Patent Publication No. 1980-127380 introduces a method for transesterifying glycidol and other organic carboxylic acid esters in the presence of a halogenated alkali metal catalyst, sodium bromide.

그러나, 이들 선행 기술들에 사용된 에스테르 교환반응의 촉매는 생성물의 품질 문제, 환경적, 경제적 문제점들은 여전히 미제의 숙제로 가지고 있으며, 공정적인 측면에서 반응 중 불필요한 중합 반응이 발생할 위험이 크고, 낮은 선택도로 인한 부반응 발생 가능성이 높다. However, the transesterification catalysts used in these prior arts still have problems with product quality, environmental and economic problems, and in terms of process, there is a high risk of unnecessary polymerization during the reaction. There is a high possibility of side reactions due to selectivity.

따라서 안정한 조건으로 고품질의 에스테르 화합물을 얻을 수 있는 경제적이 면서도 친환경적인 공정 개발이 필요하게 되었다. Therefore, it is necessary to develop an economical and environmentally friendly process for obtaining a high quality ester compound under stable conditions.

본 발명은 상기와 같은 문제점을 해결하기 위한 것으로서, 본 발명의 목적은 짧은 공정으로 폐수의 생성이 없고, 부반응이 적으며, 고수율의 알콕시폴리알킬렌(메타)아크릴레이트를 경제적으로 제조하는 방법을 제공하는 것이다. The present invention is to solve the above problems, an object of the present invention is a method of economically producing a high yield of alkoxypolyalkylene (meth) acrylate in the production of waste water in a short process, less side reactions To provide.

본 발명은 상기 목적을 달성하기 위하여, 알콕시폴리에틸렌글리콜과 (메타)아크릴레이트를 수산화리튬 및 산화칼슘의 혼합 촉매 존재 하에서 에스테르 교환 반응시키는 단계를 포함하는 알콕시폴리알킬렌글리콜(메타)아크릴레이트의 제조 방법을 제공한다.In order to achieve the above object, the present invention provides an alkoxypolyalkylene glycol (meth) acrylate comprising a transesterification reaction of alkoxy polyethylene glycol and (meth) acrylate in the presence of a mixed catalyst of lithium hydroxide and calcium oxide Provide a method.

이하, 본 발명을 보다 상세하게 설명한다. Hereinafter, the present invention will be described in more detail.

본 발명에서 (메타)아크릴레이트는 메타아크릴레이트, 및 아크릴레이트를 모두 포함하는 명칭으로 사용된다. In the present invention, (meth) acrylate is used by the name including both methacrylate and acrylate.

알콕시폴리에틸렌글리콜(메타)아크릴레이트는 시멘트 혼화제의 원료로 사용되는 모노머로서 상기 모노머로부터 제조되는 시멘트 혼화제는 분산성이 우수한 특징을 가진다. Alkoxypolyethylene glycol (meth) acrylate is a monomer used as a raw material for the cement admixture, and the cement admixture prepared from the monomer has excellent dispersibility.

본 발명의 알콕시폴리알킬렌글리콜(메타)아크릴레이트의 제조방법은 하기 화학식 1로 표시되는 알콕시폴리에틸렌글리콜과 하기 화학식 2로 표시되는 (메타)아크릴레이트를 수산화리튬 및 산화칼슘의 혼합 촉매 존재 하에서 에스테르 교환 반응시키는 단계를 포함한다. A method for producing an alkoxypolyalkylene glycol (meth) acrylate of the present invention is to prepare an alkoxypolyethylene glycol represented by the following formula (1) and (meth) acrylate represented by the following formula (2) in the presence of a mixed catalyst of lithium hydroxide and calcium oxide Exchange reaction.

[화학식 1] [Formula 1]

Figure 112005075877160-pat00001
Figure 112005075877160-pat00001

[화학식 2][Formula 2]

Figure 112005075877160-pat00002
Figure 112005075877160-pat00002

[화학식 3][Formula 3]

Figure 112005075877160-pat00003
Figure 112005075877160-pat00003

상기 식에서, Where

R1은 탄소수가 1 내지 4인 알킬기이고, R 1 is an alkyl group having 1 to 4 carbon atoms,

R2O는 탄소수가 2 내지 4인 옥시알킬렌기의 1종 또는 2종 이상이 블록상으로 부가되어 있거나 혹은 랜덤상으로 부가되어 있는 폴리알킬렌기이고, R 2 O is a polyalkylene group in which one or two or more oxyalkylene groups having 2 to 4 carbon atoms are added in block form or added in random form,

R3는 수소, 또는 메틸기이고,R 3 is hydrogen or a methyl group,

R4는 탄소수가 1 내지 4인 알킬기이고, R 4 is an alkyl group having 1 to 4 carbon atoms,

m, 및 n은 옥시알킬렌기의 평균 부가 몰수로 각각 독립적으로 1 내지 50인 정수이다.m and n are the integers of 1-50 each independently in the average added mole number of an oxyalkylene group.

종래에 사용되는 알칼리 촉매 중에서도 수산화나트륨 등과 같은 강염기성 촉매는 수분에 매우 민감하여 원료물질에 수분 함량이 높은 경우 중합반응을 일으킬 수 있기에 무수물 형태의 촉매를 사용해야한다. Among the alkali catalysts used in the prior art, strong base catalysts such as sodium hydroxide are very sensitive to moisture, and therefore, an anhydride-type catalyst should be used because polymerization may occur when the moisture content of the raw material is high.

또한 수산화나트륨 등과 같은 강염기성 촉매는 에스테르 교환반응의 도중에 (메타)아크릴레이트 사이의 중합반응이나 알콕시폴리알킬렌글리콜(메타)아크릴레이트 사이의 중합반응을 일으킬 가능성이 높다. 또한, 알칼리금속 촉매를 단독으로 사용하는 경우에는 Michale addition 반응, (메타)아크릴레이트 염의 생성반응 등과 같은 부반응이 필연적으로 발생하게 된다. In addition, a strong base catalyst such as sodium hydroxide is likely to cause a polymerization reaction between (meth) acrylates and a polymerization reaction between alkoxypolyalkylene glycol (meth) acrylates during the transesterification reaction. In addition, when the alkali metal catalyst is used alone, side reactions such as the Michale addition reaction, the production reaction of the (meth) acrylate salt, and the like inevitably occur.

그러나, 본 발명에서는 약염기인 수산화리튬을 사용하여 부반응인 중합 발생 가능성을 현저히 낮출 수 있고, 상기 수산화리튬의 촉매작용은 조촉매인 산화칼슘에 의해 더욱 강화될 수 있다. 산화칼슘은 수산화리튬의 해리작용을 도와 에스테르교환반응이 정반응 쪽으로 진행되도록 유도하며, 역반응에 의한 반응의 지연 및 억제를 최소화하는 역할을 한다.However, in the present invention, the weak base lithium hydroxide can be used to significantly reduce the possibility of side reaction polymerization, and the catalysis of lithium hydroxide can be further enhanced by the cocatalyst calcium oxide. Calcium oxide helps dissociation of lithium hydroxide, induces the transesterification reaction to proceed to the forward reaction, and plays a role of minimizing the delay and suppression of the reaction by the reverse reaction.

본 발명의 에스테르 교환반응에 사용되는 수산화리튬은 수분을 전혀 포함하지 않는 무수물 형태, 또는 수분이 존재하는 수화물 형태가 모두 사용될 수 있다.Lithium hydroxide used in the transesterification reaction of the present invention may be used both in the form of anhydride containing no water, or in the form of a hydrate in which water is present.

따라서, 본 발명에서는 수산화리튬과 산화칼슘을 포함하는 혼합촉매를 사용하며, 상기 혼합촉매의 사용으로 반응의 선택도가 높아지고, 전환율이 향상되어 고수율의 최종 생성물을 얻을 수 있다. Therefore, in the present invention, a mixed catalyst containing lithium hydroxide and calcium oxide is used, and the use of the mixed catalyst increases the selectivity of the reaction, and the conversion rate is improved to obtain a high yield of the final product.

상기 수산화리튬 촉매 및 산화칼슘 촉매는 전량을 에스테르 교환 반응의 시작 전에 투입하는 전량투입법이나, 반응 중간에 주기적으로 나누어 투입하는 부분 적하 투입법을 모두 사용할 수 있다. The lithium hydroxide catalyst and the calcium oxide catalyst may be used in a total amount injection method in which the entire amount is added before the start of the transesterification reaction, or a partial dropwise injection method in which the lithium hydroxide catalyst is periodically divided in the middle of the reaction.

상기 에스테르 교환반응 단계에 첨가되는 각 촉매의 첨가량은 특별히 한정되 지 않으나, 충분한 반응속도를 얻기 위해서는 상기 수산화리튬의 첨가량이 알콕시폴리에틸렌글리콜 100 중량부에 대하여 0.1 중량부 이상인 것이 바람직하고, 촉매의 낭비를 박고 촉매 제거를 용이하게 하기 위해서는 5 중량부 이하인 것이 바람직하며, 0.2 내지 1.5 중량부인 것이 더욱 바람직하다. 또한, 산화칼슘의 첨가량은 상기 수산화리튬 1 중량부에 대하여 0.5 내지 7 중량부인 것이 바람직하다. The amount of each catalyst added in the transesterification step is not particularly limited, but in order to obtain a sufficient reaction rate, the amount of lithium hydroxide is preferably 0.1 parts by weight or more based on 100 parts by weight of alkoxy polyethylene glycol, and waste of the catalyst. The amount is preferably 5 parts by weight or less, and more preferably 0.2 to 1.5 parts by weight in order to facilitate the removal of the catalyst. Moreover, it is preferable that the addition amount of calcium oxide is 0.5-7 weight part with respect to 1 weight part of said lithium hydroxide.

상기 에스테르 교환반응 단계는 i) 상기 화학식 1로 표시되는 알콕시폴리에틸렌글리콜과 상기 화학식 2로 표시되는 (메타)아크릴레이트를 1:1 내지 1:10의 몰비로 혼합하여 수산화리튬 및 산화칼슘의 혼합 촉매 존재 하에서 반응시키는 단계, 및 ii) 상기 반응 중에 (메타)아크릴레이트 및 상기 반응 부산물인 알코올(이하 '생성된 알코올'이라 함)의 공비물을 반응계 밖으로 제거함과 동시에 상기 (메타)아크릴레이트를 반응계에 새로 공급하여 상기 알콕시폴리에틸렌글리콜과 상기 화학식 2로 표시되는 (메타)아크릴레이트의 1:1 내지 1:10의 몰비를 유지하는 단계를 포함하는 것이 바람직하다. The transesterification step is i) a mixed catalyst of lithium hydroxide and calcium oxide by mixing alkoxy polyethylene glycol represented by the formula (1) and (meth) acrylate represented by the formula (2) in a molar ratio of 1: 1 to 1:10. Reacting in the presence of, and ii) removing the azeotrope of (meth) acrylate and the reaction by-product alcohol (hereinafter referred to as 'produced alcohol') out of the reaction system and simultaneously removing the (meth) acrylate during the reaction. It is preferable to include a step of maintaining a molar ratio of 1: 1 to 1:10 of the alkoxy polyethylene glycol and the (meth) acrylate represented by the formula (2) by supplying a new.

상기 에스테르 교환반응은 정반응과 역반응이 동시에 일어나는 가역 반응이므로, 생성된 알코올이 반응계에 일정량 존재할 경우에는 정반응을 억제하는 역반응이 발생할 확률이 높아지게 된다. 따라서, 반응이 진행함에 따라 생성된 알코올을 반응계 내로 환류시키지 않고 외부로 제거하여야 하며, 이 때, 미반응의 (메타)아크릴레이트가 공비증류에 의해 상기 생성된 알코올과 함께 반응계 밖으로 제거된다. Since the transesterification reaction is a reversible reaction in which the forward reaction and the reverse reaction occur at the same time, when a certain amount of the generated alcohol is present in the reaction system, the probability of occurrence of a reverse reaction that suppresses the forward reaction increases. Therefore, as the reaction proceeds, the produced alcohol must be removed to the outside without reflux into the reaction system, wherein unreacted (meth) acrylate is removed out of the reaction system together with the produced alcohol by azeotropic distillation.

따라서, 상기 반응계 내의 (메타)아크릴레이트는 알콕시폴리에틸렌글리콜보 다 과량으로 존재하는 것이 바람직하며, 에스테르 교환반응의 전환율을 높이기 위해서는 알콕시폴리에틸렌글리콜과 (메타)아크릴레이트의 초기 몰비가 1:1 이상인 것이 바람직하고, 과량의 미반응 (메타)아크릴레이트를 제거하기 위한 공정시간 및 에너지 등의 문제와 최종 생산품의 수율을 고려하면 초기 몰비가 1:10 이하인 것이 바람직하며, 1:2 내지 1:7인 것이 더 바람직하다. 다만 상기 몰비의 상한 값이 발명의 범위를 한정하는 것이 아니며, 최대 1:10 정도면 충분하다는 것을 의미한다.Therefore, the (meth) acrylate in the reaction system is preferably present in excess of alkoxypolyethylene glycol, and in order to increase the conversion rate of the transesterification reaction, the initial molar ratio of alkoxypolyethylene glycol and (meth) acrylate is 1: 1 or more. In consideration of problems such as process time and energy for removing excess unreacted (meth) acrylate and yield of the final product, the initial molar ratio is preferably 1:10 or less, and 1: 2 to 1: 7. More preferred. However, the upper limit of the molar ratio does not limit the scope of the invention, which means that a maximum of about 1:10 is sufficient.

