JP4867017B2 - カーボンナノチューブ駆動機構 - Google Patents

カーボンナノチューブ駆動機構 Download PDF

Info

Publication number
JP4867017B2
JP4867017B2 JP2007526903A JP2007526903A JP4867017B2 JP 4867017 B2 JP4867017 B2 JP 4867017B2 JP 2007526903 A JP2007526903 A JP 2007526903A JP 2007526903 A JP2007526903 A JP 2007526903A JP 4867017 B2 JP4867017 B2 JP 4867017B2
Authority
JP
Japan
Prior art keywords
magnetic field
carbon nanotube
cnt
applying
cylinder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007526903A
Other languages
English (en)
Other versions
JPWO2007013579A1 (ja
Inventor
知義 堀江
知也 二保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyushu Institute of Technology NUC
Original Assignee
Kyushu Institute of Technology NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyushu Institute of Technology NUC filed Critical Kyushu Institute of Technology NUC
Priority to JP2007526903A priority Critical patent/JP4867017B2/ja
Publication of JPWO2007013579A1 publication Critical patent/JPWO2007013579A1/ja
Application granted granted Critical
Publication of JP4867017B2 publication Critical patent/JP4867017B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B43/00Machines, pumps, or pumping installations having flexible working members
    • F04B43/08Machines, pumps, or pumping installations having flexible working members having tubular flexible members
    • F04B43/09Pumps having electric drive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B3/00Devices comprising flexible or deformable elements, e.g. comprising elastic tongues or membranes
    • B81B3/0018Structures acting upon the moving or flexible element for transforming energy into mechanical movement or vice versa, i.e. actuators, sensors, generators
    • B81B3/0021Transducers for transforming electrical into mechanical energy or vice versa
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y15/00Nanotechnology for interacting, sensing or actuating, e.g. quantum dots as markers in protein assays or molecular motors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B19/00Machines or pumps having pertinent characteristics not provided for in, or of interest apart from, groups F04B1/00 - F04B17/00
    • F04B19/006Micropumps

