JP4868270B2 - Piezoelectric actuator element - Google Patents

Piezoelectric actuator element Download PDF

Info

Publication number
JP4868270B2
JP4868270B2 JP2000157075A JP2000157075A JP4868270B2 JP 4868270 B2 JP4868270 B2 JP 4868270B2 JP 2000157075 A JP2000157075 A JP 2000157075A JP 2000157075 A JP2000157075 A JP 2000157075A JP 4868270 B2 JP4868270 B2 JP 4868270B2
Authority
JP
Japan
Prior art keywords
actuator element
piezoelectric actuator
sintered
piezoelectric
sintering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000157075A
Other languages
Japanese (ja)
Other versions
JP2001339106A (en
JP2001339106A5 (en
Inventor
昌弘 高橋
英男 加藤
渡辺  純一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Metals Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP2000157075A priority Critical patent/JP4868270B2/en
Publication of JP2001339106A publication Critical patent/JP2001339106A/en
Publication of JP2001339106A5 publication Critical patent/JP2001339106A5/ja
Application granted granted Critical
Publication of JP4868270B2 publication Critical patent/JP4868270B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、磁気ヘッドの位置決めや、光学機器、精密機器、測定機器等の各種精密部品などの変位や位置決めなどに用いる圧電アクチュエータ素子及びその製造方法に関し、特には高い空気清浄度が求められるHDD(ハード・ディスク・ドライブ)などの記録装置に用いられる磁気ヘッドの位置決め用の圧電アクチュエータ素子に関する。
【0002】
【従来の技術】
電圧を印加することによって変位を得る圧電現象を利用した圧電素子は、微少変位制御、応答性に優れ、従来から各種の微少変位制御装置に利用されている。
近年、コンピュータ、家電製品等において、その記録装置であるハードディスクの高記録密度化に伴い、記録書き込み・読み取り用のヘッドの高度な位置決め制御が要求され、従来からこれらヘッドの変位機構として使用されている永久磁石も用いたVCM(ボイスコイルモータ)だけでは位置決めが困難な状況となってきた。このため、例えば、特開平2−267782号、特開平9−265738号公報に開示のように、VCMで一次位置決めをすると共に、圧電アクチュエータ素子を併用して二次位置決め、換言すれば微小な変位をするアクチュエータが出て来た。
このような圧電アクチュエータ素子の従来の製造方法を概説する。
まず、セラミックス粉末材料、バインダ、溶剤等を混練してペースト状に調製し、これを成形してグリーンシートを作製する。また、導電性材料、バインダ、溶剤等を混練し、また内部電極層ペーストを調製しておく。次に、グリーンシート上に所定のパターンとなるように内部電極層ペーストを印刷した後、これを所定数積層し、圧着して積層体を得る。積層体にパンチング加工等により所望の形状加工を施した後焼成して、薄板状焼結体を得る。あるいは、薄板状焼結体に対し所望の形状とするように加工を施すか、この薄板状焼結体を適当な寸法に切断した後、形状加工を行なう。形状加工とは、薄板状焼結体に、孔部や切り欠きを設ける加工を言う。
【0003】
【発明が解決しようとする課題】
前述した圧電アクチュエータ素子をHDD(ハードディスク・ドライブ)等の中で使用する場合には、極めて薄い圧電アクチュエータ素子が必要とされるとともに高い寸法精度が要求される。そのかかる寸法上の要請に対し、薄物品、特に0.5mm以下のものの焼結は、反り・特性劣化等の問題が想定されるため、研削加工、ダイサー加工等によって必要とされる寸法を得るのが一般的である。しかし、この様にして得た圧電アクチュエータ素子では、前記加工により発生したパーティクル(微粒子)や、圧電アクチュエータ素子の加工面から剥離しかかったパーティクルが、圧電アクチュエータ素子をHDD装置に実装した後、圧電アクチュエータ素子から脱落して磁気ディスク表面に付着したりして磁気記録データを損傷したり、場合によっては自身の発生したパーティクルによってアクチュエータ素子が用いられたHDDがアクセス不能になる等、信頼性を低下させる要因を内在していた。このことはHDDに限ったことではなく、クリーンな使用環境でパーティクルを発生するという普遍的な問題があった。本発明の目的は、かかるパーティクル発生によるトラブルを未然に解決し、信頼性の高い磁気記録装置用圧電アクチュエータ素子を提供することである。
【0004】
【課題を解決するための手段】
本発明者は、パーティクル発生の原因を探求した結果、パーティクルは圧電アクチュエータ素子の表面から脱落した微少粒子が多いことを見いだし本発明に到達した。
【0005】
本発明は、グリーンシートと電極パターンが積層された成形体を焼結して0.5mm以下の予備焼結体とする一次焼結と、前記予備焼結体を加工した後、加工面を焼結肌とする二次焼結とを有し、前記一次焼結及び/又は二次焼結する際に、圧電材料から作製された圧電焼結体の板上に被焼結物を配置して焼結することを特徴とする磁気記録装置用圧電アクチュエータ素子の製造方法である。
【0006】
【発明の実施の形態】
まず本発明の圧電アクチュエータ素子の製造方法を説明する。本発明において圧電材料とは、PZT{Pb(Zr,Ti)O3 }、PT(PbTiO3 )、PLZT{(Pb,La)(Zr,Ti)O3 }、チタン酸バリウム(BaTiO3 )等のセラミックス圧電材料が好ましい。この圧電材料の粉末を成形して成形体を得る。通常は、圧電材料の粉末を適当な溶媒でスラリー状にしてドクターブレード法でグリーンシートを作製し、所定の電極パターンを印刷して、積層することが多い。しかし、本発明はそれに限定されるものではなく、圧電材料の粉末を金型で成形して成形体を作製してもよい。次に、この成形体を焼結するが、PZT,PT,PLZTなどPbを含む場合には、この際、前記成形体を圧電材料の粉末から作製された圧電焼結体の板上に配置して焼結する。それにより、焼結に依って成形体の表面から蒸発・飛散する圧電材料の主要構成元素である鉛(Pb)の補給ができる。これにより焼結密度が向上し、素子の厚みが0.5mm以下の薄いものであっても反りなく焼結することができるので、従来の様に後加工を必要としない。さらに、厳しい寸法精度を必要とされる場合には、前記成形体を一次焼結し予備焼結体を得て、その後、ダイヤモンド刃などでカッティング、ダイシング加工して、さらに二次焼結を施しても良い。一次焼結によって、蒸発し易い鉛が圧電体表面から失われる場合に、二次焼結することにより、圧電体内部から鉛が圧電体表面に向かって拡散してきて表面の鉛密度を向上できるとともに、加工によって荒れた表面層を修復し且つ表面を焼結したままの焼結肌にしてパーティクルが発生しないよう安定化することが出来る。ここで、一次焼結は最終密度若しくはそれに近い焼結密度を得るように行われ、その条件は、圧電材料の組成や電極材料により異なるが大体1030〜1160℃程度で、2時間程度大気中で焼結する。そしてアンニーリング(annealing)効果を備える二次焼結は過焼結とならないよう、一次焼結の温度以下で行うことが好ましい。また、一次焼結を施した焼結体の上に板状物品を配置することにより荷重を印加しつつ、二次焼結を施せば、焼結に依り発生しようとする反りが事前矯正されて、パーティクル発生の要因となる後加工の不要な圧電アクチュエータ素子が得ることが出来る。そして、前記一次焼結及び/又は二次焼結する際に、被焼結物を圧電材料から作製された圧電焼結体の板上に配置して焼結すれば、焼結に依って成形体の表面から蒸発・飛散する圧電材料の主要構成元素である鉛(Pb)の補給ができる。これにより焼結密度が向上し、反りなく焼結できるので後加工を必要としない。以上述べたように、本発明は従来にない製造方法を採用したので、素子の厚みが0.5mm以下で、且つ素子の表面が実質的に焼結肌のままである圧電アクチュエータ素子を得ることができる。そして、下限は50〜70μm程度のものまで製造できる。
【0007】
以上述べたとおり、パ−ティクルの発生を抑制した圧電アクチュエ−タ素子を提供することが可能となるが、圧電アクチュエ−タ素子の一部または全部に可撓性樹脂を被覆することによってさらに効果的にパ−ティクルの発生を防止することができる。従来から、樹脂を被覆した圧電アクチュエ−タが開示されているが、本発明に係る樹脂被覆はその目的・機能において全く異なるものである。すなわち、従来は、主として、水分を含む外部環境から電極部を遮断することにより銀のマイグレ−ション等によって生じる絶縁抵抗劣化の防止を目的とするのに対して、本発明に係る被覆は圧電セラミックスからのパ−ティクルの飛散を抑制することを目的とする。また、その目的の相違から従来の樹脂被覆がサブミリからミリ単位の厚みを有するのに対し、本発明の樹脂被覆は1μmから100μm、好ましくは3μmから20μmである。被覆が厚すぎると高い寸法精度を維持し難く、また、パ−ティクルの飛散防止が目的であるため、必要以上に厚くする実益はない。また、薄すぎると被覆に欠陥が生じ易く、パ−ティクルの飛散防止が十分に図れなくなる。樹脂を被覆することによって、同時に圧電アクチュエ−タ素子とそれ以外の部材との絶縁性を確保する機能も持たせることができる。絶縁性の観点からも厚みは上記一定値以上であることが好ましい。樹脂の種類は特に限定するものではないが、薄い圧電アクチュエ−タ素子を阻害しないように可撓性を有することが好ましい。また、ハ−ドディスクドライブ内で悪影響を及ぼすシリコン系、硫黄系、塩素系のガス、コンタミネ−ションを発生しない材質のものが好ましい。さらに、ハ−ドディスクドライブ内の環境温度および素子自体からの発熱も考慮して、60℃、より好ましくは100℃程度でも実質的に変質が生じないものが好ましい。成膜方法は、特に限定するものではないが、例えば蒸着、吹き付け等により成膜することができる。被膜は圧電アクチュエ−タ素子の全部に形成することが好ましいが、他の部材との接着により圧電アクチュエ−タ素子の露出部分を低減する等の組み立て配置に応じて、一部に形成することでも十分な効果を得ることができる。
【0008】
【実施例】
圧電材料としてPZT(圧電定数d31=−285×10-12 m/V )を用い、ドクターブレード法によるグリーンシートの積層を利用して、図3に示す圧電アクチュエータ素子1を作製した。圧電材料層は厚さ20μm とし、両側を電極層5に挟まれた8層と、蓋となる上下の各1層との10層積層体(全厚0.2mm)とした。変位発生部2は、長さ2mm、幅0.5mm、厚さ0.2mmとし、両変位発生部間のスリット状孔部3の幅は0.5mmとし、変位発生部には分極処理を施した。
このアクチュエータに対し、分極の向きと同じ向きに20Vの電圧を印加した。
この圧電アクチュエータ素子を、VCMで一次位置決めし、圧電アクチュエータ素子で二次位置決めするようにHDDに組み込んだ評価装置により実装試験を磁気ディスクの所定の2アドレス間を連続7日間往復させてパーティクルの発生を観察した。比較例として従来通りに作製して後加工を施したものを用いた。
図1に本発明に係る圧電アクチュエータ素子の表面組織を示す顕微鏡写真を、図2に比較例の圧電アクチュエータ素子の表面組織を示す顕微鏡写真を示した。本発明に係る図1では、粒子同士が強固に結合し、表面に剥がれそうな粒子は無い。比較例の図2では、加工劣化のため、表面に剥がれそうな粒子の存在が見られる。
パーティクル数の評価は、試験後の圧電アクチュエータ素子の一つの表面に同一の粘着テープを貼り付けて、同じ力で同じような剥がし方をしたのち、顕微鏡で素子に接触したテープ表面の100μm×100μmの領域に存在する1μm以上のパーティクル数を数えた。本発明ではパーティクルは2ヶであったが、比較例では50ヶと多かった。
【0009】
上述の実施例と同様にして圧電アクチュエ−タ素子を作製した後、素子表面に酢酸ビニル系の樹脂を吹き付けで成膜し、上述の実施例と同様の評価を行なった。被膜の厚さは8μmであった。素子に接触したテ−プ表面の100μm×100μmの領域に1μm以上のパ−ティクルは確認されなかった。
【0010】
【発明の効果】
本発明によればパーティクルの発生が防止でき、HDD(ハード・ディスク・ドライブ)などのクリーンな環境で用いられる圧電アクチュエータ素子として好適なものを提供できる。
【図面の簡単な説明】
【図1】本発明の圧電アクチュエータ素子の表面組織の金属顕微鏡写真である。
【図2】比較例の圧電アクチュエータ素子の表面組織の金属顕微鏡写真である。
【図3】本発明の一実施例に係る圧電アクチュエータ素子の斜視図である。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a piezoelectric actuator element used for positioning of a magnetic head and displacement and positioning of various precision parts such as optical equipment, precision equipment, and measuring equipment, and a manufacturing method thereof, and in particular, an HDD that requires high air cleanliness. The present invention relates to a piezoelectric actuator element for positioning a magnetic head used in a recording apparatus such as a (hard disk drive).
[0002]
[Prior art]
A piezoelectric element using a piezoelectric phenomenon that obtains displacement by applying a voltage is excellent in minute displacement control and responsiveness, and has been conventionally used in various minute displacement control devices.