또한, 상기 생성된 알코올의 제거 단계에서는 일정량의 미반응 (메타)아크릴레이트도 함께 제거되기 때문에 반응이 진행함에 따라 상기 알콕시폴리에틸렌글리콜에 대한 (메타)아크릴레이트의 몰비가 점점 감소하게 되며, 바람직한 몰비를 유지하기 위해서는 상기 (메타)아크릴레이트를 반응계에 새로 공급하여야 한다. In addition, since the amount of unreacted (meth) acrylate is also removed in the step of removing the produced alcohol, as the reaction proceeds, the molar ratio of (meth) acrylate to the alkoxypolyethylene glycol gradually decreases, and the preferred molar ratio. In order to maintain the (meth) acrylate must be newly supplied to the reaction system.

이 때 상기 (메타)아크릴레이트는 반응계 내의 알콕시폴리에틸렌글리콜과 상기 (메타)아크릴레이트의 몰비가 1:1 내지 1:10을 유지하도록 첨가하는 것이 바람직하다. 이 경우에도 상기 몰비의 상한치를 한정하는 것은 아니며, 1:10 정도면 충분하다는 것을 의미한다.At this time, the (meth) acrylate is preferably added so that the molar ratio of the alkoxy polyethylene glycol and the (meth) acrylate in the reaction system is 1: 1 to 1:10. Also in this case, the upper limit of the molar ratio is not limited, meaning that 1:10 is sufficient.

상기 생성된 알코올을 제거하는 방법은 통상적인 방법과 동일하며, 반응계의 압력과 온도를 적절히 조절하여 제거할 수 있으므로, 본 발명에서는 이에 대한 상세한 설명을 생략한다.The method of removing the generated alcohol is the same as the conventional method, and can be removed by appropriately adjusting the pressure and temperature of the reaction system, the detailed description thereof is omitted in the present invention.

다만, 상기 에스테르 교환반응 단계에서 전체적인 반응의 엔탈피 변화값 (△H)은 음(-)의 값이므로, 반응열을 발생시키는 발열반응에 해당된다. 상기 반응 단계에서는 (메타)아크릴산염이 생성되는 부반응이 발생할 수 있으며, 이러한 부반응 은 반응 온도가 높을수록 잘 일어나기 때문에 반응 온도의 조절이 매우 중요하다. However, since the change in enthalpy (ΔH) of the overall reaction in the transesterification step is a negative value (−), it corresponds to an exothermic reaction that generates heat of reaction. In the reaction step, side reactions in which (meth) acrylates are produced may occur, and control of the reaction temperature is very important because such side reactions occur better at higher reaction temperatures.

따라서, 에스테르 교환 반응이 원활이 일어나기 위해서는 상기 반응온도가 50℃ 이상인 것이 바람직하고, 열에 의한 라디칼 발생과 중합(Polymerization)으로 인한 올리고머 생성을 막기 위해서는 95 ℃이하인 것이 바람직하며, 70 내지 95 ℃인 것이 더 바람직하다. 올리고머(Oligomer)가 많이 생성된 제품은 중합 후 폴리머의 물성이 열악해지는 문제 외에도 여과 공정시 필터가 잘 안 되는 문제가 발생할 수 있다.Therefore, in order for the transesterification reaction to occur smoothly, the reaction temperature is preferably 50 ° C. or higher, and in order to prevent generation of oligomers due to heat generation and polymerization (Polymerization), the reaction temperature is preferably 95 ° C. or lower, and 70 to 95 ° C. More preferred. Products that produce a lot of oligomers may have problems of poor filter during the filtration process, in addition to the problem of poor polymer properties after polymerization.

또한, 상기 반응은 상압 또는 감압 상태에서 모두 반응이 가능하나, 반응속도를 높이고 생성된 알코올 등을 효과적으로 제거하기 위해서는 500 torr 이하로 유지하는 것이 바람직하고, 상기 반응계가 과도하게 끓어 넘치지 않도록 하기 위해서는 반응압력이 200 torr 이상인 것이 바람직하다. In addition, the reaction can be carried out at both normal and reduced pressure, but in order to increase the reaction rate and effectively remove the produced alcohol and the like, it is preferable to keep the reaction at 500 torr or less, and in order to prevent the reaction system from excessively boiling. It is preferable that the pressure is 200 torr or more.

본 발명의 반응은 기화된 상태의 (메타)아크릴레이트/알코올 혼합물로부터 (메타)아크릴레이트와 알코올을 분리하기 위한 충진탑이 장착된 반응기 내에서 실시할 수 있으며, 생성된 알코올 등의 제거와 새로운 (메타)아크릴레이트의 공급량을 효과적으로 조절하기 위해서는 상기 충진탑의 온도가 30 내지 90 ℃로 유지되는 것이 바람직하다. The reaction of the present invention can be carried out in a reactor equipped with a packed column for separating (meth) acrylate and alcohol from the (meth) acrylate / alcohol mixture in a vaporized state. In order to effectively control the supply amount of (meth) acrylate, the temperature of the packed column is preferably maintained at 30 to 90 ℃.

상기 충진탑 내에는 표면적이 큰 입자들이 충진되어 있는 것이 바람직하며, 0.2 내지 0.5 cm 길이의 유리관 형태인 라시힐링이 충진되어 있는 것이 더 바람직하다. 상기 기화된 물질들은 충진된 짧은 관모양의 라시힐링들을 통과하면서 저비점 물질과 고비점 물질의 부분적인 분리가 일어나게 되며, 고비점 물질인 (메타)아 크릴레이트 중 일부는 반응기 안으로 다시 들어가고 일부는 생성된 알코올과 함께 반응계 외로 제거된다. In the packed column, particles having a large surface area are preferably filled, and more preferably, lash healing is filled in a glass tube shape of 0.2 to 0.5 cm in length. The vaporized materials pass through filled short tubular lashings, causing partial separation of the low-boiling and high-boiling materials, with some of the high-boiling material (meth) acrylate going back into the reactor and some producing It is removed out of the reaction system with the alcohol.

다만, 상기 라시힐링의 크기는 일 예를 기재한 것이며, 반응기의 크기에 따라 조절할 수 있는 것이므로 본 발명에서는 상기 범위로 한정되지 않는다.However, the size of the rash healing is described as an example, and can be adjusted according to the size of the reactor is not limited to the above range in the present invention.

상기 반응시간은 반응의 수율 및 공정시간을 고려하여 적절한 범위에서 조절할 수 있으나, 반응이 진행되기 위해서는 1시간 이상 반응시키는 것이 바람직하고, 공정시간의 낭비를 막기 위해서는 9시간 이하로 반응시키는 것이 바람직하며, 3 내지 8시간 동안 반응시키는 것이 더 바람직하다.The reaction time can be adjusted in an appropriate range in consideration of the yield and the process time of the reaction, but the reaction is preferably carried out for 1 hour or more, and the reaction time is preferably 9 hours or less to prevent waste of the process time. More preferably 3 to 8 hours.

상기 에스테르 교환반응 단계에서 불필요한 중합을 방지하기 위해서는 중합금지제를 함께 첨가하여 중합반응 하는 것이 바람직하다. 상기 중합 방지제의 바람직한 예로는 3-부틸카테콜, 페놀, 아미노페놀, 디페놀아민, 페닐-베타-나프탈아민, 히드로퀴논모노메틸에테르, t-부틸히드록시톨루엔, 2,4-디메틸6-t-부틸페놀, 및 페노티아진으로 이루어진 군에서 선택되는 1종 이상이 있으며, 그 중에서도 이 중 최종 제품의 색상 및 중합 반응에 응용될 경우의 반응성을 고려하면 히드로퀴논모노메틸에테르를 사용하는 것이 더 효과적이다. 또한 필요에 따라서는 산소를 반응액에 도입하면서 반응시켜도 좋다. In order to prevent unnecessary polymerization in the transesterification step, it is preferable to add a polymerization inhibitor together with the polymerization reaction. Preferred examples of the polymerization inhibitor include 3-butylcatechol, phenol, aminophenol, diphenolamine, phenyl-beta-naphthalamine, hydroquinone monomethyl ether, t-butylhydroxytoluene, 2,4-dimethyl6-t At least one selected from the group consisting of -butylphenol and phenothiazine, among which, it is more effective to use hydroquinone monomethyl ether in view of the color of the final product and the reactivity when applied to the polymerization reaction. to be. Moreover, you may make it react, introducing oxygen into a reaction liquid as needed.

상기 중합금지제는 과량인 (메타)아크릴레이트의 중합 발생을 예방하기 위해 알콕시폴리에틸렌글리콜 및 (메타)아크릴레이트 전체 100 중량부에 대하여 0.01 중량부 이상으로 첨가되는 것이 바람직하고, 최종 제품인 알콕시폴리에틸렌글리콜(메타)아크릴레이트의 중합 시 반응 특성 저하를 막기 위하여 1 중량부 이하로 첨가되 는 것이 바람직하며, 0.1 내지 0.3 중량부로 첨가되는 것이 더 바람직하다. The polymerization inhibitor is preferably added in an amount of 0.01 parts by weight or more based on 100 parts by weight of the total amount of alkoxy polyethylene glycol and (meth) acrylate in order to prevent the occurrence of excessive polymerization of (meth) acrylate, and the final product is alkoxy polyethylene glycol. In order to prevent the reaction characteristic deterioration at the time of polymerization of (meth) acrylate, it is preferable to add in 1 weight part or less, and it is more preferable to add in 0.1-0.3 weight part.

상기 에스테르 교환반응의 진행 정도는 액체크로마토그래피, 수산화기 측정 (OH value 측정) 등을 이용한 반응액의 조성 분석과 생성된 알코올의 양으로부터 판단하며, 원하는 만큼의 반응율에 도달한 후에 가열을 종료하고 반응을 마친다. The progress of the transesterification reaction is judged from the analysis of the composition of the reaction solution using liquid chromatography, hydroxyl group measurement (OH value measurement) and the like, and the amount of alcohol produced. To finish.

반응에 사용된 알콕시폴리알킬렌글리콜은 비점이 매우 높아서 제거가 불가능하므로 반응시 전환율을 99.5% 이상으로 관리하는 것이 바람직하다. Since the alkoxypolyalkylene glycol used in the reaction cannot be removed because the boiling point is very high, it is preferable to control the conversion rate at the reaction of 99.5% or more.

상기 반응이 종료된 후에 반응물 내에는 생성된 알콕시폴리알킬렌글리콜(메타)아크릴레이트 외에도 미반응의 (메타)아크릴레이트가 상당량으로 존재한다. After the reaction is completed, a significant amount of unreacted (meth) acrylate is present in the reactant in addition to the produced alkoxypolyalkylene glycol (meth) acrylate.

따라서, 상기 에스테르 교환반응 후에는 반응이 완료된 반응물로부터 미반응의 (메타)아크릴레이트를 제거하는 단계를 진행하는 것이 바람직하며, 상기 미반응 (메타)아크릴레이트의 제거단계는 통상적인 감압 증류법을 사용할 수 있다. 이 때, 감압 조건은 특별히 한정되지 않으나 70 내지 90 ℃에서 200 내지 40 torr로 하는 것이 공정시간 단축 측면에서 바람직하다.Therefore, after the transesterification reaction, it is preferable to proceed with the step of removing the unreacted (meth) acrylate from the reaction product, the reaction is completed, the step of removing the unreacted (meth) acrylate using a conventional vacuum distillation method Can be. At this time, the decompression conditions are not particularly limited, but it is preferable to set it as 200 to 40 torr at 70 to 90 ° C in view of shortening of the process time.

또한, 상기 반응물 내에는 미반응의 (메타)아크릴레이트 외에도 촉매로 사용된 수산화리튬, 및 산화칼슘이 존재하며, 부반응에 의해 생성된 염들도 함께 고상의 불순물로 존재할 수 있다. 따라서, 본 발명의 제조방법에서는 이들 불순물을 제거하는 단계를 더 포함하는 것이 바람직하다. In addition, lithium hydroxide, which is used as a catalyst, and calcium oxide are present in the reactant in addition to unreacted (meth) acrylate, and salts generated by side reactions may also be present as solid impurities. Therefore, it is preferable that the manufacturing method of the present invention further includes the step of removing these impurities.

상기 불순물 제거단계와 상기 미반응 (메타)아크릴레이트의 제거단계의 순서는 특별히 한정되지 않으나 불순물 제거단계를 먼저 할 경우에는 미반응 (메타)아크릴레이트의 냄새 때문에 여과작업성이 나빠질 수 있으므로 미반응 (메타)아크릴 레이트를 먼저 제거하는 것이 바람직하다. The order of the impurity removal step and the removal of the unreacted (meth) acrylate is not particularly limited, but if the impurity removal step is performed first, the filtration workability may deteriorate due to the smell of the unreacted (meth) acrylate. It is preferable to remove (meth) acrylate first.

상기 불순물의 제거단계는 일반적인 여과 방법으로 제거할 수 있으며, 보다 바람직하게는 규조토를 이용한 감압 흡인여과, 또는 가압 여과법을 이용하여 제거할 수 있다. 이 때, 상기 규조토 사용량은 촉매 및 부반응염을 완전히 제거 하기 위하여 생성된 알콕시폴리알킬렌글리콜(메타)아크릴레이트 100 중량부에 대하여 0.05 중량부 이상인 것이 바람직하고, 여과 속도 및 폐기물 발생량을 감안하여 5.0 중량부 이하인 것이 바람직하다. 이하, 본 발명의 바람직한 실시예를 기재한다. 다만, 하기의 실시예는 본 발명의 바람직한 일 실시예일 뿐, 본 발명이 하기 실시예에 의해 한정되는 것은 아니다.The impurities may be removed by a general filtration method, and more preferably, may be removed by vacuum suction filtration using diatomaceous earth or pressure filtration. At this time, the amount of diatomaceous earth is preferably 0.05 parts by weight or more based on 100 parts by weight of the alkoxypolyalkylene glycol (meth) acrylate produced to completely remove the catalyst and side reaction salt, 5.0 in view of the filtration rate and waste generation amount It is preferable that it is below a weight part. Hereinafter, preferred embodiments of the present invention are described. However, the following examples are only preferred embodiments of the present invention, and the present invention is not limited to the following examples.