Description

本発明は、ナノマシンやナノアクチュエータといったナノスケールの超微小機械の駆動機構に適用することのできるカーボンナノチューブ(CNT)駆動機構に関する。
近年、分子や原子を移動操作させるナノスケールのマニピュレータやマイクロマシン、ナノマシンといった超小型機械の技術開発が盛んに行われている。しかし、これらの機械にはナノスケールの駆動機構の開発が必要となる。
このナノテクノロジーを支える基盤材料のひとつにカーボンナノチューブ(Carbon Nano Tube:CNT)がある。1991年に飯島により発見されたCNTは、炭素原子のみで構成される直径が約1nm、長さが約1μmの円筒形の細長い材料である(非特許文献1参照)。CNTの最大の特徴として多種多様な構造が存在し、構造によって金属や半導体の性質を示すことが挙げられる。またその他の特徴として、強度が高く弾力性があることや導電率が高いことが挙げられる。これらの性質を利用して、材料の原子構造を直接観ることができるナノマニュピュレータや、原子や分子を直接操作することができるナノピンセット(非特許文献2参照)などが開発されている。
中山喜萬(大阪府立大学)はナノピンセットの開発を行っている(特許文献1参照)。その結果、2本のCNTに電圧を印加するとピンセットは閉じて行き、4.5V以上で全閉し、電圧を取り除くと元に戻ることを明らかにしている。
特開2002−172600号公報 斎藤理一郎、篠原久典、"カーボンナノチューブの基礎と応用"、培風館、2003 S. Akita and Y. Nakayama, "Nanotwezers consisting of carbon nanotube operating in an atomic force microscopy", APPLIED PHYSICS LETTERS, Vol.79, pp.1691-1693, 2001. T. Horie and T. Niho, "Electromagnetic and Mechanical Interaction Analysis of a Thin Shell Structure Vibration in an Electromagnetic Field", Int.J. of Applied Electromagnetics in Material, 4, 1994, pp.363-368
これまでのカーボンナノチューブを用いたナノスケールの駆動機構は、カーボンナノチューブに電圧を印加するための配線を必要とし、また、大きな駆動力を得るためには強い電圧を印加する必要があるが、このときには駆動機構に対して絶縁破壊を防ぐための対策も必要となる。さらに、これまでのカーボンナノチューブを用いた駆動機構の動作は、一方向の屈曲動作のみといった単純な動作である。
そこで、本発明の目的は、カーボンナノチューブに対して、配線などを必要とせずに非接触でエネルギーを供給することによって動作し、また、その動作も全方向屈曲動作や伸縮動作といった運動自由度を持ち、さらに、駆動力や動作速度も制御できる強い駆動力が発生可能なナノスケールの駆動機構を実現することである。
ナノアクチュエータやナノマニピュレータといったナノマシンの開発には、ナノサイズの材料を駆動させる必要がある。本発明は、CNTが高導電性材料であることに注目して、従来技術とは異なる駆動原理に基づき、電磁力を用いたCNT駆動機構を提供する。なお、駆動機構の妥当性を検討するため有限要素法による電磁構造連成解析を行なう。
本発明のカーボンナノチューブ駆動機構は、円筒形カーボンナノチューブに対して、定常磁場を印加する手段と、変動磁場を印加する手段を備え、変動磁場を印加することにより、カーボンナノチューブ内に渦電流を発生させ、かつ、向きが変化する渦電流と、定常磁場により電磁力を発生させることにより、カーボンナノチューブを駆動することから成る。
また、定常磁場を印加する手段は、定常磁場を前記カーボンナノチューブに対して、その中心軸の一方向から印加すると共に、変動磁場を印加する手段は、前記カーボンナノチューブに対して、その側面の一方向から印加することにより、変動磁場の向きと同じ方向の電磁力を発生させ、カーボンナノチューブを振動させて、ナノアクチュエータとして機能させる。
また、定常磁場を印加する手段は、定常磁場を前記カーボンナノチューブに対して、その側面の一方向或いはその中心軸の一方向から印加すると共に、変動磁場を印加する手段は、カーボンナノチューブの側面或いは中心軸の一方向から、定常磁場と同一方向、或いは逆方向に変動する磁場を印加することにより、定常磁場およびカーボンナノチューブの中心軸とは直角方向或いはカーボンナノチューブの半径方向の電磁力を発生させ、カーボンナノチューブの断面を伸縮させて、ナノポンプとして機能させる、或いは、断面を伸縮させることにより中心軸方向の長さも伸縮することを利用して、ナノプッシャーとして機能させる。
本発明によれば、従来技術とは異なる駆動原理に基づき、電磁力を用いたCNT駆動機構を提供することが可能となる。これによって、ナノサイズの材料を駆動させることができるナノアクチュエータやナノマニピュレータといったナノマシンを開発することが可能となる。
本発明は、カーボンナノチューブに変動磁場を印加することにより生じる電流と磁場によって生じる誘導電磁力を駆動力として用いるため、駆動のためのエネルギーを非接触で供給して動作させることができ、カーボンナノチューブに印加する磁場の方向により、曲げ動作や伸縮動作を行ない、また、カーボンナノチューブに印加する磁場の強さや変動速度を変化させることにより、駆動力や動作速度を制御できる。
また、本発明は、カーボンナノチューブの高い導電性によりカーボンナノチューブに大きな電流を発生させることができるため、大きな駆動力を発生させることが可能となる。さらに、微小領域においては強い磁場を容易に得られるため、この磁場を用いることにより大きな駆動力を発生させることが可能となる。
ナノマシンやマイクロマシンは材料創成、超微細加工、ナノ・マイクロ医療をはじめとする幅広い分野への応用が期待される。しかし、その駆動機構はこれらのマシンよりも小さいサイズで、さらに、駆動力や動作速度の制御が可能である必要がある。本発明のカーボンナノチューブ駆動機構は、これらの条件を満足するため、ナノマシンやマイクロマシンの駆動機構として採用される可能性がある。また、分子や原子といった極微小サイズのさまざまな技術の応用には、これらのサイズの物体を搬送する機構が必要であり、本発明はこれら極微小サイズの物体の搬送機構としての応用が期待される。
ナノアクチュエータの駆動原理を示す図である。 それ自体公知のCNTの立体構造を説明する図である。 電磁構造連成現象の流れを示す図である。 ナノアクチュエータの構成を説明する図である。 ナノポンプの動作原理を示す図である。 ナノポンプの構成を説明する図である。 ナノプッシャーの動作原理を示す図である。 ナノプッシャーの構成を説明する図である。 ナノサイズ搬送機構の動作原理を示す図である。 解析モデルを示す図である。 円筒部とふた部の材料定数を示す表である。 変動磁場および定常磁場の向きと拘束条件についてそれぞれ解析を行う解析ケースを示す表である。 円筒側面を固定し定常磁場をz軸方向に与えたときのP点およびQ点(図10参照)のx軸方向の変位を示す図である。 上下に振動していることが分かる円筒全体の変形を示す図である。 円筒左端を固定し、定常磁場をz軸方向に与えたときのP点およびQ点のx軸方向の変位を示す図である。 上下に振動していることが分かる円筒全体の変形を示す図である。 円筒側面を固定し、定常磁場をx軸方向に与えたときのP点およびQ点のx軸方向の変位を示す図である。 断面方向に変形していることが分かる円筒全体の変形を示す図である。 円筒左端を拘束し、定常磁場をx軸方向に与えたときのP点およびQ点のx軸方向の変位を示す図である。 断面方向に変形していることが分かる円筒全体の変形を示す図である。 円筒左端を拘束し、変動磁場および定常磁場をz軸方向に与えたときのP点およびQ点のz軸方向の変位を示す図である。 伸縮変形していることが分かる円筒全体の変形を示す図である。 解析を行う各ケース毎の長さ及び分割数を示す表である。 円筒左端を拘束し定常磁場をz軸方向に与えたときのP点のx軸方向の変位を示す図である。 上下に振動していることが分かる円筒全体の変形を示す図である。 円筒左端を拘束し、定常磁場をx軸方向に与えたときのP点のx軸方向の変位を示す図である。 断面方向に変形していることが分かる円筒全体の変形を示す図である。 解析モデルを示す図である。 変動磁場の周波数及び解析の時間刻み幅を示す表である。 横軸に変動磁場の周波数、縦軸にQ点におけるx軸方向の最大変位量をとったグラフである。 変動磁場の周波数が30MHzのときの円筒の変形を示す図である。 ナノスケール搬送機構の解析モデルを示す図である。 カーボンナノチューブの先端の変位および軌跡を示す図である。 カーボンナノチューブの先端が円運動をしていることが分かる円筒全体の変形を示す図である。
以下、ナノアクチュエータに適用した本発明の第1の実施形態のCNT駆動機構について、ナノアクチュエータの駆動原理を示す図1を参照して、説明する。図示のナノアクチュエータは、電磁力を用いて、CNTを上下に振動させる機構を有している。
1.図1(A)のように置かれた円筒形CNTに対して、中心軸の一方向から(図中の左から)定常磁場を与える。
2.CNTに対して、側面の一方向から(図中の下から)変動磁場を与えると、CNT内に渦電流が発生する。
3.この渦電流と定常磁場により電磁力が生じ、円筒形CNTの長さ方向両側の一方(図中のa点)は上方向に、他方(図中のb点)は下方向に変形する(図1(B))。
4.ここで変動磁場を逆向きに与えると、CNT内の渦電流が逆向きに流れる(図1(C))。
5.この渦電流と定常磁場により電磁力が生じ、円筒形CNTの長さ方向両側の一方(図中のa点)は下方向に、他方(図中のb点)は上方向に変形する(図1(D))。
変動磁場を与える向きを周期的に換えることにより、CNTは上下に振動することから、この機構はナノアクチュエータとしての機能を有することになる。以下、このナノアクチュエータ機能について、さらに説明する。
図2は、それ自体公知のCNTの立体構造を説明する図である。CNTは、図示したように、炭素原子だけから構成される円筒形の材料である。円筒内は真空となっている。CNTの直径は約1nm(10-9m)、長さが約1μm(10-6m)と極小で細長い形状である。これは光の波長(1μm)より小さく、遺伝子の大きさに匹敵する。また円筒面は黒鉛(グラファイト)の六方格子からなる。CNTは円筒の巻方によって多彩に存在し、この立体構造によって金属や半導体の性質を示す。同じ物質が金属にも半導体にもなることがCNTの最大の特徴である。
炭素の結合は原子間の結合の中で最も強いため、炭素のみで構成されるCNTの引張り強度は材料中最大(10GPa〜)である。この値は剛鉄(〜2GPa)の数倍の大きさである。
また、CNTは、電気的特性として、電流密度が高く電気輸送量が大きいという特徴、及び、熱的性質として、熱伝導性がよくまた耐熱性に優れている(空気中:750度)という特徴を有している。
図3は、CNTに生じる電磁構造連成現象の流れを示す図である。電磁構造連成現象とは、導電性構造物に変動磁場をかけることにより発生する渦電流と定常磁場による電磁力と、物体の変形速度と定常磁場による速度起電力が、構造物や構造物の渦電流に影響を与える現象である。
図示したように左端を固定した円筒状の導電性構造物を例に、電磁構造連成現象の流れを説明する
1.導電性構造物に定常磁場B0を与える(図3(A))。
2.構造物に変動磁場
を与えると、構造物に渦電流Jが発生する(図3(B))。
3.定常磁場B0とそれに垂直な渦電流成分により、J×B0の電磁力が生じ構造物は変形する(図3(C))。
4.この変形による
の速度起電力が生じる(図3(D))。
5.この速度起電力により、構造物の渦電流が逆方向に流れる(図3(E))。
6.この渦電流Jと定常磁場B0により、J×B0の電磁力が生じ、構造物の変形を抑えようとする(図3(F))。
本発明のCNT駆動機構は、このような電磁構造連成現象を利用して、CNTを駆動する。
図4は、ナノアクチュエータの構成を説明する図である。カーボンナノチューブCNTは、その片端を拘束して配置される。このCNTに対して、中心軸の一方側(例えば、拘束端側)から定常磁場を与え、かつ、側面の一方向から変動磁場を与える。これによって、前述したように、CNT内に発生した渦電流と定常磁場により電磁力が生じ、円筒形CNTの先端側は一方向に変形する。変動磁場を逆向きに与えることにより、電磁力が反対方向になり、円筒形CNTの先端側は他方向に変形することになる。このようにして、CNTの先端側に固定されたナノサイズ駆動対象物を、上下に振動させることが可能となる。
次に、ナノポンプに適用した本発明の第2の実施形態のCNT駆動機構について、ナノポンプの動作原理を示す図5を参照して、説明する。図示のナノポンプは、電磁力を用いて、CNTの断面を伸縮させる機構を有している。
1.図5(A)のように置かれた円筒形CNTに対して、円筒形側面の一方向から(図中の下から)定常磁場を与える。
2.CNTに定常磁場と同じ方向から変動磁場を与えると、CNT内に渦電流が発生する。
3.この渦電流と定常磁場により、定常磁場およびCNTの中心軸と直角方向に電磁力が生じる。これによって、定常磁場およびCNTの中心軸と直角方向の両側面(図中のc,c’点)が引張られ変形する(図5(B))。
4.ここで変動磁場を逆向きに与えると、CNT内の渦電流が逆向きに流れる(図5(C))。
5.この逆向きの渦電流と定常磁場により、図5(B)とは逆方向の電磁力が生じ、定常磁場およびCNTの中心軸と直角方向の両側面は圧縮され、変形する(図5(D))。
このように、定常磁場と変動磁場を同じ方向から与え、変動磁場を与える向きを周期的に換えることにより、CNTの断面は伸縮することから、この機構はナノポンプとしての機能を有することになる。
図6は、ナノポンプの構成を説明する図である。図示のように配置された円筒形カーボンナノチューブCNTに対して、変動電流発生装置からコイルに電流を流すことにより円筒形側面の一方向から変動磁場を与える。また、この変動電流発生装置から、一定の直流電流を重畳して流すことにより、同じコイルから同時に定常磁場を発生させることができる。これによって、前述したように、CNT内に発生した渦電流と定常磁場により、定常磁場およびCNTの中心軸と直角方向に電磁力が生じる。これによって、定常磁場およびCNTの中心軸と直角方向の両側面が引張られ変形する。また、変動磁場を逆向きに与えることにより、CNT内の渦電流が逆向きになり、CNTの両側面は圧縮され、変形することになる。このようにして、電磁力を用いて、CNTの断面を伸縮させることにより、円筒形CNT内部のナノサイズ移動対象物を移動させることができるナノポンプとして機能する。
次に、ナノプッシャーに適用した本発明の第3の実施形態のCNT駆動機構について、ナノプッシャーの動作原理を示す図7を参照して、説明する。図示のナノプッシャーは、電磁力を用いて、CNTの断面を伸縮させることにより中心軸方向の長さを伸縮させる機構を有している。
1.図7(A)のように置かれた円筒形CNTに対して、円筒形中心軸の一方向から(図中の左から)定常磁場を与える。
2.CNTに定常磁場と同じ方向から変動磁場を与えると、CNT内に渦電流が発生する。
3.この渦電流と定常磁場により、CNTの半径方向外向きの電磁力が生じる。これによって、CNTの断面が大きくなるため、これに伴いカーボンナノチューブが縮む(図7(B))。
4.ここで変動磁場を逆向きに与えると、CNT内の渦電流が逆向きに流れる(図7(C))。
5.この逆向きの渦電流と定常磁場により、図7(B)とは逆方向の電磁力が生じ、CNTの断面が圧縮されるため、これに伴いカーボンナノチューブが伸びる(図7(D))。
このように、定常磁場と変動磁場を同じ方向から与え、変動磁場を与える向きを周期的に換えることにより、CNTの断面が伸縮することによって中心軸方向の長さが伸縮することから、この機構はナノプッシャーとしての機能を有することになる。
図8は、ナノプッシャーの構成を説明する図である。図示のように配置された円筒形カーボンナノチューブCNTに対して、変動電流発生装置からコイルに電流を流すことにより円筒形中心軸の一方向から変動磁場を与える。また、この変動電流発生装置から、一定の直流電流を重畳して流すことにより、同じコイルから同時に定常磁場を発生させることができる。前述したように、CNT内に発生した渦電流と定常磁場により、定常磁場およびCNTの半径方向の電磁力が生じる。これによって、CNTの断面が大きくなり、これに伴いカーボンナノチューブが縮む。また、変動磁場を逆向きに与えることにより、CNT内の渦電流が逆向きになり、CNTの断面が圧縮されるに伴いカーボンナノチューブが伸びる。このようにして、電磁力を用いて、CNTの長さを伸縮させることにより、円筒形CNT先端のナノサイズ移動対象物を移動させることができるナノプッシャーとして機能する。
次に、ナノスケール搬送装置に適用した本発明の第4の実施形態のCNT駆動機構について、ナノサイズ搬送機構の動作原理を示す図9を参照して、説明する。図示のナノサイズ搬送機構は、電磁力を用いて、CNTを屈曲させる動作と、伸縮させる動作を組み合わせて、カーボンナノチューブ先端を円運動させることにより、ナノスケール搬送装置として機能させる。片端を拘束したCNTを絨毯状に設置する。屈曲動作させるために、第1のコイルから、CNTに側面から変動磁場を、かつ、第2のコイルに一定の電流を流すことにより、CNTの中心軸と同じ向きの定常磁場を与えることによって、CNTに発生した渦電流と定常磁場により、CNT先端を振動させる屈曲動作を行なう。また、伸縮動作させるために、このCNT側面の第1のコイルから定常磁場を与え、かつ、同時にこの第1のコイルから、定常磁場と同一方向或いは逆方向に変動する磁場を印加することにより、CNTの断面を伸縮させる伸縮動作を行なう。或いは、屈曲動作させるために、第1のコイル、かつ、第2のコイルから変動磁場を与え、第1のコイルが作る磁場の時間変化によって生じる渦電流と第2のコイルによる磁場によって生じる電磁力によりCNTの先端を振動させる屈曲動作を行う。また、第2のコイルが作る磁場の時間変化によって生じる渦電流とこの第2のコイルによる磁場によって生じる電磁力によりCNTの断面を伸縮させる伸縮動作を行う。そして、これらの動作を組み合わせることによりCNTの先端が円運動することから、この機構は、絨毯状に設置したCNTの先端側に位置するナノサイズ搬送対象物を移動させるナノサイズ搬送機構としての機能を有することになる。
以下に示すように、CNTを模擬した円筒モデルに対して、電磁構造連成解析を行い、CNTが駆動機構としての可能性を持つことを確認した。さらにCNTの変形量が、円筒の長さや与える磁場の周波数により変化することを確認した。
渦電流解析の有限要素式は
ここで、Uはインダクダンスマトリックス、Rはレジスタンスマトリックス、Tは電流ポテンシャル、
は外部変動磁場ベクトルである。
構造解析の有限要素式は
ここで、Mは質量マトリックス、Kは剛性マトリックス、uは変位、CsTは電磁力に関する項、Fexは外荷重ベクトルである。
は連成項で、式(1)と式(2)を解くことにより、渦電流解析と構造解析の連成解析を行う(非特許文献3参照)。
[CNTの電磁構造連成解析]
(1)磁場の向きと拘束条件による挙動の依存性
解析モデルは、図10に示すように直径d=2.0nm、長さL=2.0nm、厚さt=0.1nmの円筒形状である。電流ポテンシャルを未知変数とする渦電流解析により円筒形状問題を解析するため、円筒の右端には、非常にやわらかいふたがあるとして、このふたの抵抗率を非常に大きくすることによってふたには電流が流れないようにする。図11は、円筒部とふた部の材料定数を示す表である。
解析条件として要素分割は円周方向に16分割、長さ方向に10分割とする。時間刻み幅を1.0×10-8sec、ステップ数を100とする。変動磁場をB=1.0sin2πftT(f=3MHz),定常磁場をB=1.0Tとする。図12は、変動磁場および定常磁場の向きと拘束条件についてそれぞれ解析を行う解析ケースを示す表である。解析結果は、以下の通りである。
Case1:円側面を固定し、変動磁場をx軸方向、定常磁場をz軸方向に与えたときのP点およびQ点(図10参照)のx軸方向の変位を、図13に示す。図13より、P点の変形量はQ点の変形量より大きく、2つの点は同期した振動をしている。また振動の周期によって、最大振幅が異なるため、この振動は大きい振動と小さい振動を繰り返している。図14は円筒全体の変形図で、円筒が上下に振動していることが分かる。
Case2:円筒左端を固定し、変動磁場をx軸方向、定常磁場をz軸方向に与えたときのP点およびQ点のx軸方向の変位を図15に示す。図15よりP点とQ点の変形量は等しく、2つの点は対称的な振動をしている。図16は円筒全体の変形図で、円筒が上下に振動していることが分かるが、側面固定のとき(図14)と比べて、振動が小さいことが分かる。
Case3:円筒側面を固定し、変動磁場をx軸方向、定常磁場をx軸方向に与えたときのP点およびQ点のx軸方向の変位を図17に示す。図17よりP点の変形量はQ点の変形量より2倍近くあり、2つの点は同期した振動をしている。図18は円筒全体の変形図で、円筒が断面方向に変形していることが分かる。
Case4:円筒左端を拘束し、変動磁場をx軸方向、定常磁場をx軸方向に与えたときのP点およびQ点のx軸方向の変位を図19に示す。図19より、側面を固定した場合(図17)と比べて、P点、Q点とも変形量が少ないことが分かる。側面固定の場合は2点が同期した振動をしていたが、このケースにおいては2点が対称的な変形をしている。また最大振幅は2点とも同じである。図20は、円筒全体の変形図で、円筒が断面方向に変形していることが分かる。
Case5:円筒左端を拘束し、変動磁場をz軸方向、定常磁場をz軸方向に与えたときのP点およびQ点のz軸方向の変位を図21に示す。図21よりP点とQ点の変形量は等しく、同期した振動をしている。図22は、円筒全体の変形図で、円筒が断面方向に変形し、また、この変形に伴ってカーボンナノチューブがその中心軸方向に伸縮運動をしていることが分かる。
これらの結果より、円筒形に変動磁場を与えると、円筒内に渦電流が発生することが確認できる。変動磁場をx軸方向、定常磁場をz軸方向に与えた場合、円筒は上下に振動するという結果は、図1を参照して説明したナノアクチュエータの動作説明と一致する。また、変動磁場をx軸方向、定常磁場をx軸方向に与えた場合も同様に、図5を参照して説明したナノポンプの動作説明と一致する。また、変動磁場をz軸方向、定常磁場をz軸方向に与えた場合も同様に、図7を参照して説明したナノプッシャーの動作説明と一致する。
側面を固定した場合、円筒形は拘束の影響を受けにくいために変形しやすく、円筒左端を固定した場合は、拘束の影響を受けやすいために変形しにくい。しかし円筒左端を固定した場合でも、円筒の長さが十分であれば円筒の先端は拘束の影響を受けにくくなるので、変形しやすいと考えられる。また左端を固定した場合、P点とQ点の変形量が等しいため、円筒の振動は一定と考えられる。
この駆動方法について、円筒側面を固定すると変形しやすいことが確認できたが、円筒側面を固定することはナノスケールの構造物の場合、困難だと考えられる。つまり円筒左端を固定した状態での駆動が有効だと考えられる。
(2)長さによる挙動の依存性
CNTの長さによる挙動の依存性の解析を行う。解析モデルは、図10に示すように、直径d=2.0nm、長さL=2.0nm、厚さt=0.1nmの円筒形状である。材料定数については図11に示す値を用いる。
解析条件として、要素分割は円周方向に16分割とし、長さ方向については図23に示すようにする。拘束条件として、円筒の左端を固定する。時間刻み幅を1.0×10-8sec、ステップ数を100とする。変動磁場B=1.0sin2πftT(f=3MHz)をx軸方向に与える。図23に示す長さの異なるモデルについて、定常磁場B=1.0Tをz軸方向に与えたときと、x軸方向に与えたときの解析をそれぞれ行う。
定常磁場をz軸方向に与えた場合の解析結果は、以下の通りである。
円筒左端を拘束し定常磁場をz軸方向に与えたときのP点のx軸方向の変位を図24に示す。図24より、円筒の長さが長くなるにつれて、P点の変形量が非常に大きくなっていることがわかる。また、振動の周期はどの長さとも同じであるため、自由端における変位の速度は円筒が長いほど速い。円筒の長さが10nmまでの解析をおこなったが、実際には円筒の長さは直径の1000倍となることもあるので、弱い磁場でも変形しやすいと考えられる。図25は円筒全体の変形図で、円筒が上下に振動していることが分かる。図16の結果と比べても分かるように、長さが長くなると円筒先端(P点、Q点)の変形量が非常に大きくなっていることが確認できる。
定常磁場をx軸方向に与えた場合の解析結果は、以下の通りである。円筒左端を拘束し、定常磁場をx軸方向に与えたときのP点のx軸方向の変位を図26に示す。図26より円筒の長さが長くなるにつれて、P点の変形量が大きくなっているが、長さが4nmと10nmの変形量はあまり変わらないことがわかる。長さを10nm以上にしても、円筒先端の変形量はある一定の値に収束すると考えられる。図27は円筒全体の変形図で、円筒が断面方向に変形していることがわかる。
どのケースにおいても円筒の長さが長くなると変形量は大きくなった。しかし定常磁場をz軸方向に与えた場合は、変形量が円筒の長さに比例して急激に大きくなるのに対して、定常磁場をx軸方向から与えた場合は、円筒の長さが長くなるにつれて変形量に変化がみられなくなった。つまり円筒を上下に振動させる機構の場合には円筒の長さの影響を受けるが、円筒断面を伸縮させる機構の場合にはあまり影響がないことがわかる。
(3)周波数による挙動の依存性
周波数による挙動の依存性の解析を行う。解析モデルは図28のような直径d=2.0nm、長さL=10.0nm、厚さt=0.1nmの円筒形状である。材料定数については図11に示す値を用いる。
解析条件として、要素分割は円周方向に16分割、長さ方向に50分割とする。拘束条件として、円筒の左端を固定する。変動磁場B=1.0sin2πftTをx軸方向に与える。定常磁場B=1.0Tをx軸方向に与えたときについて、周波数fを3Hzから除々に上げて解析を行う。図29は、変動磁場の周波数及び解析の時間刻み幅を示す表である。
解析結果は、以下の通りである。図30は、横軸に変動磁場の周波数、縦軸にQ点におけるx軸方向の最大変位量をとったグラフである。図30より変動磁場の周波数が大きくなるほど、Q点におけるx軸方向の最大変位量も大きくなっていることがわかる。図31に変動磁場の周波数が30MHzのときの円筒の変形図を示す。図31より、円筒が断面方向に変形していることがわかる。
変動磁場の周波数が円筒の固有振動数に近づくと、円筒は共振を起こし、変形しやすくなると考えられる。そこで、円筒形の固有振動数を求める。
理論的にこの円筒形の固有振動数を求めると円筒面内の固有振動数fは以下の式で与えられる。ただし境界条件を無拘束としている。
ここで、Eはヤング率、Iは断面次モーメント、νはポアソン比、Rは半径である。この式より固有振動数fを求めると、f≒3.0×1012[Hz]となる。図30から変動磁場の周波数がこの3.0×1012[Hz]に近づくに従い変形が大きくなっていることが確認できる。
(4)屈曲動作と伸縮動作の組み合わせによるナノスケール搬送機構の検証
解析モデルは、図32に示すように直径d=2.0nm、長さL=10.0nm、厚さt=0.1nmの円筒形状である。材料定数としては図11に示す値を用い、解析条件として要素分割は円周方向に16分割、長さ方向に20分割とする。時間刻み幅は1.0×10-8sec、ステップ数は1500とする。x軸方向の変動磁場をBx=1.0sin(2πft+π/2)T (f=50kHz)、z軸方向の変動磁場をBz=50.0sin(2πft)T (f=50kHz)とする。
P点のx軸方向およびz軸方向の変位およびその軌跡を図33に示す。図33よりP点がx軸方向とz軸方向に変形し、また、その軌跡が円となっていることがわかる。図34は、円筒全体の変形図で、屈曲運動と伸縮運動の組み合わせによって円筒の先端が円運動を行うため、ナノスケール搬送機構として動作することが確認される。

Claims (4)

  1. 円筒形カーボンナノチューブに対して、定常磁場を印加する手段と、変動磁場を印加する手段を備え、変動磁場を印加することにより、前記カーボンナノチューブ内に渦電流を発生させ、かつ、向きが変化する前記渦電流と、前記定常磁場により電磁力を発生させることにより、前記カーボンナノチューブを駆動することから成るカーボンナノチューブ駆動機構。
  2. 前記定常磁場を印加する手段は、定常磁場を前記カーボンナノチューブに対して、その中心軸の一方向から印加すると共に、変動磁場を印加する手段は、前記カーボンナノチューブに対して、その側面の一方向から印加することにより、変動磁場の向きと同じ方向の電磁力を発生させ、前記カーボンナノチューブを振動させて、ナノアクチュエータとして機能させる請求項1に記載のカーボンナノチューブ駆動機構。
  3. 前記定常磁場を印加する手段は、定常磁場を前記カーボンナノチューブに対して、その側面の一方向から印加すると共に、変動磁場を印加する手段は、カーボンナノチューブの側面に対して、前記定常磁場と同一方向、或いは逆方向に変動する磁場を印加することにより、前記定常磁場およびカーボンナノチューブの中心軸とは直角方向の電磁力を発生させ、前記カーボンナノチューブの断面を伸縮させて、ナノポンプとして機能させる請求項1に記載のカーボンナノチューブ駆動機構。
  4. 前記定常磁場を印加する手段は、定常磁場を前記カーボンナノチューブに対して、その中心軸の一方向から印加すると共に、変動磁場を印加する手段は、カーボンナノチューブの中心軸の一方向から、前記定常磁場と同一方向、或いは逆方向に変動する磁場を印加することにより、カーボンナノチューブの半径方向の電磁力を発生させ、前記カーボンナノチューブの断面を伸縮させることにより中心軸方向の長さも伸縮することを利用して、ナノプッシャーとして機能させる請求項1に記載のカーボンナノチューブ駆動機構。
JP2007526903A 2005-07-29 2006-07-28 カーボンナノチューブ駆動機構 Active JP4867017B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007526903A JP4867017B2 (ja) 2005-07-29 2006-07-28 カーボンナノチューブ駆動機構

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2005219787 2005-07-29
JP2005219787 2005-07-29
PCT/JP2006/314955 WO2007013579A1 (ja) 2005-07-29 2006-07-28 カーボンナノチューブ駆動機構
JP2007526903A JP4867017B2 (ja) 2005-07-29 2006-07-28 カーボンナノチューブ駆動機構

Publications (2)

Publication Number Publication Date
JPWO2007013579A1 JPWO2007013579A1 (ja) 2009-02-12
JP4867017B2 true JP4867017B2 (ja) 2012-02-01

Family

ID=37683466

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007526903A Active JP4867017B2 (ja) 2005-07-29 2006-07-28 カーボンナノチューブ駆動機構

Country Status (2)

Country Link
JP (1) JP4867017B2 (ja)
WO (1) WO2007013579A1 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100300562A1 (en) * 2008-02-21 2010-12-02 Pinkerton Joseph F Molecular-scale beam pump assemblies and uses thereof
DE102012202098A1 (de) * 2012-02-13 2013-08-14 Ksb Aktiengesellschaft Hermetische Pumpe
JP2014122823A (ja) * 2012-12-20 2014-07-03 Nippon Zeon Co Ltd 測定方法、カーボンナノチューブ配向集合体の製造方法及び測定装置
WO2018130295A1 (en) * 2017-01-13 2018-07-19 MAX-PLANCK-Gesellschaft zur Förderung der Wissenschaften e.V. Method of actuating a shape changeable member, shape changeable member and actuating system
US20220064003A1 (en) * 2018-12-27 2022-03-03 Sumitomo Electric Industries, Ltd. Method for manufacturing carbon nanotube, method for manufacturing carbon nanotube assembled wire, method for manufacturing carbon nanotube assembled wire bundle, carbon nanotube manufacturing apparatus, carbon nanotube assembled wire manufacturing apparatus, and carbon nanotube assembled wire bundle manufacturing apparatus

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0479780A (ja) * 1990-07-18 1992-03-13 Toshiba Corp 磁歪式アクチュエータ
JPH05268782A (ja) * 1992-03-19 1993-10-15 Nippon Telegr & Teleph Corp <Ntt> マイクロアクチュエータ
JP2003247830A (ja) * 2002-02-22 2003-09-05 Koyo Seiko Co Ltd ジャイロセンサ
WO2004054811A2 (en) * 2002-12-12 2004-07-01 Brother Industries, Ltd. Nanostructure based microfluidic pumping device and method
JP2005001885A (ja) * 2004-03-26 2005-01-06 Kenji Sato 物体移動装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0479780A (ja) * 1990-07-18 1992-03-13 Toshiba Corp 磁歪式アクチュエータ
JPH05268782A (ja) * 1992-03-19 1993-10-15 Nippon Telegr & Teleph Corp <Ntt> マイクロアクチュエータ
JP2003247830A (ja) * 2002-02-22 2003-09-05 Koyo Seiko Co Ltd ジャイロセンサ
WO2004054811A2 (en) * 2002-12-12 2004-07-01 Brother Industries, Ltd. Nanostructure based microfluidic pumping device and method
JP2005001885A (ja) * 2004-03-26 2005-01-06 Kenji Sato 物体移動装置

Also Published As

Publication number Publication date
WO2007013579A1 (ja) 2007-02-01
WO2007013579A9 (ja) 2007-03-15
JPWO2007013579A1 (ja) 2009-02-12

Similar Documents

Publication Publication Date Title
Nammari et al. Fabrication and characterization of non-resonant magneto-mechanical low-frequency vibration energy harvester
Yong et al. Invited review article: High-speed flexure-guided nanopositioning: Mechanical design and control issues
Sun et al. A novel piezo-driven linear-rotary inchworm actuator
Sahu et al. Emerging challenges of microactuators for nanoscale positioning, assembly, and manipulation
JP4867017B2 (ja) カーボンナノチューブ駆動機構
Fowler et al. A 2-DOF electrostatically actuated MEMS nanopositioner for on-chip AFM
Demaghsi et al. Design and simulation of a novel metallic microgripper using vibration to release nano objects actively
Olfatnia et al. Large stroke electrostatic comb-drive actuators enabled by a novel flexure mechanism
Von Gratowski et al. Advanced system for nanofabrication and nanomanipulation based on shape memory alloy
Maroufi et al. MEMS for nanopositioning: Design and applications
Ke et al. Nanoelectromechanical systems and modeling
Kiziroglou et al. Micro motion amplification–a review
Yayli Axial vibration analysis of a Rayleigh nanorod with deformable boundaries
Sedighi et al. A modified model for dynamic instability of CNT based actuators by considering rippling deformation, tip-charge concentration and Casimir attraction
Koochi et al. Nonlinear Differential Equations in Micro/Nano Mechanics: Application in Micro/Nano Structures and Electromechanical Systems
Kang et al. Nanotube oscillators: properties and applications
Shekhter et al. Electronic aharonov-bohm effect induced by quantum vibrations
Shi et al. Rotational behavior of a nanoring protected by argon
Sabri et al. Modeling and experimental validation of the performance of a silicon XY-microstage driven by PZT actuators
Lafitte et al. Improvement of silicon nanotweezers sensitivity for mechanical characterization of biomolecules using closed-loop control
Jonsson et al. Self-organization of irregular nanoelectromechanical vibrations in multimode shuttle structures
Pugno Non-linear statics and dynamics of nanoelectromechanical systems based on nanoplates and nanowires
Ya’akobovitz et al. A MEMS nano-extensometer with integrated de-amplification mechanism
Nelson et al. Nanorobotics
Jani et al. Different Beam Configurations for Compliant Mechanism-Based MEMS Accelerometer

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110726

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110916

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111018

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150