JP4862327B2 - Semiconductor device and manufacturing method thereof - Google Patents

Semiconductor device and manufacturing method thereof Download PDF

Info

Publication number
JP4862327B2
JP4862327B2 JP2005265726A JP2005265726A JP4862327B2 JP 4862327 B2 JP4862327 B2 JP 4862327B2 JP 2005265726 A JP2005265726 A JP 2005265726A JP 2005265726 A JP2005265726 A JP 2005265726A JP 4862327 B2 JP4862327 B2 JP 4862327B2
Authority
JP
Japan
Prior art keywords
trench
isolation region
element isolation
oxide film
locos oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005265726A
Other languages
Japanese (ja)
Other versions
JP2007081056A (en
Inventor
宏幸 山根
満孝 堅田
浩 大槻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2005265726A priority Critical patent/JP4862327B2/en
Publication of JP2007081056A publication Critical patent/JP2007081056A/en
Application granted granted Critical
Publication of JP4862327B2 publication Critical patent/JP4862327B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Electrodes Of Semiconductors (AREA)
  • Thin Film Transistor (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Description

本発明は、トレンチゲート構造のMOSトランジスタを含む複数の素子と、素子間を絶縁分離する素子分離領域とを有する半導体装置及びその製造方法に関するものである。   The present invention relates to a semiconductor device having a plurality of elements including MOS transistors having a trench gate structure and an element isolation region for insulating and isolating the elements, and a method for manufacturing the same.

従来、トレンチゲート構造のMOSトランジスタにおいては、曲率半径の小さいトレンチの開孔角部(肩部)においてゲート絶縁膜に電界集中が生じるので、これによるゲート絶縁膜の耐圧低下を回避するために、例えば熱酸化により曲率半径を大きくする(開孔角部を丸みを帯びた緩やかな形状とする)ことが提案されている(例えば非特許文献1、特許文献1参照)。
IEEE TRANSACTIONS ON ELECTRON DEVICES,VOL.ED−34,NO.8,AUGUST 1987,p1681−1687 特許第3396553号
Conventionally, in a MOS transistor having a trench gate structure, since electric field concentration occurs in the gate insulating film at the opening corner (shoulder) of the trench having a small curvature radius, in order to avoid a decrease in the breakdown voltage of the gate insulating film due to this, For example, it has been proposed to increase the radius of curvature by thermal oxidation (the corners of the opening are rounded and have a gentle shape) (see, for example, Non-Patent Document 1 and Patent Document 1).
IEEE TRANSACTIONS ON ELECTRON DEVICES, VOL. ED-34, NO. 8, AUGUST 1987, p1681-1687 Japanese Patent No. 3396553

ところで、半導体装置においては、1つの半導体基板にMOSトランジスタ等の素子が複数設けられ、各素子は素子分離領域(例えばLOCOS酸化膜やSTI)によって絶縁分離されている。すなわち、MOSトランジスタのトレンチ近傍に素子分離領域が設けられている。   By the way, in a semiconductor device, a plurality of elements such as MOS transistors are provided on one semiconductor substrate, and each element is insulated and isolated by an element isolation region (for example, a LOCOS oxide film or STI). That is, an element isolation region is provided in the vicinity of the trench of the MOS transistor.

本発明者が確認したところ、トレンチの開孔角部を丸みを帯びた緩やかな形状に加工したにも関わらず、素子分離領域とトレンチの位置関係によっては、ゲート絶縁膜に電界集中が生じたり、半導体装置のコストが増加したりすることが明らかとなった。   According to the present inventors, although the opening corner of the trench was processed into a rounded and gentle shape, electric field concentration might occur in the gate insulating film depending on the positional relationship between the element isolation region and the trench. It became clear that the cost of the semiconductor device increased.

本発明は上記問題点に鑑み、ゲート絶縁膜の信頼性向上とコスト低減を両立した半導体装置及びその製造方法を提供することを目的としている。   In view of the above problems, an object of the present invention is to provide a semiconductor device and a method for manufacturing the same that can improve the reliability of the gate insulating film and reduce the cost.

本発明者が確認したところ、トレンチの開孔角部が丸みを帯びた緩やかな形状に加工されているにも関わらず、開孔角部と素子分離領域が重複する(言い換えれば、開孔角部の端部が素子分離領域内にある)場合、素子分離領域の端部と開孔角部との繋ぎ部位が角張った形状となるため、開孔角部におけるゲート絶縁膜の電界強度が、平坦部におけるゲート絶縁膜の電界強度に比べて著しく大きな値となることが明らかとなった。また、トレンチと素子分離領域とを離間すると、電界集中を抑制することはできるが、離間しすぎても素子面積が増大するので、コストが増加することとなる。したがって、トレンチと素子分離領域を所定の位置関係とすることが好ましい。   As a result of confirmation by the present inventor, although the opening corner of the trench is processed into a rounded and gentle shape, the opening corner overlaps with the element isolation region (in other words, the opening angle In the case where the edge of the part is in the element isolation region), since the connecting portion between the edge of the element isolation region and the opening corner is an angular shape, the electric field strength of the gate insulating film at the opening corner is It became clear that the electric field strength of the gate insulating film in the flat portion was significantly larger. Further, when the trench and the element isolation region are separated from each other, the electric field concentration can be suppressed. However, the element area increases even if the trench is separated too much, so that the cost increases. Therefore, it is preferable that the trench and the element isolation region have a predetermined positional relationship.

それに対し、請求項1に記載の発明は、トレンチゲート構造のMOSトランジスタを含む複数の素子と、素子間を絶縁分離する素子分離領域とを有する半導体装置であって、MOSトランジスタのトレンチの開孔角部は丸みを帯びた緩やかな形状に加工されており、半導体基板表面におけるトレンチの開孔角部の端部と、MOSトランジスタに隣接する素子分離領域のトレンチ側の端部との間の間隔をXcとするとXc=0を満たすように構成したことを特徴とする。尚、上記において、トレンチの開孔角部とは、トレンチの側壁の平坦部と基板表面の平坦部とを繋ぐ、丸みを帯びた緩やかな形状を有する部位を示し、開孔角部の端部とは、基板表面の平坦部との境界部位を示す。 On the other hand, the invention according to claim 1 is a semiconductor device having a plurality of elements including a MOS transistor having a trench gate structure and an element isolation region for insulating and isolating the elements, wherein the trench opening of the MOS transistor is formed. The corner is processed into a rounded and gentle shape, and the distance between the end of the opening corner of the trench on the surface of the semiconductor substrate and the end of the isolation region adjacent to the MOS transistor on the trench side If Xc is Xc, it is configured to satisfy Xc = 0 . In the above description, the opening corner of the trench refers to a portion having a rounded and gentle shape that connects the flat portion of the sidewall of the trench and the flat portion of the substrate surface, and is an end portion of the opening corner. Indicates a boundary portion with the flat portion of the substrate surface.

このように本発明によると、Xc=0であるので、開孔角部と素子分離領域が重複することがない(端部同士が一致する)。従って、開孔角部のゲート絶縁膜における電界集中を抑制し、ゲート絶縁膜の信頼性を向上することができる。また、Xc=0であるので、トレンチから素子分離領域までの距離を短くして、素子面積を小さくすることができる。したがって、本発明によれば、ゲート絶縁膜の信頼性向上とコスト低減(小型化)を両立することができる。 As described above, according to the present invention, since Xc = 0 , the opening corner portion and the element isolation region do not overlap (the end portions coincide ). Therefore, electric field concentration in the gate insulating film at the opening corner can be suppressed, and the reliability of the gate insulating film can be improved. Further, since Xc = 0 , the distance from the trench to the element isolation region can be shortened to reduce the element area. Therefore, according to the present invention, the reliability of the gate insulating film can be improved and the cost can be reduced (downsized) .

次に請求項2に記載の発明は、請求項1に記載の半導体装置を製造するための製造方法に関し、トレンチゲート構造のMOSトランジスタを含む複数の素子と、素子間を絶縁分離する素子分離領域とを有する半導体装置の製造方法であって、半導体基板に素子分離領域を形成する素子分離領域形成工程と、半導体基板の素子分離領域近傍にトレンチを形成するトレンチ形成工程と、トレンチの少なくとも開孔角部の曲率半径をトレンチ形成時よりも大きくし、開孔角部を丸みを帯びた緩やかな形状とする曲大化工程と、トレンチ表面にゲート絶縁膜を形成し、ゲート絶縁膜を介してトレンチにゲート電極を形成するゲート形成工程とを備え、半導体基板表面におけるトレンチの開孔角部の端部と、MOSトランジスタに隣接する素子分離領域のトレンチ側の端部との間の間隔をXcとすると、素子分離領域形成工程、トレンチ形成工程、及び曲大化工程において、Xc=0を満たすように、素子分離領域及びトレンチを形成することを特徴とする。 Next, a second aspect of the present invention relates to a manufacturing method for manufacturing the semiconductor device according to the first aspect, and a plurality of elements including MOS transistors having a trench gate structure and an element isolation region for insulating and isolating the elements from each other. A device isolation region forming step of forming an element isolation region in a semiconductor substrate, a trench formation step of forming a trench in the vicinity of the element isolation region of the semiconductor substrate, and at least opening of the trench The curvature radius of the corner is made larger than that at the time of trench formation, and the gate corner film is formed on the surface of the trench by forming a gate insulating film on the surface of the trench with a rounded and gentle shape. A gate forming step of forming a gate electrode in the trench, and an element isolation region adjacent to the end of the opening corner of the trench on the surface of the semiconductor substrate and the MOS transistor When the distance between the end portion of the trench side and Xc, the isolation region formation step, a trench forming step, and the music Daehwa step, so as to satisfy Xc = 0, to form an element isolation region and the trench Features.

本発明の作用効果は、請求項1に記載の発明の作用効果と同様であるので、その記載を省略する。 Since the operational effects of the present invention are the same as the operational effects of the invention described in claim 1, the description thereof is omitted.

以下、本発明の実施の形態を図に基づいて説明する。
(第1の実施の形態)
図1は、本実施形態に係る半導体装置の概略構成を示す図であり、(a)は平面図、(b)は(a)のA−A断面における断面図である。図1(a),(b)に示すように、本実施形態に係る半導体装置100は、半導体基板10にトレンチゲート構造のMOSトランジスタ20を含む複数の素子と、素子間を絶縁分離する素子分離領域としてのLOCOS酸化膜30とを有する半導体装置であり、図1においては、便宜上、一部のみを図示する。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
(First embodiment)
1A and 1B are diagrams illustrating a schematic configuration of a semiconductor device according to the present embodiment, in which FIG. 1A is a plan view and FIG. 1B is a cross-sectional view taken along a line AA in FIG. As shown in FIGS. 1A and 1B, a semiconductor device 100 according to this embodiment includes a plurality of elements including a trench gate structure MOS transistor 20 in a semiconductor substrate 10 and element isolation for insulating and isolating the elements from each other. This is a semiconductor device having a LOCOS oxide film 30 as a region. In FIG. 1, only a part is shown for convenience.

半導体基板10は、特に限定されるものではない。例えばシリコンからなる基板でも良いし、内部に絶縁膜を埋め込んだSOI(Silicon On Insulator)基板でも良い。   The semiconductor substrate 10 is not particularly limited. For example, a substrate made of silicon or an SOI (Silicon On Insulator) substrate in which an insulating film is embedded may be used.

トレンチゲート構造のMOSトランジスタ20は、例えばN導電型領域をソースおよびドレインとする縦型のNチャネルトランジスタとして構成されている。MOSトランジスタ20は、半導体基板10上に形成されたドレイン領域であるn−型の拡散領域(図示略)、この拡散領域の表層部に選択的に形成されたベース領域であるp型の拡散領域(pウェル)、この拡散領域の表層部に選択的に形成されたソース領域であるn+型の拡散領域、ソース領域である拡散領域とベース領域である拡散領域を貫通し、ドレイン領域である拡散領域に達するように形成されたトレンチ21(図1(a)においては一点鎖線で囲まれる領域)、ゲート絶縁膜22を介してトレンチ21に埋め込み形成されたゲート電極23、及び図示されない層間絶縁膜、ソース電極、ドレイン電極、配線等により構成されている。   The trench gate structure MOS transistor 20 is configured as, for example, a vertical N-channel transistor having an N conductivity type region as a source and a drain. The MOS transistor 20 includes an n − type diffusion region (not shown) which is a drain region formed on the semiconductor substrate 10 and a p type diffusion region which is a base region selectively formed on the surface layer portion of the diffusion region. (P-well), an n + -type diffusion region that is a source region selectively formed in the surface layer portion of the diffusion region, a diffusion region that is a drain region and penetrates through a diffusion region that is a source region and a diffusion region that is a base region A trench 21 formed so as to reach the region (a region surrounded by an alternate long and short dash line in FIG. 1A), a gate electrode 23 embedded in the trench 21 via the gate insulating film 22, and an interlayer insulating film (not shown) , Source electrode, drain electrode, wiring and the like.

トレンチ21は、トレンチ21の側壁の平坦部と基板表面の平坦部とを繋ぐ開孔角部(肩部)の形状が、電解集中を抑制するために丸みを帯びた緩やかな形状となっている。そしてMOSトランジスタ20の周囲には、素子分離領域としてのLOCOS酸化膜30が形成されている。本実施形態においては、LOCOS酸化膜30にて囲まれる領域内に、3つのトレンチ21が形成されている。尚、図1中において、符号21aは、トレンチ21の開孔角部の端部(言い換えれば、基板表面の平坦部との境界部位或いは丸みを帯びた緩やかな形状の終端部位)を示し、符号30aは、トレンチ21側のLOCOS酸化膜30の端部を示している。また、符号40は、ソース領域及びドレイン領域をそれぞれソース電極及びドレイン電極と接続するコンタクトを示している。   In the trench 21, the shape of the opening corner (shoulder) that connects the flat portion of the sidewall of the trench 21 and the flat portion of the substrate surface is a rounded and gentle shape to suppress electrolytic concentration. . A LOCOS oxide film 30 as an element isolation region is formed around the MOS transistor 20. In the present embodiment, three trenches 21 are formed in a region surrounded by the LOCOS oxide film 30. In FIG. 1, reference numeral 21 a indicates an end of the opening corner of the trench 21 (in other words, a boundary part with a flat part of the substrate surface or a rounded gentle end part). Reference numeral 30a denotes an end portion of the LOCOS oxide film 30 on the trench 21 side. Reference numeral 40 denotes a contact for connecting the source region and the drain region to the source electrode and the drain electrode, respectively.

ここで、上記構成の半導体装置100において、本発明者はトレンチ21とLOCOS酸化膜30との位置関係と、トレンチ21の開孔角部における電界集中との関係について調査した。その結果を図2に示す。図2は、トレンチ21の開孔角部の端部21cとLOCOS酸化膜30の端部30aとの間の距離をXc(図1(b)参照)とした際の、基板表面の平坦部におけるゲート絶縁膜22に対する開孔角部のゲート絶縁膜22の電界強度比とXcとの関係を示すシミュレーション結果である。また、図3は、トレンチ21(開孔角部の端部21a)とLOCOS酸化膜30(端部30a)との位置関係を示す図であり、(a)はXc>0、(b)はXc=0、(c)はXc<0の場合を示している。   Here, in the semiconductor device 100 having the above configuration, the inventor investigated the relationship between the positional relationship between the trench 21 and the LOCOS oxide film 30 and the electric field concentration at the opening corner of the trench 21. The result is shown in FIG. FIG. 2 shows a flat portion of the substrate surface when the distance between the end 21c of the opening corner of the trench 21 and the end 30a of the LOCOS oxide film 30 is Xc (see FIG. 1B). It is a simulation result which shows the relationship between Xc and the electric field strength ratio of the gate insulating film 22 of the opening corner | angular part with respect to the gate insulating film 22. FIG. 3 is a diagram showing the positional relationship between the trench 21 (the end 21a of the opening corner) and the LOCOS oxide film 30 (the end 30a), where (a) is Xc> 0 and (b) is Xc = 0, (c) shows the case of Xc <0.

図3(a)に示すように、Xc>0、すなわち、開孔角部の端部21aとLOCOS酸化膜30の端部30aとの間に繋ぎの平坦部を有する構成においては、図2に示すように開孔角部におけるゲート絶縁膜22の電界強度は平坦部におけるゲート絶縁膜22の電界強度の略1.2倍であった。また、図3(b)に示すように、Xc=0、すなわち、開孔角部の端部21aとLOCOS酸化膜30の端部30aとが一致する構成においても同様であった。   As shown in FIG. 3A, in the configuration in which Xc> 0, that is, in the configuration having a connecting flat portion between the end 21a of the opening corner and the end 30a of the LOCOS oxide film 30, FIG. As shown, the electric field strength of the gate insulating film 22 at the opening corner is approximately 1.2 times the electric field strength of the gate insulating film 22 in the flat portion. Further, as shown in FIG. 3B, the same applies to the configuration in which Xc = 0, that is, the end portion 21a of the opening corner and the end portion 30a of the LOCOS oxide film 30 coincide.

ところが、図3(c)に示すように、Xc<0、すなわち、トレンチ21の開孔角部とLOCOS酸化膜30が一部重複した構成(言い換えれば、開孔角部の端部21aがLOCOS酸化膜30内にある構成)においては、図2に示すように、開孔角部におけるゲート絶縁膜22の電界強度が平坦部におけるゲート絶縁膜22の電界強度に比べて著しく大きな値となり、電界強度比が略1.2よりも大きくなった。   However, as shown in FIG. 3C, Xc <0, that is, a configuration in which the opening corner portion of the trench 21 partially overlaps the LOCOS oxide film 30 (in other words, the end portion 21a of the opening corner portion is LOCOS). In the structure in the oxide film 30), as shown in FIG. 2, the electric field strength of the gate insulating film 22 at the corners of the opening is significantly larger than the electric field strength of the gate insulating film 22 at the flat portion. The intensity ratio was larger than about 1.2.

これは、LOCOS酸化膜30の端部30aとトレンチ21の開孔角部との繋ぎ部位が角張った形状となるため、開孔角部におけるゲート絶縁膜22の電界強度が、平坦部におけるゲート絶縁膜22の電界強度に比べて著しく大きな値となるものと考えられる。   This is because the connecting portion between the end portion 30a of the LOCOS oxide film 30 and the opening corner portion of the trench 21 has an angular shape, so that the electric field strength of the gate insulating film 22 at the opening corner portion is equal to the gate insulation at the flat portion. It is considered that the value is significantly larger than the electric field strength of the film 22.

実際、図3(a)に示す構成と図3(c)に示す構成のMOSトランジスタを形成し、ゲート電圧とゲート電流を測定したところ、図4に示すように、Xc<0となるように構成したトランジスタの方が、Xc>0となるように構成したトランジスタよりも大きなゲート電流が流れた。従って、Xc<0において、電界集中が生じていることが明らかである。このように電界集中が生じると、ゲート絶縁膜22に過大な電界が加わり、信頼性が低下することとなる。すなわち、ゲート絶縁膜22の経時破壊現象に対する寿命が著しく短くなってしまう。図4は、ゲート電圧とゲート電流との関係を示す図である。   Actually, when the MOS transistor having the configuration shown in FIG. 3A and the configuration shown in FIG. 3C was formed and the gate voltage and the gate current were measured, as shown in FIG. 4, Xc <0. The configured transistor flowed a larger gate current than the transistor configured to satisfy Xc> 0. Therefore, it is clear that electric field concentration occurs at Xc <0. When electric field concentration occurs in this way, an excessive electric field is applied to the gate insulating film 22 and the reliability is lowered. That is, the lifetime of the gate insulating film 22 against the destruction phenomenon with time is remarkably shortened. FIG. 4 is a diagram showing the relationship between the gate voltage and the gate current.

電界集中を抑制するためには、Xc≧0とすることが好ましい。しかしながら、トレンチ21と素子分離領域であるLOCOS酸化膜30との間隔を大きくしすぎても素子面積が増大するので、コストが増加することとなる。したがって、ゲート絶縁膜22の信頼性向上とコスト低減を両立するように、トレンチ21とLOCOS酸化膜30を所定の位置関係とする必要がある。   In order to suppress electric field concentration, it is preferable to satisfy Xc ≧ 0. However, even if the distance between the trench 21 and the LOCOS oxide film 30 that is the element isolation region is too large, the element area increases, resulting in an increase in cost. Therefore, the trench 21 and the LOCOS oxide film 30 need to be in a predetermined positional relationship so that the reliability of the gate insulating film 22 is improved and the cost is reduced.

そこで本実施形態においては、上記した半導体装置100(図1参照)において、Xcが次式を満たすように構成した。
(式1)0≦Xc≦ΔWi+ΔWt+2Xa
尚、ΔWiはLOCOS酸化膜30の加工ばらつき(加工精度)を許容する許容幅、ΔWtはトレンチ21の加工ばらつき(加工精度)を許容する許容幅、XaはLOCOS酸化膜30に対するトレンチ21の位置ばらつき(位置決め精度)を許容する許容幅である。本実施形態においては、上記許容幅ΔWi、ΔWt、許容幅Xaとして、それぞれのばらつきの値(精度)に所定のマージンを加味した値を採用している。しかしながら、上記許容幅ΔWi、ΔWt、Xaとして、それぞれのばらつきの値(精度)そのものを採用しても良い。
Therefore, in the present embodiment, the above-described semiconductor device 100 (see FIG. 1) is configured so that Xc satisfies the following equation.
(Formula 1) 0 ≦ Xc ≦ ΔWi + ΔWt + 2Xa
Here, ΔWi is an allowable width that allows processing variation (processing accuracy) of the LOCOS oxide film 30, ΔWt is an allowable width that allows processing variation (processing accuracy) of the trench 21, and Xa is a positional variation of the trench 21 with respect to the LOCOS oxide film 30. This is an allowable width that allows (positioning accuracy). In the present embodiment, as the allowable widths ΔWi, ΔWt, and the allowable width Xa, values obtained by adding a predetermined margin to each variation value (accuracy) are employed. However, as the allowable widths ΔWi, ΔWt, and Xa, the values (accuracy) of the respective variations may be employed.

次に、式1について、図5(a),(b)を用いて説明する。図5は式1を説明するための図であり、(a)は平面図、(b)は(a)のB−B断面における断面図である。図5は図1に対応している。   Next, Equation 1 will be described with reference to FIGS. FIGS. 5A and 5B are diagrams for explaining the expression 1. FIG. 5A is a plan view, and FIG. 5B is a cross-sectional view taken along the line BB in FIG. FIG. 5 corresponds to FIG.

上記したように、本実施形態に係る半導体装置100においては、MOSトランジスタ20の周囲がLOCOS酸化膜30によって囲まれている。そこで、図5(a)に示すように、トレンチ21の長手方向において、トレンチ21の両端部21a間の距離をWtとし、両端部21aとそれぞれ対向するLOCOS酸化膜30の端部30a間の距離をWiとする。Wt、Wiは、ともにそれぞれの形成工程において加工ばらつきを持っており、加工ばらつきが生じても所定範囲の長さとなるように設定されている。ここで、それぞれの狙い値(加工中心値)をWtc、Wicとし、加工ばらつき(加工精度)をそれぞれ上記したΔWt、ΔWiとすると、Wt、Wiをそれぞれ式2,3で示すことができる。
(式2)Wt=Wtc±ΔWt
(式3)Wi=Wic±ΔWi
さらに、本実施形態においては、後述するようにLOCOS酸化膜30の形成後に、形LOCOS酸化膜30を位置決め基準としてトレンチ21を形成するが、LOCOS酸化膜30に対してトレンチ21の位置ばらつき(位置決め精度)が生じる。そこで、上記したXaをこの位置ばらつきを許容する許容幅Xaとする。
As described above, in the semiconductor device 100 according to the present embodiment, the periphery of the MOS transistor 20 is surrounded by the LOCOS oxide film 30. Therefore, as shown in FIG. 5A, in the longitudinal direction of the trench 21, the distance between both end portions 21a of the trench 21 is Wt, and the distance between the end portions 30a of the LOCOS oxide film 30 respectively facing the both end portions 21a. Is Wi. Both Wt and Wi have processing variations in their respective forming steps, and are set to have a predetermined length even when processing variations occur. Here, assuming that the respective target values (processing center values) are Wtc and Wic, and the processing variations (processing accuracy) are ΔWt and ΔWi, respectively, Wt and Wi can be expressed by Equations 2 and 3, respectively.
(Formula 2) Wt = Wtc ± ΔWt
(Formula 3) Wi = Wic ± ΔWi
Further, in the present embodiment, as will be described later, after forming the LOCOS oxide film 30, the trench 21 is formed using the LOCOS oxide film 30 as a positioning reference. However, the position variation (positioning) of the trench 21 with respect to the LOCOS oxide film 30 is determined. Accuracy) occurs. Therefore, the above-described Xa is set as an allowable width Xa that allows this positional variation.

例えば、式2,3に示すWt,Wiが加工中心値(すなわち加工ばらつきなし)で形成され、LOCOS酸化膜30に対するトレンチ21の位置ずれが0の場合、Xcは式4で示され、LOCOS酸化膜30に対するトレンチ21の位置ずれがXa(最大)の場合、位置ずれして間隔が狭くなった方のXcは式5、位置ずれして間隔が広くなった方のXcは式6で示される。
(式4)Xc=1/2×ΔWi+1/2×ΔWt+Xa
(式5)Xc=1/2×ΔWi+1/2×ΔWt
(式6)Xc=1/2×ΔWi+1/2×ΔWt+2Xa
また、Wtが最大値,Wiが最小値であり、LOCOS酸化膜30に対するトレンチ21の位置ずれが0の場合、Xcは式7で示され、LOCOS酸化膜30に対するトレンチ21の位置ずれがXa(最大)の場合、位置ずれして間隔が狭くなった方のXcは式8、位置ずれして間隔が広くなった方のXcは式9で示される
(式7)Xc=Xa
(式8)Xc=0
(式9)Xc=2Xa
さらには、Wtが最小値,Wiが最大値であり、LOCOS酸化膜30に対するトレンチ21の位置ずれが0の場合、Xcは式10で示され、LOCOS酸化膜30に対するトレンチ21の位置ずれがXa(最大)の場合、位置ずれして間隔が狭くなった方のXcは式11、位置ずれして間隔が広くなった方のXcは式12で示される。
(式10)Xc=ΔWi+ΔWt+Xa
(式11)Xc=ΔWi+ΔWt
(式12)Xc=ΔWi+ΔWt+2Xa
従って、式4〜12に示した結果から分かるように、Xcを上記式1に示す範囲内で設定すれば、加工ばらつき及び位置(決め)ばらつきを考慮したうえで、トレンチ21の開孔角部を丸みを帯びた緩やかな形状としたトレンチゲート構造のMOSトランジスタ20を有する半導体装置100において、ゲート絶縁膜22の信頼性向上とコスト低減を両立することができる。
For example, when Wt and Wi shown in Equations 2 and 3 are formed with processing center values (that is, no processing variation), and the positional deviation of the trench 21 with respect to the LOCOS oxide film 30 is 0, Xc is expressed by Equation 4 and LOCOS oxidation is performed. When the positional deviation of the trench 21 with respect to the film 30 is Xa (maximum), Xc of which the position is shifted and the interval is narrowed is expressed by Equation 5, and Xc of the position which is shifted and the interval is widened is expressed by Equation 6. .
(Expression 4) Xc = 1/2 × ΔWi + 1/2 × ΔWt + Xa
(Formula 5) Xc = 1/2 × ΔWi + 1/2 × ΔWt
(Expression 6) Xc = 1/2 × ΔWi + 1/2 × ΔWt + 2Xa
Further, when Wt is the maximum value and Wi is the minimum value, and the positional deviation of the trench 21 with respect to the LOCOS oxide film 30 is 0, Xc is expressed by Equation 7, and the positional deviation of the trench 21 with respect to the LOCOS oxide film 30 is Xa ( In the case of (maximum), Xc of the one where the interval is shifted and the interval is narrowed is expressed by Equation 8, and Xc of the one where the interval is shifted and the interval is widened is expressed by Equation 9 (Expression 7)
(Formula 8) Xc = 0
(Formula 9) Xc = 2Xa
Further, when Wt is the minimum value and Wi is the maximum value, and the positional deviation of the trench 21 with respect to the LOCOS oxide film 30 is 0, Xc is expressed by Equation 10, and the positional deviation of the trench 21 with respect to the LOCOS oxide film 30 is Xa. In the case of (maximum), Xc of which the position is shifted and the interval is narrowed is expressed by Equation 11, and Xc of the position which is shifted and the interval is widened is expressed by Equation 12.
(Expression 10) Xc = ΔWi + ΔWt + Xa
(Formula 11) Xc = ΔWi + ΔWt
(Expression 12) Xc = ΔWi + ΔWt + 2Xa
Therefore, as can be seen from the results shown in Equations 4 to 12, if Xc is set within the range shown in Equation 1, the opening corner portion of the trench 21 is taken into consideration in consideration of processing variations and position (decision) variations. In the semiconductor device 100 having the MOS transistor 20 having the trench gate structure having a rounded and gentle shape, it is possible to achieve both improvement in reliability of the gate insulating film 22 and cost reduction.

