JP4867380B2 - Superconducting wire, manufacturing method thereof and superconducting equipment - Google Patents

Superconducting wire, manufacturing method thereof and superconducting equipment Download PDF

Info

Publication number
JP4867380B2
JP4867380B2 JP2006035099A JP2006035099A JP4867380B2 JP 4867380 B2 JP4867380 B2 JP 4867380B2 JP 2006035099 A JP2006035099 A JP 2006035099A JP 2006035099 A JP2006035099 A JP 2006035099A JP 4867380 B2 JP4867380 B2 JP 4867380B2
Authority
JP
Japan
Prior art keywords
wire
superconducting
sintering
compound
during
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006035099A
Other languages
Japanese (ja)
Other versions
JP2007214070A (en
Inventor
浩平 山崎
武志 加藤
順次 飯原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2006035099A priority Critical patent/JP4867380B2/en
Publication of JP2007214070A publication Critical patent/JP2007214070A/en
Application granted granted Critical
Publication of JP4867380B2 publication Critical patent/JP4867380B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Description

本発明は、(Bi,Pb)2223((Bi,Pb)2Sr2Ca2Cu310+δをいう、以下同じ)を含む超電導線材およびその製造方法ならびに超電導機器に関し、詳しくは(Bi,Pb)2223結晶の配向性が高く臨界電流が高い超電導線材およびその製造方法ならびに超電導機器に関する。 The present invention relates to a superconducting wire containing (Bi, Pb) 2223 (referring to (Bi, Pb) 2 Sr 2 Ca 2 Cu 3 O 10 + δ , hereinafter the same), a method for manufacturing the same, and a superconducting device. , Pb) The present invention relates to a superconducting wire having a high orientation of the 2223 crystal and a high critical current, a manufacturing method thereof, and a superconducting device.

(Bi,Pb)2223を含む超電導線材は、高い臨界温度と高い臨界電流を有する酸化物超電導線材として知られている。かかる(Bi,Pb)2223を含む超電導線材は、原料粉末を金属シースに充填し、原料粉末が充填された金属シースを塑性加工してテープ状の線材を形成し、得られた線材を熱処理して線材中の原料粉末を焼結して良好な超電導相である(Bi,Pb)2223を形成することによって製造される(たとえば、特許文献1および特許文献2を参照)。なお、塑性加工とは、原料粉末が充填された金属シースを塑性変形させて線材を形成する加工の総称であり、伸線加工、圧延加工、プレス加工などが含まれる。   A superconducting wire containing (Bi, Pb) 2223 is known as an oxide superconducting wire having a high critical temperature and a high critical current. Such a superconducting wire containing (Bi, Pb) 2223 is formed by filling a raw material powder into a metal sheath, plastically processing the metal sheath filled with the raw material powder to form a tape-like wire, and heat-treating the obtained wire. Then, the raw material powder in the wire is sintered to form (Bi, Pb) 2223 which is a good superconducting phase (see, for example, Patent Document 1 and Patent Document 2). The plastic working is a general term for processing in which a metal sheath filled with a raw material powder is plastically deformed to form a wire rod, and includes wire drawing, rolling, pressing, and the like.

ここで、(Bi,Pb)2223を含む超電導線材の臨界電流をより高めるためには、(Bi,Pb)2223結晶の配向性をより高めることが必要とされている。具体的には、(Bi,Pb)2223結晶の結晶軸aと結晶軸bとにより形成される面と線材のテープ面とが実質的に平行となるように配向することにより、その線材の臨界電流が高められる。   Here, in order to further increase the critical current of the superconducting wire containing (Bi, Pb) 2223, it is necessary to further increase the orientation of the (Bi, Pb) 2223 crystal. Specifically, by aligning the plane formed by the crystal axes a and b of the (Bi, Pb) 2223 crystal and the tape surface of the wire so as to be substantially parallel, the criticality of the wire is obtained. The current is increased.

しかし、従来までは、(Bi,Pb)2223結晶の配向性についての検討が十分されておらず、このため(Bi,Pb)2223結晶の配向性が高い超電導線材の製造方法の開発が進んでなかった。
特開平03−138820号公報 特開平04−292812号公報
However, until now, studies on the orientation of (Bi, Pb) 2223 crystals have not been sufficiently conducted, and for this reason, development of a method for producing a superconducting wire having a high orientation of (Bi, Pb) 2223 crystals has progressed. There wasn't.
Japanese Patent Laid-Open No. 03-138820 Japanese Patent Laid-Open No. 04-292812

本発明は、(Bi,Pb)2223結晶の配向性が高く臨界電流が高い超電導線材およびその製造方法ならびに超電導機器を提供することを目的とする。   It is an object of the present invention to provide a superconducting wire having a high (Bi, Pb) 2223 crystal orientation and a high critical current, a method for producing the same, and a superconducting device.

本発明は、(Bi,Pb)2223を含む超電導線材の製造方法であって、Bi2212(Bi2Sr2CaCu28+δをいう、以下同じ)とPb化合物とを含む原料粉末を金属パイプに充填する工程と、原料粉末が充填された金属パイプを伸線加工してクラッド線を形成する工程と、複数のクラッド線を束ねて伸線加工して多芯線を形成する工程と、多芯線を熱処理してBi2212およびPb化合物から(Bi,Pb)2212((Bi,Pb)2Sr2CaCu28+δをいう、以下同じ)を生成させる工程と、複数の熱処理がされた多芯線を圧延加工することによりテープ状の線材を形成する工程と、線材を焼結して(Bi,Pb)2223を生成させる工程とを含み、線材を焼結する工程において、昇温中に(Bi,Pb)2212からPb化合物およびBi2212を生成させ、昇温中に形成されたPb化合物およびBi2212から再度(Bi,Pb)2212を生成させることを特徴とする超電導線材の製造方法である。 The present invention, (Bi, Pb) A method of manufacturing a superconducting wire including 2223, Bi2212 (Bi 2 Sr 2 CaCu 2 O 8 + refers to [delta], hereinafter the same) and a metal pipe raw material powder containing a Pb compound A step of drawing a metal pipe filled with raw material powder to form a clad wire, a step of bundling a plurality of clad wires to form a multi-core wire, and a multi-core wire To produce (Bi, Pb) 2212 ((Bi, Pb) 2 Sr 2 CaCu 2 O 8 + δ , hereinafter the same) from Bi2212 and a Pb compound, and a multifilamentary wire that has been subjected to a plurality of heat treatments A step of forming a tape-shaped wire by rolling the wire and a step of sintering the wire to generate (Bi, Pb) 2223, and in the step of sintering the wire during the temperature rise (Bi , Pb) 221 A method for producing a superconducting wire characterized in that a Pb compound and Bi 2212 are produced from 2 and (Bi, Pb) 2212 is produced again from the Pb compound and Bi 2212 formed during the temperature rise.

本発明にかかる超電導線材の製造方法は、線材を焼結する工程において、昇温中600℃から800℃までの雰囲気における酸素ガス分圧を1kPa以上とすること、昇温中600℃から800℃までにおける昇温速度を20℃/hr以上200℃/hr以下とすることができる。   In the method for producing a superconducting wire according to the present invention, in the step of sintering the wire, the oxygen gas partial pressure in the atmosphere from 600 ° C. to 800 ° C. during the temperature rise is set to 1 kPa or more, and from 600 ° C. to 800 ° C. during the temperature rise. The rate of temperature rise up to 20 ° C./hr to 200 ° C./hr can be set.

また、本発明は、上記の製造方法により製造された、(Bi,Pb)2223を含むフィラメントを含む超電導線材であって、フィラメント中の(Bi,Pb)2223の比率は98%以上であり、(Bi,Pb)2223の結晶の平均配向ずれ角が10.3°以下である超電導線材である。また、本発明は、上記の超電導線材を含む超電導機器である。 Further, the present invention is a superconducting wire that includes a filament containing (Bi, Pb) 2223 manufactured by the above manufacturing method , and the ratio of (Bi, Pb) 2223 in the filament is 98% or more, This is a superconducting wire having an average misalignment angle of (Bi, Pb) 2223 of 10.3 ° or less . Moreover, this invention is a superconducting apparatus containing said superconducting wire.

本発明によれば、(Bi,Pb)2223結晶の配向性が高く臨界電流が高い超電導線材およびその製造方法ならびに超電導機器を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the superconducting wire which has the high orientation of (Bi, Pb) 2223 crystal and high critical current, its manufacturing method, and a superconducting apparatus can be provided.