In recent years, with the increase in recording density of hard disks, which are recording devices, in computers, home appliances, etc., advanced positioning control of recording / reading heads has been required, and it has been conventionally used as a displacement mechanism for these heads. Positioning has become difficult with only a VCM (voice coil motor) using permanent magnets. For this reason, for example, as disclosed in JP-A-2-2677782 and JP-A-9-265738, primary positioning is performed by VCM, and secondary positioning is performed in combination with piezoelectric actuator elements, in other words, minute displacement. Actuator came out.
The conventional manufacturing method of such a piezoelectric actuator element will be outlined.
First, a ceramic powder material, a binder, a solvent, and the like are kneaded to prepare a paste, which is molded to produce a green sheet. Further, a conductive material, a binder, a solvent, and the like are kneaded, and an internal electrode layer paste is prepared. Next, the internal electrode layer paste is printed on the green sheet so as to have a predetermined pattern, and then a predetermined number of the pastes are stacked and pressed to obtain a stacked body. The laminated body is subjected to a desired shape processing by punching or the like and then fired to obtain a thin plate-like sintered body. Alternatively, the thin plate-shaped sintered body is processed so as to have a desired shape, or the thin plate-shaped sintered body is cut into an appropriate size, and then the shape processing is performed. Shape processing refers to processing for providing a hole or notch in a thin plate-like sintered body.
[0003]
[Problems to be solved by the invention]
When the above-described piezoelectric actuator element is used in an HDD (hard disk drive) or the like, an extremely thin piezoelectric actuator element is required and high dimensional accuracy is required. In response to such dimensional requirements, sintering of thin articles, particularly those with a thickness of 0.5 mm or less, is expected to have the required dimensions by grinding, dicer processing, etc., since problems such as warpage and characteristic deterioration are assumed. It is common. However, in the piezoelectric actuator element obtained in this way, particles (fine particles) generated by the processing or particles that have started to peel off from the processed surface of the piezoelectric actuator element are mounted on the HDD device, and then the piezoelectric actuator element is Decreasing reliability, such as dropping from the actuator element and adhering to the magnetic disk surface, damaging the magnetic recording data, or in some cases making the HDD used by the actuator element inaccessible due to particles generated by itself There were inherent factors. This is not limited to HDDs, but has a universal problem of generating particles in a clean environment. An object of the present invention is to provide a highly reliable piezoelectric actuator element for a magnetic recording apparatus by solving problems caused by the generation of particles.
[0004]
[Means for Solving the Problems]
As a result of searching for the cause of the generation of particles, the present inventor has found that there are many fine particles dropped from the surface of the piezoelectric actuator element, and reached the present invention.
[0005]