特に、上記した式12が最大であるので、式12を満たすようにXc(すなわち、それぞれの加工中心値Wtc、Wic)を設定しても良い。この場合、加工ばらつき及び位置(決め)ばらつきが生じる恐れがある場合に、安定してゲート絶縁膜22の信頼性向上とコスト低減を両立することができる。尚、式12の右辺(ΔWi+ΔWt+2Xa)の値は、一般的に0.5μm程度である。従って、Xcの値を無駄に大きくすることなく、素子面積を必要最小限とする(コスト低減する)ことができる。   In particular, since the above Expression 12 is the maximum, Xc (that is, the respective processing center values Wtc and Wic) may be set so as to satisfy Expression 12. In this case, when there is a possibility that processing variations and position (decision) variations may occur, it is possible to stably improve the reliability of the gate insulating film 22 and reduce the cost. Note that the value of the right side (ΔWi + ΔWt + 2Xa) of Equation 12 is generally about 0.5 μm. Therefore, the element area can be minimized (cost reduction) without unnecessarily increasing the value of Xc.

次に、式1を満たす半導体装置100の製造方法について以下にその一例を説明する。尚、半導体装置100を製造する各工程は、公知の半導体製造技術を適用することができる。先ず、半導体基板10に素子分離領域であるLOCOS酸化膜30を形成し、各拡散領域形成後、形成されたLOCOS酸化膜30を位置決め基準として、LOCOS酸化膜30の近傍にトレンチ21を形成する。トレンチ21形成後、例えば熱酸化による犠牲酸化膜の形成と当該膜の除去により、トレンチ21の少なくとも開孔角部の曲率半径をトレンチ形成時よりも大きくし、開孔角部を丸みを帯びた緩やかな形状とする。   Next, an example of the method for manufacturing the semiconductor device 100 that satisfies Formula 1 will be described below. A known semiconductor manufacturing technique can be applied to each process of manufacturing the semiconductor device 100. First, a LOCOS oxide film 30 which is an element isolation region is formed on the semiconductor substrate 10, and after each diffusion region is formed, a trench 21 is formed in the vicinity of the LOCOS oxide film 30 using the formed LOCOS oxide film 30 as a positioning reference. After the trench 21 is formed, for example, by forming a sacrificial oxide film by thermal oxidation and removing the film, the radius of curvature of at least the opening corner of the trench 21 is made larger than that at the time of trench formation, and the opening corner is rounded. Use a gentle shape.

ここで、上記LOCOS酸化膜30の形成工程、トレンチ21の形成工程、及び開孔角部の曲率を大きくする曲大化工程において、上記した式1(又は式12)を満たすように、LOCOS酸化膜30とトレンチ21を形成すれば良い。   Here, in the step of forming the LOCOS oxide film 30, the step of forming the trench 21, and the step of enlarging the curvature of the opening corner, the LOCOS oxidation is performed so as to satisfy Equation 1 (or Equation 12). The film 30 and the trench 21 may be formed.

そして、トレンチ21の表面にゲート絶縁膜22を熱酸化法、気相成長法等により形成し、ゲート絶縁膜22を介してトレンチ21内にゲート電極材料を埋め込んでゲート電極23を形成する。その後、層間絶縁膜、ソース電極、ドレイン電極、配線等を形成して、式1を満たす構成の図1に示す半導体装置100が製造される。   Then, a gate insulating film 22 is formed on the surface of the trench 21 by a thermal oxidation method, a vapor phase growth method, or the like, and a gate electrode material is embedded in the trench 21 through the gate insulating film 22 to form the gate electrode 23. Thereafter, an interlayer insulating film, a source electrode, a drain electrode, a wiring, and the like are formed, and the semiconductor device 100 shown in FIG.

以上本発明の好ましい実施形態について説明したが、本発明は上述の実施形態のみに限定されず、種々変更して実施することができる。   Although the preferred embodiments of the present invention have been described above, the present invention is not limited to the above-described embodiments, and can be implemented with various modifications.

本実施形態においては、素子分離領域としてLOCOS酸化膜30を有する例を示した。しかしながら、LOCOS酸化膜30に限定されるものではない。例えば、STI酸化膜でも良いし、トレンチ分離領域でも良い。また、それらの組合せでも良い。   In this embodiment, the example which has the LOCOS oxide film 30 as an element isolation region was shown. However, it is not limited to the LOCOS oxide film 30. For example, an STI oxide film or a trench isolation region may be used. Also, a combination thereof may be used.

例えば、素子分離領域として、トレンチ分離領域が形成され、トレンチ分離領域を基準としてLOCOS酸化膜30が形成され、トレンチ分離領域を基準としてトレンチ21が形成されてなる構成の場合、LOCOS酸化膜30とトレンチ21との位置関係は、トレンチ分離領域を介して間接的に位置決めされた位置関係となる。この場合、本実施形態に示したように、LOCOS酸化膜30に対して間接的にトレンチ21の位置決めすることによるばらつき(位置決め精度)Xa‘を位置ばらつきを許容する許容幅Xaとして適用すれば良い。   For example, when the trench isolation region is formed as the element isolation region, the LOCOS oxide film 30 is formed with reference to the trench isolation region, and the trench 21 is formed with reference to the trench isolation region, the LOCOS oxide film 30 and The positional relationship with the trench 21 is a positional relationship that is indirectly positioned through the trench isolation region. In this case, as shown in the present embodiment, the variation (positioning accuracy) Xa ′ due to the positioning of the trench 21 indirectly with respect to the LOCOS oxide film 30 may be applied as the allowable width Xa that allows the positional variation. .

また、本実施形態においては、素子(MOSトランジスタ20)を取り囲むようにLOCOS酸化膜30が設けられ、トレンチ21の長手方向において、トレンチ21の両端部21aとそれぞれ対向するLOCOS酸化膜30の端部30a間の距離をWiとし、その加工ばらつきをΔWiとする例を示した。しかしながら、素子分離領域の加工ばらつきの基準となる部位(長さ)は上記例に限定されるものではない。例えば、図6に示すように、トレンチ21の長手方向において、一方の端部30a側にのみLOCOS酸化膜30が設けられる場合、LOCOS酸化膜30の幅をWi、その加工ばらつきをΔWiとしても良い。その場合も、本実施形態に示す式1(又は式12)を満たすようにXcを設定することで、ゲート絶縁膜22の信頼性向上とコスト低減を両立することができる。図6は、本実施形態の変形例を示す図である。   In the present embodiment, a LOCOS oxide film 30 is provided so as to surround the element (MOS transistor 20), and in the longitudinal direction of the trench 21, end portions of the LOCOS oxide film 30 respectively opposed to both end portions 21 a of the trench 21. An example is shown in which the distance between 30a is Wi, and the processing variation is ΔWi. However, the site (length) that serves as a reference for processing variations in the element isolation region is not limited to the above example. For example, as shown in FIG. 6, when the LOCOS oxide film 30 is provided only on one end 30a side in the longitudinal direction of the trench 21, the width of the LOCOS oxide film 30 may be Wi, and the processing variation may be ΔWi. . Even in that case, by setting Xc so as to satisfy Formula 1 (or Formula 12) shown in the present embodiment, it is possible to achieve both improvement in reliability of the gate insulating film 22 and cost reduction. FIG. 6 is a diagram illustrating a modification of the present embodiment.

また、本実施形態においては、トレンチ21の長手方向において、両側にLOCOS酸化膜30が設けられ、Xcを考慮する例を示した。しかしながら、短手方向においても、同様である。例えば、長手方向と、短手方向の両方向に形成されたLOCOS酸化膜30とトレンチ21との位置関係を考慮する必要がある場合(長手方向と短手方向で加工ばらつき、位置ばらつきが異なる場合)には、それぞれの方向において、式1(又は式12)を満たすように個別にXcを設定すれば良い。これにより、ゲート絶縁膜22の信頼性向上とコスト低減を両立することができる。   In the present embodiment, an example in which the LOCOS oxide films 30 are provided on both sides in the longitudinal direction of the trench 21 and Xc is taken into consideration is shown. However, the same applies to the short direction. For example, when it is necessary to consider the positional relationship between the LOCOS oxide film 30 formed in both the longitudinal direction and the lateral direction and the trench 21 (when processing variations and positional variations differ between the longitudinal direction and the lateral direction). Therefore, Xc may be set individually so as to satisfy Expression 1 (or Expression 12) in each direction. Thereby, the reliability improvement and cost reduction of the gate insulating film 22 can be made compatible.

第1の実施形態に係る半導体装置の概略構成を示す図であり、(a)は平面図、(b)は(a)のA−A断面における断面図である。It is a figure which shows schematic structure of the semiconductor device which concerns on 1st Embodiment, (a) is a top view, (b) is sectional drawing in the AA cross section of (a). 基板表面の平坦部におけるゲート絶縁膜に対する開孔角部のゲート絶縁膜の電界強度比とXcとの関係を示すシミュレーション結果である。It is a simulation result which shows the relationship between the electric field strength ratio of the gate insulating film of the opening corner | angular part with respect to the gate insulating film in the flat part of the substrate surface, and Xc. トレンチとLOCOS酸化膜との位置関係を示す図であり、(a)はXc>0、(b)はXc=0、(c)はXc<0の場合を示している。It is a figure which shows the positional relationship of a trench and a LOCOS oxide film, (a) shows the case where Xc> 0, (b) shows Xc = 0, (c) shows the case of Xc <0. ゲート電圧とゲート電流との関係を示す図である。It is a figure which shows the relationship between a gate voltage and a gate current. 式1を説明するための図であり、(a)は平面図、(b)は(a)のB−B断面における断面図である。It is a figure for demonstrating Formula 1, (a) is a top view, (b) is sectional drawing in the BB cross section of (a). 変形例を示す図である。It is a figure which shows a modification.

符号の説明Explanation of symbols

10・・・半導体基板
20・・・MOSトランジスタ(素子)
21・・・トレンチ
21a・・・開孔角部の端部
22・・・ゲート絶縁膜
23・・・ゲート電極
30・・・LOCOS酸化膜(素子分離領域)
30a・・・LOCOS酸化膜の端部
100・・・半導体装置
10 ... Semiconductor substrate 20 ... MOS transistor (element)
21... Trench 21 a... Edge portion 22 of opening hole gate gate insulating film 23 gate electrode 30 LOCOS oxide film (element isolation region)
30a ... LOCOS oxide film end 100 ... semiconductor device

Claims (2)

トレンチゲート構造のMOSトランジスタを含む複数の素子と、前記素子間を絶縁分離する素子分離領域とを有する半導体装置であって、
前記MOSトランジスタのトレンチの開孔角部は丸みを帯びた緩やかな形状に加工されており、
半導体基板表面における前記トレンチの開孔角部の端部と、前記MOSトランジスタに隣接する前記素子分離領域の前記トレンチ側の端部との間の間隔をXcとするとXc=0を満たすように構成したことを特徴とする半導体装置。
A semiconductor device having a plurality of elements including a MOS transistor having a trench gate structure and an element isolation region for insulating and isolating the elements,
The opening corner of the trench of the MOS transistor has been processed into a rounded and gentle shape,
When the distance between the end of the opening corner of the trench on the semiconductor substrate surface and the end of the element isolation region adjacent to the MOS transistor on the trench side is Xc , Xc = 0 is satisfied. A semiconductor device characterized by comprising.
トレンチゲート構造のMOSトランジスタを含む複数の素子と、前記素子間を絶縁分離する素子分離領域とを有する半導体装置の製造方法であって、
半導体基板に前記素子分離領域を形成する素子分離領域形成工程と、
前記半導体基板の前記素子分離領域近傍にトレンチを形成するトレンチ形成工程と、
前記トレンチの少なくとも開孔角部の曲率半径をトレンチ形成時よりも大きくし、前記開孔角部を丸みを帯びた緩やかな形状とする曲大化工程と、
前記トレンチ表面にゲート絶縁膜を形成し、前記ゲート絶縁膜を介して前記トレンチにゲート電極を形成するゲート形成工程とを備え、
前記半導体基板表面における前記トレンチの開孔角部の端部と、前記MOSトランジスタに隣接する前記素子分離領域の前記トレンチ側の端部との間の間隔をXcとすると
前記素子分離領域形成工程、前記トレンチ形成工程、及び前記曲大化工程において、Xc=0を満たすように、前記素子分離領域及び前記トレンチを形成することを特徴とする半導体装置の製造方法。
A method for manufacturing a semiconductor device having a plurality of elements including a MOS transistor having a trench gate structure and an element isolation region for insulating and isolating the elements,
An element isolation region forming step for forming the element isolation region in a semiconductor substrate;
Forming a trench in the vicinity of the element isolation region of the semiconductor substrate; and
A step of increasing the radius of curvature of at least the opening corner of the trench larger than that at the time of forming the trench, and making the opening corner to a rounded and gentle shape; and
Forming a gate insulating film on the trench surface, and forming a gate electrode in the trench through the gate insulating film,
When the distance between the end of the opening corner of the trench on the semiconductor substrate surface and the end of the element isolation region adjacent to the MOS transistor on the trench side is Xc ,
In the element isolation region forming step, the trench forming step, and the bending step, the element isolation region and the trench are formed so as to satisfy Xc = 0 .
JP2005265726A 2005-09-13 2005-09-13 Semiconductor device and manufacturing method thereof Expired - Fee Related JP4862327B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005265726A JP4862327B2 (en) 2005-09-13 2005-09-13 Semiconductor device and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005265726A JP4862327B2 (en) 2005-09-13 2005-09-13 Semiconductor device and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2007081056A JP2007081056A (en) 2007-03-29
JP4862327B2 true JP4862327B2 (en) 2012-01-25

Family

ID=37941048

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005265726A Expired - Fee Related JP4862327B2 (en) 2005-09-13 2005-09-13 Semiconductor device and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4862327B2 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03129775A (en) * 1989-07-11 1991-06-03 Seiko Epson Corp Semiconductor device and manufacture thereof
JPH07106557A (en) * 1993-10-04 1995-04-21 Hitachi Ltd Semiconductor device and manufacture of the same
JP3788971B2 (en) * 1994-02-04 2006-06-21 三菱電機株式会社 Semiconductor device
JP4479276B2 (en) * 2004-02-25 2010-06-09 株式会社デンソー Method for manufacturing lateral MOS transistor

Also Published As

Publication number Publication date
JP2007081056A (en) 2007-03-29

Similar Documents

Publication Publication Date Title
JP2009239111A (en) Semiconductor device
US8076720B2 (en) Trench gate type transistor
TWI590449B (en) Silicon carbide semiconductor device, method of manufacturing the silicon carbide semiconductor device, and method of designing the silicon carbide semiconductor device
JP2007088010A (en) Semiconductor device and its manufacturing method
KR20090122136A (en) Semiconductor device and method of manufacturing the same
JP5498107B2 (en) Semiconductor device and manufacturing method thereof
JP2006059841A (en) Semiconductor device and its manufacturing method
JP2021145146A (en) Semiconductor device
JP2006303323A (en) Semiconductor device and its fabrication process
JP2008300420A (en) Semiconductor device, and method of manufacturing semiconductor device
TWI574405B (en) Silicon carbide semiconductor device, method for manufacturing silicon carbide semiconductor device, and design method of silicon carbide semiconductor device
JP4623294B2 (en) Manufacturing method of semiconductor device
JP5378925B2 (en) Semiconductor device and manufacturing method thereof
JP4862327B2 (en) Semiconductor device and manufacturing method thereof
JP2000216385A (en) Trench-gate type semiconductor device
JP5502468B2 (en) Semiconductor device manufacturing method and semiconductor device
JP5003856B2 (en) Semiconductor device
JP2006190966A (en) Semiconductor device and manufacturing method therefor
JP4784739B2 (en) Semiconductor device
JP4784738B2 (en) Semiconductor device
JP2007123729A (en) Semiconductor device
JP3750627B2 (en) Semiconductor device and manufacturing method of semiconductor device
KR20110030078A (en) Semiconductor device and fabricating method thereof
JP4784737B2 (en) Semiconductor device
JP2009117412A (en) Insulated gate semiconductor device and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070926

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090521

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110719

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110912

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111011

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111024

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141118

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4862327

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141118

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees