JP4860206B2 - Method and apparatus for purifying hydrogen gas - Google Patents

Method and apparatus for purifying hydrogen gas Download PDF

Info

Publication number
JP4860206B2
JP4860206B2 JP2005230799A JP2005230799A JP4860206B2 JP 4860206 B2 JP4860206 B2 JP 4860206B2 JP 2005230799 A JP2005230799 A JP 2005230799A JP 2005230799 A JP2005230799 A JP 2005230799A JP 4860206 B2 JP4860206 B2 JP 4860206B2
Authority
JP
Japan
Prior art keywords
hydrogen gas
synthetic zeolite
palladium catalyst
gas
getter agent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005230799A
Other languages
Japanese (ja)
Other versions
JP2007045655A (en
Inventor
健二 大塚
安定 宮野
敏雄 秋山
登 武政
丈雄 古森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Pionics Ltd
Original Assignee
Japan Pionics Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Pionics Ltd filed Critical Japan Pionics Ltd
Priority to JP2005230799A priority Critical patent/JP4860206B2/en
Publication of JP2007045655A publication Critical patent/JP2007045655A/en
Application granted granted Critical
Publication of JP4860206B2 publication Critical patent/JP4860206B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Hydrogen, Water And Hydrids (AREA)
  • Separation Of Gases By Adsorption (AREA)

Description

本発明は、水素ガスの精製方法及び精製装置に関する。さらに詳細には、水素ガス中に含まれる不純物を効率よく極めて低濃度まで除去しうる水素ガスの精製方法及び精製装置に関する。 The present invention relates to a method and apparatus for purifying hydrogen gas. More specifically, the present invention relates to a method and apparatus for purifying hydrogen gas that can efficiently remove impurities contained in hydrogen gas to a very low concentration.

水素ガスは、近年目覚ましく発展した半導体製造工業で、各種工程中のキャリアガスとして多用されている。例えば、発光ダイオードやレーザーダイオード等の素子として利用される窒化ガリウム系化合物半導体の製造工程においては、常温で液体であるトリメチルガリウム、トリメチルインジウム、またはトリメチルアルミニウムのキャリアガスとして用いられている。そして半導体の高集積化とともにガスの純度向上への要求はますます強くなっており、水素ガス中にppmレベルで含まれる窒素、酸素、一酸化炭素、二酸化炭素、水、及びメタン等の不純物を除去して1ppb以下の超高純度に精製することが望まれている。   Hydrogen gas is widely used as a carrier gas in various processes in the semiconductor manufacturing industry which has been remarkably developed in recent years. For example, it is used as a carrier gas for trimethylgallium, trimethylindium, or trimethylaluminum that is liquid at room temperature in the manufacturing process of a gallium nitride compound semiconductor used as an element such as a light emitting diode or a laser diode. The demand for improved gas purity along with higher integration of semiconductors is becoming stronger, and impurities such as nitrogen, oxygen, carbon monoxide, carbon dioxide, water, and methane contained in hydrogen gas at the ppm level are increasing. It is desired to remove and purify to ultra-high purity of 1 ppb or less.

水素ガスの精製方法としては、例えば加熱下でのパラジウム膜またはパラジウム合金膜の水素選択透過性を利用した精製方法が知られている。また、例えば、液体窒素を冷熱源として極低温下に設定した吸着材の物理吸着性を利用した深冷吸着精製方法、ジルコニウム合金等を用いたゲッター剤による化学反応を利用した精製方法等が知られている。
特開平5−4809号公報 特開平7−223802号公報 特開平7−242401号公報 特開平9−100101号公報
As a purification method of hydrogen gas, for example, a purification method using the hydrogen selective permeability of a palladium membrane or a palladium alloy membrane under heating is known. In addition, for example, a cryogenic adsorption purification method using the physical adsorption property of an adsorbent set at a cryogenic temperature using liquid nitrogen as a cold heat source, a purification method using a chemical reaction with a getter agent using a zirconium alloy, etc. are known. It has been.
Japanese Patent Laid-Open No. 5-4809 JP-A-7-223802 JP-A-7-242401 Japanese Patent Laid-Open No. 9-100101

しかしながら、これらの水素ガスの精製方法うち、パラジウム膜またはパラジウム合金膜を利用した精製方法は、水素ガスの選択透過性を利用しているため、不純物である水素以外の成分は全て除かれ、超高純度の水素ガスを得ることができるが、精製装置の入口側と出口側において圧力損失を生じさせる必要があるため、大流量の粗水素ガスを効率よく処理することが困難であった。また、深冷吸着精製方法は、大流量の粗水素ガスまたは粗希ガスを効率よく処理することができるが、装置が大型で複雑になるという不都合があった。また、ゲッター剤による化学反応を利用した精製方法は、ゲッター剤の再生ができないため、除去すべき不純物が多く含まれている場合は、ゲッター剤を頻繁に交換する必要があり、ランニングコストが高くなるという不都合があった。   However, among these hydrogen gas purification methods, the purification method using a palladium membrane or a palladium alloy membrane uses the selective permeability of hydrogen gas, so all components other than hydrogen, which is an impurity, are removed. Although high-purity hydrogen gas can be obtained, it is difficult to efficiently process a large flow rate of crude hydrogen gas because it is necessary to cause a pressure loss on the inlet side and the outlet side of the purifier. The cryogenic adsorption purification method can efficiently process a large flow rate of crude hydrogen gas or crude rare gas, but has the disadvantage that the apparatus is large and complicated. In addition, the purification method using a chemical reaction with a getter agent cannot regenerate the getter agent, so if there are many impurities to be removed, the getter agent must be replaced frequently, resulting in high running costs. There was an inconvenience.

従って、本発明が解決しようとする課題は、水素ガスの精製において、大型または複雑な装置を用いることなく、粗水素ガスに含まれている微量の窒素、酸素、一酸化炭素、二酸化炭素、水、メタン等の不純物を、全て1ppb以下さらには0.1ppb以下の超低濃度まで効率よく除去できる水素ガスの精製方法及び装置を提供することである。   Therefore, the problem to be solved by the present invention is that, in the purification of hydrogen gas, a trace amount of nitrogen, oxygen, carbon monoxide, carbon dioxide, water contained in the crude hydrogen gas is used without using a large or complicated apparatus. An object of the present invention is to provide a hydrogen gas purification method and apparatus capable of efficiently removing all impurities such as methane to ultra-low concentrations of 1 ppb or less, further 0.1 ppb or less.

本発明者らは、これらの課題を解決すべく鋭意検討した結果、粗水素ガスに不純物として含まれる酸素を水素との反応で水に変換できるパラジウム触媒は、触媒の効果を発揮できる寿命が長く容易に再生できること、パラジウム触媒と接触後の粗水素ガスに含まれる二酸化炭素及び水等を合成ゼオライトで除去し、再生ができないゲッター剤をパラジウム触媒及び合成ゼオライトの下流側に設ける構成とすることにより、ゲッター剤の寿命を延ばせることを見出した。さらに、このような構成とすることにより、大型または複雑な装置を用いることなく、粗水素ガスに含まれている窒素、酸素、一酸化炭素、二酸化炭素、水、メタンの全てを、効率よく超低濃度まで除去できることを見出し、本発明の精製方法及び精製装置に到達した。   As a result of intensive studies to solve these problems, the present inventors have found that a palladium catalyst that can convert oxygen contained in crude hydrogen gas as an impurity into water by reaction with hydrogen has a long life that can exhibit the effect of the catalyst. By making it easy to regenerate, removing carbon dioxide and water contained in the crude hydrogen gas after contact with the palladium catalyst with synthetic zeolite, and providing a getter agent that cannot be regenerated on the downstream side of the palladium catalyst and synthetic zeolite And found that the life of the getter agent can be extended. Furthermore, with such a configuration, all of nitrogen, oxygen, carbon monoxide, carbon dioxide, water, and methane contained in the crude hydrogen gas can be efficiently transduced without using a large or complicated device. The inventors have found that it can be removed to a low concentration, and arrived at the purification method and purification apparatus of the present invention.

すなわち本発明は、粗水素ガスを、0〜100℃の温度でパラジウム触媒、0〜100℃の温度で合成ゼオライト、及び400〜600℃の温度でゲッター剤とこの順に接触させて、該粗水素ガスに含まれる不純物を除去することを特徴とする水素ガスの精製方法である。
また、本発明は、上流側にパラジウム触媒、下流側に合成ゼオライトが充填された充填筒、及びゲッター剤が充填された充填筒が備えられ、粗水素ガスがこの順で流通するように該充填筒が接続されてなることを特徴とする水素ガスの精製装置でもある。
That is, the present invention comprises contacting crude hydrogen gas with a palladium catalyst at a temperature of 0 to 100 ° C., a synthetic zeolite at a temperature of 0 to 100 ° C. , and a getter agent at a temperature of 400 to 600 ° C. in this order. A method for purifying hydrogen gas, wherein impurities contained in the gas are removed.
Further, the present invention is a palladium catalyst on the upstream side, filling cylinder synthetic zeolite is filled in the downstream side, and the filling cylinder getter is filled is provided, the crude hydrogen gas the filling to flow in this order It is also a hydrogen gas refining device characterized in that cylinders are connected.

本発明の水素ガスの精製方法及び精製装置により、大型または複雑な装置を用いることなく、粗水素ガスに含まれている微量の窒素、酸素、一酸化炭素、二酸化炭素、水、メタン等の不純物を、全て1ppb以下さらには0.1ppb以下の超低濃度まで効率よく除去できるようになった。その結果、ランニングコストが安くなるとともに、装置のメンテナンスが容易になった。 Impurities such as nitrogen, oxygen, carbon monoxide, carbon dioxide, water, methane, etc. contained in the crude hydrogen gas without using a large or complicated device by the purification method and purification device of the hydrogen gas of the present invention Can be efficiently removed to an ultra-low concentration of 1 ppb or less and further 0.1 ppb or less. As a result, the running cost is reduced and the maintenance of the apparatus is facilitated.

本発明の水素ガスの精製方法及び精製装置は、粗水素ガスに含まれる窒素、酸素、一酸化炭素、二酸化炭素、水、メタン等の不純物を除去するための方法及び装置に適用される。
以下、本発明の水素ガスの精製方法及び精製装置を、図1〜図5を用いて説明するが、本発明がこれらに限定されるものではない。尚、図1〜図5は、本発明の水素ガスの精製装置の一例を示す構成図である。
The method and apparatus for purifying hydrogen gas according to the present invention is applied to a method and apparatus for removing impurities such as nitrogen, oxygen, carbon monoxide, carbon dioxide, water, and methane contained in crude hydrogen gas.
Hereinafter, although the purification method and purification apparatus of the hydrogen gas of this invention are demonstrated using FIGS. 1-5, this invention is not limited to these. 1-5 is a block diagram which shows an example of the refiner | purifier of the hydrogen gas of this invention.

本発明の精製方法は、粗水素ガスを、パラジウム触媒、合成ゼオライト、及びゲッター剤とこの順に接触させて、該粗水素ガスに含まれる不純物を除去する精製方法である。
また、本発明の精製方法に用いられる装置は、前記の精製方法を実施するための装置であり、図1に示すように、パラジウム触媒1が充填された充填筒、合成ゼオライト2が充填された充填筒、及びゲッター剤3が充填された充填筒が備えられ、粗水素ガスがこの順で流通するように前記充填筒が接続されてなる精製装置である。また、本発明の精製装置は、図2に示すように、パラジウム触媒1及び合成ゼオライト2が充填された充填筒、及びゲッター剤3が充填された充填筒が備えられ、粗水素ガスがこの順で流通するように前記充填筒が接続されてなる装置である。
The purification method of the present invention is a purification method in which a crude hydrogen gas is brought into contact with a palladium catalyst, a synthetic zeolite, and a getter agent in this order to remove impurities contained in the crude hydrogen gas.
Moreover, the apparatus used for the purification method of the present invention is an apparatus for carrying out the above-described purification method. As shown in FIG. 1, a packed cylinder filled with a palladium catalyst 1 and a synthetic zeolite 2 are packed. This is a refining device provided with a filling cylinder and a filling cylinder filled with the getter agent 3 and connected with the filling cylinder so that crude hydrogen gas flows in this order . Further, as shown in FIG. 2 , the purification apparatus of the present invention includes a filling cylinder filled with the palladium catalyst 1 and the synthetic zeolite 2, and a filling cylinder filled with the getter agent 3, and the crude hydrogen gas is in this order. It is an apparatus in which the filling cylinder is connected so as to circulate.

本発明に使用されるパラジウム触媒としては、市販のパラジウム触媒を用いることができる。また、パラジウム触媒は、通常は無機質担体に担持されているものが使用される。
また、本発明に使用される合成ゼオライトとしては、市販されている細孔径3〜15Å相当のものがすべて使用可能である。
さらに、本発明に使用されるゲッター剤としても特に制限されることはなく、例えばZr−V、Zr−Ti、Zr−Fe、Zr−Cu、Zr−Cr、Zr−Ni、Zr−Co、Zr−Nb、Zr−W、Zr−V−Ni、Zr−V−Cu、Zr−V−Co、Zr−V−Fe、Zr−V−Ni−Cu、Zr−V−Ni−Cr、Zr−V−Ni−Co、Zr−V−Cr−Fe等の合金を使用することができる。これらの合金は予め水素化物とすることが好ましい。
A commercially available palladium catalyst can be used as the palladium catalyst used in the present invention. As the palladium catalyst, one supported on an inorganic carrier is usually used.
Moreover, as the synthetic zeolite used in the present invention, all commercially available ones having a pore diameter of 3 to 15 mm can be used.
Further, the getter agent used in the present invention is not particularly limited. For example, Zr-V, Zr-Ti, Zr-Fe, Zr-Cu, Zr-Cr, Zr-Ni, Zr-Co, Zr -Nb, Zr-W, Zr-V-Ni, Zr-V-Cu, Zr-V-Co, Zr-V-Fe, Zr-V-Ni-Cu, Zr-V-Ni-Cr, Zr-V Alloys such as -Ni-Co and Zr-V-Cr-Fe can be used. These alloys are preferably hydride in advance.

本発明における粗水素ガスは、不純物として通常は、窒素、酸素、一酸化炭素、二酸化炭素、水、及びメタンから選ばれる1種以上のガスを、合計で0.1〜1000ppm程度含む水素ガスである。
本発明のガスの精製装置は、通常はこのような粗水素ガスの導入配管4及び精製水素ガスの取出し配管5のほか、パラジウム触媒1及び合成ゼオライト2を再生するための再生ガスの導入配管6及び再生ガスの排出配管7を備えている。
The crude hydrogen gas in the present invention is usually a hydrogen gas containing about 0.1 to 1000 ppm of one or more gases selected from nitrogen, oxygen, carbon monoxide, carbon dioxide, water, and methane as impurities. is there.
The gas purification apparatus of the present invention usually has such a crude hydrogen gas introduction pipe 4 and a purified hydrogen gas take-out pipe 5 as well as a regeneration gas introduction pipe 6 for regenerating the palladium catalyst 1 and the synthetic zeolite 2. And a regeneration gas discharge pipe 7.

本発明において、粗水素ガスとパラジウム触媒の接触温度、及び、粗水素ガスと合成ゼオライトの接触温度は、通常は0〜100℃であり、粗水素ガスとゲッター剤の接触温度は、通常は400〜600℃である。また、粗水素ガスと、パラジウム触媒、合成ゼオライト、ゲッター剤と接触する際のガス圧力は、通常は常圧であるが、10KPa(絶対圧力)のような減圧あるいは1MPa(絶対圧力)のような加圧下で処理することも可能である。   In the present invention, the contact temperature between the crude hydrogen gas and the palladium catalyst, and the contact temperature between the crude hydrogen gas and the synthetic zeolite are usually 0 to 100 ° C., and the contact temperature between the crude hydrogen gas and the getter agent is usually 400. ~ 600 ° C. Further, the gas pressure when contacting the crude hydrogen gas with the palladium catalyst, the synthetic zeolite, and the getter agent is usually normal pressure, but it is a reduced pressure such as 10 KPa (absolute pressure) or 1 MPa (absolute pressure). It is also possible to process under pressure.

本発明においては、粗水素ガスがパラジウム触媒と接触することにより、粗水素ガスに不純物として含まれる酸素が水素と反応して水が生成する。また、少量であれば、粗水素ガスに含まれる一酸化炭素も吸着除去できる。また、粗水素ガスが合成ゼオライトと接触することにより、粗水素ガスに不純物として含まれる二酸化炭素、水、あるいは前記の酸素と水素の反応により生成した水が合成ゼオライトに吸着され、粗水素ガスから除去される。さらに粗水素ガスがゲッター剤と接触することにより、粗水素ガスに不純物として含まれる一酸化炭素、窒素、メタンがゲッター剤に捕捉され、粗水素ガスから除去される。前記不純物は、通常は全て1ppb以下まで除去可能である。   In the present invention, when the crude hydrogen gas comes into contact with the palladium catalyst, oxygen contained as an impurity in the crude hydrogen gas reacts with hydrogen to produce water. In addition, if the amount is small, carbon monoxide contained in the crude hydrogen gas can also be adsorbed and removed. Further, when the crude hydrogen gas comes into contact with the synthetic zeolite, carbon dioxide contained in the crude hydrogen gas as an impurity, water, or water produced by the reaction of the oxygen and hydrogen is adsorbed on the synthetic zeolite, Removed. Further, when the crude hydrogen gas comes into contact with the getter agent, carbon monoxide, nitrogen and methane contained as impurities in the crude hydrogen gas are captured by the getter agent and removed from the crude hydrogen gas. All the impurities can usually be removed to 1 ppb or less.

本発明においては、パラジウム触媒は長時間の使用により失活し、合成ゼオライトは吸着能力の限界に達するとそれ以上不純物を吸着できなくなるので、これらを再生する必要がある。パラジウム触媒、合成ゼオライトを再生する際は、図1または図2のようなガスの精製装置の場合は、水素ガスまたは希ガスの精製処理を中止した後、例えばパラジウム触媒及び合成ゼオライトを、100〜400℃程度で加熱するとともに、再生ガスの導入配管6から、水素、不活性ガス等の再生ガスを、パラジウム触媒、合成ゼオライトに供給することによって行なわれる。   In the present invention, the palladium catalyst is deactivated after a long period of use, and when the synthetic zeolite reaches the limit of the adsorption capacity, impurities can no longer be adsorbed. Therefore, it is necessary to regenerate them. When regenerating the palladium catalyst and synthetic zeolite, in the case of the gas purification apparatus as shown in FIG. 1 or FIG. 2, after the purification treatment of hydrogen gas or rare gas is stopped, for example, the palladium catalyst and synthetic zeolite are Heating is performed at about 400 ° C., and a regeneration gas such as hydrogen or an inert gas is supplied from a regeneration gas introduction pipe 6 to a palladium catalyst or synthetic zeolite.

しかし、図3に示すように、パラジウム触媒の充填筒と合成ゼオライトの充填筒からなるラインが、並列に2ライン以上設置され、各々のラインが1筒のゲッター剤の充填筒に接続されてなる精製装置、あるいは、図4に示すように、パラジウム触媒と合成ゼオライトの充填筒が、並列に2筒以上設置され、各々の充填筒が1筒のゲッター剤の充填筒に接続されてなる精製装置を使用することにより、少なくとも1ラインまたは1筒で精製を行なうとともに、他の少なくとも1ラインまたは1筒でパラジウム触媒及び合成ゼオライトの再生を行なうことが可能となり、各々のラインまたは充填筒を適宜切替ることにより、水素ガスの精製を連続で実施できる。尚、図5に示すように、合成ゼオライトの充填筒のみが並列に2筒以上設置されてなる精製装置とすることもできる。   However, as shown in FIG. 3, two or more lines composed of a palladium catalyst filling cylinder and a synthetic zeolite filling cylinder are installed in parallel, and each line is connected to a single getter agent filling cylinder. As shown in FIG. 4, a purification apparatus or a purification apparatus in which two or more cylinders of palladium catalyst and synthetic zeolite are installed in parallel, and each cylinder is connected to one cylinder of getter agent. Can be used to purify at least one line or cylinder and regenerate the palladium catalyst and synthetic zeolite in at least one other line or cylinder. Thus, the purification of hydrogen gas can be carried out continuously. In addition, as shown in FIG. 5, it can also be set as the refinement | purification apparatus by which only the filling cylinder of a synthetic zeolite is installed in parallel 2 or more cylinders.

本発明に使用されるパラジウム触媒は、触媒作用により粗水素ガスに含まれる酸素を水素と反応させて水に変換し、下流に設置された吸着能力が大きな合成ゼオライトにより吸着除去する構成なので、ニッケル等の金属と比較して1回の再生で多量の酸素を粗水素ガスから除去することができ、再生周期を大幅に長く設定することができる。また、本発明においては、再生ができないゲッター剤をパラジウム触媒及び合成ゼオライトの下流側に設けるので、ゲッター剤の寿命を大幅に延ばすことが可能であり、水素ガスの精製を効率よく行なうことができる。   The palladium catalyst used in the present invention has a structure in which oxygen contained in the crude hydrogen gas is reacted with hydrogen by catalytic action to convert it into water, and is adsorbed and removed by a synthetic zeolite having a large adsorption capacity installed downstream. A large amount of oxygen can be removed from the crude hydrogen gas by one regeneration compared to metals such as, and the regeneration cycle can be set significantly longer. Further, in the present invention, the getter agent that cannot be regenerated is provided on the downstream side of the palladium catalyst and the synthetic zeolite, so that the life of the getter agent can be greatly extended and the purification of hydrogen gas can be performed efficiently. .

次に、本発明を実施例により具体的に説明するが、本発明がこれらにより限定されるものではない。   EXAMPLES Next, although an Example demonstrates this invention concretely, this invention is not limited by these.

(精製装置の製作)
市販のパラジウム触媒及び合成ゼオライト(細孔径5Å相当)を、内径28.4mm、長さ1000mmのSUS316L製の充填筒の内部に、充填長が各々300mm、600mmとなるように充填した。また、Zr−V(Zr70wt%、V30wt%)の合金からなるゲッター剤を、内径54.9mm、長さ600mmのSUS316L製の充填筒の内部に、充填長が300mmとなるように充填した。前記のパラジウム触媒及び合成ゼオライトの充填筒2筒、及びゲッター剤の充填筒1筒を、図4に示すように設置して水素ガスの精製装置を製作した。
(Production of purification equipment)
A commercially available palladium catalyst and synthetic zeolite (corresponding to a pore diameter of 5 mm) were filled into a SUS316L-made filling cylinder having an inner diameter of 28.4 mm and a length of 1000 mm so that the filling lengths were 300 mm and 600 mm, respectively. Further, a getter agent made of an alloy of Zr-V (Zr 70 wt%, V 30 wt%) was filled in a filling tube made of SUS316L having an inner diameter of 54.9 mm and a length of 600 mm so that the filling length was 300 mm. The palladium catalyst and synthetic zeolite filling cylinders 2 and the getter agent filling cylinder 1 were installed as shown in FIG. 4 to produce a hydrogen gas purification apparatus.

(水素ガスの精製試験)
次に、パラジウム触媒及び合成ゼオライトの充填筒を300℃に加熱した後、再生ガスの導入配管から水素ガスを2L/minの流量で4時間導入して還元処理を行ない室温に冷却した。また同様に、ゲッター剤の充填筒を500℃に加熱した後、水素とアルゴンの混合ガス(徐々に水素濃度を上昇)を1L/minの流量で10時間導入して還元処理を行ない室温に冷却した。
(Hydrogen gas purification test)
Next, after the palladium catalyst and the synthetic zeolite-filled cylinder were heated to 300 ° C., hydrogen gas was introduced from the regeneration gas introduction pipe at a flow rate of 2 L / min for 4 hours to perform a reduction treatment and cool to room temperature. Similarly, after heating the filled cylinder of the getter agent to 500 ° C., a mixed gas of hydrogen and argon (the hydrogen concentration is gradually increased) is introduced at a flow rate of 1 L / min for 10 hours to perform reduction treatment and cool to room temperature. did.

不純物として、窒素5ppm、酸素10ppm、一酸化炭素1ppm、二酸化炭素2ppm、水30ppm、及びメタン0.1ppmを含む粗水素ガスを、室温、0.5MPa下、16L/minの流量で、片方のパラジウム触媒及び合成ゼオライトの充填筒、及び500℃に加熱されたゲッター剤の充填筒に導入した。この間、パラジウム触媒及び合成ゼオライトの充填筒と、ゲッター剤の充填筒の出口から排出されたガスの一部を約10分間隔でサンプリングし、ガス検知装置(検出下限は、窒素0.1ppb、酸素0.5ppb、一酸化炭素0.1ppb、二酸化炭素0.1ppb、水1ppb、メタン1ppb)により前記不純物の有無を測定した。その結果、パラジウム触媒及び合成ゼオライトの充填筒の出口ガスから窒素、一酸化炭素、及びメタンが検出されたが、ゲッター剤の充填筒の出口ガスから不純物は検出されなかった。   Crude hydrogen gas containing 5 ppm nitrogen, 10 ppm oxygen, 1 ppm carbon monoxide, 2 ppm carbon dioxide, 30 ppm water, and 0.1 ppm methane as impurities at room temperature under 0.5 MPa and at a flow rate of 16 L / min. The catalyst and the synthetic zeolite were introduced into a filled cylinder and a getter agent filled cylinder heated to 500 ° C. During this time, a part of the gas discharged from the outlet of the palladium catalyst and synthetic zeolite filling tube and the getter agent filling tube was sampled at intervals of about 10 minutes, and the gas detection device (the detection lower limit was 0.1 ppb nitrogen, oxygen 0.5 ppb, carbon monoxide 0.1 ppb, carbon dioxide 0.1 ppb, water 1 ppb, and methane 1 ppb). As a result, nitrogen, carbon monoxide, and methane were detected from the exit gas of the palladium catalyst and synthetic zeolite-filled cylinder, but no impurities were detected from the exit gas of the getter agent-filled cylinder.

精製試験開始から480分後、パラジウム触媒及び合成ゼオライトの充填筒から二酸化炭素が検出された。直ちにパラジウム触媒及び合成ゼオライトの充填筒を、他の片方のパラジウム触媒及び合成ゼオライトの充填筒に切替えるとともに、使用済みのパラジウム触媒及び合成ゼオライトの充填筒を300℃に加熱し、水素ガスを2L/minの流量で4時間導入して再生処理を行ない室温に冷却した。この間、ゲッター剤の充填筒の出口ガスから不純物は検出されなかった。   480 minutes after the start of the purification test, carbon dioxide was detected from the packed tube of palladium catalyst and synthetic zeolite. Immediately switch the packed cylinder of palladium catalyst and synthetic zeolite to the other filled cylinder of palladium catalyst and synthetic zeolite, heat the used palladium catalyst and synthetic zeolite filled cylinder to 300 ° C., and supply hydrogen gas at 2 L / It was introduced at a flow rate of min for 4 hours, regenerated and cooled to room temperature. During this time, no impurities were detected from the exit gas of the getter agent filling cylinder.

実施例1の精製装置の製作において、パラジウム触媒の充填筒、合成ゼオライトの充填筒、及びゲッター剤の充填筒を、図5に示すように設置したほかは実施例1と同様にして水素ガスの精製装置を製作した。
実施例1と同様にして還元処理を行なった後、実施例1と同様の粗水素ガスを、室温、0.5MPa下、16L/minの流量で、100℃に加熱されたパラジウム触媒、片方の合成ゼオライトの充填筒、及び500℃に加熱されたゲッター剤の充填筒に導入した。この間、合成ゼオライトの充填筒と、ゲッター剤の充填筒の出口から排出されたガスの一部を約10分間隔でサンプリングし、ガス検知装置により前記不純物の有無を測定した。その結果、合成ゼオライトの充填筒の出口ガスから窒素、一酸化炭素、及びメタンが検出されたが、ゲッター剤の充填筒の出口ガスから不純物は検出されなかった。
In the production of the purification apparatus of Example 1, hydrogen gas filling cylinders, synthetic zeolite filling cylinders, and getter agent filling cylinders were installed as shown in FIG. A purification device was manufactured.
After carrying out the reduction treatment in the same manner as in Example 1, the same crude hydrogen gas as in Example 1 was added at room temperature under 0.5 MPa at a flow rate of 16 L / min. They were introduced into a synthetic zeolite filling cylinder and a getter agent filling cylinder heated to 500 ° C. During this time, a portion of the gas discharged from the synthetic zeolite filling tube and the exit of the getter agent filling tube was sampled at intervals of about 10 minutes, and the presence or absence of the impurities was measured by a gas detector. As a result, nitrogen, carbon monoxide, and methane were detected from the exit gas of the synthetic zeolite filling cylinder, but no impurities were detected from the exit gas of the getter agent filling cylinder.

精製試験開始から520分後、合成ゼオライトの充填筒から二酸化炭素が検出された。直ちに合成ゼオライトの充填筒を、他の片方の合成ゼオライトの充填筒に切替えるとともに、使用済みの合成ゼオライトの充填筒を300℃に加熱し、水素ガスを2L/minの流量で4時間導入して再生処理を行ない室温に冷却した。この間、ゲッター剤の充填筒の出口ガスから不純物は検出されなかった。   520 minutes after the start of the purification test, carbon dioxide was detected from the synthetic zeolite packed tube. Immediately switch the synthetic zeolite filling cylinder to the other synthetic zeolite filling cylinder, heat the used synthetic zeolite filling cylinder to 300 ° C., and introduce hydrogen gas at a flow rate of 2 L / min for 4 hours. Regeneration was performed and cooled to room temperature. During this time, no impurities were detected from the exit gas of the getter agent filling cylinder.

以上のように、本発明の水素ガスの精製方法及び精製装置は、大型または複雑な装置を用いることなく、粗水素ガスに含まれている窒素、酸素、一酸化炭素、二酸化炭素、水、メタンの全てを、1ppb以下の超低濃度となるまで効率よく除去できることが確認された。 As described above, the method and apparatus for purifying hydrogen gas according to the present invention can include nitrogen, oxygen, carbon monoxide, carbon dioxide, water, methane contained in crude hydrogen gas without using a large or complicated apparatus. It has been confirmed that all of the above can be efficiently removed until the concentration becomes very low of 1 ppb or less.

本発明の精製方法に用いられる精製装置の一例を示す構成図The block diagram which shows an example of the refiner | purifier used for the purification method of this invention 本発明の精製方法に用いられる図1以外の精製装置の一例を示す構成図The block diagram which shows an example of refiners other than FIG. 1 used for the refinement | purification method of this invention 本発明の精製方法に用いられる図1、図2以外の精製装置の一例を示す構成図The block diagram which shows an example of purification apparatuses other than FIG. 1, FIG. 2 used for the purification method of this invention 本発明の精製方法に用いられる図1〜図3以外の精製装置の一例を示す構成図The block diagram which shows an example of purification apparatuses other than FIGS. 1-3 used for the purification method of this invention. 本発明の精製方法に用いられる図1〜図4以外の精製装置の一例を示す構成図The block diagram which shows an example of purification apparatuses other than FIGS. 1-4 used for the purification method of this invention

1 パラジウム触媒
2 合成ゼオライト
3 ゲッター剤
4 粗水素ガスの導入配管
5 精製水素ガスの取出し配管
6 再生ガスの導入配管
7 再生ガスの排出配管
DESCRIPTION OF SYMBOLS 1 Palladium catalyst 2 Synthetic zeolite 3 Getter agent 4 Crude hydrogen gas introduction piping 5 Purified hydrogen gas extraction piping 6 Regeneration gas introduction piping 7 Regeneration gas discharge piping

Claims (5)

粗水素ガスを、0〜100℃の温度でパラジウム触媒、0〜100℃の温度で合成ゼオライト、及び400〜600℃の温度でゲッター剤とこの順に接触させて、該粗水素ガスに含まれる不純物を除去することを特徴とする水素ガスの精製方法。 Impurities contained in the crude hydrogen gas by contacting the crude hydrogen gas with a palladium catalyst at a temperature of 0 to 100 ° C., a synthetic zeolite at a temperature of 0 to 100 ° C. , and a getter agent at a temperature of 400 to 600 ° C. A method for purifying hydrogen gas, characterized by removing water. 不純物が、窒素、酸素、一酸化炭素、二酸化炭素、水、及びメタンから選ばれる1種以上のガスである請求項1に記載のガスの精製方法。 The method for purifying a gas according to claim 1, wherein the impurity is at least one gas selected from nitrogen, oxygen, carbon monoxide, carbon dioxide, water, and methane. パラジウム触媒及び合成ゼオライトへの粗水素ガス導入ラインを2ライン以上設置し、少なくとも1ラインで水素ガスの精製を行なうとともに、他の少なくとも1ラインでパラジウム触媒及び合成ゼオライトの再生を行なう請求項1に記載のガスの精製方法。 The crude hydrogen gas introduction line to the palladium catalyst and the synthetic zeolite is installed in two or more lines, the hydrogen gas is purified in at least one line, and the palladium catalyst and the synthetic zeolite are regenerated in at least one other line. The gas purification method as described. 上流側にパラジウム触媒、下流側に合成ゼオライトが充填された充填筒、及びゲッター剤が充填された充填筒が備えられ、粗水素ガスがこの順で流通するように該充填筒が接続されてなることを特徴とする水素ガスの精製装置。 It is provided with a packing cylinder filled with a palladium catalyst on the upstream side, a filling cylinder filled with synthetic zeolite on the downstream side , and a filling cylinder filled with a getter agent, and these filling cylinders are connected so that crude hydrogen gas flows in this order. An apparatus for purifying hydrogen gas. パラジウム触媒及び合成ゼオライトの充填筒が、並列に2筒以上設置され、各々の該充填筒が1筒のゲッター剤の充填筒に接続されてなる請求項に記載のガスの精製装置。 The gas purifier according to claim 4 , wherein two or more cylinders of palladium catalyst and synthetic zeolite are installed in parallel, and each cylinder is connected to one cylinder of getter agent.
JP2005230799A 2005-08-09 2005-08-09 Method and apparatus for purifying hydrogen gas Active JP4860206B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005230799A JP4860206B2 (en) 2005-08-09 2005-08-09 Method and apparatus for purifying hydrogen gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005230799A JP4860206B2 (en) 2005-08-09 2005-08-09 Method and apparatus for purifying hydrogen gas

Publications (2)

Publication Number Publication Date
JP2007045655A JP2007045655A (en) 2007-02-22
JP4860206B2 true JP4860206B2 (en) 2012-01-25

Family

ID=37848808

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005230799A Active JP4860206B2 (en) 2005-08-09 2005-08-09 Method and apparatus for purifying hydrogen gas

Country Status (1)

Country Link
JP (1) JP4860206B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5002230B2 (en) * 2006-10-05 2012-08-15 日本パイオニクス株式会社 Inert gas purification method
US20200261841A1 (en) * 2015-12-07 2020-08-20 Showa Denko K. K. Ammonia removal equipment, ammonia removal method, and hydrogen gas production method
CN111771078A (en) * 2018-02-27 2020-10-13 松下知识产权经营株式会社 Vacuum heat insulating material, heat insulating structure using the same, and household electrical appliance, house wall, and transportation equipment using the material or structure
CN109879259A (en) * 2019-04-12 2019-06-14 山东非金属材料研究所 A kind of ultra-pure xenon, krypton purification system and purification process

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59107910A (en) * 1982-12-10 1984-06-22 Toshiba Corp Method for purifying gaseous argon
JPS6071502A (en) * 1983-09-28 1985-04-23 Sekisui Chem Co Ltd Purifying apparatus of gaseous hydrogen
JPS63141623A (en) * 1986-12-02 1988-06-14 Kobe Steel Ltd Gas purifying method
JPH0716575B2 (en) * 1990-10-05 1995-03-01 岩谷産業株式会社 Used xenon gas recovery and purification equipment
JP2000072419A (en) * 1998-08-20 2000-03-07 Japan Pionics Co Ltd Method for recovering rare gas

Also Published As

Publication number Publication date
JP2007045655A (en) 2007-02-22

Similar Documents

Publication Publication Date Title
KR960002190B1 (en) Process for the purification of the inert gases
JP5566815B2 (en) Gas purification method and gas purification apparatus
JP5991330B2 (en) Argon gas recovery and purification method and argon gas recovery and purification apparatus from silicon single crystal manufacturing apparatus
JP2007069209A (en) Gas purification method
UA121224C2 (en) Combined membrane and pressure swing adsorption method for recovery of helium
CN105858606B (en) A kind of full temperature journey pressure varying adsorption of purified method of ultra-pure hydrogen
WO2008120160A1 (en) Methods and apparatus for providing a high purity acetylene product
JP2010195616A (en) Purification method and purification device of gas
TWI264322B (en) Processing method of gas and processing apparatus of gas
JP4860206B2 (en) Method and apparatus for purifying hydrogen gas
KR102570998B1 (en) System and method for pre-purification of a feed gas stream
WO1997011768A1 (en) Low temperature inert gas purifier
JP2010076972A (en) Method for treating impure rare gas
JP2006522079A (en) Method for removing solvent contained in acetylene and apparatus for carrying out said method
CA2275962A1 (en) Method for purifying a cryogenic fluid by filtration and adsorption
JPH0127961B2 (en)
JP4223010B2 (en) High purity hydrogen production method and apparatus used therefor
JP4058278B2 (en) Helium purification equipment
JP2016216313A (en) Oil removal device and ammonia purifier using same
JP5684898B2 (en) Gas purification method
JP3977501B2 (en) Method and apparatus for purifying oxygen gas
KR20220023299A (en) System for pre-purification of a feed gas stream
KR19990014226A (en) Method and apparatus for producing high purity inert gas
JP2000072419A (en) Method for recovering rare gas
JP5133929B2 (en) Method and apparatus for producing ultra-high purity nitrogen gas

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080623

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110325

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110812

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111006

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111026

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111102

R150 Certificate of patent or registration of utility model

Ref document number: 4860206

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141111

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350