The present invention sinters a molded body in which a green sheet and an electrode pattern are laminated to form a preliminary sintered body of 0.5 mm or less, and after processing the preliminary sintered body, the processed surface is sintered. Secondary sintering as a binding skin, and when the primary sintering and / or secondary sintering, a sintered object is disposed on a plate of a piezoelectric sintered body made of a piezoelectric material. A method of manufacturing a piezoelectric actuator element for a magnetic recording apparatus, comprising sintering.
[0006]
DETAILED DESCRIPTION OF THE INVENTION
First, a method for manufacturing the piezoelectric actuator element of the present invention will be described. In the present invention, the piezoelectric material is a ceramic piezoelectric material such as PZT {Pb (Zr, Ti) O3}, PT (PbTiO3), PLZT {(Pb, La) (Zr, Ti) O3}, barium titanate (BaTiO3), etc. Is preferred. The piezoelectric material powder is molded to obtain a molded body. Usually, a piezoelectric material powder is made into a slurry with an appropriate solvent to produce a green sheet by a doctor blade method, and a predetermined electrode pattern is printed and laminated in many cases. However, the present invention is not limited thereto, and a compact may be produced by molding a piezoelectric material powder with a mold. Next, the compact is sintered. When Pb such as PZT, PT, and PLZT is contained , the compact is disposed on a piezoelectric sintered compact plate made from a piezoelectric material powder. And sinter. Thereby, replenishment of lead (Pb), which is a main constituent element of the piezoelectric material that evaporates and scatters from the surface of the molded body due to sintering, can be performed. As a result, the sintered density is improved, and even a thin element having a thickness of 0.5 mm or less can be sintered without warping, so that post-processing is not required as in the prior art. Furthermore, when strict dimensional accuracy is required, the molded body is primarily sintered to obtain a pre-sintered body, and then subjected to secondary sintering by cutting and dicing with a diamond blade or the like. May be. When lead that easily evaporates is lost from the surface of the piezoelectric body due to primary sintering, secondary sintering can lead to diffusion of lead from the inside of the piezoelectric body toward the surface of the piezoelectric body and improve the lead density on the surface. The surface layer roughened by the processing is repaired, and the surface is sintered and the sintered skin can be stabilized so that particles are not generated. Here, the primary sintering is performed so as to obtain a final density or a sintering density close thereto, and the conditions vary depending on the composition of the piezoelectric material and the electrode material , but are approximately 1030 to 1160 ° C. for about 2 hours in the atmosphere. Sinter. And it is preferable to perform secondary sintering provided with the annealing effect below the temperature of primary sintering so that it may not oversinter. In addition, by applying a secondary sintering while applying a load by placing a plate-like article on the sintered body subjected to the primary sintering, the warp that would occur due to the sintering is corrected in advance. Thus, it is possible to obtain a piezoelectric actuator element that does not require post-processing and causes particle generation. In the primary sintering and / or secondary sintering, if the object to be sintered is placed and sintered on a plate of a piezoelectric sintered body made of a piezoelectric material, molding is performed by sintering. Lead (Pb), which is the main constituent element of the piezoelectric material that evaporates and scatters from the surface of the body, can be supplied. As a result, the sintered density is improved and sintering can be performed without warping, so no post-processing is required. As described above, since the present invention employs an unprecedented manufacturing method, a piezoelectric actuator element in which the element thickness is 0.5 mm or less and the surface of the element remains substantially sintered is obtained. Can do. And a lower limit can manufacture to about 50-70 micrometers.
[0007]
As described above, it is possible to provide a piezoelectric actuator element in which the generation of particles is suppressed. However, a further effect can be obtained by covering a part or all of the piezoelectric actuator element with a flexible resin. In particular, the generation of particles can be prevented. Conventionally, a piezoelectric actuator coated with a resin has been disclosed, but the resin coating according to the present invention is completely different in its purpose and function. In other words, the coating according to the present invention is mainly intended to prevent deterioration of insulation resistance caused by silver migration or the like by blocking the electrode portion from the external environment containing moisture. It aims at suppressing the scattering of the particles from. Further, the conventional resin coating has a thickness of sub-millimeters to millimeters due to the difference in purpose, whereas the resin coating of the present invention has a thickness of 1 μm to 100 μm, preferably 3 μm to 20 μm. If the coating is too thick, it is difficult to maintain high dimensional accuracy, and the purpose is to prevent particle scattering, so there is no practical benefit of making it thicker than necessary. On the other hand, if the coating is too thin, defects are likely to occur in the coating, and the scattering of the particles cannot be sufficiently prevented. By covering the resin, it is possible to provide a function of ensuring insulation between the piezoelectric actuator element and other members at the same time. Also from the viewpoint of insulation, the thickness is preferably equal to or greater than the above-mentioned fixed value. The type of the resin is not particularly limited, but it is preferable that the resin has flexibility so as not to disturb the thin piezoelectric actuator element. Further, silicon-based, sulfur-based, and chlorine-based gases that adversely affect the hard disk drive and materials that do not generate contamination are preferable. Further, in consideration of the environmental temperature in the hard disk drive and the heat generated from the element itself, it is preferable that substantially no alteration occurs even at about 60 ° C., more preferably about 100 ° C. The film forming method is not particularly limited, but the film can be formed by, for example, vapor deposition or spraying. The coating is preferably formed on the entire piezoelectric actuator element. However, it may be formed on a part of the piezoelectric actuator element depending on the assembly arrangement, such as reducing the exposed portion of the piezoelectric actuator element by bonding with other members. A sufficient effect can be obtained.
[0008]
【Example】
A piezoelectric actuator element 1 shown in FIG. 3 was manufactured by using PZT (piezoelectric constant d 31 = −285 × 10 −12 m / V) as a piezoelectric material and utilizing lamination of green sheets by a doctor blade method. The piezoelectric material layer had a thickness of 20 μm, and a 10-layer laminate (total thickness: 0.2 mm) of 8 layers sandwiched between electrode layers 5 on both sides and one upper and lower layer serving as a lid. The displacement generator 2 has a length of 2 mm, a width of 0.5 mm, and a thickness of 0.2 mm. The width of the slit hole 3 between the two displacement generators is 0.5 mm, and the displacement generator is subjected to polarization treatment. did.
A voltage of 20 V was applied to this actuator in the same direction as the polarization direction.
Generation of particles by reciprocating between two predetermined addresses on a magnetic disk for 7 consecutive days by an evaluation device built in the HDD so that this piezoelectric actuator element is primarily positioned by VCM and secondaryly positioned by piezoelectric actuator element. Was observed. As a comparative example, a conventional product fabricated and post-processed was used.
FIG. 1 shows a photomicrograph showing the surface texture of the piezoelectric actuator element according to the present invention, and FIG. 2 shows a photomicrograph showing the surface texture of the piezoelectric actuator element of the comparative example. In FIG. 1 according to the present invention, the particles are firmly bonded to each other, and there is no particle that is likely to peel off on the surface. In FIG. 2 of the comparative example, due to processing deterioration, the presence of particles that are likely to be peeled off is observed.
The number of particles is evaluated by applying the same adhesive tape to one surface of the piezoelectric actuator element after the test, peeling it off with the same force, and then measuring the surface of the tape contacting the element with a microscope 100 μm × 100 μm The number of particles having a size of 1 μm or more existing in the region was counted. In the present invention, there were two particles, but in the comparative example, there were as many as 50 particles.
[0009]
After a piezoelectric actuator element was fabricated in the same manner as in the above-described example, a film was formed by spraying a vinyl acetate resin on the surface of the element, and the same evaluation as in the above-described example was performed. The thickness of the coating was 8 μm. Particles of 1 μm or more were not confirmed in a 100 μm × 100 μm region of the tape surface in contact with the device.
[0010]
【Effect of the invention】
According to the present invention, generation of particles can be prevented, and a piezoelectric actuator element suitable for use in a clean environment such as an HDD (hard disk drive) can be provided.
[Brief description of the drawings]
FIG. 1 is a metallographic micrograph of the surface texture of a piezoelectric actuator element of the present invention.
FIG. 2 is a metallographic micrograph of the surface texture of a piezoelectric actuator element of a comparative example.
FIG. 3 is a perspective view of a piezoelectric actuator element according to an embodiment of the present invention.

Claims (1)

グリーンシートと電極パターンが積層された成形体を焼結して0.5mm以下の予備焼結体とする一次焼結と、前記予備焼結体を加工した後、加工面を焼結肌とする二次焼結とを有し、
前記一次焼結及び/又は二次焼結する際に、圧電材料から作製された圧電焼結体の板上に被焼結物を配置して焼結することを特徴とする磁気記録装置用圧電アクチュエータ素子の製造方法。
Sintering the green sheet and the green body and electrode body laminated body to make a pre-sintered body of 0.5 mm or less, and after processing the pre-sintered body, the processed surface is sintered Secondary sintering and
A piezoelectric material for a magnetic recording device, wherein a sintered object is disposed on a plate of a piezoelectric sintered body made of a piezoelectric material and sintered during the primary sintering and / or secondary sintering. Actuator element manufacturing method.
JP2000157075A 2000-05-26 2000-05-26 Piezoelectric actuator element Expired - Fee Related JP4868270B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000157075A JP4868270B2 (en) 2000-05-26 2000-05-26 Piezoelectric actuator element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000157075A JP4868270B2 (en) 2000-05-26 2000-05-26 Piezoelectric actuator element

Publications (3)

Publication Number Publication Date
JP2001339106A JP2001339106A (en) 2001-12-07
JP2001339106A5 JP2001339106A5 (en) 2007-06-14
JP4868270B2 true JP4868270B2 (en) 2012-02-01

Family

ID=18661771

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000157075A Expired - Fee Related JP4868270B2 (en) 2000-05-26 2000-05-26 Piezoelectric actuator element

Country Status (1)

Country Link
JP (1) JP4868270B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009099438A1 (en) * 2008-02-05 2009-08-13 Morgan Advanced Ceramics, Inc. Encapsulation coating to reduce particle shedding
CN104662608B (en) 2012-09-27 2017-05-03 株式会社村田制作所 Piezoelectric actuator, method for manufacturing same, and magnetic disc apparatus

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6146082A (en) * 1984-08-10 1986-03-06 Nippon Telegr & Teleph Corp <Ntt> Piezoelectric actuator
JPH10136665A (en) * 1996-10-31 1998-05-22 Tdk Corp Piezoelectric actuator
JP4020454B2 (en) * 1997-03-31 2007-12-12 Tdk株式会社 Method for manufacturing piezoelectric ceramics
JPH10275439A (en) * 1997-03-31 1998-10-13 Chichibu Onoda Cement Corp Clamp jig and its manufacture
US6465934B1 (en) * 1997-09-08 2002-10-15 Ngk Insulators, Ltd. Piezoelectric/electrostrictive device
JP3592057B2 (en) * 1997-12-22 2004-11-24 株式会社リコー Method for manufacturing piezoelectric unit and method for manufacturing inkjet head
JPH11322424A (en) * 1998-05-20 1999-11-24 Matsushita Electric Ind Co Ltd Piezoelectric material, and piezoelectric vibrator, sound emitter, detector of voice, actuator and piezoelectric transformer using the same

Also Published As

Publication number Publication date
JP2001339106A (en) 2001-12-07

Similar Documents

Publication Publication Date Title
JPH03248483A (en) Laminated displacing element
JP5361635B2 (en) Vibrator
US20100146778A1 (en) Production method for electronic chip component
WO2006095597A1 (en) Multilayer ceramic electronic component
US9123880B2 (en) Laminated piezoelectric actuator
JPWO2006001334A1 (en) Multilayer electronic component and injection device using the same
US9431041B1 (en) Comb structure for a disk drive suspension piezoelectric microactuator operating in the D33 mode, and method of manufacturing the same
JP4868270B2 (en) Piezoelectric actuator element
JP5043311B2 (en) Piezoelectric laminate and manufacturing method thereof, piezoelectric speaker, electronic device
JP4432586B2 (en) Antistatic parts
JP4795633B2 (en) Method for producing a piezoelectric thick film on a substrate
JP2003277143A (en) Piezoelectric ceramics
JP5845668B2 (en) Piezoelectric element and method for manufacturing the same
JP5476213B2 (en) Method for manufacturing piezoelectric element
Tan et al. PNN‐PZN‐PMN‐PZ‐PT multilayer piezoelectric ceramic with low sintering temperature
JPH06120579A (en) Laminated piezoelectric actuator
JP2014143219A (en) Ceramic device and piezoelectric device
JP2007281226A (en) Piezoelectric actuator
JP2003309298A (en) Piezoelectric/electrostrictive element and its manufacturing method
JP3178615B2 (en) Conductive electrode material
JP2005072797A (en) Piezoelectric ceramic vibrator and piezoelectric resonator
JP2901687B2 (en) Laminated piezoelectric actuator element and method of manufacturing the same
JP4868707B2 (en) Multilayer piezoelectric element and injection device
JP2001157471A (en) Piezoelectric transducer
WO2023157523A1 (en) Laminate-type piezoelectric element and electronic device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070417

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070427

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101224

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110909

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111004

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111021

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111103

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141125

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees