JP4860267B2 - Heat pump equipment - Google Patents

Heat pump equipment Download PDF

Info

Publication number
JP4860267B2
JP4860267B2 JP2006003802A JP2006003802A JP4860267B2 JP 4860267 B2 JP4860267 B2 JP 4860267B2 JP 2006003802 A JP2006003802 A JP 2006003802A JP 2006003802 A JP2006003802 A JP 2006003802A JP 4860267 B2 JP4860267 B2 JP 4860267B2
Authority
JP
Japan
Prior art keywords
temperature
cooling fan
heat pump
load factor
evaporator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006003802A
Other languages
Japanese (ja)
Other versions
JP2007187345A (en
Inventor
友和 田下
奈津夫 神崎
修和 下田平
一隆 倉茂
一郎 櫻場
大介 林
忠剛 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kansai Electric Power Co Inc
Tokyo Electric Power Co Inc
Chubu Electric Power Co Inc
Kobe Steel Ltd
Original Assignee
Kansai Electric Power Co Inc
Tokyo Electric Power Co Inc
Chubu Electric Power Co Inc
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kansai Electric Power Co Inc, Tokyo Electric Power Co Inc, Chubu Electric Power Co Inc, Kobe Steel Ltd filed Critical Kansai Electric Power Co Inc
Priority to JP2006003802A priority Critical patent/JP4860267B2/en
Publication of JP2007187345A publication Critical patent/JP2007187345A/en
Application granted granted Critical
Publication of JP4860267B2 publication Critical patent/JP4860267B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、ヒートポンプ装置に関する。   The present invention relates to a heat pump device.

圧縮機と凝縮器と膨張弁と蒸発器とを介設した冷媒循環流路を有するヒートポンプ装置において、例えば特許文献1および2に記載されているように、凝縮器に冷却ファンで通風して凝縮器中の冷媒を冷却する空冷式の凝縮器を用いるものが公知である。   In a heat pump apparatus having a refrigerant circulation passage having a compressor, a condenser, an expansion valve, and an evaporator, as described in Patent Documents 1 and 2, for example, the condenser is ventilated with a cooling fan for condensation. An apparatus using an air-cooled condenser for cooling the refrigerant in the container is known.

従来のヒートポンプ装置は、負荷に合わせて圧縮機の回転数を増減する手段を有するのが一般的である。その一方、凝縮器の作用は、雰囲気温度などに任され、通常、管理されていない。このため、凝縮器の冷却ファンは、低負荷時にも、最大負荷に合わせた風量を通風し続け、必要以上のエネルギーを消費するという問題があった。
特開平7−63427号公報 特開平7−120086号公報
Conventional heat pump devices generally have means for increasing or decreasing the rotational speed of the compressor in accordance with the load. On the other hand, the action of the condenser is left to the ambient temperature and is not usually controlled. For this reason, the cooling fan of the condenser has a problem that it keeps passing the air volume according to the maximum load even at low load and consumes more energy than necessary.
Japanese Unexamined Patent Publication No. 7-63427 Japanese Patent Laid-Open No. 7-120086

そこで、前記問題点に鑑みて、本発明は、凝縮器の冷却ファンが無駄なエネルギーを消費しないヒートポンプ装置を提供することを課題とする。   Then, in view of the said problem, this invention makes it a subject to provide the heat pump apparatus with which the cooling fan of a condenser does not consume useless energy.

前記問題点を解決するために、本発明によるヒートポンプ装置は、冷媒が封入され、圧縮機と、凝縮器と、膨張弁と、前記冷媒と被冷却媒体との間で熱交換する蒸発器とが介設された冷媒循環流路と、前記凝縮器に通風する冷却ファンと、前記被冷却媒体の前記蒸発器入口における温度を検出する温度センサと、前記被冷却媒体の前記蒸発器出口における温度を検出する温度センサとを有し、前記圧縮機は、前記蒸発器出口における温度に基づき、当該温度を一定に保つように回転数制御され、負荷率に応じて、前記冷却ファンの回転数を定め、負荷率を示す値として、前記蒸発器入口における温度と前記蒸発器出口における温度との差分を用い、前記差分が小さくなるに従い、前記冷却ファンの回転数を低くするものとする。 In order to solve the above problems, a heat pump device according to the present invention includes a refrigerant, a compressor, a condenser, an expansion valve, and an evaporator that exchanges heat between the refrigerant and a medium to be cooled. An installed refrigerant circulation passage, a cooling fan for passing through the condenser, a temperature sensor for detecting the temperature of the cooled medium at the evaporator inlet, and the temperature of the cooled medium at the evaporator outlet. The compressor is controlled in rotation speed so as to keep the temperature constant based on the temperature at the outlet of the evaporator , and determines the rotation speed of the cooling fan according to the load factor. Therefore, the difference between the temperature at the evaporator inlet and the temperature at the evaporator outlet is used as a value indicating the load factor, and the rotation speed of the cooling fan is decreased as the difference decreases .

この構成によれば、ヒートポンプ装置の負荷率、つまり、蒸発器において冷媒と被冷却媒体との間で交換すべき熱量に応じて、冷却ファンの回転数を増減することで、冷却ファンが凝縮器に必要以上の空気を通風させないようにできる。このようにして、冷却ファンに無駄なエネルギーを消費させないことで、ヒートポンプ全体の効率を高く維持することができる。   According to this configuration, the cooling fan is a condenser by increasing or decreasing the number of rotations of the cooling fan according to the load factor of the heat pump device, that is, the amount of heat to be exchanged between the refrigerant and the medium to be cooled in the evaporator. It is possible to prevent excessive air flow. In this way, the efficiency of the entire heat pump can be maintained high by preventing the cooling fan from consuming unnecessary energy.

また、本発明のヒートポンプ装置では、一般的な圧縮機の回転数制御によって被冷却媒体の蒸発器出口における温度を一定に保ち、被冷却媒体の蒸発器入口における温度と蒸発器出口における温度との差分によってヒートポンプ装置の負荷率を直接測定し、冷却ファンの消費エネルギーを必要最小限度に制御することができる。 In the heat pump apparatus of the present invention, the temperature at the evaporator outlet of the medium to be cooled is kept constant by controlling the rotation speed of a general compressor, and the temperature at the evaporator inlet of the medium to be cooled and the temperature at the evaporator outlet are maintained. The load factor of the heat pump device can be directly measured by the difference, and the energy consumption of the cooling fan can be controlled to the minimum necessary level.

また、本発明のヒートポンプ装置において、外気温度を計測する外気温度センサを有し計測された外気温度が低いときには、前記冷却ファンの回転数を低くする度合いを大きくしてもよい。   Further, in the heat pump device of the present invention, when the measured outside air temperature is low with an outside air temperature sensor that measures the outside air temperature, the degree of lowering the rotation speed of the cooling fan may be increased.

この構成によれば、外気温度にかかわらず、冷却ファンの消費エネルギーを必要最小限度に制御することができる。   According to this configuration, the energy consumption of the cooling fan can be controlled to the minimum necessary regardless of the outside air temperature.

以上のように、本発明によれば、ヒートポンプ装置の負荷率に応じて、冷却ファンによる凝縮器の通風量を最適化するので、ヒートポンプ装置全体の効率を高く維持することができる。   As described above, according to the present invention, since the amount of ventilation of the condenser by the cooling fan is optimized according to the load factor of the heat pump device, the efficiency of the entire heat pump device can be maintained high.

これより、本発明の実施形態について、図面を参照しながら説明する。
図1は、本発明の第1実施形態であるヒートポンプ装置1を示す。ヒートポンプ装置1は、スクリュ圧縮機2と凝縮器3と受液器4と蒸発弁5と蒸発器6とが介設され、冷媒が封入された冷媒循環流7を有している。ヒートポンプ装置1は、冷媒が蒸発器6において冷却水やブラインなどの被冷却媒体から熱を奪い、凝縮器3において空気中に熱を放出するものである。
Embodiments of the present invention will now be described with reference to the drawings.
FIG. 1 shows a heat pump apparatus 1 according to the first embodiment of the present invention. The heat pump device 1 includes a refrigerant compressor 7, a condenser 3, a receiver 4, an evaporation valve 5, and an evaporator 6, and has a refrigerant circulation flow 7 in which a refrigerant is enclosed. In the heat pump apparatus 1, the refrigerant removes heat from a medium to be cooled such as cooling water or brine in the evaporator 6, and releases heat into the air in the condenser 3.

スクリュ圧縮機2は、圧縮機モータ8で駆動され、圧縮機モータ8は、圧縮機インバータ9によって回転数制御されている。   The screw compressor 2 is driven by a compressor motor 8, and the rotation speed of the compressor motor 8 is controlled by a compressor inverter 9.

また、ヒートポンプ装置1は、凝縮器3に外気を通風させる冷却ファン10が設けられており、冷却ファン10を回転させるファンモータ11は、ファンインバータ12によって回転数を制御可能である。   Further, the heat pump device 1 is provided with a cooling fan 10 that allows the outside air to flow through the condenser 3, and the fan motor 11 that rotates the cooling fan 10 can control the rotation speed by a fan inverter 12.

ヒートポンプ装置1は、さらに、圧縮機インバータ9およびファンインバータ12の周波数を制御する制御装置13と、蒸発器6の出口における被冷却媒体の温度を計測する温度センサ14とを有している。   The heat pump device 1 further includes a control device 13 that controls the frequencies of the compressor inverter 9 and the fan inverter 12, and a temperature sensor 14 that measures the temperature of the medium to be cooled at the outlet of the evaporator 6.

制御装置13は、従来のヒートポンプ装置と同様に、温度センサ14が検出する温度を予め設定された温度に保つように、圧縮機インバータ9の周波数、つまりスクリュ圧縮機2の回転数をPID制御する。この制御によれば、制御装置13は、蒸発器6における冷媒と被冷却媒体との交換熱量、ひいては、ヒートポンプ装置1の負荷率が高くなるほど、スクリュ圧縮機2の回転数が高くなる。   The control device 13 performs PID control on the frequency of the compressor inverter 9, that is, the rotational speed of the screw compressor 2 so as to keep the temperature detected by the temperature sensor 14 at a preset temperature, similarly to the conventional heat pump device. . According to this control, the control device 13 increases the rotational speed of the screw compressor 2 as the amount of heat exchanged between the refrigerant and the medium to be cooled in the evaporator 6 and, as a result, the load factor of the heat pump device 1 increases.

さらに、制御装置13は、上記制御による圧縮機インバータ9の設定周波数に応じて、ファンインバータ12の設定周波数を変更する。つまり、制御装置13は、ヒートポンプ装置1の負荷率に応じて冷却ファン10の回転数を制御する。   Further, the control device 13 changes the set frequency of the fan inverter 12 according to the set frequency of the compressor inverter 9 by the above control. That is, the control device 13 controls the rotation speed of the cooling fan 10 according to the load factor of the heat pump device 1.

ここで、冷却ファン10の回転数制御について説明するために、図2に、冷却ファン10の定格に対する回転数比を変化させたときの、ヒートポンプ装置1の全体効率である成績係数(COP)の変化が、負荷率によってどのように異なるかをグラフに示す。なお、本実施形態においては、上述したPID制御に基づき決定されるスクリュ圧縮機2の回転数を所定の回転数、例えば3675rpmで除した値を負荷率としている。   Here, in order to explain the rotational speed control of the cooling fan 10, the coefficient of performance (COP), which is the overall efficiency of the heat pump device 1, is changed in FIG. 2 when the rotational speed ratio with respect to the rating of the cooling fan 10 is changed. The graph shows how the change depends on the load factor. In the present embodiment, the load factor is a value obtained by dividing the rotational speed of the screw compressor 2 determined based on the PID control described above by a predetermined rotational speed, for example, 3675 rpm.

図示するように、いずれの負荷率においても、ある回転数比において最大効率を示すが、負荷率が低いほど、最大効率を示すファン10の回転数比が低いことが分かる。具体的には、外気温度25℃において、最大効率を示す冷却ファン10の回転数比は、負荷率80%のときに0.8、負荷率50%のときに0.75、負荷率35%のときに0.65、負荷率25%のときにやはり0.65程度である。また、外気温度15℃において、最大効率を示すファン10の回転数比は、負荷率25%のときに0.55程度である。なお、負荷率が低いほど、最大効率を示す冷却ファン10の低いと上述したが、外気温度25度の場合には、負荷率25%以下では最大効率を示す冷却ファン10の回転数比は略一定となっている。   As shown in the figure, the maximum efficiency is shown at a certain rotation speed ratio at any load factor, but it can be seen that the lower the load factor, the lower the rotation speed ratio of the fan 10 showing the maximum efficiency. Specifically, at an outside air temperature of 25 ° C., the rotation speed ratio of the cooling fan 10 showing the maximum efficiency is 0.8 when the load factor is 80%, 0.75 when the load factor is 50%, and 35% of the load factor. When the load factor is 25%, it is 0.65. In addition, at the outside air temperature of 15 ° C., the rotational speed ratio of the fan 10 exhibiting the maximum efficiency is about 0.55 when the load factor is 25%. As described above, the lower the load factor is, the lower the cooling fan 10 that exhibits the maximum efficiency is. However, when the outside air temperature is 25 degrees, the rotation speed ratio of the cooling fan 10 that exhibits the maximum efficiency is approximately below the load factor 25%. It is constant.

以上の効率変化をふまえて、ヒートポンプ装置1では、外気温度25℃のデータに基づく図3に示すように、負荷率に応じて冷却ファン10の回転数を定める。具体的には、ヒートポンプ装置1は、負荷率35%以下では冷却ファン10の定格に対する回転数比を0.65に設定し、負荷率が35%を超え、50%以下のときは冷却ファン10の回転数比を0.75に設定し、負荷率が50%を超え、80%以下のときは冷却ファン10の回転数比を0.8に設定し、負荷率が80%を超えるときは冷却ファン10の回転数比を1.0に設定する。   Based on the above efficiency change, the heat pump device 1 determines the rotation speed of the cooling fan 10 according to the load factor as shown in FIG. 3 based on the data of the outside air temperature of 25 ° C. Specifically, the heat pump device 1 sets the rotational speed ratio with respect to the rating of the cooling fan 10 to 0.65 when the load factor is 35% or less, and the cooling fan 10 when the load factor exceeds 35% and is 50% or less. When the load ratio exceeds 50% and the load ratio exceeds 80%, the rotation speed ratio of the cooling fan 10 is set to 0.8, and when the load ratio exceeds 80%. The rotation speed ratio of the cooling fan 10 is set to 1.0.

冷却ファン10の負荷率に応じた最適な回転数比は、破線で示すように、連続的に変化するが、ヒートポンプ装置1においては、制御の安定性などを考慮して、上記のような段階的な回転数制御を行う。尚、実際の制御において、負荷率はスクリュ圧縮機2の回転数に略比例するので、制御装置13は、圧縮機インバータ9の設定周波数に応じてファンインバータ12の設定周波数を定める。   The optimum rotation speed ratio corresponding to the load factor of the cooling fan 10 continuously changes as shown by the broken line. However, in the heat pump apparatus 1, the above-described steps are taken into consideration in consideration of the stability of control. Rotational speed control is performed. In actual control, since the load factor is substantially proportional to the rotational speed of the screw compressor 2, the control device 13 determines the set frequency of the fan inverter 12 according to the set frequency of the compressor inverter 9.

このようにして、本実施形態のヒートポンプ装置1は、負荷率の変動に応じて、冷却ファン10の回転数を変化させることで、全体の効率を高く維持することができる。   Thus, the heat pump apparatus 1 of this embodiment can maintain the whole efficiency high by changing the rotation speed of the cooling fan 10 according to the fluctuation | variation of a load factor.

さらに、本発明の異なる実施形態について説明する。
図4は、本発明の第2実施形態であるヒートポンプ装置1aを示す。このヒートポンプ装置1aは、第1実施形態のヒートポンプ装置1と多くの構成を同じくするが、さらに、蒸発器6の入口における被冷却媒体の温度を計測する温度センサ15を有している。
Further, different embodiments of the present invention will be described.
FIG. 4 shows a heat pump apparatus 1a according to the second embodiment of the present invention. The heat pump device 1a has the same configuration as the heat pump device 1 of the first embodiment, but further includes a temperature sensor 15 that measures the temperature of the medium to be cooled at the inlet of the evaporator 6.

制御装置13は、従来のヒートポンプ装置と同様に、ひいては、ヒートポンプ装置1と同様に、温度センサ14が検出する被冷却媒体の温度を予め設定された温度に保つように、圧縮機インバータ9の周波数、つまり、スクリュ圧縮機2の回転数をPID制御する。さらに、制御装置13は、温度センサ15にて検出された蒸発器6の入口における被冷却媒体の温度と、温度センサ14にて検出された蒸発器6の出口における被冷却媒体の温度との差分に応じて、冷却ファン10の回転数を制御する。   As with the conventional heat pump device, the control device 13, as with the heat pump device 1, the frequency of the compressor inverter 9 is maintained so that the temperature of the medium to be cooled detected by the temperature sensor 14 is maintained at a preset temperature. That is, the rotational speed of the screw compressor 2 is PID controlled. Further, the control device 13 determines the difference between the temperature of the cooled medium at the inlet of the evaporator 6 detected by the temperature sensor 15 and the temperature of the cooled medium at the outlet of the evaporator 6 detected by the temperature sensor 14. Accordingly, the rotational speed of the cooling fan 10 is controlled.

具体的には、蒸発器6の入口における被冷却媒体の温度(温度センサ15にて検出された温度)をTsとし、蒸発器6の出口における被冷却媒体の温度(温度センサ14にて検出された温度)をTdとし、負荷率をLとした場合、予め定められた温度TthよりTsが高くならない範囲内で、制御装置13は、負荷率LをL=(Ts−Td)/(Tth−Td)×100%で算出する。   Specifically, the temperature of the medium to be cooled at the inlet of the evaporator 6 (temperature detected by the temperature sensor 15) is Ts, and the temperature of the medium to be cooled at the outlet of the evaporator 6 (detected by the temperature sensor 14). When the load factor is L and the load factor is L, the control device 13 sets the load factor L to L = (Ts−Td) / (Tth−) within a range where Ts does not become higher than the predetermined temperature Tth. Calculated as Td) × 100%.

例えば、上記PID制御にて蒸発器6の出口における被冷却媒体の温度を7℃で一定に保つように設定され、予め定められた温度Tthが12℃である場合を考えるとTdは、理想的には7℃になるので、その理想状態にて、Tsが12℃であれば、負荷率Lは100%と算出される。同様に、Tsが11℃であれば、負荷率Lは80%、Tsが10℃であれば負荷率Lは60%、Tsが9℃であれば、負荷率Lは40%、Tsが8℃であれば、負荷率Lは20%と算出される。負荷率Lが算出されれば、ヒートポンプ装置1aは、上述のヒートポンプ装置1と同様に、図3に示すように、負荷率Lに応じて冷却ファン10の回転数と定める。   For example, when the temperature of the medium to be cooled at the outlet of the evaporator 6 is set to be kept constant at 7 ° C. in the PID control, and the predetermined temperature Tth is 12 ° C., Td is ideal. Therefore, if Ts is 12 ° C. in the ideal state, the load factor L is calculated as 100%. Similarly, if Ts is 11 ° C., the load factor L is 80%, if Ts is 10 ° C., the load factor L is 60%, and if Ts is 9 ° C., the load factor L is 40% and Ts is 8 If it is ° C., the load factor L is calculated as 20%. If the load factor L is calculated, the heat pump device 1a determines the number of rotations of the cooling fan 10 according to the load factor L, as shown in FIG.

さらに、本発明の第3実施形態について説明する。
図5は、本発明の第3実施形態のヒートポンプ装置1bを示す。このヒートポンプ装置1bは、第1実施形態のヒートポンプ装置1と多くの構成を同じくするが、さらに、凝縮器3の周囲の外気温度を計測する外気温度センサ16を有している。
Furthermore, a third embodiment of the present invention will be described.
FIG. 5 shows a heat pump device 1b according to a third embodiment of the present invention. The heat pump device 1b has the same configuration as the heat pump device 1 of the first embodiment, but further includes an outside air temperature sensor 16 that measures the outside air temperature around the condenser 3.

制御装置13は、従来のヒートポンプ装置と同様に、ひいては、ヒートポンプ装置1と同様に、温度センサ14が検出する被冷却媒体の温度を予め設定された温度に保つように、圧縮機インバータ9の周波数、つまり、スクリュ圧縮機2の回転数をPID制御する。   As with the conventional heat pump device, the control device 13, as with the heat pump device 1, the frequency of the compressor inverter 9 is maintained so that the temperature of the medium to be cooled detected by the temperature sensor 14 is maintained at a preset temperature. That is, the rotational speed of the screw compressor 2 is PID controlled.

ところで、上述した図2に示された外気温度25℃で負荷率25%の場合の曲線と、外気温度15℃で負荷率15%の曲線を見て分かるとおり、外気温度が低下するにつれ、最大効率を示すファン10の回転数比も低下する。具体的には、上述したとおり、外気温度25℃で負荷率25%のときに0.65程度であった「最大効率を示す冷却ファン10の回転数比」は、外気温度15℃で同じ負荷率25%のときには0.55程度に低下する。   By the way, as can be seen from the above-described curve when the outside air temperature is 25 ° C. and the load factor is 25% shown in FIG. 2 and when the outside air temperature is 15 ° C. and the load factor is 15%, as the outside air temperature decreases, the maximum The rotational speed ratio of the fan 10 showing the efficiency also decreases. Specifically, as described above, the “rotational speed ratio of the cooling fan 10 exhibiting the maximum efficiency”, which was about 0.65 when the load factor was 25% at the outside air temperature of 25 ° C., was the same load at the outside air temperature of 15 ° C. When the rate is 25%, it decreases to about 0.55.

なお、本発明者らは、負荷率25%以外の場合であっても、外気温度が低下するにつれて「最大効率を示す冷却ファン10の回転数比」が低下することを知見した。これは、外気温度が低下してくると、主にスクリュ圧縮機2の動力と冷却ファン10の動力からなる全体動力の中で、冷却ファン10の動力の割合が大きくなってくることから、冷却ファン10の風力変化時の性能変化が大きく、最適な風量が低風量側に移行することを意味している。   Note that the present inventors have found that even when the load factor is other than 25%, the “rotational speed ratio of the cooling fan 10 exhibiting the maximum efficiency” decreases as the outside air temperature decreases. This is because when the outside air temperature is lowered, the ratio of the power of the cooling fan 10 is increased in the overall power mainly composed of the power of the screw compressor 2 and the power of the cooling fan 10. The performance change at the time of the wind force change of the fan 10 is large, which means that the optimum air volume shifts to the low air volume side.

本実施形態のヒートポンプ装置1bは、上述した知見に基づき、外気温度を外気温度センサ16で計測して、計測された外気温度が「所定の温度」以下に低下した場合(外気温度が低いとき)には、スクリュ圧縮機2の回転数が低いときに冷却ファン10の回転数を低くする度合いを大きくするように、逆に、外気温度が「所定の温度」以上に上昇した場合(外気温度が高いとき)には、スクリュ圧縮機2の回転数が低いときに冷却ファン10の回転数を低くする度合いを小さくするように、構成されている。なお、ここでいう前者の「所定の温度」は、後者の「所定の温度」以下であればよく、両者が同一であることは必須ではない。   The heat pump device 1b of the present embodiment measures the outside air temperature with the outside air temperature sensor 16 based on the above-described knowledge, and when the measured outside air temperature falls below a “predetermined temperature” (when the outside air temperature is low). On the contrary, when the outside air temperature rises above the “predetermined temperature” so as to increase the degree of lowering the number of revolutions of the cooling fan 10 when the number of revolutions of the screw compressor 2 is low (the outside air temperature is When the rotational speed of the screw compressor 2 is low, the degree of lowering the rotational speed of the cooling fan 10 is reduced. Here, the former “predetermined temperature” may be equal to or lower than the latter “predetermined temperature”, and it is not essential that the two are the same.

具体的には、例えば次のとおりである。
予め、上述の図3に準じ、且つ、外気温度毎に異なるグラフ、すなわち外気温度毎に異なる複数の「負荷率と冷却ファン回転数との関係を示すグラフ」のデータ(図3、図6、図7のデータ)を制御装置13は保持する。そして制御装置13は外気温度が15℃より高く、35℃より低い場合は上述の図3に基づいて、外気温度が15℃以下の場合は図6に基づいて、外気温度が35℃以上の場合は図7に基づいて、冷却ファン10の回転数を定める。
Specifically, for example, it is as follows.
In advance, data of a plurality of “graphs showing the relationship between the load factor and the cooling fan rotational speed” that are different in accordance with the above-described FIG. The control device 13 holds the data shown in FIG. When the outside air temperature is higher than 15 ° C. and lower than 35 ° C., the control device 13 is based on FIG. 3 described above. When the outside air temperature is 15 ° C. or lower, based on FIG. Determines the number of revolutions of the cooling fan 10 based on FIG.

図3、図6、図7を見て分かるとおり、外気温度にかかわらず、負荷率が低下するに従い、冷却ファン10の定格に対する回転数比は段階的に低下される。ただし、図面上の段差は、図7よりも図3、さらに図3よりも図6のほうが大きくなっている。そのことから分かるように、冷却ファン10の定格に対する回転数比が低下される場合のその低下の度合いは外気温度が低いほど大きくされている。すなわち、ここでは、外気温度が15℃以下に低下した場合には、スクリュ圧縮機2の回転数が低いときに冷却ファン10の回転数を低くする度合いを大きくするように、逆に外気温度が35℃以上に上昇した場合には、スクリュ圧縮機2の回転数が低いときに冷却ファン10の回転数を低くする度合いを小さくするように、構成されている。   As can be seen from FIGS. 3, 6, and 7, the rotation speed ratio with respect to the rating of the cooling fan 10 is decreased step by step as the load factor decreases regardless of the outside air temperature. However, the step on the drawing is larger in FIG. 3 than in FIG. 7 and in FIG. 6 than in FIG. As can be seen from the above, when the rotational speed ratio with respect to the rating of the cooling fan 10 is reduced, the degree of reduction is increased as the outside air temperature is lower. That is, here, when the outside air temperature is lowered to 15 ° C. or less, the outside air temperature is conversely increased so that the degree of lowering the number of revolutions of the cooling fan 10 is increased when the number of revolutions of the screw compressor 2 is low. When the temperature rises to 35 ° C. or higher, the degree of lowering the rotational speed of the cooling fan 10 is reduced when the rotational speed of the screw compressor 2 is low.

このように外気温度の変化を把握し、それを冷却ファン10の制御に利用するように構成することで、外気温度の変化にかかわらず、全体の効率を維持できるという利点がある。   Thus, by grasping | ascertaining the change of external temperature and utilizing it for control of the cooling fan 10, there exists an advantage that the whole efficiency can be maintained irrespective of the change of external temperature.

なお、第2実施形態のヒートポンプ装置1aに外気温度を計測する外気温度センサを付加し、上述の第3実施形態と同様に、外気温度を冷却ファン10の制御に利用するように構成してもよい。   Note that an outside air temperature sensor for measuring the outside air temperature may be added to the heat pump device 1a of the second embodiment, and the outside air temperature may be used for controlling the cooling fan 10 as in the above-described third embodiment. Good.

無論、「負荷率と冷却ファン回転数との関係を示すグラフ」は上述のような3つに限らず、もっと多数のデータを制御装置13が保持するようにしてもよい。また、冷却ファン10の回転数を段階的に変化させるのではなく、負荷率や外気温度の関数として、例えばPID制御などによって連続的に変化させてもよい。   Of course, the “graph showing the relationship between the load factor and the cooling fan rotation speed” is not limited to the above three, and the control device 13 may hold more data. Further, instead of changing the rotation speed of the cooling fan 10 stepwise, it may be changed continuously as a function of the load factor and the outside air temperature by, for example, PID control.

なお、本発明にいうヒートポンプ装置は上述のものに限らない。上述したものは、蒸発器6において冷媒と被冷却媒体を熱交換して、冷却された被冷却媒体を活用する機能を有するものであるが、本発明にいうヒートポンプ装置はその機能のみを有するものに限定されず、いわゆる冷暖房の機能を切換可能なものであってもよい。例えば、本発明のヒートポンプ装置は、上述した図1のものに、さらに4方弁等の介設された切換流路を具備し、その4方弁等の開閉にて、冷媒循環流路の冷媒の流れを切り換えることによって、図1における凝縮器3に蒸発器の役割を担わせるとともに、図1における蒸発器6に凝縮器の役割を担わせるようにし、被冷却媒体と称している媒体を冷却するのみでなく暖めることもできるように構成したものであってもよい。   In addition, the heat pump apparatus said to this invention is not restricted to the above-mentioned thing. Although what has been described above has a function of exchanging heat between the refrigerant and the medium to be cooled in the evaporator 6 and utilizing the cooled medium to be cooled, the heat pump device according to the present invention has only that function. It is not limited to the above, and a so-called cooling / heating function may be switched. For example, the heat pump device according to the present invention further includes a switching channel such as a four-way valve in addition to the one shown in FIG. 1 described above. 1, the condenser 3 in FIG. 1 plays a role of an evaporator, and the evaporator 6 in FIG. 1 plays a role of a condenser to cool a medium called a medium to be cooled. It may be configured so that it can be warmed as well.

本発明の第1実施形態のヒートポンプ装置の概略図。1 is a schematic view of a heat pump device according to a first embodiment of the present invention. 図1のヒートポンプにおける冷却ファンの回転数比と成績係数比との関係を負荷率毎に示すグラフ。The graph which shows the relationship between the rotation speed ratio of a cooling fan and the coefficient of performance ratio in the heat pump of FIG. 1 for every load factor. 図1のヒートポンプにおける負荷率と冷却ファン回転数との関係を示すグラフ。The graph which shows the relationship between the load factor and cooling fan rotation speed in the heat pump of FIG. 本発明の第2実施形態のヒートポンプ装置の概略図。Schematic of the heat pump apparatus of 2nd Embodiment of this invention. 本発明の第3実施形態のヒートポンプ装置の概略図。Schematic of the heat pump apparatus of 3rd Embodiment of this invention. 図5のヒートポンプの外気温度15℃以下における、負荷率と冷却ファン回転数との関係を示すグラフ。The graph which shows the relationship between a load factor and the cooling fan rotation speed in the outside temperature of 15 degrees C or less of the heat pump of FIG. 図5のヒートポンプの外気温度35℃以上における、負荷率と冷却ファン回転数との関係を示すグラフ。The graph which shows the relationship between a load factor and the cooling fan rotation speed in the external air temperature of 35 degreeC or more of the heat pump of FIG.

符号の説明Explanation of symbols

1,1a,1b ヒートポンプ装置
2 スクリュ圧縮機
3 凝縮器
5 膨張弁
6 蒸発器
7 冷媒循環流路
9 圧縮機インバータ
10 冷却ファン
12 ファンインバータ
13 制御装置
14 温度センサ
15 温度センサ
16 外気温度センサ
1, 1a, 1b Heat pump device 2 Screw compressor 3 Condenser 5 Expansion valve 6 Evaporator 7 Refrigerant circulation channel 9 Compressor inverter 10 Cooling fan 12 Fan inverter 13 Control device 14 Temperature sensor 15 Temperature sensor 16 Outside air temperature sensor 16

Claims (2)

冷媒が封入され、圧縮機と、凝縮器と、膨張弁と、前記冷媒と被冷却媒体との間で熱交換する蒸発器とが介設された冷媒循環流路と、
前記凝縮器に通風する冷却ファンと、
前記被冷却媒体の前記蒸発器入口における温度を検出する温度センサと、
前記被冷却媒体の前記蒸発器出口における温度を検出する温度センサとを有し、
前記圧縮機は、前記蒸発器出口における温度に基づき、当該温度を一定に保つように回転数制御され、
負荷率に応じて、前記冷却ファンの回転数を定め、
負荷率を示す値として、前記蒸発器入口における温度と前記蒸発器出口における温度との差分を用い、
前記差分が小さくなるに従い、前記冷却ファンの回転数を低くすることを特徴とするヒートポンプ装置。
A refrigerant circulation passage in which refrigerant is enclosed, and a compressor, a condenser, an expansion valve, and an evaporator for exchanging heat between the refrigerant and the medium to be cooled are interposed;
A cooling fan that ventilates the condenser;
A temperature sensor for detecting the temperature of the cooled medium at the evaporator inlet;
A temperature sensor for detecting the temperature of the cooled medium at the outlet of the evaporator;
Based on the temperature at the evaporator outlet , the compressor is rotationally controlled to keep the temperature constant,
Depending on the load factor, the number of revolutions of the cooling fan constant because,
As a value indicating the load factor, using the difference between the temperature at the evaporator inlet and the temperature at the evaporator outlet,
The heat pump device characterized in that the number of rotations of the cooling fan is lowered as the difference becomes smaller .
外気温度を計測する外気温度センサを有し、
計測された外気温度が低いときには、前記差分が小さいときに前記冷却ファンの回転数を低くする度合いを大きくすることを特徴とする請求項に記載のヒートポンプ装置。
It has an outside temperature sensor that measures outside temperature,
When the measured outside air temperature is low, the heat pump apparatus according to claim 1, characterized in that to increase the degree of lowering the rotational speed of the cooling fan when the difference is smaller.
JP2006003802A 2006-01-11 2006-01-11 Heat pump equipment Active JP4860267B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006003802A JP4860267B2 (en) 2006-01-11 2006-01-11 Heat pump equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006003802A JP4860267B2 (en) 2006-01-11 2006-01-11 Heat pump equipment

Publications (2)

Publication Number Publication Date
JP2007187345A JP2007187345A (en) 2007-07-26
JP4860267B2 true JP4860267B2 (en) 2012-01-25

Family

ID=38342632

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006003802A Active JP4860267B2 (en) 2006-01-11 2006-01-11 Heat pump equipment

Country Status (1)

Country Link
JP (1) JP4860267B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8657207B2 (en) * 2008-08-26 2014-02-25 Lg Electronics Inc. Hot water circulation system associated with heat pump and method for controlling the same
JP6264532B2 (en) * 2013-11-01 2018-01-24 三浦工業株式会社 Food machine with vacuum cooling function
JP6328004B2 (en) * 2014-08-15 2018-05-23 株式会社大気社 Compressor / pump switching type cooling device
CN107560282B (en) * 2017-09-15 2019-10-22 珠海格力电器股份有限公司 The control method of cooling system
CN113757843B (en) * 2021-08-23 2023-01-31 浙江中广电器集团股份有限公司 Heat pump unit suitable for air source and heating control method thereof

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0776632B2 (en) * 1989-10-31 1995-08-16 ダイキン工業株式会社 Refrigeration system operation controller
JP3311432B2 (en) * 1993-06-29 2002-08-05 三洋電機株式会社 Speed control device for blower for condenser
JP3668121B2 (en) * 2000-11-02 2005-07-06 三洋電機株式会社 Speed adjusting device for condenser blower
JP4039100B2 (en) * 2002-03-29 2008-01-30 ダイキン工業株式会社 Air conditioner
JP2005048973A (en) * 2003-07-29 2005-02-24 Mitsubishi Heavy Ind Ltd Air conditioner and method of controlling the same

Also Published As

Publication number Publication date
JP2007187345A (en) 2007-07-26

Similar Documents

Publication Publication Date Title
US8813511B2 (en) Control system for operating condenser fans
JP4594276B2 (en) Cold / hot water control method for cold / hot heat source machine and air conditioning system used therefor
JP5907247B2 (en) Integrated air conditioning system and its control device
JP4842855B2 (en) Air conditioner
JP6570746B2 (en) Heat medium circulation system
JP4422572B2 (en) Cold / hot water control method for cold / hot heat source machine
JP4860267B2 (en) Heat pump equipment
JP5984456B2 (en) Heat source system control device, heat source system control method, heat source system, power adjustment network system, and heat source machine control device
JP2007240131A (en) Optimization control of heat source unit and accessory
JP5201183B2 (en) Air conditioner and method of operating refrigerator
CN104246397A (en) A method of controlling one or more fans of a heat rejecting heat exchanger
JP5677223B2 (en) Air conditioner
JP6594126B2 (en) Refrigeration cycle apparatus and control method thereof
WO2016098626A1 (en) Air-conditioning device
EP3674621B1 (en) Air conditioner
JP2016166710A (en) Air-conditioning system
JP2011226680A (en) Cooling water producing facility
JP5455338B2 (en) Cooling tower and heat source system
KR100826926B1 (en) Water Cooling Type Air Conditioner and Control Method thereof
JPWO2020003490A1 (en) Air conditioner
JP6937919B2 (en) Free cooling outdoor unit
WO2016199218A1 (en) Air conditioning device
JP2011033222A (en) Water heat source air conditioning system
JP6614063B2 (en) Electric motor cooling control system
JP6556339B2 (en) Air conditioner

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081112

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101124

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110517

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110705

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111004

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111102

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4860267

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141111

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250