本発明にかかる超電導線材の製造方法は、(Bi,Pb)2223を含む超電導線材の製造方法であって、Bi2212とPb化合物とを含む原料粉末を金属パイプに充填する工程と、原料粉末が充填された金属パイプを伸線加工してクラッド線を形成する工程と、複数のクラッド線を束ねて伸線加工して多芯線を形成する工程と、多芯線を熱処理してBi2212およびPb化合物から(Bi,Pb)2212を生成させる工程(熱処理工程という、以下同じ)と、複数の熱処理がされた多芯線を圧延加工することによりテープ状の線材を形成する工程(圧延工程という、以下同じ)と、線材を焼結して(Bi,Pb)2223を生成させる工程(焼結工程という、以下同じ)とを含み、焼結工程において、昇温中に(Bi,Pb)2212からPb化合物およびBi2212を生成させ、昇温中に形成されたPb化合物およびBi2212から再度(Bi,Pb)2212を生成させることを特徴とする。   The method for producing a superconducting wire according to the present invention is a method for producing a superconducting wire containing (Bi, Pb) 2223, the step of filling a raw material powder containing Bi2212 and a Pb compound into a metal pipe, and the filling of the raw material powder A step of forming a clad wire by drawing a metal pipe formed, a step of forming a multi-core wire by bundling a plurality of clad wires, and a heat treatment of the multi-core wire to form Bi2212 and a Pb compound ( (Bi, Pb) 2212 generating step (referred to as a heat treatment step hereinafter) and a step of forming a tape-shaped wire rod by rolling a multi-core wire subjected to a plurality of heat treatments (referred to as a rolling step, hereinafter the same). , And (Bi, Pb) 221 during the temperature increase in the sintering step, including the step of sintering the wire to produce (Bi, Pb) 2223 (hereinafter referred to as the sintering step). From to produce a Pb compound and Bi2212, Pb compounds formed during heated and again Bi2212 (Bi, Pb), characterized in that to produce 2212.

(Bi,Pb)2223を含む超電導線材の臨界電流を高めるためには、(Bi,Pb)2223結晶の配向性を高めることが必要とされている。また、この(Bi,Pb)2223は、原料粉末に含まれる(Bi,Pb)2212とアルカリ土類酸化物(たとえば、(Ca,Sr)CuO2、(Ca,Sr)2CuO3、(Ca,Sr)14Cu2441など、以下同じ)などとの反応により生成すると考えられる。したがって、(Bi,Pb)2212結晶の配向性を高めることにより、(Bi,Pb)2223結晶の配向性を高めることができると考えられる。 In order to increase the critical current of a superconducting wire containing (Bi, Pb) 2223, it is necessary to increase the orientation of (Bi, Pb) 2223 crystals. The (Bi, Pb) 2223 is composed of (Bi, Pb) 2212 and alkaline earth oxides (for example, (Ca, Sr) CuO 2 , (Ca, Sr) 2 CuO 3 , (Ca , Sr) 14 Cu 24 O 41 , and so on)). Therefore, it is considered that the orientation of the (Bi, Pb) 2223 crystal can be increased by increasing the orientation of the (Bi, Pb) 2212 crystal.

本発明においては、圧延前の多芯線の熱処理工程により、原料粉末に含まれるBi2212に原料粉末に含まれるPb化合物が固溶して(Bi,Pb)2212が生成する。この(Bi,Pb)2212結晶は、その結晶軸aおよび結晶軸bから形成される面に平行な面を主面とする板状結晶であり、熱処理された多芯線の圧延工程により、(Bi,Pb)2212結晶はその主面が線材のテープ面(幅×長さ方向の面をいう、以下同じ)に実質的に平行となるように配向して、配向性が高くなる。   In the present invention, the Pb compound contained in the raw material powder is dissolved in Bi2212 contained in the raw material powder, and (Bi, Pb) 2212 is generated by the heat treatment step of the multi-core wire before rolling. The (Bi, Pb) 2212 crystal is a plate-like crystal whose principal surface is a plane parallel to the plane formed from the crystal axis a and the crystal axis b. , Pb) The 2212 crystal is oriented so that its main surface is substantially parallel to the tape surface of the wire (width × length direction, hereinafter the same), and the orientation becomes high.

しかし、上記圧延工程は非常に大きな圧力で行なわれるため、この圧延工程によって(Bi,Pb)2212結晶は結晶性(結晶における原子配置の秩序性をを意味する、以下同じ)が低下したり、クラックなどが発生する。   However, since the rolling process is performed at a very large pressure, the (Bi, Pb) 2212 crystal is reduced in crystallinity (meaning the order of atomic arrangement in the crystal, the same applies hereinafter) by this rolling process, Cracks occur.

そこで、結晶性が低下またはクラックなどの破壊が発生した(Bi,Pb)2212結晶を再結晶化させるために、焼結工程の昇温中に(Bi,Pb)2212からPb化合物を生成、析出させることにより一旦Bi2212を生成させた後、このBi2212にPb化合物を再度固溶させることにより、結晶性の低下または破壊が生じた結晶同士が再結合して、配向性が高くかつ結晶性の高い(Bi,Pb)2212結晶が得られる。こうして得られた高配向性の(Bi,Pb)2212結晶とアルカリ土類酸化物などとが反応することにより、高配向性の(Bi,Pb)2223結晶が生成し、臨界電流の高い超電導線材が得られるものと考えられる。   Therefore, in order to recrystallize the (Bi, Pb) 2212 crystal in which the crystallinity is reduced or cracks are generated, a Pb compound is generated and precipitated from (Bi, Pb) 2212 during the temperature increase in the sintering process. Bi2212 is generated once by this, and then the Pb compound is dissolved again in this Bi2212, so that the crystals with reduced or broken crystallinity recombine with each other, resulting in high orientation and high crystallinity. (Bi, Pb) 2212 crystals are obtained. The highly oriented (Bi, Pb) 2212 crystal thus obtained reacts with an alkaline earth oxide to produce a highly oriented (Bi, Pb) 2223 crystal, which is a superconducting wire having a high critical current. Is considered to be obtained.

ここで、Pb化合物は、本発明にかかる製造方法において生成するものであれば特に制限はないが、代表的なものとしてCa2PbO4、(Bi,Pb)3221((Bi,Pb)3Sr2Ca2CuOyをいう、以下同じ)などが挙げられる。 Here, the Pb compound is not particularly limited as long as it is produced in the production method according to the present invention, but representative examples include Ca 2 PbO 4 , (Bi, Pb) 3221 ((Bi, Pb) 3 Sr. 2 Ca 2 CuO y , the same shall apply hereinafter).

本発明にかかる超電導線材の製造方法の焼結工程において、線材の昇温および焼結は、酸素ガスと不活性ガスとの混合ガス雰囲気下で行なわれる。ここで、不活性ガスは、線材と反応しないガスであれば特に制限はないが、窒素ガス、アルゴンガスなどが好ましく用いられる。かかる焼結工程において、昇温中600℃から800℃までの雰囲気における酸素ガス分圧は1kPa以上であることが好ましい。(Bi,Pb)2212におけるPbの価数が2+であるのに対し、Pb化合物におけるPbの価数は4+であることから、昇温雰囲気の酸素ガス分圧を高めることにより、Pb化合物の析出が促進される。 In the sintering step of the method for producing a superconducting wire according to the present invention, the temperature rise and sintering of the wire are performed in a mixed gas atmosphere of oxygen gas and inert gas. Here, the inert gas is not particularly limited as long as it is a gas that does not react with the wire, but nitrogen gas, argon gas, and the like are preferably used. In this sintering step, the oxygen gas partial pressure in the atmosphere from 600 ° C. to 800 ° C. during the temperature rise is preferably 1 kPa or more. Since the valence of Pb in (Bi, Pb) 2212 is 2 + , the valence of Pb in the Pb compound is 4 + , and therefore, by increasing the oxygen gas partial pressure in the temperature rising atmosphere, the Pb compound Precipitation is promoted.

本発明にかかる超電導線材の製造方法の焼結工程において、昇温中600℃から800℃までにおける昇温速度は20℃/hr以上200℃/hr以下であることが好ましい。600℃から800℃までの温度領域は、Pb化合物が生成し析出しやすい温度領域である。昇温速度が20℃/hr未満であると、Pb化合物とともに他の化合物(たとえば、Ca−Sr−Cu−O系化合物)が大きな塊として生成する。昇温速度が200℃/hrを超えると、Pb化合物の生成および析出が低減する。   In the sintering step of the method for producing a superconducting wire according to the present invention, the rate of temperature rise from 600 ° C. to 800 ° C. during temperature rise is preferably 20 ° C./hr or more and 200 ° C./hr or less. The temperature range from 600 ° C. to 800 ° C. is a temperature range in which a Pb compound is easily generated and precipitated. When the rate of temperature rise is less than 20 ° C./hr, other compounds (for example, Ca—Sr—Cu—O-based compounds) are produced as large lumps together with the Pb compound. When the rate of temperature rise exceeds 200 ° C./hr, the production and precipitation of the Pb compound is reduced.

ここで、上記の(Bi,Pb)2212からPb化合物の析出反応により生成したBi2212およびPb化合物から、Pb化合物がBi2212に再び固溶することにより再度(Bi,Pb)2212を生成する。   Here, (Bi, Pb) 2212 is generated again by dissolving the Pb compound in Bi 2212 again from Bi 2212 and the Pb compound generated by the precipitation reaction of the Pb compound from (Bi, Pb) 2212.

上記のように、(Bi,Pb)2212からPb化合物およびBi2212が生成し、さらにPb化合物およびBi2212から再度(Bi,Pb)2212が生成する反応過程を経ることにより、圧延工程において結晶性が低下または破壊された(Bi,Pb)2212が再生されて、配向性および結晶性が高い(Bi,Pb)2212が得られる。さらに焼結が進むと、この高配向性の(Bi,Pb)2212とアルカリ土類酸化物などとの反応により高配向性および高結晶性の(Bi,Pb)2223が得られ、臨界電流の高い超電導線材が得られる。   As described above, Pb compound and Bi2212 are produced from (Bi, Pb) 2212, and (Bi, Pb) 2212 is produced again from Pb compound and Bi2212, so that the crystallinity is lowered in the rolling process. Alternatively, the broken (Bi, Pb) 2212 is regenerated, and (Bi, Pb) 2212 having high orientation and crystallinity is obtained. As the sintering further proceeds, a highly oriented and highly crystalline (Bi, Pb) 2223 is obtained by a reaction between the highly oriented (Bi, Pb) 2212 and an alkaline earth oxide. High superconducting wire can be obtained.