[실시예]EXAMPLE

실시예 1Example 1

교반기, 온도계, 및 라시힐링을 충전시킨 충전탑을 설치한 20 리터 용량의 반응기에 메톡시폴리에틸렌글리콜 #600 (옥시에틸렌기의 평균 부가 몰수 : 13몰) 9 kg (15몰), 메틸메타크릴레이트 4.5 kg (45몰), 수산화리튬 일수화물 40.6 g, 산화칼슘 130.5 g, 및 히드로퀴논모노메틸에테르 9 g을 넣고, 80 ~ 85℃로 가열 교반하며, 400 torr의 감압 조건에서 6시간 동안 에스테르 교환 반응을 진행하였다. 9 kg (15 moles) of methoxypolyethylene glycol # 600 (average moles of oxyethylene groups: 13 moles), methyl methacrylate, in a 20 liter reactor equipped with a stirrer, a thermometer, and a packed column packed with rash healing. 4.5 kg (45 mol), 40.6 g of lithium hydroxide monohydrate, 130.5 g of calcium oxide, and 9 g of hydroquinone monomethyl ether were added, and the mixture was heated and stirred at 80 to 85 ° C. for 6 hours under a reduced pressure of 400 torr. Proceeded.

상기 반응 과정에서 반응 혼합물을 가열 환류하였으며, 충진탑 정상의 온도는 55 내지 65℃의 범위를 유지하도록 환류비를 조절하고 생성된 메틸알코올은 메틸메타크릴레이트와 함께 공비물로서 제거하였다. The reaction mixture was heated to reflux in the course of the reaction, the reflux ratio was adjusted to maintain the temperature of the top of the packed column in the range of 55 to 65 ℃ and the resulting methyl alcohol was removed as azeotrope with methyl methacrylate.

이때 메틸메타크릴레이트를 3 kg/hr (30 몰/hr)의 속도로 일정하게 반응기 내부에 투입하여 반응계 내의 메틸메타크릴레이트와 메톡시폴리알킬렌글리콜의 반응 몰비를 조정하였다. At this time, methyl methacrylate was constantly introduced into the reactor at a rate of 3 kg / hr (30 mol / hr) to adjust the reaction molar ratio of methyl methacrylate and methoxypolyalkylene glycol in the reaction system.

상기 에스테르 교환 반응이 완료된 후에 초기 400 torr에서 점차로 40 torr까지 감압하여 미반응의 메틸메타크릴레이트를 제거하고, 규조토 300 g을 반응기 내에 넣고 다시 100 torr 로 감압 여과하였다. After completion of the transesterification reaction, the pressure was gradually reduced from 400 torr to 40 torr to remove unreacted methyl methacrylate, and 300 g of diatomaceous earth was put into a reactor and filtered under reduced pressure to 100 torr again.

상기 반응에서 얻어진 메톡시폴리에틸렌글리콜메틸메타크릴레이트의 순도는 NMR과 액체크로마토그래피를 이용하여 측정하였으며, 수율은 메톡시폴리에틸렌글린콜(메타)아크릴레이트의 이론 생성량 대비 최종 감압 여과를 통해 수득한 양의 중량 비율로부터 계산하였다. Purity of the methoxy polyethylene glycol methyl methacrylate obtained in the reaction was measured by using NMR and liquid chromatography, the yield is obtained through the final reduced pressure filtration relative to the theoretical production of methoxy polyethylene glycol glycol (meth) acrylate Calculated from the weight ratio of.

실시예 2Example 2

메톡시폴리에틸렌글리콜 #1000 (옥시에틸렌기의 평균 부가 몰수 : 23몰) 9 kg (9몰), 메틸메타크릴레이트 3 kg (30몰), 수산화리튬 일수화물 40.6 g, 산화칼슘 130.5 g, 및 히드로퀴논모노메틸에테르 9 g을 넣고 7시간 동안 반응을 진행한 것을 제외하고는 실시예 1과 동일한 방법으로 메톡시폴리에틸렌글리콜메틸메타크릴레이트를 제조하였다. Methoxypolyethylene glycol # 1000 (average added moles of oxyethylene group: 23 mol) 9 kg (9 mol), 3 kg (30 mol) methyl methacrylate, 40.6 g of lithium hydroxide monohydrate, 130.5 g of calcium oxide, and hydroquinone A methoxy polyethylene glycol methyl methacrylate was prepared in the same manner as in Example 1 except that 9 g of monomethyl ether was added and the reaction was performed for 7 hours.

실시예 3Example 3

메톡시폴리에틸렌글리콜 #430 (옥시에틸렌기의 평균 부가 몰수 : 9몰) 9 kg (21몰), 메틸메타크릴레이트 6 kg (60몰), 수산화리튬 일수화물 40.6 g, 칼슘옥사 이드 130.5 g, 및 히드로퀴논 모노메틸 에테르 9 g을 넣고 5시간 동안 반응을 진행한 것을 제외하고는 실시예 1과 동일한 방법으로 메톡시폴리에틸렌글리콜메틸메타크릴레이트를 제조하였다. Methoxypolyethylene glycol # 430 (average added moles of oxyethylene group: 9 mol) 9 kg (21 mol), 6 kg (60 mol) methyl methacrylate, 40.6 g of lithium hydroxide monohydrate, 130.5 g of calcium oxide, and A methoxypolyethylene glycol methyl methacrylate was prepared in the same manner as in Example 1 except that 9 g of hydroquinone monomethyl ether was added and the reaction was performed for 5 hours.

실시예 4Example 4

메톡시폴리에틸렌글리콜 #1300 (옥시에틸렌기의 평균 부가 몰수 : 30몰) 9 kg (6.9몰), 메틸메타크릴레이트 2.1kg (21몰), 수산화리튬 일수화물 40.6g, 칼슘옥사이드 130.5 g, 히드로퀴논 모노메틸 에테르 9 g을 넣고 8.5 시간 동안 반응을 진행한 것을 제외하고는 실시예 1과 동일한 방법으로 메톡시폴리에틸렌글리콜메틸메타크릴레이트를 제조하였다. Methoxypolyethylene glycol # 1300 (average added moles of oxyethylene group: 30 moles) 9 kg (6.9 moles), methyl methacrylate 2.1 kg (21 moles), lithium hydroxide monohydrate 40.6 g, calcium oxide 130.5 g, hydroquinone mono A methoxypolyethylene glycol methyl methacrylate was prepared in the same manner as in Example 1 except that 9 g of methyl ether was added and the reaction was performed for 8.5 hours.

실시예 5Example 5

메톡시폴리에틸렌글리콜 #600 (옥시에틸렌기의 평균 부가 몰수 : 13몰) 9 kg(15 몰), 메틸메타크릴레이트 4.5kg(45몰), 수산화리튬 일수화물 40.6 g, 산화칼슘 130.5 g, 및 히드로퀴논모노메틸에테르 9 g을 넣고 20시간 동안 반응을 진행하였으며 반응 중 메틸메타크릴레이트를 추가로 반응기에 투입하지 않은 것을 제외하고는 실시예 1과 동일한 방법으로 메톡시폴리에틸렌글리콜메틸메타크릴레이트를 제조하였다. Methoxypolyethylene glycol # 600 (average added moles of oxyethylene group: 13 moles) 9 kg (15 moles), 4.5 kg (45 moles) methyl methacrylate, 40.6 g of lithium hydroxide monohydrate, 130.5 g of calcium oxide, and hydroquinone 9 g of monomethyl ether was added and the reaction proceeded for 20 hours, and methoxy polyethylene glycol methyl methacrylate was prepared in the same manner as in Example 1 except that no additional methyl methacrylate was added to the reactor. .

실시예 6Example 6

메톡시폴리에틸렌글리콜 #600 (옥시에틸렌기의 평균 부가 몰수 : 13몰) 9 kg(15 몰), 메틸메타크릴레이트 15 kg(150몰), 수산화리튬 일수화물 40.6 g, 산화칼슘 130.5 g, 및 히드로퀴논모노메틸에테르 9 g을 넣고 14시간 동안 반응을 진행하였으며 반응 중 메틸메타크릴레이트를 추가로 반응기에 투입하지 않은 것을 제외하고는 실시예 1과 동일한 방법으로 메톡시폴리에틸렌글리콜메틸메타크릴레이트를 제조하였다. Methoxypolyethylene glycol # 600 (average added moles of oxyethylene group: 13 moles) 9 kg (15 moles), 15 kg (150 moles) methyl methacrylate, 40.6 g of lithium hydroxide monohydrate, 130.5 g of calcium oxide, and hydroquinone 9 g of monomethyl ether was added and the reaction proceeded for 14 hours, and methoxy polyethylene glycol methyl methacrylate was prepared in the same manner as in Example 1 except that no additional methyl methacrylate was added to the reactor. .

실시예 7Example 7

메톡시폴리에틸렌글리콜 #600 (옥시에틸렌기의 평균 부가 몰수 : 13몰) 9 kg(15 몰), 메틸메타크릴레이트 4.5 kg(45몰), 수산화리튬 일수화물 40.6 g, 산화칼슘 130.5 g, 및 히드로퀴논모노메틸에테르 9 g을 넣고 9시간 동안 반응을 진행하였으며 반응 중 메틸메타크릴레이트를 반응기에 1.5 kg/hr (15 몰/hr) 투입한 것을 제외하고는 실시예 1과 동일한 방법으로 메톡시폴리에틸렌글리콜메틸메타크릴레이트를 제조하였다. Methoxypolyethylene glycol # 600 (average added moles of oxyethylene group: 13 moles) 9 kg (15 moles), 4.5 kg (45 moles) methyl methacrylate, 40.6 g of lithium hydroxide monohydrate, 130.5 g of calcium oxide, and hydroquinone 9 g of monomethyl ether was added and the reaction proceeded for 9 hours. Methyl methacrylate was added to the reactor in the same manner as in Example 1 except that 1.5 kg / hr (15 mol / hr) was added to the reactor. Methyl methacrylate was prepared.

비교예 1Comparative Example 1

수산화리튬 일수화물 40.6g을 단독촉매로 사용하고, 7시간 동안 반응을 진행한 것을 제외하고는 실시예 1과 동일한 방법으로 메톡시폴리에틸렌글리콜메틸메타크릴레이트를 제조하였다. 40.6 g of lithium hydroxide monohydrate was used as a single catalyst and methoxy polyethylene glycol methyl methacrylate was prepared in the same manner as in Example 1 except that the reaction was carried out for 7 hours.

비교예 2Comparative Example 2

수산화나트륨 30g을 단독촉매로 사용하고, 3시간 동안 반응을 진행하였으며 반응 중 메틸메타크릴레이트를 추가로 반응기에 투입하지 않은 것을 제외하고는 실시예 1과 동일한 방법으로 메톡시폴리에틸렌글리콜메틸메타크릴레이트를 제조하였다. 30 g of sodium hydroxide was used as a monocatalyst, and the reaction proceeded for 3 hours, and methyl methacrylate was not added to the reactor in the same manner as in Example 1, except that methoxy polyethylene glycol methyl methacrylate was used. Was prepared.

상기 반응은 3 시간 만에 중합이 발생하여 종료시켰으며, 전환율 측정은 불가능하였고, 여과도 불가능하였다.The reaction was terminated due to polymerization occurring in 3 hours, conversion measurement was impossible, and filtration was impossible.

상기 실시예 1 내지 7에 따른 공정과 비교예 1 내지 2에 따른 공정으로부터 얻어진 메톡시폴리에틸렌글리콜메틸메타크릴레이트의 반응시간, 전환율, 선택도, 부반응인 Michale addition 반응 및 메틸메타크릴레이트염 생성율, 및 최종순도를 하기 표 1에 정리하였다. Reaction time, conversion rate, selectivity, side reactions of the methoxy polyethylene glycol methyl methacrylate obtained from the process according to Examples 1 to 7 and the process according to Comparative Examples 1 to 2, and the production rate of the methyl methacrylate salt as a side reaction, And final purity is summarized in Table 1 below.

전환율은 액체크로마토그래피로 측정하였다. Conversion was measured by liquid chromatography.

선택도는 NMR 및 액체크로마토그래피 방법으로 측정하였다. Selectivity was measured by NMR and liquid chromatography methods.

부반응 발생율은 NMR 및 여과 시 석출된 염의 양으로부터 계산하였다. The incidence of side reactions was calculated from NMR and the amount of salt precipitated upon filtration.

최종 순도는 NMR 및 액체크로마토그래피 로 측정하였다.Final purity was determined by NMR and liquid chromatography.

[표 1] TABLE 1

촉매catalyst 반응시간 (hrs)Response time (hrs) MMA 추가투입Additional MMA 전환율 (%)% Conversion 선택도 (%)Selectivity (%) 중합 발생율(%)Polymerization rate (%) 최종 순도(%)Final purity (%) 실시예 1Example 1 혼합촉매Mixed catalyst 66 50 g/min50 g / min 100100 9898 00 >99.5> 99.5 실시예 2Example 2 혼합촉매Mixed catalyst 77 50 g/min50 g / min 100100 9898 00 >99.5> 99.5 실시예 3Example 3 혼합촉매Mixed catalyst 55 50 g/min50 g / min 100100 9898 00 >99.5> 99.5 실시예 4Example 4 혼합촉매Mixed catalyst 8.58.5 50 g/min50 g / min 100100 9898 00 >99.5> 99.5 실시예 5Example 5 혼합촉매Mixed catalyst 2020 00 9191 9898 00 9191 실시예 6Example 6 혼합촉매Mixed catalyst 1414 00 9797 9898 0.10.1 9797 실시예 7Example 7 혼합촉매Mixed catalyst 99 1.5 kg/hr1.5 kg / hr 100100 9898 00 >99.5> 99.5 비교예 1Comparative Example 1 LiOH단독LiOH alone 77 3 kg/hr3 kg / hr 9999 8585 00 8585 비교예 2Comparative Example 2 NaOH단독NaOH alone 33 00 -- -- >20> 20 --

상기 표 1에서 보는 것과 같이, 본 발명의 제조방법은 전환율 및 선택도가 높고, 반응시간이 짧으며, 부반응 발생율이 현저히 낮은 것을 알 수 있다. As shown in Table 1, the production method of the present invention can be seen that the conversion and selectivity is high, the reaction time is short, the side reaction occurrence rate is significantly low.

본 발명의 제조 방법에서는 부반응을 억제하여 반응 선택도가 높을 뿐만 아니라 중합반응이 억제되어 반응안정성이 우수하며, 최종 제품인 알콕시폴리알킬렌글리콜(메타)아크릴레이트의 순도가 향상되는 장점이 있다.  In the production method of the present invention, not only the side reaction is suppressed, the reaction selectivity is high, the polymerization reaction is suppressed, and the reaction stability is excellent.

Claims (10)

하기 화학식 1로 표시되는 알콕시폴리에틸렌글리콜과 하기 화학식 2로 표시되는 (메타)아크릴레이트를 수산화리튬 및 산화칼슘의 혼합 촉매 존재 하에서 에스테르 교환 반응시키는 단계를 포함하는 화학식 3의 알콕시폴리알킬렌글리콜(메타)아크릴레이트의 제조 방법:The alkoxypolyalkylene glycol of the formula (3) comprising the step of transesterifying the alkoxypolyethylene glycol represented by the formula (1) and the (meth) acrylate represented by the formula (2) in the presence of a mixed catalyst of lithium hydroxide and calcium oxide (meta A method of making the acrylate: [화학식 1] [Formula 1]
Figure 112005075877160-pat00004
Figure 112005075877160-pat00004
[화학식 2][Formula 2]
Figure 112005075877160-pat00005
Figure 112005075877160-pat00005
[화학식 3][Formula 3]
Figure 112005075877160-pat00006
Figure 112005075877160-pat00006
상기 식에서, Where R1은 탄소수가 1 내지 4인 알킬기이고, R 1 is an alkyl group having 1 to 4 carbon atoms, R2O는 탄소수가 2 내지 4인 옥시알킬렌기의 1종 또는 2종 이상이 블록상으로 부가되어 있거나 혹은 랜덤상으로 부가되어 있는 폴리알킬렌기이고, R 2 O is a polyalkylene group in which one or two or more oxyalkylene groups having 2 to 4 carbon atoms are added in block form or added in random form, R3는 수소, 또는 메틸기이고,R 3 is hydrogen or a methyl group, R4는 탄소수가 1 내지 4인 알킬기이고, R 4 is an alkyl group having 1 to 4 carbon atoms, m, 및 n은 옥시알킬렌기의 평균 부가 몰수로 각각 독립적으로 1 내지 50인 정수이다.m and n are the integers of 1-50 each independently in the average added mole number of an oxyalkylene group.
제1항에 있어서, The method of claim 1, 상기 에스테르 교환반응 단계는 상기 수산화리튬의 첨가량이 알콕시폴리에틸렌글리콜 100 중량부에 대하여 0.1 내지 5 중량부로 포함되고, 상기 산화칼슘의 첨가량이 상기 수산화리튬 1 중량부에 대하여 0.5 내지 7 중량부인 알콕시폴리알킬렌글리콜(메타)아크릴레이트의 제조 방법.In the transesterification step, the amount of lithium hydroxide is included in an amount of 0.1 to 5 parts by weight based on 100 parts by weight of alkoxypolyethylene glycol, and the amount of calcium oxide is 0.5 to 7 parts by weight based on 1 part by weight of the lithium hydroxide. Method for producing lene glycol (meth) acrylate. 제1항에 있어서, The method of claim 1, 상기 에스테르 교환반응 단계는 The transesterification step is i) 상기 화학식 1로 표시되는 알콕시폴리에틸렌글리콜과 상기 화학식 2로 표시되는 (메타)아크릴레이트를 1:1 내지 1:10의 몰비로 혼합하여 수산화리튬 및 산화칼슘의 혼합 촉매 존재 하에서 반응시키는 단계; 및i) mixing the alkoxy polyethylene glycol represented by Chemical Formula 1 and the (meth) acrylate represented by Chemical Formula 2 in a molar ratio of 1: 1 to 1:10 to react in the presence of a mixed catalyst of lithium hydroxide and calcium oxide; And ii) 상기 반응 중에 (메타)아크릴레이트 및 상기 반응 부산물인 알코올의 공비물을 반응계 밖으로 제거함과 동시에 상기 (메타)아크릴레이트를 반응계에 새로 공급하여 상기 알콕시폴리에틸렌글리콜과 상기 화학식 2로 표시되는 (메타)아크릴 레이트의 1:1 내지 1:10의 몰비를 유지하는 단계ii) while removing the azeotrope of (meth) acrylate and the alcohol by-product of the reaction out of the reaction system during the reaction, the (meth) acrylate is newly supplied to the reaction system to represent the alkoxypolyethylene glycol and the formula (2) Maintaining a molar ratio of 1: 1 to 1:10 of acrylate 를 포함하는 것인 알콕시폴리알킬렌글리콜(메타)아크릴레이트의 제조 방법.Method for producing alkoxypolyalkylene glycol (meth) acrylate comprising a. 제1항에 있어서, The method of claim 1, 상기 에스테르 교환반응 단계는 반응계의 반응온도를 50 내지 95 ℃, 반응계의 반응압력을 200 내지 500 torr로 유지하는 것인 알콕시폴리알킬렌글리콜(메타)아크릴레이트의 제조 방법.The transesterification step is a method for producing an alkoxypolyalkylene glycol (meth) acrylate to maintain the reaction temperature of the reaction system at 50 to 95 ℃, the reaction pressure of the reaction system at 200 to 500 torr. 제1항에 있어서, The method of claim 1, 상기 에스테르 교환반응 단계는 3-부틸카테콜, 페놀, 아미노페놀, 디페놀아민, 페닐-베타-나프탈아민, 히드로퀴논모노메틸에테르, t-부틸히드록시톨루엔, 2,4-디메틸-6-t-부틸페놀, 및 페노티아진으로 이루어진 군에서 선택되는 1종 이상의 중합금지제를 더 첨가하여 진행되는 것인 알콕시폴리알킬렌글리콜(메타)아크릴레이트의 제조 방법.The transesterification step is 3-butylcatechol, phenol, aminophenol, diphenolamine, phenyl-beta-naphthalamine, hydroquinone monomethyl ether, t-butylhydroxytoluene, 2,4-dimethyl-6-t A method for producing an alkoxypolyalkylene glycol (meth) acrylate, which is further proceeded by further adding at least one polymerization inhibitor selected from the group consisting of -butylphenol and phenothiazine. 제5항에 있어서, The method of claim 5, 상기 중합금지제는 알콕시폴리에틸렌글리콜 및 (메타)아크릴레이트 전체 100 중량부에 0.01 내지 1 중량부로 첨가되는 것인 알콕시폴리알킬렌글리콜(메타)아크릴레이트의 제조 방법.The polymerization inhibitor is a method for producing an alkoxypolyalkylene glycol (meth) acrylate is added to 0.01 to 1 part by weight of 100 parts by weight of alkoxy polyethylene glycol and (meth) acrylate. 제1항에 있어서, The method of claim 1, 상기 제조방법은 에스테르 교환반응 후에 반응이 완료된 반응물로부터 미반응의 (메타)아크릴레이트를 제거하는 단계를 더 포함하는 것인 알콕시폴리알킬렌글리콜(메타)아크릴레이트의 제조 방법.The preparation method further comprises the step of removing the unreacted (meth) acrylate from the reaction is completed after the transesterification reaction alkoxypolyalkylene glycol (meth) acrylate. 제7항에 있어서, The method of claim 7, wherein 상기 미반응 (메타)아크릴레이트의 제거단계는 감압 증류법을 이용하는 것인 알콕시폴리알킬렌글리콜(메타)아크릴레이트의 제조 방법.The step of removing the unreacted (meth) acrylate is a method for producing an alkoxypolyalkylene glycol (meth) acrylate using a vacuum distillation method. 제1항에 있어서, The method of claim 1, 상기 제조방법은 에스테르 교환반응 후에 반응이 완료된 반응물로부터 수산화리튬, 산화칼슘, 및 부반응 염을 제거하는 단계를 더 포함하는 것인 알콕시폴리알킬렌글리콜(메타)아크릴레이트의 제조 방법.The method of producing alkoxypolyalkylene glycol (meth) acrylate further comprises the step of removing the lithium hydroxide, calcium oxide, and side reaction salt from the reaction is completed after the transesterification reaction. 제9항에 있어서, The method of claim 9, 상기 수산화리튬, 산화칼슘, 및 부반응 염을 제거하는 단계는 규조토를 이용한 감압 흡인여과, 또는 가압 여과법을 이용하는 것인 알콕시폴리알킬렌글리콜(메타)아크릴레이트의 제조 방법.Removing the lithium hydroxide, calcium oxide, and the side reaction salt is a method for producing an alkoxypolyalkylene glycol (meth) acrylate by vacuum suction filtration using diatomaceous earth, or pressure filtration.
KR1020050128972A 2005-12-23 2005-12-23 A method for preparing alkoxy polyalkyleneglycol (meth)acrylate KR100650143B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020050128972A KR100650143B1 (en) 2005-12-23 2005-12-23 A method for preparing alkoxy polyalkyleneglycol (meth)acrylate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020050128972A KR100650143B1 (en) 2005-12-23 2005-12-23 A method for preparing alkoxy polyalkyleneglycol (meth)acrylate

Publications (1)

Publication Number Publication Date
KR100650143B1 true KR100650143B1 (en) 2006-11-27

Family

ID=37713663

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020050128972A KR100650143B1 (en) 2005-12-23 2005-12-23 A method for preparing alkoxy polyalkyleneglycol (meth)acrylate

Country Status (1)

Country Link
KR (1) KR100650143B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100788019B1 (en) 2006-05-09 2007-12-21 주식회사 대림화학 Method for producing alkoxy polyalkylene glycol methacrylate

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100788019B1 (en) 2006-05-09 2007-12-21 주식회사 대림화학 Method for producing alkoxy polyalkylene glycol methacrylate

Similar Documents

Publication Publication Date Title
EP0930290B1 (en) Organotin catalysed transesterification
JP3374863B2 (en) Method for producing dialkyl carbonate
JP2006206590A (en) Method of transesterification for producing (meth)acrylate ester monomer
JPH02149541A (en) Production and use of carboxylic acid ester of alkylene glycol ether
KR100570942B1 (en) Process for preparing methacrylic anhydride
JP4017668B2 (en) Method for producing polyglycol (meth) acrylate
KR100650143B1 (en) A method for preparing alkoxy polyalkyleneglycol (meth)acrylate
KR100860247B1 (en) Process for the preparation of alkylimidazolidone methacrylates
JP2554965B2 (en) Method for purifying dialkyl carbonate
JPH02193944A (en) Production of (meth)acrylic acid ester
JP2702249B2 (en) Process for producing alkylaminoalkyl ester of acrylic acid or methacrylic acid
JP2926375B2 (en) Method for producing hydroxycarboxylic acid ester
CN111848944A (en) Synthesis method of vinyl polyether macromonomer
CN110590555A (en) Process for producing bis (2-hydroxyethyl) terephthalate
JPH0717577B2 (en) Process for producing methacrylic acid ester of ether group-containing alcohol
JPH05286896A (en) Production of allyl ester
KR100897374B1 (en) Non-Solvent Process for preparing alkoxypolyoxyalkyleneglycol unsaturated carboxylicacidalkylester and Mortar or Concrete Dispersant Prepared thereof.
KR100570302B1 (en) A process for preparing Alkoxy poly oxy alkylene glycolalkyl unsaturated carboxylic acid diesters
JP4875232B2 (en) Method for producing esterified product
JPS6226249A (en) Purification of optically active lactic acid ester
US3076838A (en) Chloro and nitro substituted 2-aryloxy-ethyl acrylate and methacrylates
CA2221868A1 (en) Improved method for transesterification
JPS646182B2 (en)
JPH05286904A (en) Production of allyl esters
KR100396373B1 (en) Preparation method of 2,6-dihydroxybenzoic acid

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20121011

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20131018

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20141017

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20150923

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20160928

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20170919

Year of fee payment: 12

FPAY Annual fee payment

Payment date: 20181016

Year of fee payment: 13

FPAY Annual fee payment

Payment date: 20191016

Year of fee payment: 14