本発明にかかる超電導線材の製造方法の焼結工程における焼結温度は、(Bi,Pb)2212とアルカリ土類酸化物との反応により(Bi,Pb)2223の生成が起こる温度領域であれば特に制限はないが、810℃以上835℃以下が(Bi,Pb)2223の生成を促進させる観点から好ましい。また、上記焼結温度まで昇温させた後焼結中の雰囲気の酸素ガス分圧は、特に制限はないが、(Bi,Pb)2223を十分に生成させ他の化合物の生成を抑制する観点から、4kPa以上8kPa以下が好ましい。また、焼結時間は、特に制限はないが、(Bi,Pb)2223を十分に生成させ他の化合物の生成を抑える観点から、10時間以上20時間以下が好ましい。   The sintering temperature in the sintering step of the method for producing a superconducting wire according to the present invention is a temperature range in which (Bi, Pb) 2223 is generated by the reaction between (Bi, Pb) 2212 and an alkaline earth oxide. Although there is no particular limitation, 810 ° C. or higher and 835 ° C. or lower is preferable from the viewpoint of promoting the formation of (Bi, Pb) 2223. Further, the oxygen gas partial pressure in the atmosphere during sintering after raising the temperature to the sintering temperature is not particularly limited, but a viewpoint of sufficiently generating (Bi, Pb) 2223 and suppressing the generation of other compounds. From 4 kPa to 8 kPa is preferable. The sintering time is not particularly limited, but is preferably 10 hours or longer and 20 hours or shorter from the viewpoint of sufficiently generating (Bi, Pb) 2223 and suppressing the generation of other compounds.

なお、本発明にかかる超電導線材の製造方法の焼結工程において、酸素ガス分圧が7kPa以上の雰囲気下で、600℃から800℃までにおける昇温速度が20℃/hr以上200℃以下となるように昇温させて、焼結温度を810℃以上835℃以下とすることにより、焼結温度に達してから2時間以内に再度(Bi,Pb)2212を生成させることができ、焼結温度に達してから10時間程度で(Bi,Pb)2223を十分に生成することができる。この再度の(Bi,Pb)2212の生成が焼結温度に達してから2時間より遅れると、他の化合物(たとえば、Ca−Sr−Cu−O系化合物)の生成が増大し、また、(Bi,Pb)2223の生成も遅れる。   In the sintering process of the method for producing a superconducting wire according to the present invention, the rate of temperature increase from 600 ° C. to 800 ° C. is 20 ° C./hr to 200 ° C. in an atmosphere having an oxygen gas partial pressure of 7 kPa or more. (Bi, Pb) 2212 can be generated again within 2 hours after reaching the sintering temperature by increasing the sintering temperature to 810 ° C. or more and 835 ° C. or less. (Bi, Pb) 2223 can be sufficiently generated in about 10 hours after reaching the above. If this second generation of (Bi, Pb) 2212 is delayed more than 2 hours after reaching the sintering temperature, the generation of other compounds (for example, Ca—Sr—Cu—O-based compounds) increases, and ( Bi, Pb) 2223 is also delayed.

また、本発明にかかる超電導線材の製造方法において、(Bi,Pb)2223の比率を高めるため、圧延工程および焼結工程を2回以上行なうこともできる。   In the method of manufacturing a superconducting wire according to the present invention, the rolling step and the sintering step can be performed twice or more in order to increase the ratio of (Bi, Pb) 2223.

本発明にかかる超電導線材の製造方法の焼結工程において、(Bi,Pb)からPb化合物が生成し析出してBi2212が生成しているか、Pb化合物がBi2212に固溶して(Bi,Pb)22212が生成しているかについては、焼結工程中の線材をXRD(X線回折をいう、以下同じ)法により測定することにより判断できる。   In the sintering step of the method of manufacturing a superconducting wire according to the present invention, a Pb compound is generated and precipitated from (Bi, Pb) to form Bi2212, or a Pb compound is dissolved in Bi2212 (Bi, Pb). Whether 22212 is produced can be determined by measuring the wire during the sintering process by the XRD (referred to as X-ray diffraction, hereinafter the same) method.

焼結工程において、酸素ガス分圧が8kPaの雰囲気下で、600℃から800℃における昇温速度が50℃/hrとなるように昇温させて焼結温度を830℃としたときに、各温度における線材中の原料粉末のX線回折測定結果を図1に示す。   In the sintering process, when the temperature was raised from 600 ° C. to 800 ° C. so that the temperature rising rate was 50 ° C./hr in an atmosphere having an oxygen gas partial pressure of 8 kPa, The X-ray diffraction measurement result of the raw material powder in the wire at temperature is shown in FIG.

CuのKα線を用いたXRDにおいて、図1(a)を参照して、回折角2θ=17.5°および2θ=18.0°にそれぞれCa2PbO4の(110)面および(020)面に由来する回折ピークが現われ、2θ=17.75°に(Bi,Pb)3221の(110)面に由来する回折ピークが現われる。 In XRD using K alpha line of Cu, with reference to FIG. 1 (a), respectively in the diffraction angle 2 [Theta] = 17.5 ° and 2θ = 18.0 ° Ca 2 PbO 4 (110) plane and (020 ) Appears, and a diffraction peak derived from the (110) plane of (Bi, Pb) 3221 appears at 2θ = 17.75 °.

また、図1(b)を参照して、2θ=33.0°にBi2212および(Bi,Pb)2212の(200)面に由来する回折ピークが現われ、2θ=33.1°に(Bi,Pb)2212の(020)面に由来する回折ピークが現れる。これは、Bi2212の結晶構造は正方晶であるのに対して、(Bi,Pb)2212の結晶構造は斜方晶であるため、Bi2212については(200)面に由来する回折ピークが現われるのに対し、(Bi,Pb)2212については(200)面および(020)面に由来する回折ピークが現われるからである。   Referring to FIG. 1B, a diffraction peak derived from the (200) plane of Bi2212 and (Bi, Pb) 2212 appears at 2θ = 33.0 °, and (Bi, Pb) A diffraction peak derived from the (020) plane of 2212 appears. This is because the crystal structure of Bi2212 is tetragonal, whereas the crystal structure of (Bi, Pb) 2212 is orthorhombic, so that a diffraction peak derived from the (200) plane appears for Bi2212. On the other hand, for (Bi, Pb) 2212, diffraction peaks derived from the (200) plane and the (020) plane appear.

図1(a)を参照して、昇温中の600℃から750℃にかけてPb化合物である(Bi,Pb)3221が生成し、750℃から800℃にかけてPb化合物であるCa2PbO4が生成する。すなわち、昇温中の600℃から800℃の温度領域においてPb化合物である(Bi,Pb)3221およびCa2PbO4が生成していることがわかる。 Referring to FIG. 1A, Pb compound (Bi, Pb) 3221 is generated from 600 ° C. to 750 ° C. during the temperature increase, and Ca 2 PbO 4 is generated from 750 ° C. to 800 ° C. To do. That is, it can be seen that Pb compounds (Bi, Pb) 3221 and Ca 2 PbO 4 are generated in the temperature range from 600 ° C. to 800 ° C. during the temperature rise.

図1(b)を参照して、室温(図1においてRT)から昇温中の500℃においては(Bi,Pb)2212を示す幅広い回折ピークが存在する。昇温中の600℃から750℃にかけて回折ピークが急峻化して、そのピーク位置は2θ=33.0°となった。これは、Bi2212または(Bi,Pb)2212の(200)面に由来する回折ピークの位置に相当する。一方、(Bi,Pb)2212の(020)面に由来する回折ピークの位置には、回折ピークが見られなくなった。すなわち、昇温中の600℃から750℃にかけて、(Bi,Pb)2212からPb化合物が生成して析出し、Bi2212が生成したことがわかる。   Referring to FIG. 1B, there is a wide diffraction peak indicating (Bi, Pb) 2212 at room temperature (RT in FIG. 1) and at 500 ° C. during the temperature rise. The diffraction peak sharpened from 600 ° C. to 750 ° C. during the temperature rise, and the peak position was 2θ = 33.0 °. This corresponds to the position of the diffraction peak derived from the (200) plane of Bi2212 or (Bi, Pb) 2212. On the other hand, no diffraction peak was observed at the position of the diffraction peak derived from the (020) plane of (Bi, Pb) 2212. That is, it can be seen that from 600 ° C. to 750 ° C. during the temperature increase, a Pb compound was generated from (Bi, Pb) 2212 and deposited, and Bi 2212 was generated.

次に、昇温中の800℃から830℃にかけて、Bi2212または(Bi,Pb)2212の(200)面に由来する回折ピークの位置(2θ=33.0°)および(Bi,Pb)2212の(020)面に由来する回折ピークの位置(2θ=33.1°)のいずれの位置にもピーク位置を有する回折ピークが得られた。すなわち、昇温中の800℃から830℃にかけて再度(Bi,Pb)2212が生成していることがわかる。   Next, from 800 ° C. to 830 ° C. during the temperature rise, the position of the diffraction peak (2θ = 33.0 °) derived from the (200) plane of Bi 2212 or (Bi, Pb) 2212 and (Bi, Pb) 2212 A diffraction peak having a peak position at any position (2θ = 33.1 °) of the diffraction peak derived from the (020) plane was obtained. That is, it can be seen that (Bi, Pb) 2212 is generated again from 800 ° C. to 830 ° C. during the temperature rise.

また、昇温中の500℃から830℃にかけて、(Bi,Pb)2212およびBi2212に由来する回折ピークが急峻化しその半価幅が小さくなったことから、(Bi,Pb)2212からPb化合物およびBi2212が生成し、さらにPb化合物およびBi2212から再度(Bi,Pb)2212が生成する反応過程を経ることにより、(Bi,Pb)2212の結晶性が向上したことがわかる。   Further, from 500 ° C. to 830 ° C. during the temperature increase, the diffraction peaks derived from (Bi, Pb) 2212 and Bi 2212 steepened and the half width was reduced, so that (Bi, Pb) 2212 to Pb compound and It can be understood that the crystallinity of (Bi, Pb) 2212 was improved by Bi 2212 being produced and further through the reaction process in which (Bi, Pb) 2212 was produced again from the Pb compound and Bi 2212.

ここで、本発明にかかる超電導線材の製造方法において用いられるBi2212とPb化合物とを含む原料粉末を調製する方法には、特に制限はないが、素原料としてのBi23、PbO、SrCO3、CaCO3およびCuOの5種類の粉末を、Bi:Pb:Sr:Ca:Cu=1.7〜1.8:0.3〜0.35:2.0:2.0:3.0のモル比率で混合し、700℃〜850℃で10時間〜40時間、大気雰囲気中または減圧雰囲気中で、少なくとも1回焼結することにより得られる。たとえば、上記5種類の素原料の粉末を上記モル比率で混合した粉末を、700℃×8時間および800℃×10時間の2回の熱処理、またはさらに840℃×4時間を加えた3回の熱処理を行なって原料粉末を調製することができる。ここで、各熱処理後に原料粉末の粉砕を行なうことが好ましい。 Here, the method for preparing the raw material powder containing Bi2212 and the Pb compound used in the method for producing a superconducting wire according to the present invention is not particularly limited, but Bi 2 O 3 , PbO, and SrCO 3 as raw materials are not particularly limited. , CaCO 3 and CuO, Bi: Pb: Sr: Ca: Cu = 1.7 to 1.8: 0.3 to 0.35: 2.0: 2.0: 3.0 It is obtained by mixing at a molar ratio and sintering at 700 ° C. to 850 ° C. for 10 to 40 hours in an air atmosphere or a reduced pressure atmosphere at least once. For example, a powder obtained by mixing the above five kinds of raw material powders in the above molar ratio is subjected to two heat treatments of 700 ° C. × 8 hours and 800 ° C. × 10 hours, or three times of 840 ° C. × 4 hours. The raw material powder can be prepared by performing a heat treatment. Here, the raw material powder is preferably pulverized after each heat treatment.

また、上記種類の素原料の粉末を上記モル比率で溶解させた硝酸水溶液を、加熱された炉内に噴射することにより、硝酸水溶液中の水分の蒸発、硝酸塩の熱分解による酸化物の生成および酸化物間の反応による原料粉末の生成が瞬時に行なわれる噴霧熱分解法により、原料粉末を調製することもできる。さらに、原料粉末の構成相を調整するために、かかる噴霧熱分解法により得られた原料粉末を、750℃〜840℃、8kPa〜100kPaの酸素ガス分圧、2時間〜10時間の熱処理を少なくとも1回行なってもよい。   Further, by injecting an aqueous nitric acid solution in which the above-mentioned kind of raw material powder is dissolved in the above molar ratio into a heated furnace, evaporation of moisture in the aqueous nitric acid solution, generation of oxide by thermal decomposition of nitrate, and The raw material powder can also be prepared by a spray pyrolysis method in which the raw material powder is instantly generated by the reaction between oxides. Further, in order to adjust the constituent phase of the raw material powder, the raw material powder obtained by the spray pyrolysis method is subjected to a heat treatment of at least 750 ° C. to 840 ° C., oxygen gas partial pressure of 8 kPa to 100 kPa, and 2 hours to 10 hours. It may be performed once.

本発明にかかる超電導線材は、上記の製造方法により製造されるため、超電導線材に含まれる(Bi,Pb)2223結晶の配向性が高く臨界電流が高くなる。   Since the superconducting wire according to the present invention is manufactured by the above-described manufacturing method, the orientation of (Bi, Pb) 2223 crystal contained in the superconducting wire is high and the critical current is high.

また、本発明にかかる超電導機器は、上記のように(Bi,Pb)2223結晶の配向性が高く臨界電流が高い超電導線材を含んでいるため、優れた超電導特性を有する。ここで、超電導機器は、上記超電導線材を含むものであれば特に制限なく、超電導ケーブル、超電導コイル、超電導変圧器、超電導限流器、超電導電力貯蔵装置などが挙げられる。   Moreover, since the superconducting device according to the present invention includes a superconducting wire having a high orientation of (Bi, Pb) 2223 crystal and a high critical current as described above, it has excellent superconducting characteristics. Here, the superconducting device is not particularly limited as long as it includes the superconducting wire, and examples thereof include a superconducting cable, a superconducting coil, a superconducting transformer, a superconducting current limiter, and a superconducting power storage device.

本発明にかかる超電導線材およびその製造方法について、以下の実施例に基づいてさらに具体的に説明する。   The superconducting wire according to the present invention and the manufacturing method thereof will be described more specifically based on the following examples.

(実施例1)
素原料としてのBi23、PbO、SrCO3、CaCO3およびCuOの5種類の粉末を、Bi:Pb:Sr:Ca:Cu=1.7〜1.8:0.3〜0.35:2.0:2.0:3.0のモル比率で混合し、大気雰囲気中(酸素ガス分圧21kPa、窒素ガス分圧79kPa)で、700℃×8時間および800℃×10時間の2回の熱処理を行なって原料粉末を調製した。ここで、各熱処理後に原料粉末を破砕して粉末状とした。こうして調製された原料粉末は、XRD分析を行なったところ、Bi2212が主相であった。
Example 1
Five kinds of powders of Bi 2 O 3 , PbO, SrCO 3 , CaCO 3 and CuO as raw materials are used as Bi: Pb: Sr: Ca: Cu = 1.7 to 1.8: 0.3 to 0.35. : 2.0: 2.0: 3.0 in a molar ratio of 2 at 700 ° C. × 8 hours and 800 ° C. × 10 hours in the atmosphere (oxygen gas partial pressure 21 kPa, nitrogen gas partial pressure 79 kPa) The raw material powder was prepared by performing the heat treatment twice. Here, after each heat treatment, the raw material powder was crushed into powder. The raw material powder thus prepared was subjected to XRD analysis, and Bi2212 was the main phase.

この原料粉末を直径46mmの銀パイプに充填した後、原料粉末が充填された銀パイプを伸線加工して直径3mmのクラッド線材を得た。この上記クラッド線材55本を束ねて伸線加工して、原料粉末がフィラメント状の芯となって銀で被覆された多芯線を得た。   After filling this raw material powder into a silver pipe having a diameter of 46 mm, the silver pipe filled with the raw material powder was drawn to obtain a clad wire having a diameter of 3 mm. The 55 clad wires were bundled and drawn to obtain a multifilament wire in which the raw material powder became a filament core and was coated with silver.

次に、上記多芯線を酸素ガス分圧0.1kPa、窒素ガス分圧99.9Paの混合ガス雰囲気下760℃で2時間の熱処理を行なった。この熱処理後の多芯線中の原料粉末のフィラメントをXRD分析したところ、(Bi,Pb)2212の生成が認められた。   Next, the multi-core wire was heat-treated at 760 ° C. for 2 hours in a mixed gas atmosphere having an oxygen gas partial pressure of 0.1 kPa and a nitrogen gas partial pressure of 99.9 Pa. An XRD analysis of the filament of the raw material powder in the multifilamentary wire after the heat treatment revealed that (Bi, Pb) 2212 was produced.

次に、上記の熱処理後の多芯線を1次圧延して、銀比1.7で55芯のフィラメントが銀により被覆された幅4.00mm、厚さ0.240mm、長さ100mmのテープ状の線材(以下、1次圧延線材という)を得た。なお、銀比とは、線材の横断面(幅×厚さ方向の断面)におけるフィラメント部分の面積に対する銀部分の面積の比をいう。   Next, the heat-treated multi-core wire is first-rolled, and a tape shape having a width of 4.00 mm, a thickness of 0.240 mm, and a length of 100 mm in which a 55-core filament is coated with silver at a silver ratio of 1.7. Wire (hereinafter referred to as primary rolled wire). In addition, silver ratio means ratio of the area of the silver part with respect to the area of the filament part in the cross section (width x thickness cross section) of a wire.

次に、上記の1次圧延線材を、600℃から800℃までの昇温雰囲気を酸素ガス分圧1kPa、窒素ガス分圧99kPaの混合ガス雰囲気とし、600℃から800℃までの昇温速度が50℃/hrとなるように昇温して、830℃で15時間焼結させた(以下、1次焼結という)。この1次焼結における昇温の際に、熱処理炉内配置された線材に、25keVのシンクロトロン放射X線を照射して、透過した回折光をIP(イメージプレート、以下同じ)で読み取り、そのIPの画像解析を行なうことにより、昇温中の線材のフィラメント内部におけるPb化合物である(Bi,Pb)3221およびCa2PbO4に由来する回折ピークの有無、Bi2212ならびに(Bi,Pb)2212に由来する回折ピークの有無を調べた。 Next, in the primary rolled wire, the temperature rising atmosphere from 600 ° C. to 800 ° C. is a mixed gas atmosphere having an oxygen gas partial pressure of 1 kPa and a nitrogen gas partial pressure of 99 kPa, and the temperature rising rate from 600 ° C. to 800 ° C. The temperature was raised to 50 ° C./hr and sintering was performed at 830 ° C. for 15 hours (hereinafter referred to as primary sintering). At the time of temperature increase in the primary sintering, the wire arranged in the heat treatment furnace is irradiated with 25 keV synchrotron radiation X-rays, and the transmitted diffracted light is read by IP (image plate, the same applies hereinafter), By performing IP image analysis, the presence or absence of diffraction peaks derived from (Bi, Pb) 3221 and Ca 2 PbO 4 which are Pb compounds inside the filament of the wire being heated, Bi 2212 and (Bi, Pb) 2212 The presence or absence of the derived diffraction peak was examined.

上記1次焼結における昇温の際、600℃〜800℃の温度領域において、Pb化合物である(Bi,Pb)3221の(110)面に由来する回折ピークおよびCa2PbO4の(110)面および(020)面に由来する回折ピークの少なくともいずれかが見られた。また、700℃〜750℃の温度領域において、Bi2212の(200)面に由来する回折ピークは見られたが、(Bi,Pb)2212の(020)面に由来する回折ピークが見られなかった。これらのことから、1次焼結における昇温の際に、600℃〜800℃の温度領域内において、Pb化合物およびBi2212が生成したことがわかる。上記1次焼結により得られた線材(以下、1次線材という)は、フィラメント中の(Bi,Pb)2223の比率は94%、(Bi,Pb)2223結晶の平均配向ずれ角αは10.3°であった。また、この1次線材の臨界電流は25Aであった。 During the temperature increase in the primary sintering, a diffraction peak derived from the (110) plane of (Bi, Pb) 3221 which is a Pb compound and (110) of Ca 2 PbO 4 in the temperature range of 600 ° C. to 800 ° C. At least one of diffraction peaks derived from the plane and the (020) plane was observed. Further, in the temperature range of 700 ° C. to 750 ° C., a diffraction peak derived from the (200) plane of Bi2212 was observed, but a diffraction peak derived from the (020) plane of (Bi, Pb) 2212 was not observed. . From these facts, it can be seen that the Pb compound and Bi2212 were formed in the temperature range of 600 ° C. to 800 ° C. during the temperature increase in the primary sintering. The wire obtained by the primary sintering (hereinafter referred to as primary wire) has a ratio of (Bi, Pb) 2223 in the filament of 94%, and the average misalignment angle α of (Bi, Pb) 2223 crystals is 10. It was 3 °. The primary wire had a critical current of 25A.

ここで、フィラメントの(Bi,Pb)2223比率は、Bi2212および(Bi,Pb)2212の(0012)面に由来する回折ピーク強度と(Bi,Pb)2223の(0014)面に由来する回折ピーク強度との合計に対する(Bi,Pb)2223の(0014)面に由来する回折ピーク強度の百分率として算出される。   Here, the (Bi, Pb) 2223 ratio of the filament is the diffraction peak intensity derived from the (0012) plane of Bi2212 and (Bi, Pb) 2212 and the diffraction peak derived from the (0014) plane of (Bi, Pb) 2223. It is calculated as a percentage of the diffraction peak intensity derived from the (0014) plane of (Bi, Pb) 2223 with respect to the total intensity.

また、(Bi,Pb)2223結晶の平均配向ずれ角αとは、各々の(Bi,Pb)2223結晶のa軸とb軸により形成される面と、線材のテープ面(幅×長さ方向の面)とのなす角度の平均をいう。(Bi,Pb)2223結晶の平均配向ずれ角αが小さいほど、(Bi,Pb)2223結晶の配向性が高いことを示す。(Bi,Pb)2223結晶の平均配向ずれ角αは、(Bi,Pb)2223の(0024)面に由来する回折ピークの半価幅の1/2として算出される。   Further, the average orientation deviation angle α of the (Bi, Pb) 2223 crystal means the surface formed by the a axis and the b axis of each (Bi, Pb) 2223 crystal and the tape surface (width × length direction) of the wire. This is the average angle formed with the surface. The smaller the average misorientation angle α of (Bi, Pb) 2223 crystal, the higher the orientation of (Bi, Pb) 2223 crystal. The average misorientation angle α of the (Bi, Pb) 2223 crystal is calculated as ½ of the half width of the diffraction peak derived from the (0024) plane of (Bi, Pb) 2223.

また、線材の臨界電流は、四端子法により、温度77K、自己磁場中で測定した。ここで、臨界電流は、超電導線材1cm当たり1×10-6Vの電圧を発生させるときの電流と定義した。 The critical current of the wire was measured in a self-magnetic field at a temperature of 77 K by the four probe method. Here, the critical current was defined as a current when a voltage of 1 × 10 −6 V was generated per 1 cm of the superconducting wire.

次に、上記の1次線材を10%の圧下率で2次圧延を行ない、幅4.1mm、厚さ0.23mm、長さ100mmのテープ状の線材(以下、2次圧延線材という)を得た。なお、圧下率とは、以下の式(1)
圧下率(%)={1−(圧延後の線材の厚さ)/(圧延前の線材の厚さ)}×100
・・・(1)
で定義されるものである。
Next, the above-described primary wire is subjected to secondary rolling at a rolling reduction of 10%, and a tape-like wire having a width of 4.1 mm, a thickness of 0.23 mm, and a length of 100 mm (hereinafter referred to as a secondary rolled wire) is obtained. Obtained. The rolling reduction is the following formula (1)
Reduction ratio (%) = {1- (Thickness of wire after rolling) / (Thickness of wire before rolling)} × 100
... (1)
Is defined by

次いで、上記の2次圧延線材を、酸素ガス分圧8kPa、窒素ガス分圧92kPaの混合ガス雰囲気下、828℃、30時間の条件で2回目の焼結(以下、2次焼結という)を行ない、(Bi,Pb)2223を含む超電導線材(以下、最終線材ともいう)を得た。   Next, the above-mentioned secondary rolled wire is sintered for the second time (hereinafter referred to as secondary sintering) under a mixed gas atmosphere of oxygen gas partial pressure of 8 kPa and nitrogen gas partial pressure of 92 kPa at 828 ° C. for 30 hours. Then, a superconducting wire containing (Bi, Pb) 2223 (hereinafter also referred to as final wire) was obtained.

上記のようにして得られた最終線材のフィラメント中の(Bi,Pb)2223結晶の平均配向ずれ角αは1次線材のそれと同等であったが、(Bi,Pb)2223比率は98%に向上し、最終線材の臨界電流は87Aとなった。結果を表1にまとめた。   The average misalignment angle α of the (Bi, Pb) 2223 crystal in the filament of the final wire obtained as described above was equivalent to that of the primary wire, but the (Bi, Pb) 2223 ratio was 98%. As a result, the critical current of the final wire became 87A. The results are summarized in Table 1.

(実施例2)
1次焼結の際に、600℃から800℃までの昇温雰囲気を酸素ガス分圧4kPa、窒素ガス分圧96kPaの混合ガス雰囲気として昇温を行なった以外は実施例1と同様にして(Bi,Pb)2223を含む超電導線材超電導線材を作製した。1次焼結における昇温の際、600℃〜800℃の温度領域内において、Pb化合物およびBi2212が生成していた。1次線材のフィラメント中の(Bi,Pb)2223の比率は96%、(Bi,Pb)2223結晶の平均配向ずれ角αは10.0°であり、1次線材の臨界電流は31Aであった。また、最終線材のフィラメント中の(Bi,Pb)2223結晶の平均配向ずれ角αは1次線材のそれと同等であったが、(Bi,Pb)2223の比率は99%に向上し、最終線材の臨界電流は97Aとなった。結果を表1にまとめた。
(Example 2)
In the same manner as in Example 1 except that, during the primary sintering, the temperature was raised from 600 ° C. to 800 ° C. as a mixed gas atmosphere having an oxygen gas partial pressure of 4 kPa and a nitrogen gas partial pressure of 96 kPa ( A superconducting wire containing Bi, Pb) 2223 was produced. During the temperature increase in the primary sintering, a Pb compound and Bi2212 were generated in a temperature range of 600 ° C. to 800 ° C. The ratio of (Bi, Pb) 2223 in the filament of the primary wire is 96%, the average orientation deviation angle α of the (Bi, Pb) 2223 crystal is 10.0 °, and the critical current of the primary wire is 31A. It was. The average misalignment angle α of the (Bi, Pb) 2223 crystal in the filament of the final wire was the same as that of the primary wire, but the ratio of (Bi, Pb) 2223 was improved to 99%. The critical current was 97A. The results are summarized in Table 1.

(実施例3)
1次焼結の際に、600℃から800℃までの昇温雰囲気を酸素ガス分圧8kPa、窒素ガス分圧92kPaの混合ガス雰囲気とし、600℃から800℃までの昇温速度が20℃/hrとなるように昇温を行なった以外は実施例1と同様にして(Bi,Pb)2223を含む超電導線材超電導線材を作製した。1次焼結における昇温の際、600℃〜800℃の温度領域内において、Pb化合物およびBi2212が生成していた。1次線材のフィラメント中の(Bi,Pb)2223の比率は86%、(Bi,Pb)2223結晶の平均配向ずれ角αは9.0°であり、1次線材の臨界電流は33Aであった。また、最終線材のフィラメント中の(Bi,Pb)2223結晶の平均配向ずれ角αは1次線材のそれと同等であったが、(Bi,Pb)2223の比率は99%に向上し、最終線材の臨界電流は124Aとなった。結果を表1にまとめた。
(Example 3)
During the primary sintering, the temperature rising atmosphere from 600 ° C. to 800 ° C. is a mixed gas atmosphere having an oxygen gas partial pressure of 8 kPa and a nitrogen gas partial pressure of 92 kPa, and the temperature rising rate from 600 ° C. to 800 ° C. is 20 ° C. / A superconducting wire containing (Bi, Pb) 2223 was produced in the same manner as in Example 1 except that the temperature was raised to be hr. During the temperature increase in the primary sintering, a Pb compound and Bi2212 were generated in a temperature range of 600 ° C. to 800 ° C. The ratio of (Bi, Pb) 2223 in the filament of the primary wire is 86%, the average orientation deviation angle α of the (Bi, Pb) 2223 crystal is 9.0 °, and the critical current of the primary wire is 33A. It was. The average misalignment angle α of the (Bi, Pb) 2223 crystal in the filament of the final wire was the same as that of the primary wire, but the ratio of (Bi, Pb) 2223 was improved to 99%. The critical current of was 124A. The results are summarized in Table 1.

(実施例4)
1次焼結の際に、600℃から800℃までの昇温雰囲気を酸素ガス分圧8kPa、窒素ガス分圧92kPaの混合ガス雰囲気として昇温を行なった以外は実施例1と同様にして(Bi,Pb)2223を含む超電導線材超電導線材を作製した。1次焼結における昇温の際、600℃〜800℃の温度領域内において、Pb化合物およびBi2212が生成していた。1次線材のフィラメント中の(Bi,Pb)2223の比率は88%、(Bi,Pb)2223結晶の平均配向ずれ角αは8.8°であり、1次線材の臨界電流は42Aであった。また、最終線材のフィラメント中の(Bi,Pb)2223の比率は99%であり、最終線材の臨界電流は130Aであった。結果を表1にまとめた。
Example 4
In the same manner as in Example 1 except that, during the primary sintering, the temperature was raised from 600 ° C. to 800 ° C. as a mixed gas atmosphere having an oxygen gas partial pressure of 8 kPa and a nitrogen gas partial pressure of 92 kPa ( A superconducting wire containing Bi, Pb) 2223 was produced. During the temperature increase in the primary sintering, a Pb compound and Bi2212 were generated in a temperature range of 600 ° C. to 800 ° C. The ratio of (Bi, Pb) 2223 in the filament of the primary wire is 88%, the average orientation deviation angle α of the (Bi, Pb) 2223 crystal is 8.8 °, and the critical current of the primary wire is 42A. It was. Further, the ratio of (Bi, Pb) 2223 in the filament of the final wire was 99%, and the critical current of the final wire was 130A. The results are summarized in Table 1.

なお、上記の図1およびその説明は、本実施例において行なった1次焼結における昇温の際の線材中のフィラメント状の原料粉末のXRD測定の結果に基づくものである。具体的には、本実施例の1次焼結工程において、ガス雰囲気を変えられる熱処理炉に線材を設置し、25keVのシンクロトロン放射X線を線材に当てて透過した回折光をIP(イメージプレート、以下同じ)で読み取り、そのIPの画像解析を行なうことにより、昇温中の線材のフィラメント内部のXRD測定を行なったものである。   1 and the description thereof are based on the result of XRD measurement of the filament raw material powder in the wire at the time of temperature increase in the primary sintering performed in this example. Specifically, in the primary sintering step of the present embodiment, a wire is installed in a heat treatment furnace that can change the gas atmosphere, and the diffracted light transmitted by applying 25 keV synchrotron radiation X-rays to the wire is transmitted to an IP (image plate). , The same applies hereinafter) and image analysis of the IP was performed to perform XRD measurement inside the filament of the wire being heated.

(実施例5)
1次焼結の際に、600℃から800℃までの昇温雰囲気を酸素ガス分圧8kPa、窒素ガス分圧92kPaの混合ガス雰囲気とし、600℃から800℃までの昇温速度が200℃/hrとなるように昇温を行なった以外は実施例1と同様にして(Bi,Pb)2223を含む超電導線材超電導線材を作製した。1次焼結における昇温の際、600℃〜800℃の温度領域内において、Pb化合物およびBi2212が生成していた。1次線材のフィラメント中の(Bi,Pb)2223の比率は90%、(Bi,Pb)2223結晶の平均配向ずれ角αは8.6°であり、1次線材の臨界電流は38Aであった。また、最終線材のフィラメント中の(Bi,Pb)2223の比率は98%であり、最終線材の臨界電流は128Aであった。結果を表1にまとめた。
(Example 5)
During the primary sintering, the temperature rising atmosphere from 600 ° C. to 800 ° C. is a mixed gas atmosphere having an oxygen gas partial pressure of 8 kPa and a nitrogen gas partial pressure of 92 kPa, and the temperature rising rate from 600 ° C. to 800 ° C. is 200 ° C. / A superconducting wire containing (Bi, Pb) 2223 was produced in the same manner as in Example 1 except that the temperature was raised to be hr. During the temperature increase in the primary sintering, a Pb compound and Bi2212 were generated in a temperature range of 600 ° C. to 800 ° C. The ratio of (Bi, Pb) 2223 in the filament of the primary wire is 90%, the average orientation deviation angle α of the (Bi, Pb) 2223 crystal is 8.6 °, and the critical current of the primary wire is 38A. It was. The ratio of (Bi, Pb) 2223 in the filament of the final wire was 98%, and the critical current of the final wire was 128A. The results are summarized in Table 1.

(実施例6)
1次焼結の際に、600℃から800℃までの昇温雰囲気を酸素ガス分圧8kPa、窒素ガス分圧92kPaの混合ガス雰囲気とし、600℃から800℃までの昇温速度が250℃/hrとなるように昇温を行なった以外は実施例1と同様にして(Bi,Pb)2223を含む超電導線材超電導線材を作製した。1次焼結における昇温の際、600℃〜800℃の温度領域内において、Pb化合物およびBi2212が生成していた。1次線材のフィラメント中の(Bi,Pb)2223の比率は94%、(Bi,Pb)2223結晶の平均配向ずれ角αは9.6°であり、1次線材の臨界電流は24Aであった。また、最終線材のフィラメント中の(Bi,Pb)2223の比率は98%であり、最終線材の臨界電流は98Aであった。結果を表1にまとめた。
(Example 6)
During the primary sintering, the temperature rising atmosphere from 600 ° C. to 800 ° C. is a mixed gas atmosphere having an oxygen gas partial pressure of 8 kPa and a nitrogen gas partial pressure of 92 kPa, and the temperature rising rate from 600 ° C. to 800 ° C. is 250 ° C. / A superconducting wire containing (Bi, Pb) 2223 was produced in the same manner as in Example 1 except that the temperature was raised to be hr. During the temperature increase in the primary sintering, a Pb compound and Bi2212 were generated in a temperature range of 600 ° C. to 800 ° C. The ratio of (Bi, Pb) 2223 in the filament of the primary wire is 94%, the average orientation deviation angle α of the (Bi, Pb) 2223 crystal is 9.6 °, and the critical current of the primary wire is 24A. It was. The ratio of (Bi, Pb) 2223 in the filament of the final wire was 98%, and the critical current of the final wire was 98A. The results are summarized in Table 1.

(実施例7)
1次焼結の際に、600℃から800℃までの昇温雰囲気を酸素ガス分圧12kPa、窒素ガス分圧88kPaの混合ガス雰囲気として昇温を行なった以外は実施例1と同様にして(Bi,Pb)2223を含む超電導線材超電導線材を作製した。1次焼結における昇温の際、600℃〜800℃の温度領域内において、Pb化合物およびBi2212が生成していた。1次線材のフィラメント中の(Bi,Pb)2223の比率は85%、(Bi,Pb)2223結晶の平均配向ずれ角αは9.0°であり、1次線材の臨界電流は45Aであった。また、最終線材のフィラメント中の(Bi,Pb)2223の比率は99%であり、最終線材の臨界電流は118Aであった。結果を表1にまとめた。
(Example 7)
In the same manner as in Example 1 except that, during the primary sintering, the temperature was raised from 600 ° C. to 800 ° C. as a mixed gas atmosphere having an oxygen gas partial pressure of 12 kPa and a nitrogen gas partial pressure of 88 kPa ( A superconducting wire containing Bi, Pb) 2223 was produced. During the temperature increase in the primary sintering, a Pb compound and Bi2212 were generated in a temperature range of 600 ° C. to 800 ° C. The ratio of (Bi, Pb) 2223 in the filament of the primary wire is 85%, the average orientation deviation angle α of the (Bi, Pb) 2223 crystal is 9.0 °, and the critical current of the primary wire is 45A. It was. The ratio of (Bi, Pb) 2223 in the filament of the final wire was 99%, and the critical current of the final wire was 118A. The results are summarized in Table 1.

(実施例8)
1次焼結の際に、600℃から800℃までの昇温雰囲気を酸素ガス分圧21kPa、窒素ガス分圧79kPaの混合ガス雰囲気として昇温を行なった以外は実施例1と同様にして(Bi,Pb)2223を含む超電導線材超電導線材を作製した。1次焼結における昇温の際、600℃〜800℃の温度領域内において、Pb化合物およびBi2212が生成していた。1次線材のフィラメント中の(Bi,Pb)2223の比率は83%、(Bi,Pb)2223結晶の平均配向ずれ角αは8.6°であり、1次線材の臨界電流は47Aであった。また、最終線材のフィラメント中の(Bi,Pb)2223の比率は99%であり、最終線材の臨界電流は121Aであった。結果を表1にまとめた。
(Example 8)
In the same manner as in Example 1 except that, during the primary sintering, the temperature was raised from 600 ° C. to 800 ° C. as a mixed gas atmosphere having an oxygen gas partial pressure of 21 kPa and a nitrogen gas partial pressure of 79 kPa ( A superconducting wire containing Bi, Pb) 2223 was produced. During the temperature increase in the primary sintering, a Pb compound and Bi2212 were generated in a temperature range of 600 ° C. to 800 ° C. The ratio of (Bi, Pb) 2223 in the filament of the primary wire is 83%, the average orientation deviation angle α of the (Bi, Pb) 2223 crystal is 8.6 °, and the critical current of the primary wire is 47A. It was. The ratio of (Bi, Pb) 2223 in the filament of the final wire was 99%, and the critical current of the final wire was 121A. The results are summarized in Table 1.

(比較例1)
1次焼結の際に、600℃から800℃までの昇温雰囲気を酸素ガス分圧0.01kPa、窒素ガス分圧99.99kPaの混合ガス雰囲気として昇温を行なった以外は実施例1と同様にして(Bi,Pb)2223を含む超電導線材を作製した。なお、線材内のフィラメントの溶融を防止するために、810℃以上の昇温時および焼結時における雰囲気は、酸素ガス分圧8kPa、窒素ガス分圧92kPaの混合ガス雰囲気とした。
(Comparative Example 1)
Example 1 is the same as Example 1 except that during the primary sintering, the temperature was raised from 600 ° C. to 800 ° C. as a mixed gas atmosphere having an oxygen gas partial pressure of 0.01 kPa and a nitrogen gas partial pressure of 99.99 kPa. Similarly, a superconducting wire containing (Bi, Pb) 2223 was produced. In order to prevent the filaments in the wire from melting, the atmosphere at the time of temperature rising above 810 ° C. and sintering was a mixed gas atmosphere having an oxygen gas partial pressure of 8 kPa and a nitrogen gas partial pressure of 92 kPa.

本比較例の超電導線材において、1次線材のフィラメント中の(Bi,Pb)2223の比率は92%であり、(Bi,Pb)2223結晶の平均配向ずれ角αは10.4°と大きく、1次線材の臨界電流は18Aと低かった。また、最終線材のフィラメント中の(Bi,Pb)2223の比率は98%に向上したが、最終線材の臨界電流は80Aであった。結果を表1にまとめた。   In the superconducting wire of this comparative example, the ratio of (Bi, Pb) 2223 in the filament of the primary wire is 92%, and the average misalignment angle α of the (Bi, Pb) 2223 crystal is as large as 10.4 °. The critical current of the primary wire was as low as 18A. Further, the ratio of (Bi, Pb) 2223 in the filament of the final wire was improved to 98%, but the critical current of the final wire was 80A. The results are summarized in Table 1.

本比較例においては、図2(a)を参照して、昇温中の600℃から800℃にかけてPb化合物である(Bi,Pb)3221およびCa2PbO4に由来する回折ピークが見られなかった。すなわち、昇温中の600℃から800℃の温度領域においてPb化合物が生成していないことがわかった。 In this comparative example, with reference to FIG. 2 (a), diffraction peaks derived from (Bi, Pb) 3221 and Ca 2 PbO 4 which are Pb compounds are not seen from 600 ° C. to 800 ° C. during temperature rise. It was. That is, it was found that no Pb compound was generated in the temperature range from 600 ° C. to 800 ° C. during the temperature increase.

また、図2(b)を参照して、室温(図2においてRT)から昇温中の600℃においては(Bi,Pb)2212を示す幅広い回折ピークが存在する。昇温中の600℃から830℃にかけて回折ピークが急峻化して、ピークが2つに分かれ、それらのピーク位置が2θ=33.0°および2θ=33.1°となった。これらは、それぞれBi2212または(Bi,Pb)2212の(200)面に由来する回折ピークおよび(Bi,Pb)2212の(020)面に由来する回折ピークの位置に相当する。すなわち、昇温中の600℃から800℃にかけて、(Bi,Pb)2212が常に存在していたことがわかる。したがって、Bi2212の存在の有無は確認できなかったが、昇温中600℃から800までにおいて、(Bi,Pb)3221およびCa2PbO4のPb化合物は生成されず、Pbは(Bi,Pb)2212中にドーピングされた状態で存在していることがわかった。 In addition, referring to FIG. 2B, a wide diffraction peak indicating (Bi, Pb) 2212 exists at 600 ° C. during the temperature rise from room temperature (RT in FIG. 2). The diffraction peak sharpened from 600 ° C. to 830 ° C. during the temperature increase, and the peak was divided into two. The peak positions were 2θ = 33.0 ° and 2θ = 33.1 °. These correspond to the positions of the diffraction peak derived from the (200) plane of Bi2212 or (Bi, Pb) 2212 and the diffraction peak derived from the (020) plane of (Bi, Pb) 2212, respectively. That is, it can be seen that (Bi, Pb) 2212 was always present from 600 ° C. to 800 ° C. during the temperature increase. Therefore, the presence or absence of Bi2212 could not be confirmed, but during the temperature increase from 600 ° C. to 800, (Bi, Pb) 3221 and Pb compound of Ca 2 PbO 4 were not generated, and Pb was (Bi, Pb). 2212 was found to be doped.

Figure 0004867380
Figure 0004867380

表1から明らかなように、実施例1から8までにおいて、1次焼結工程において、昇温中に(Bi,Pb)2212からPb化合物およびBi2212を生成させ、昇温中に形成されたPb化合物およびBi2212から再度(Bi,Pb)2212を生成させることにより、1次線材のフィラメント中の(Bi,Pb)2212結晶の平均配向ずれ角が小さくなり、かかる1次線材の(Bi,Pb)2212結晶の平均配向ずれ角が小さくなるほど、(Bi,Pb)2223結晶の平均配向ずれ角が小さくなる。(Bi,Pb)2223結晶の平均配向ずれ角が小さくなるほど、また、フィラメント中の(Bi,Pb)2223の比率が高くなるほど、1次線材および最終線材の臨界電流が高くなることがわかる。   As is apparent from Table 1, in Examples 1 to 8, in the primary sintering step, Pb compound and Bi 2212 were generated from (Bi, Pb) 2212 during the temperature increase, and Pb formed during the temperature increase. By generating (Bi, Pb) 2212 again from the compound and Bi 2212, the average misorientation angle of the (Bi, Pb) 2212 crystal in the filament of the primary wire is reduced, and the (Bi, Pb) of the primary wire is reduced. The smaller the average misorientation angle of the 2212 crystal, the smaller the average misorientation angle of the (Bi, Pb) 2223 crystal. It can be seen that the smaller the average misorientation angle of the (Bi, Pb) 2223 crystal and the higher the ratio of (Bi, Pb) 2223 in the filament, the higher the critical current of the primary wire and the final wire.

特に、実施例3〜5、7および8に示すように、酸素ガス分圧が7kPa以上の雰囲気下で1次焼結工程における線材の昇温を行い、この昇温中600℃から800℃までにおける昇温速度を20℃/hr以上200°/hr以下とすることにより、1次線材における(Bi,Pb)2223結晶の平均配向ずれ角αを10.0°未満にまで低減し、1次線材の臨界電流を33A以上とすることができ、臨界電流が120Aを超える高い臨界電流を有する最終線材を得ることができた。   In particular, as shown in Examples 3 to 5, 7 and 8, the wire material was heated in the primary sintering step in an atmosphere having an oxygen gas partial pressure of 7 kPa or more, and during this temperature increase from 600 ° C. to 800 ° C. By setting the rate of temperature rise at 20 ° C./hr to 200 ° / hr, the average misalignment angle α of (Bi, Pb) 2223 crystals in the primary wire is reduced to less than 10.0 °. The critical current of the wire could be 33 A or more, and a final wire having a high critical current exceeding 120 A could be obtained.

これに対して、比較例1においては、1次焼結工程の昇温の際にPb化合物が生成されないため、形成される(Bi,Pb)2223結晶の平均配向ずれ角αが大きく、1次線材および最終線材の臨界電流が低くなった。   On the other hand, in Comparative Example 1, since the Pb compound is not generated during the temperature increase in the primary sintering step, the average orientation deviation angle α of the (Bi, Pb) 2223 crystal formed is large. The critical current of the wire and the final wire became low.

今回開示された実施の形態および実施例はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、上記した説明でなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内のすべての変更が含まれることが意図される。   It should be understood that the embodiments and examples disclosed herein are illustrative and non-restrictive in every respect. The scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.

本発明にかかる超電導線材の製造方法の焼結工程における昇温の際の線材のフィラメント中の原料粉末のXRD測定による回折ピークを示す図である。ここで、(a)はPb化合物に由来する回折ピークを示し、(b)はBi2212および(Bi,Pb)2212に由来する回折ピークを示す。It is a figure which shows the diffraction peak by the XRD measurement of the raw material powder in the filament of the wire at the time of the temperature rising in the sintering process of the manufacturing method of the superconducting wire concerning this invention. Here, (a) shows a diffraction peak derived from a Pb compound, and (b) shows a diffraction peak derived from Bi2212 and (Bi, Pb) 2212. 超電導線材の製造方法の焼結工程において、低酸素ガス分圧雰囲気中で昇温させたときの線材のフィラメント中の原料粉末のXRD測定による回折ピークを示す図である。ここで、(a)はPb化合物に由来する回折ピークを示し、(b)はBi2212および(Bi,Pb)2212に由来する回折ピークを示す。It is a figure which shows the diffraction peak by the XRD measurement of the raw material powder in the filament of a wire when it heats up in a low oxygen gas partial pressure atmosphere in the sintering process of the manufacturing method of a superconducting wire. Here, (a) shows a diffraction peak derived from a Pb compound, and (b) shows a diffraction peak derived from Bi2212 and (Bi, Pb) 2212.

Claims (5)

(Bi,Pb)2223を含む超電導線材の製造方法であって、
Bi2212とPb化合物とを含む原料粉末を金属パイプに充填する工程と、前記原料粉末が充填された前記金属パイプを伸線加工してクラッド線を形成する工程と、複数の前記クラッド線を束ねて伸線加工して多芯線を形成する工程と、前記多芯線を熱処理して前記Bi2212および前記Pb化合物から(Bi,Pb)2212を生成させる工程と、前記熱処理がされた前記多芯線を圧延加工することによりテープ状の線材を形成する工程と、前記線材を焼結して(Bi,Pb)2223を生成する工程とを含み、
前記線材を焼結する工程において、昇温中に前記(Bi,Pb)2212からPb化合物およびBi2212を生成させ、前記昇温中に形成された前記Pb化合物および前記Bi2212から再度(Bi,Pb)2212を生成させることを特徴とする超電導線材の製造方法。
A method of manufacturing a superconducting wire containing (Bi, Pb) 2223,
A step of filling a metal pipe with a raw material powder containing Bi2212 and a Pb compound, a step of forming a clad wire by drawing the metal pipe filled with the raw material powder, and bundling a plurality of the clad wires A step of forming a multi-core wire by drawing, a step of heat-treating the multi-core wire to generate (Bi, Pb) 2212 from the Bi2212 and the Pb compound, and rolling the multi-core wire that has been heat-treated A step of forming a tape-like wire rod, and a step of generating (Bi, Pb) 2223 by sintering the wire rod,
In the step of sintering the wire, Pb compound and Bi 2212 are generated from the (Bi, Pb) 2212 during the temperature rise, and again (Bi, Pb) from the Pb compound and the Bi 2212 formed during the temperature rise. 22. A method of manufacturing a superconducting wire characterized by generating 2212.
前記線材を焼結する工程において、前記昇温中600℃から800℃までの雰囲気における酸素ガス分圧が1kPa以上であることを特徴とする請求項1に記載の超電導線材の製造方法。   2. The method of manufacturing a superconducting wire according to claim 1, wherein, in the step of sintering the wire, an oxygen gas partial pressure in an atmosphere from 600 ° C. to 800 ° C. during the temperature rise is 1 kPa or more. 前記線材を焼結する工程において、前記昇温中600℃から800℃までにおける昇温速度が20℃/hr以上200℃/hr以下であることを特徴とする請求項1に記載の超電導線材の製造方法。   2. The superconducting wire according to claim 1, wherein in the step of sintering the wire, a rate of temperature increase from 600 ° C. to 800 ° C. during the temperature increase is 20 ° C./hr or more and 200 ° C./hr or less. Production method. 請求項1から請求項3までのいずれかに記載の製造方法により製造された、(Bi,Pb)2223を含むフィラメントを含む超電導線材であって、
前記フィラメント中の前記(Bi,Pb)2223の比率は98%以上であり、
前記(Bi,Pb)2223の結晶の平均配向ずれ角が10.3°以下である超電導線材。
A superconducting wire comprising a filament containing (Bi, Pb) 2223 produced by the production method according to any one of claims 1 to 3 ,
The ratio of the (Bi, Pb) 2223 in the filament is 98% or more,
A superconducting wire in which an average orientation deviation angle of the (Bi, Pb) 2223 crystal is 10.3 ° or less .
請求項4に記載の超電導線材を含む超電導機器。   A superconducting device comprising the superconducting wire according to claim 4.
JP2006035099A 2006-02-13 2006-02-13 Superconducting wire, manufacturing method thereof and superconducting equipment Expired - Fee Related JP4867380B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006035099A JP4867380B2 (en) 2006-02-13 2006-02-13 Superconducting wire, manufacturing method thereof and superconducting equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006035099A JP4867380B2 (en) 2006-02-13 2006-02-13 Superconducting wire, manufacturing method thereof and superconducting equipment

Publications (2)

Publication Number Publication Date
JP2007214070A JP2007214070A (en) 2007-08-23
JP4867380B2 true JP4867380B2 (en) 2012-02-01

Family

ID=38492295

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006035099A Expired - Fee Related JP4867380B2 (en) 2006-02-13 2006-02-13 Superconducting wire, manufacturing method thereof and superconducting equipment

Country Status (1)

Country Link
JP (1) JP4867380B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100584519C (en) * 2008-05-05 2010-01-27 西北有色金属研究院 Preparation of Bi-2212/Ag superconducting tape
CN116444262A (en) * 2023-04-28 2023-07-18 西北有色金属研究院 Preparation method of high-performance Bi2223 precursor powder

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4375134B2 (en) * 2004-06-14 2009-12-02 住友電気工業株式会社 Superconducting wire manufacturing method

Also Published As

Publication number Publication date
JP2007214070A (en) 2007-08-23

Similar Documents

Publication Publication Date Title
JP4867380B2 (en) Superconducting wire, manufacturing method thereof and superconducting equipment
JP4111240B1 (en) Oxide superconducting material, manufacturing method thereof, superconducting wire, superconducting equipment
JP2008140769A (en) METHOD FOR MANUFACTURING Bi2223 SUPERCONDUCTING WIRE ROD
JPWO2005022563A1 (en) Method for producing oxide superconducting wire, method for modifying oxide superconducting wire, and oxide superconducting wire
JP2013235766A (en) Oxide superconducting thin film and method for manufacturing the same
JP2007149416A (en) Oxide superconducting material, its manufacturing method, superconducting wire rod, and superconducting apparatus
JP4720211B2 (en) Method for producing bismuth oxide superconducting wire
JPWO2005001852A1 (en) Bismuth oxide superconducting wire and method for producing the same
JP2007026773A (en) Superconducting wire material and manufacturing method thereof
JP2009170276A (en) Manufacturing method of bi2223 superconducting wire rod, and bi2223 superconducting wire rod
JP4715672B2 (en) Oxide superconducting wire and method for producing the same
JPH01261230A (en) Superconductor, superconducting wire and production of said wire
JP4893117B2 (en) Oxide superconducting wire manufacturing method and superconducting equipment
JP4496902B2 (en) Superconducting wire manufacturing method
JP4696811B2 (en) Manufacturing method of Bi-based superconductor
JP2009181817A (en) Manufacturing method of oxide superconductive wire rod, and oxide superconductive wire rod
JP2008153140A (en) Manufacturing method of oxide superconductive wire
US6240619B1 (en) Thermomechanical means to improve the critical current density of BSCCO tapes
JP4039260B2 (en) Manufacturing method of oxide superconducting wire and raw material powder of oxide superconducting wire
JP2942896B2 (en) Oxide superconductor wire and method of making
JP2004296260A (en) Manufacturing method of bismuth based oxide superconducting wire rod
JP2590157B2 (en) Manufacturing method of superconductor wire
JP4507899B2 (en) Bismuth oxide superconducting wire and method for producing the same, superconducting equipment using the bismuth oxide superconducting wire
JP2515141B2 (en) Manufacturing method of oxide superconductor
Milliken Uranium doping of silver sheathed bismuth-strontium-calcium-copper-oxide superconducting tapes for increased critical current density through enhanced flux pinning

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090206

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110726

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110802

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110928

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111018

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111031

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4867380

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141125

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees