JP4858669B2 - Transparent conductive substrate and method for producing the same - Google Patents

Transparent conductive substrate and method for producing the same Download PDF

Info

Publication number
JP4858669B2
JP4858669B2 JP2004295528A JP2004295528A JP4858669B2 JP 4858669 B2 JP4858669 B2 JP 4858669B2 JP 2004295528 A JP2004295528 A JP 2004295528A JP 2004295528 A JP2004295528 A JP 2004295528A JP 4858669 B2 JP4858669 B2 JP 4858669B2
Authority
JP
Japan
Prior art keywords
transparent conductive
transparent
layer
binder
fine particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004295528A
Other languages
Japanese (ja)
Other versions
JP2006108008A5 (en
JP2006108008A (en
Inventor
雅也 行延
淳司 東福
至 早川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2004295528A priority Critical patent/JP4858669B2/en
Publication of JP2006108008A publication Critical patent/JP2006108008A/en
Publication of JP2006108008A5 publication Critical patent/JP2006108008A5/ja
Application granted granted Critical
Publication of JP4858669B2 publication Critical patent/JP4858669B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、例えば液晶ディスプレイ(以後、LCDと記す)の偏光板等や、携帯電話の表示窓部分等に適用される帯電防止膜のようなプラスチック基板上にハードコート機能と透明導電機能を同時に付与できる透明導電膜を有する透明導電性基材とその製造方法に関するものである。   The present invention simultaneously provides a hard coat function and a transparent conductive function on a plastic substrate such as a polarizing plate of a liquid crystal display (hereinafter referred to as LCD) or an antistatic film applied to a display window portion of a mobile phone. The present invention relates to a transparent conductive substrate having a transparent conductive film that can be applied and a method for producing the same.

現在、各種プラスチック基材(フィルム、板)が、その透明性、軽量性、加工性等の理由により、種々の分野で用いられており、例えば、LCDの偏光板等や携帯電話の表示窓部分に適用されている。しかしながら、プラスチックはガラス等と比較すると柔らかく、表面が傷つき安い等の欠点を有している。更に、プラスチックはその体積固有抵抗が高いため、摩擦等により容易に静電気を帯び、塵埃吸着による透明性の悪化や、電子部品の作動不良等の問題が生じており、帯電防止機能の付与の必要性も高まっている。   Currently, various plastic substrates (films, plates) are used in various fields because of their transparency, lightness, processability, etc. For example, LCD polarizing plates and mobile phone display windows. Has been applied. However, plastics are disadvantageous in that they are softer than glass or the like and the surface is damaged and cheap. In addition, plastic has a high volume resistivity, so it can easily be charged with static electricity due to friction, causing problems such as deterioration of transparency due to dust adsorption and malfunction of electronic components. The nature is also increasing.

上記欠点を克服するため、プラスチック基材の表面にハ−ドコ−ト塗布液をコ−ティングしてハードコート層を設けて、その表面硬度を上げる方法が採用されている。また、帯電防止機能の付与は、酸化インジウム、酸化錫、酸化亜鉛を主成分とする導電性酸化物微粒子(フィラー)と樹脂バインダーを含有する帯電防止用塗布液(透明導電膜形成用塗布液)をコーティングして帯電防止層を形成する方法が行われている。   In order to overcome the above disadvantages, a method is adopted in which a hard coat layer is provided by coating a hard coat coating solution on the surface of a plastic substrate to increase its surface hardness. In addition, the antistatic function is imparted by applying an antistatic coating liquid (coating liquid for forming a transparent conductive film) containing conductive oxide fine particles (filler) mainly composed of indium oxide, tin oxide, and zinc oxide and a resin binder. A method of forming an antistatic layer by coating the coating is performed.

ここで、上記帯電防止用塗布液を用い、同時にハードコート機能も付与することも考えられるが、一般に、帯電防止用塗布液(透明導電膜形成用塗布液)は、導電性(帯電防止性)確保の観点からフィラー配合量をある程度高くする必要があり、結果として得られる膜が脆くなる傾向がある。更に、十分なハードコート機能を発現させるためにはその膜厚を数μm以上にする必要があるが、フィラー含有量の高い膜の厚膜化によって膜の透過率が低下するという問題が生じる。したがって、上記帯電防止層単独では、仮に樹脂バインダーにハ−ドコ−ト性バインダーを用いた場合であっても、十分な透明性(膜厚を薄くした場合)を確保しながら、かつ、十分な耐擦傷性、硬度を同時に得ることはできなかった。   Here, it is conceivable to use the above-mentioned antistatic coating solution and at the same time impart a hard coat function, but in general, the antistatic coating solution (transparent conductive film forming coating solution) is conductive (antistatic property). From the viewpoint of securing, it is necessary to increase the filler content to some extent, and the resulting film tends to become brittle. Furthermore, in order to develop a sufficient hard coat function, the film thickness needs to be several μm or more. However, there arises a problem that the transmittance of the film is lowered by increasing the thickness of the film having a high filler content. Therefore, the above-mentioned antistatic layer alone is sufficient to ensure sufficient transparency (when the film thickness is reduced) even when a hard coat binder is used as the resin binder. Scratch resistance and hardness could not be obtained at the same time.

そこで、プラスチック基材の表面に上記ハードコート層と帯電防止層を積層して、ハードコート機能と帯電防止機能を同時に付与する方法も提案されている(特開平10−235807号公報、特開平11−115087号公報、特開平11−333370号公報参照)。   Therefore, a method of laminating the hard coat layer and the antistatic layer on the surface of the plastic substrate to simultaneously impart a hard coat function and an antistatic function has been proposed (Japanese Patent Laid-Open Nos. 10-235807 and 11). No.-115087 and JP-A-11-333370).

ここでは、上記ハードコート層と帯電防止層の積層構造に関して、プラスチック基材/ハードコート層/帯電防止層と、プラスチック基材/帯電防止層/ハードコート層の構造が提案されている。前者の構造は、帯電防止効果の面からは好ましいが、帯電防止層が最表面に来るためハードコート性能は幾分低下する。逆に、後者の構造は、ハードコート性能は高くできるが、体積固有抵抗が高いハードコート層が帯電防止層を覆うため、帯電防止効果が悪化することがある。この悪化は、ハードコート層が厚くなると(例えば5μm以上)特に顕著となり、10μm以上のハードコート膜厚では帯電防止機能を失う場合もある。ハードコート層を薄くすれば上記問題はなくなるが、ハードコート性能が不十分になる可能性がある。
特開平10−235807号公報 特開平11−115087号公報 特開平11−333370号公報
Here, regarding the laminated structure of the hard coat layer and the antistatic layer, a structure of a plastic substrate / hard coat layer / antistatic layer and a plastic substrate / antistatic layer / hard coat layer has been proposed. The former structure is preferable from the viewpoint of the antistatic effect, but the hard coat performance is somewhat deteriorated because the antistatic layer comes to the outermost surface. On the other hand, the latter structure can improve the hard coat performance, but the antistatic effect may be deteriorated because the hard coat layer having a high volume resistivity covers the antistatic layer. This deterioration becomes particularly noticeable when the hard coat layer is thick (for example, 5 μm or more), and the antistatic function may be lost when the hard coat film thickness is 10 μm or more. If the hard coat layer is thinned, the above problem is eliminated, but the hard coat performance may be insufficient.
JP 10-235807 A Japanese Patent Laid-Open No. 11-115087 JP-A-11-333370

本発明は、プラスチック基材の表面に塗布してハ−ドコ−ト機能と透明導電機能(帯電防止機能)を両立でき、さらに良好な透明性も付与できる透明導電膜を有する透明導電性基材とその製造方法を提供しようとするものである。   The present invention is a transparent conductive substrate having a transparent conductive film that can be applied to the surface of a plastic substrate to achieve both a hard coat function and a transparent conductive function (antistatic function), and can also provide good transparency. And a method of manufacturing the same.

発明者等は、バインダーを含有する溶媒中に導電性微粒子を分散させた透明導電膜形成用塗布液において、その溶媒がプラスチック基板を溶解する少なくとも1種類以上の溶媒を含有させた場合に、上記透明導電膜形成用塗布液をプラスチック基板上に塗布・乾燥(及び硬化)させると、形成される透明導電膜の最表面に上記導電性微粒子が濃縮される現象に着目し、透明導電性基材の製造方法において、プラスチック基板上に、該プラスチック基板を溶解する溶媒、バインダー、導電性微粒子を含有する透明導電膜形成用塗布液を塗布・乾燥、硬化さるだけで、ハードコート機能と透明導電機能を同時に付与できる、バインダー層と透明導電層の2層からなる透明導電膜を有する透明導電性基材が、極めて簡便に、かつ安価に製造できることを見出し、本発明に至った。   The inventors, in the coating solution for forming a transparent conductive film in which conductive fine particles are dispersed in a solvent containing a binder, when the solvent contains at least one kind of solvent that dissolves the plastic substrate, Paying attention to the phenomenon that when the transparent conductive film forming coating liquid is applied and dried (and cured) on a plastic substrate, the conductive fine particles are concentrated on the outermost surface of the formed transparent conductive film, In this manufacturing method, a hard coating function and a transparent conductive function can be obtained by simply applying, drying, and curing a transparent conductive film forming coating solution containing a solvent, a binder, and conductive fine particles on the plastic substrate. A transparent conductive substrate having a transparent conductive film consisting of two layers, a binder layer and a transparent conductive layer, can be produced at the same time and can be manufactured very simply and at low cost. The heading, has led to the present invention.

すなわち、本発明が提供する請求項1の透明導電性基材の製造方法は、プラスチック基板上に、バインダーを含有する溶媒中に導電性微粒子を分散させた透明導電膜形成用塗布液を塗布・乾燥、硬化させて透明導電膜を形成する透明導電性基材の製造方法において、
該透明導電膜形成用塗布液の溶媒が、プラスチック基板を溶解する少なくとも1種類以上の溶媒を含有し、形成された該透明導電膜が、バインダーを主成分とし導電性微粒子を含まない透明バインダー層と濃縮されて緻密に充填した導電性微粒子を主成分とする透明導電層の2層に分かれて構成され、プラスチック基板、透明バインダー層、透明導電層の順に積層された構造となることを特徴とする。
That is, in the method for producing a transparent conductive substrate according to claim 1 provided by the present invention, a coating solution for forming a transparent conductive film in which conductive fine particles are dispersed in a solvent containing a binder is applied to a plastic substrate. In the method for producing a transparent conductive substrate that is dried and cured to form a transparent conductive film,
A transparent binder layer in which the solvent of the coating liquid for forming the transparent conductive film contains at least one solvent that dissolves the plastic substrate, and the formed transparent conductive film contains a binder as a main component and does not contain conductive fine particles. It is composed of two layers of a transparent conductive layer mainly composed of conductive fine particles that are concentrated and densely packed, and has a structure in which a plastic substrate, a transparent binder layer, and a transparent conductive layer are laminated in this order. To do.

本発明の請求項2の透明導電性基材の製造方法は、上記請求項1の透明導電性基材の製造方法において、導電性微粒子が導電性酸化物微粒子であることを特徴とする。   The method for producing a transparent conductive substrate according to claim 2 of the present invention is characterized in that, in the method for producing a transparent conductive substrate according to claim 1, the conductive fine particles are conductive oxide fine particles.

本発明の請求項3の透明導電性基材の製造方法は、上記請求項1または2の透明導電性基材の製造方法において、導電性酸化物微粒子が、酸化インジウム、酸化錫、酸化亜鉛を主成分とする微粒子であることを特徴とする。   The method for producing a transparent conductive substrate according to claim 3 of the present invention is the method for producing a transparent conductive substrate according to claim 1 or 2, wherein the conductive oxide fine particles comprise indium oxide, tin oxide, and zinc oxide. It is characterized by being a fine particle having a main component.

本発明の請求項4の透明導電性基材の製造方法は、上記請求項1〜3の透明導電性基材の製造方法において、バインダーが紫外線硬化性樹脂、電子線硬化性樹脂、熱硬化性樹脂、乾燥硬化性樹脂であることを特徴とする。   The method for producing a transparent conductive substrate according to claim 4 of the present invention is the method for producing a transparent conductive substrate according to claims 1 to 3, wherein the binder is an ultraviolet curable resin, an electron beam curable resin, or a thermosetting material. It is a resin or a dry curable resin.

本発明の請求項5の透明導電性基材の製造方法は、上記請求項1〜4の透明導電性基材の製造方法において、バインダーが、透明バインダー層がハードコート機能を有するように選定されたハードコート性バインダーであることを特徴とする。   The method for producing a transparent conductive substrate according to claim 5 of the present invention is the method for producing a transparent conductive substrate according to claims 1 to 4, wherein the binder is selected so that the transparent binder layer has a hard coat function. It is a hard coat binder.

本発明の請求項6の透明導電性基材の製造方法は、上記請求項1〜5の透明導電性基材の製造方法において、透明導電膜形成用塗布液の溶媒が、プラスチック基板を溶解する溶媒を5〜50重量%の範囲で含有することを特徴とする。   The method for producing a transparent conductive substrate according to claim 6 of the present invention is the method for producing a transparent conductive substrate according to any one of claims 1 to 5, wherein the solvent of the coating liquid for forming the transparent conductive film dissolves the plastic substrate. It contains the solvent in the range of 5 to 50% by weight.

本発明の請求項7の透明導電性基材の製造方法は、上記請求項1〜6の透明導電性基材の製造方法において、プラスチック基板が、トリアセチルセルロース、ノルボルネン系樹脂、アクリル樹脂、ポリカーボネートであることを特徴とする。   The method for producing a transparent conductive substrate according to claim 7 of the present invention is the method for producing a transparent conductive substrate according to claims 1 to 6, wherein the plastic substrate is triacetyl cellulose, norbornene resin, acrylic resin, polycarbonate. It is characterized by being.

本発明の請求項8の透明導電性基材は、請求項1〜7の方法で製造された、プラスチック基板、透明バインダー層、透明導電層の順に積層された構造を有することを特徴とする。   The transparent conductive base material according to an eighth aspect of the present invention has a structure in which a plastic substrate, a transparent binder layer, and a transparent conductive layer are laminated in this order, which is produced by the method according to the first to seventh aspects.

本発明の請求項9の透明導電性基材は、上記請求項8の透明導電性基材において、透明導電膜の表面抵抗値が100〜1012Ω/□で、透過率が80〜100%であることを特徴とする。
本発明の請求項10の透明導電性基材は、上記請求項8または9の透明導電性基材において、透明バインダー層の厚みが2〜20μmで、透明バインダー層がハードコート機能を有していることを特徴とする。
The transparent conductive substrate according to claim 9 of the present invention is the transparent conductive substrate according to claim 8, wherein the transparent conductive film has a surface resistance value of 100 to 10 12 Ω / □ and a transmittance of 80 to 100%. It is characterized by being.
The transparent conductive substrate according to claim 10 of the present invention is the transparent conductive substrate according to claim 8 or 9, wherein the transparent binder layer has a thickness of 2 to 20 μm, and the transparent binder layer has a hard coat function. It is characterized by being.

本発明の請求項11の透明導電性基材は、上記請求項8〜10の透明導電性基材において、透明導電膜の上に、さらに透明ハードコート層がオーバーコートされていることを特徴とする。   The transparent conductive substrate according to claim 11 of the present invention is characterized in that, in the transparent conductive substrate according to claims 8 to 10, a transparent hard coat layer is further overcoated on the transparent conductive film. To do.

本発明の透明導電性基材の製造方法においては、プラスチック基板上に、該プラスチック基板を溶解する溶媒、バインダー、導電性微粒子を含有する透明導電膜形成用塗布液を塗布・乾燥、硬化さるだけで、透明バインダー層と透明導電層の2層に分かれた透明導電膜を形成できる。したがって、ハードコート機能と透明導電機能を同時に付与できる透明導電膜を有する透明導電性基材が、極めて簡便に、かつ安価に製造でき、この透明導電性基材は、例えば液晶ディスプレイ(以後、LCDと記す)の偏光板等や、携帯電話の表示窓部分等に適用される帯電防止膜等に用いることができる。   In the method for producing a transparent conductive substrate of the present invention, a transparent conductive film forming coating solution containing a solvent, a binder, and conductive fine particles that dissolve the plastic substrate is simply applied, dried and cured on the plastic substrate. Thus, a transparent conductive film divided into two layers of a transparent binder layer and a transparent conductive layer can be formed. Therefore, a transparent conductive substrate having a transparent conductive film capable of simultaneously imparting a hard coat function and a transparent conductive function can be manufactured very simply and inexpensively. This transparent conductive substrate is, for example, a liquid crystal display (hereinafter referred to as LCD). Can be used for an antistatic film applied to a display window portion of a mobile phone or the like.

本発明は、透明導電膜形成用塗布液が、一般に、導電性確保の観点からフィラー配合量をある程度高くする必要があり、その結果として生じる、前述した膜硬度(ハードコート性能)の低下や厚膜化による膜透過率の低下の問題を以下の現象に着眼して解決している。   In the present invention, the coating liquid for forming a transparent conductive film generally needs to increase the filler content to some extent from the viewpoint of ensuring conductivity, and as a result, the above-described decrease in film hardness (hard coat performance) and thickness The problem of decrease in membrane permeability due to membrane formation is solved by focusing on the following phenomenon.

すなわち、バインダーを含有する溶媒中に導電性微粒子を分散させた透明導電膜形成用塗布液において、その溶媒がプラスチック基板を溶解する少なくとも1種類以上の溶媒を含有させた場合に、上記透明導電膜形成用塗布液をプラスチック基板上に塗布・乾燥(及び硬化)させると、形成される透明導電膜の最表面に上記導電性微粒子が濃縮される現象である。   That is, in the transparent conductive film forming coating liquid in which conductive fine particles are dispersed in a solvent containing a binder, the transparent conductive film is formed when the solvent contains at least one solvent that dissolves the plastic substrate. This is a phenomenon in which when the forming coating solution is applied and dried (and cured) on a plastic substrate, the conductive fine particles are concentrated on the outermost surface of the formed transparent conductive film.

以下詳細に説明すると、図1に示すように、透明導電膜形成用塗布液において、その溶媒がプラスチック基板1を溶解しない場合は、透明導電膜2はバインダー中に導電性微粒子3が均一に分散した状態となる。ところが、上記溶媒がプラスチック基板を溶解する少なくとも1種類以上の溶媒を含有する場合には、図2に示す様に、透明導電膜形成用塗布液の塗布・乾燥工程において、導電性微粒子3の膜表面(空気側)への濃縮が生じ、導電性微粒子が密に充填された透明導電層2−aと導電性微粒子を含まないバインダー成分(及び一部プラスチック基材成分)から成る透明バインダー層2−bが形成される。   In more detail, as shown in FIG. 1, in the transparent conductive film forming coating solution, when the solvent does not dissolve the plastic substrate 1, the transparent conductive film 2 has the conductive fine particles 3 uniformly dispersed in the binder. It will be in the state. However, when the solvent contains at least one kind of solvent that dissolves the plastic substrate, as shown in FIG. 2, in the coating and drying process of the coating liquid for forming the transparent conductive film, the film of the conductive fine particles 3 is formed. A transparent binder layer 2 consisting of a transparent conductive layer 2-a that is concentrated on the surface (air side) and densely filled with conductive fine particles and a binder component (and a part of the plastic substrate component) that does not contain conductive fine particles. -B is formed.

上記濃縮が起きる理由に関しては、明らかではないが、例えば、透明導電膜形成用塗布液の塗布・乾燥工程において、プラスチック基板成分の一部が透明導電膜形成用塗布液中に溶解し、その成分が含まれる部分において導電性微粒子が安定に分散できないため、その成分濃度の低い最表面に集まっていくということが考えられる。   Although the reason why the concentration occurs is not clear, for example, in the coating / drying step of the transparent conductive film forming coating solution, a part of the plastic substrate component is dissolved in the transparent conductive film forming coating solution, and the component It can be considered that the conductive fine particles cannot be stably dispersed in the portion containing, so that they gather on the outermost surface having a low component concentration.

上述の、導電性微粒子のコーティング層最表面への濃縮により、以下の効果が得られる。透明導電膜形成用塗布液に少量の導電性微粒子を添加し、コーティング膜厚を厚くした場合であっても、導電性微粒子が密に充填した透明導電層が形成できるため、良好な導電性(帯電防止機能)が得られる。また、コーティング膜厚(透明導電層2−aと透明バインダー層2−b)が厚いので、バインダーにハードコート性バインダーを用いれば十分なハードコート特性を有することができ、導電性微粒子の含有量が少なくとも導電性が確保され、透明導電膜の透過率も高くできる。   By concentrating the conductive fine particles on the outermost surface of the coating layer, the following effects can be obtained. Even when a small amount of conductive fine particles are added to the coating liquid for forming a transparent conductive film to increase the coating film thickness, a transparent conductive layer densely filled with conductive fine particles can be formed. Antistatic function) is obtained. Further, since the coating film thickness (transparent conductive layer 2-a and transparent binder layer 2-b) is thick, if a hard coat binder is used as the binder, sufficient hard coat properties can be obtained, and the content of conductive fine particles However, at least conductivity is ensured, and the transmittance of the transparent conductive film can be increased.

透明導電膜形成用塗布液中のプラスチック基板を溶解する溶媒量は、5〜50重量%の範囲で含有することを要する。5重量%未満だと上記導電性微粒子の濃縮効果が不十分で、逆に50重量%を超えると、プラスチック基材が過剰に溶解して、均一な透明導電膜が得られず、また膜の導電特性・光学特性も著しく悪化するからである。   The amount of the solvent that dissolves the plastic substrate in the coating liquid for forming the transparent conductive film needs to be contained in the range of 5 to 50% by weight. If the amount is less than 5% by weight, the effect of concentrating the conductive fine particles is insufficient. Conversely, if the amount exceeds 50% by weight, the plastic substrate is excessively dissolved and a uniform transparent conductive film cannot be obtained. This is because the conductive characteristics and optical characteristics are also significantly deteriorated.

ここで、導電性微粒子は導電性酸化物微粒子であることが好ましい(請求項2)。更には、インジウム錫酸化物(ITO)、インジウム亜鉛酸化物(IZO)、インジウムチタン酸化物(ITiO)、インジウムジルコニウム酸化物、錫アンチモン酸化物(ATO)、フッ素錫酸化物(FTO)、アルミニウム亜鉛酸化物(AZO)、ガリウム亜鉛酸化物(GZO)等の酸化インジウム、酸化錫、酸化亜鉛を主成分とする微粒子であることが好ましい。導電性、透明性の観点からは、ITO微粒子が最も好ましい。   Here, the conductive fine particles are preferably conductive oxide fine particles. Furthermore, indium tin oxide (ITO), indium zinc oxide (IZO), indium titanium oxide (ITiO), indium zirconium oxide, tin antimony oxide (ATO), fluorine tin oxide (FTO), aluminum zinc Fine particles mainly composed of indium oxide such as oxide (AZO) and gallium zinc oxide (GZO), tin oxide, and zinc oxide are preferable. From the viewpoint of conductivity and transparency, ITO fine particles are most preferable.

透明導電膜形成用塗布液のバインダーは、紫外線硬化性樹脂、電子線硬化性樹脂、熱硬化性樹脂、乾燥硬化性樹脂であることが好ましく、中でも紫外線硬化性樹脂は取扱いが簡単で最も好ましい。   The binder of the coating liquid for forming a transparent conductive film is preferably an ultraviolet curable resin, an electron beam curable resin, a thermosetting resin, or a dry curable resin. Among them, the ultraviolet curable resin is most preferable because it is easy to handle.

本発明で用いるプラスチック基板としては、トリアセチルセルロース、ノルボルネン系樹脂、アクリル樹脂、ポリカーボネートが挙げられる。   Examples of the plastic substrate used in the present invention include triacetyl cellulose, norbornene resin, acrylic resin, and polycarbonate.

本発明の透明導電性基材は、前述のプラスチック基板を溶解する少なくとも1種類以上の溶媒を含む溶媒、バインダー、導電性微粒子から成る透明導電膜形成用塗布液を、プラスチック基板上に塗布・乾燥、硬化させて得ることができる。透明導電膜形成用塗布液の塗布・乾燥、硬化の条件は、用いる塗布方法、溶媒の種類、バインダーの種類に応じて適宜選定することができる。   The transparent conductive base material of the present invention is a method of applying and drying a transparent conductive film forming coating solution comprising a solvent containing at least one solvent that dissolves the plastic substrate, a binder, and conductive fine particles on the plastic substrate. It can be obtained by curing. The conditions for coating, drying and curing of the coating liquid for forming a transparent conductive film can be appropriately selected according to the coating method used, the type of solvent, and the type of binder.

上記方法において、導電性微粒子の種類、透明導電膜形成用塗布液中の導電性微粒子濃度、溶媒組成を変更することで、表面抵抗値が100〜1012Ω/□で、透過率が80〜100%である透明導電膜が得られる。 In the above method, by changing the kind of conductive fine particles, the concentration of conductive fine particles in the coating liquid for forming a transparent conductive film, and the solvent composition, the surface resistance value is 100 to 10 12 Ω / □ and the transmittance is 80 to 80%. A 100% transparent conductive film is obtained.

上述のように、本発明の透明導電性基材の製造方法により、プラスチック基板、透明バインダー層、透明導電層の順に積層された構造を有することを特徴とする透明導電性基材が得ることができるが、ここで、透明バインダー層の厚みを2〜20μmに設定し、かつ透明バインダー層がハードコート機能を有しているようにバインダーを選定する必要がある。   As described above, a transparent conductive substrate having a structure in which a plastic substrate, a transparent binder layer, and a transparent conductive layer are laminated in this order can be obtained by the method for producing a transparent conductive substrate of the present invention. However, it is necessary to select the binder so that the thickness of the transparent binder layer is set to 2 to 20 μm and the transparent binder layer has a hard coat function.

上述の透明導電膜の上に、さらに透明ハードコート層をオーバーコートしても良い。ハードコート性のオーバーコート層を設けることで、更にハードコート性能を向上できる。オーバーコート層の厚みは、その被覆により透明導電膜の導電性が著しく損なわない範囲以内にすることが好ましい。   A transparent hard coat layer may be further overcoated on the transparent conductive film. By providing a hard coat overcoat layer, the hard coat performance can be further improved. The thickness of the overcoat layer is preferably within a range where the conductivity of the transparent conductive film is not significantly impaired by the coating.

次に、本発明で用いる透明導電膜形成用塗布液の製造方法を、以下説明する。
まず、導電性酸化物微粒子等の導電性微粒子を分散剤、溶媒と混合した後、分散処理を行う。分散剤としては、シリコンカップリング剤等の各種カップリング剤、各種高分子分散剤、アニオン系・ノニオン系・カチオン系等の各種界面活性剤が挙げられる。これら分散剤は、用いる導電性微粒子の種類や分散処理方法に応じて適宜選定される。
分散処理としては、超音波処理、ホモジナイザー、ペイントシェーカー、ビーズミル等の汎用の方法を適用することができる。
Next, the manufacturing method of the coating liquid for transparent conductive film formation used by this invention is demonstrated below.
First, after conducting fine particles such as conductive oxide fine particles are mixed with a dispersant and a solvent, a dispersion treatment is performed. Examples of the dispersant include various coupling agents such as a silicon coupling agent, various polymer dispersants, and various surfactants such as anionic, nonionic, and cationic types. These dispersants are appropriately selected according to the type of conductive fine particles used and the dispersion treatment method.
As the dispersion treatment, general-purpose methods such as ultrasonic treatment, homogenizer, paint shaker, and bead mill can be applied.

得られた導電性微粒子分散(濃縮)液にバインダー、溶媒等を添加し、導電性微粒子濃度、バインダー濃度、溶剤濃度等の成分調整を行うことにより、導電性微粒子とバインダーを含有する透明導電膜形成用塗布液が得られる。ここで、導電性酸化物微粒子として、例えば、ITO微粒子を用いる場合には、おおよそ導電性微粒子の比重がバインダー比重の6倍程度であり、この場合の透明導電膜形成用塗布液中の導電性微粒子含有量は、1〜20重量%(好ましくは2〜10重量%)、バインダー含有量は1〜60重量%(好ましくは4〜30重量%)、溶媒その他添加物が残部となるように成分調整することが好ましい。また、導電性微粒子とバインダーの配合割合(重量比)=1/1〜1/10、好ましくは1/2〜1/5が良い(導電性微粒子/バインダー(体積比)=1/6〜1/60、好ましくは1/12〜1/30と換算される。)。   A transparent conductive film containing conductive fine particles and a binder by adding a binder, a solvent, etc. to the obtained conductive fine particle dispersion (concentration) liquid and adjusting components such as conductive fine particle concentration, binder concentration, solvent concentration, etc. A forming coating solution is obtained. Here, for example, when ITO fine particles are used as the conductive oxide fine particles, the specific gravity of the conductive fine particles is about 6 times the specific gravity of the binder, and the conductivity in the coating liquid for forming the transparent conductive film in this case The fine particle content is 1 to 20% by weight (preferably 2 to 10% by weight), the binder content is 1 to 60% by weight (preferably 4 to 30% by weight), and the solvent and other additives are the remainder. It is preferable to adjust. Also, the blending ratio (weight ratio) of conductive fine particles and binder = 1/1 to 1/10, preferably 1/2 to 1/5 (conductive fine particles / binder (volume ratio) = 1/6 to 1). / 60, preferably 1/12 to 1/30.)

導電性微粒子が1重量%未満では、透明導電層に十分な導電性能が得られず、20重量%を超えると上記導電性微粒子とバインダーの配合割合および溶媒の配合を考慮すると透明導電膜形成用塗布液の製造が物理的に困難となると同時に、得られる透明導電膜形成用塗布液の固形分が高くなりすぎて均一な塗布を行うことが困難になるからである。
また、バインダーが1重量%未満では、十分な厚さの透明バインダー層(2〜20μm)が形成できずハードコート性能が得られず、60重量%を超えると透明導電膜形成用塗布液の製造、塗布に関して上述と同様の困難を生じる。具体的な導電性微粒子含有量とバインダー含有量は、用いる塗布方法に応じて、上記範囲内で適宜設定すればよい。
If the conductive fine particles are less than 1% by weight, sufficient conductive performance cannot be obtained in the transparent conductive layer. If the conductive fine particles exceeds 20% by weight, considering the blending ratio of the conductive fine particles and the binder and the blending of the solvent, it is for forming a transparent conductive film. This is because the production of the coating liquid becomes physically difficult, and at the same time, the solid content of the obtained coating liquid for forming a transparent conductive film becomes too high, and it becomes difficult to perform uniform coating.
Further, if the binder is less than 1% by weight, a transparent binder layer (2 to 20 μm) having a sufficient thickness cannot be formed, and hard coat performance cannot be obtained. , The same difficulty as described above occurs with respect to coating. The specific conductive fine particle content and binder content may be appropriately set within the above range according to the coating method used.

透明導電膜形成用塗布液に用いる溶媒としては、使用するプラスチック基板に対する溶解性や製膜条件を考慮して、適宜選定することができる。例えば、メタノール(MA)、エタノール(EA)、1−プロパノール(NPA)、イソプロパノール(IPA)、ブタノール、ペンタノール、ベンジルアルコール、ジアセトンアルコール(DAA)等のアルコール系溶媒、アセトン、メチルエチルケトン(MEK)、メチルプロピルケトン、メチルイソブチルケトン(MIBK)、シクロヘキサノン、イソホロン等のケトン系溶媒、エチレングリコールモノメチルエーテル(MCS)、エチレングリコールモノエチルエーテル(ECS)、エチレングリコールイソプロピルエーテル(IPC)、プロピレングリコールメチルエーテル(PGM)、プロピレングリコールエチルエーテル(PE)、プロピレングリコールメチルエーテルアセテート(PGM−AC)、プロピレングリコールエチルエーテルアセテート(PE−AC)等のグリコール誘導体、ホルムアミド(FA)、N−メチルホルムアミド、ジメチルホルムアミド(DMF)、ジメチルアセトアミド、ジメチルスルフォキシド(DMSO)、N−メチル−2−ピロリドン(NMP)、エチレングリコール、ジエチレングリコール、トルエン、キシレン、テトラヒドロフラン(THF)、クロロホルム、メシチレン、ドデシルベンゼン等のベンゼン誘導体等が挙げられるが、これらに限定されるものではない。   The solvent used in the coating liquid for forming the transparent conductive film can be appropriately selected in consideration of solubility in the plastic substrate to be used and film forming conditions. For example, alcohol solvents such as methanol (MA), ethanol (EA), 1-propanol (NPA), isopropanol (IPA), butanol, pentanol, benzyl alcohol, diacetone alcohol (DAA), acetone, methyl ethyl ketone (MEK) Ketone solvents such as methyl propyl ketone, methyl isobutyl ketone (MIBK), cyclohexanone, isophorone, ethylene glycol monomethyl ether (MCS), ethylene glycol monoethyl ether (ECS), ethylene glycol isopropyl ether (IPC), propylene glycol methyl ether (PGM), propylene glycol ethyl ether (PE), propylene glycol methyl ether acetate (PGM-AC), propylene glycol ether Glycol derivatives such as ruether acetate (PE-AC), formamide (FA), N-methylformamide, dimethylformamide (DMF), dimethylacetamide, dimethylsulfoxide (DMSO), N-methyl-2-pyrrolidone (NMP), Examples include, but are not limited to, ethylene glycol, diethylene glycol, toluene, xylene, tetrahydrofuran (THF), benzene derivatives such as chloroform, mesitylene, and dodecylbenzene.

上記に説明したように、本発明の透明導電性基材の製造方法においては、プラスチック基板上に、該プラスチック基板を溶解する溶媒、バインダー、導電性微粒子を含有する透明導電膜形成用塗布液を塗布・乾燥、硬化さるだけで、透明性、導電性、ハードコート性に優れた透明バインダー層と透明導電層の2層からなる透明導電膜を形成できる。したがって、ハードコート機能と透明導電機能を同時に付与できる透明導電膜を有する透明導電性基材が、極めて簡便に、かつ安価に製造でき、この透明導電性基材は、例えば液晶ディスプレイ(以後、LCDと記す)の偏光板等や、携帯電話の表示窓部分等に適用される帯電防止膜等に用いることができる。   As described above, in the method for producing a transparent conductive substrate of the present invention, a transparent conductive film forming coating solution containing a solvent, a binder, and conductive fine particles for dissolving the plastic substrate is formed on the plastic substrate. By simply applying, drying and curing, a transparent conductive film composed of two layers of a transparent binder layer and a transparent conductive layer excellent in transparency, conductivity and hard coat properties can be formed. Therefore, a transparent conductive substrate having a transparent conductive film capable of simultaneously imparting a hard coat function and a transparent conductive function can be manufactured very simply and inexpensively. This transparent conductive substrate is, for example, a liquid crystal display (hereinafter referred to as LCD). Can be used for an antistatic film applied to a display window portion of a mobile phone or the like.

以下、本発明を実施例に基づいて具体的に説明するが、本発明はこれらの実施例に限定されるものではない。また、以下の記述において「%」は、透過率、ヘイズ値の%を除いて、「重量%」を示している。
[実施例1]
平均粒径0.03μmのITO微粒子(住友金属鉱山(株)製、SUFP−HX)を紫外線硬化性バインダー樹脂(ウレタンアクリレート系樹脂:96部、及び、光重合開始剤:4部)を含む溶媒中に分散させた透明導電膜形成用塗布液(ITO:3.0%、高分子分散剤:0.03%、バインダー樹脂:12.0%、ジアセトンアルコール(DAA):4.4%、シクロヘキサノン:12.0%、プロピレングリコールモノメチルエーテル(PGM):49.0%、メチルイソブチルケトン(MIBK):19.5%)を線径0.25mmのワイヤーバーで、プラスチック基板としてのトリアセチルセルロース(TAC)フィルム(厚さ:80μm、透過率=93.6%、ヘイズ=0.3%)上に塗布後、乾燥(70°C×2分間)し、更に高圧水銀ランプ(コールドミラー、赤外線カットフィルター付)を用い、紫外線硬化(140mW×2秒間)させて、プラスチック基板/透明バインダー層/透明導電層からなる実施例1に係る透明導電性基材を得た。
EXAMPLES Hereinafter, although this invention is demonstrated concretely based on an Example, this invention is not limited to these Examples. In the following description, “%” indicates “% by weight” excluding% of transmittance and haze value.
[Example 1]
A solvent containing an ITO fine particle (SUFP-HX, manufactured by Sumitomo Metal Mining Co., Ltd.) having an average particle size of 0.03 μm and an ultraviolet curable binder resin (urethane acrylate resin: 96 parts and a photopolymerization initiator: 4 parts) Transparent conductive film forming coating liquid dispersed in (ITO: 3.0%, polymer dispersant: 0.03%, binder resin: 12.0%, diacetone alcohol (DAA): 4.4%, Cyclohexanone: 12.0%, propylene glycol monomethyl ether (PGM): 49.0%, methyl isobutyl ketone (MIBK): 19.5%) with a wire bar having a wire diameter of 0.25 mm, and triacetyl cellulose as a plastic substrate After coating on a (TAC) film (thickness: 80 μm, transmittance = 93.6%, haze = 0.3%), it is dried (70 ° C. × 2 minutes) and further high Using a mercury lamp (cold mirror, with infrared cut filter), UV curing (140 mW × 2 seconds) was performed to obtain a transparent conductive substrate according to Example 1 composed of a plastic substrate / transparent binder layer / transparent conductive layer. .

この透明導電性基材の断面を透過電子顕微鏡で観察した結果、透明導電膜の部分は、バインダーを主成分とし導電性微粒子を含まない透明バインダー層(厚さ:約5μm)と濃縮されて緻密に充填した導電性微粒子を主成分とする透明導電層(厚さ:約0.2μm)の2層で構成されていることが確認された。
As a result of observing the cross section of the transparent conductive substrate with a transmission electron microscope, the transparent conductive film portion was concentrated with a transparent binder layer (thickness: about 5 μm) containing a binder as a main component and containing no conductive fine particles. It was confirmed that it was composed of two layers of a transparent conductive layer (thickness: about 0.2 μm) mainly composed of conductive fine particles filled in .

透明バインダー層/透明導電層からなる透明導電膜の膜特性は、可視光線透過率=98.8%、ヘイズ値=0.6%、表面抵抗値=2×10Ω/□であった。 The film characteristics of the transparent conductive film comprising the transparent binder layer / transparent conductive layer were visible light transmittance = 98.8%, haze value = 0.6%, and surface resistance value = 2 × 10 7 Ω / □.

上記透明導電性基材をツメで擦り、その傷のつき具合を目視で判断し、耐擦傷性を評価(○:全く傷つかない、△:少し傷つく、×:著しく傷つく)したところ、○であった。   The transparent conductive substrate was rubbed with a nail, the degree of scratching was visually judged, and the scratch resistance was evaluated (○: not damaged at all, Δ: slightly damaged, ×: markedly damaged). It was.

尚、各種溶媒のTACフィルムの溶解性は、TACフィルムを各種溶媒中に25°C×10分間浸漬した後、70°Cで乾燥し、その浸漬部分のフィルム形状から評価した。その結果は、DAA:変化なし、シクロヘキサノン:溶解(著しい変形)、PGM:変化なし、MIBK:変化なし、であった。   In addition, the solubility of the TAC film of various solvents was evaluated by immersing the TAC film in various solvents at 25 ° C. for 10 minutes, drying at 70 ° C., and evaluating the film shape of the immersed portion. The results were: DAA: no change, cyclohexanone: dissolution (significant deformation), PGM: no change, MIBK: no change.

ここで、上述の透明導電膜の可視光線透過率、ヘイズ値は、それぞれ透明導電膜だけの(可視光線)透過率、ヘイズ値であって、以下の様にして求められている。すなわち、
透明導電膜の透過率(%)
=[(透明導電性基材ごと測定した透過率)/(プラスチック基板の透過率)]×100
透明導電膜のヘイズ値(%)
=(透明導電性基材ごと測定したヘイズ値)−(プラスチック基板のヘイズ値)
また、透明導電膜の表面抵抗値は、三菱化学(株)製の表面抵抗計ロレスタAP(MCP−T400)を用い測定した。ヘイズ値と可視光線透過率は、村上色彩技術研究所製のヘイズメーター(HR−200)を用いて測定した。また、透明導電性基材の断面は日本電子製の透過電子顕微鏡で観察している。
[実施例2]
実施例1と同様に、透明導電膜形成用塗布液をTACフィルム上に塗布、乾燥した後、高圧水銀ランプ(コールドミラー、赤外線カットフィルター付)を用い紫外線硬化(35mW×2秒間)させて、プラスチック基板/透明バインダー層/透明導電層からなる積層体を得た。この透明導電層上に、更に透明樹脂ハードコート層形成用塗布液(ハードコート性紫外線硬化樹脂(東亜合成化学(株)製、UVX−3701:35.0%、2官能アクリレートモノマー:15.0%、MIBK:50%)を線径0.15mmのワイヤーバーで塗布、乾燥(70°C×2分間)し、更に高圧水銀ランプ(コールドミラー、赤外線カットフィルター付)を用い紫外線硬化(140mW×2秒間)させて、プラスチック基板/透明バインダー層/透明導電層/透明樹脂ハードコート層からなる実施例2に係る透明導電性基材を得た。
Here, the visible light transmittance and haze value of the transparent conductive film described above are (visible light) transmittance and haze value of the transparent conductive film, respectively, and are obtained as follows. That is,
Transmissivity of transparent conductive film (%)
= [(Transmittance measured for each transparent conductive substrate) / (Transmittance of plastic substrate)] × 100
Haze value of transparent conductive film (%)
= (Haze value measured for each transparent conductive substrate)-(Haze value of plastic substrate)
Moreover, the surface resistance value of the transparent conductive film was measured using a surface resistance meter Loresta AP (MCP-T400) manufactured by Mitsubishi Chemical Corporation. The haze value and visible light transmittance were measured using a haze meter (HR-200) manufactured by Murakami Color Research Laboratory. The cross section of the transparent conductive substrate is observed with a transmission electron microscope made by JEOL.
[Example 2]
As in Example 1, after applying and drying the transparent conductive film-forming coating solution on the TAC film, UV curing (35 mW × 2 seconds) using a high-pressure mercury lamp (with a cold mirror and an infrared cut filter), A laminate comprising a plastic substrate / transparent binder layer / transparent conductive layer was obtained. On this transparent conductive layer, a coating solution for forming a transparent resin hard coat layer (hard coat UV curable resin (manufactured by Toagosei Co., Ltd., UVX-3701: 35.0%, bifunctional acrylate monomer: 15.0 %, MIBK: 50%) was applied with a wire bar with a wire diameter of 0.15 mm, dried (70 ° C × 2 minutes), and then UV-cured (140 mW ×) using a high-pressure mercury lamp (cold mirror, with infrared cut filter). 2 seconds) to obtain a transparent conductive substrate according to Example 2 consisting of a plastic substrate / transparent binder layer / transparent conductive layer / transparent resin hard coat layer.

この透明導電性基材の断面を透過電子顕微鏡で観察した結果、実施例1の透明導電膜(透明バインダー層/透明導電層)上に厚さ:約3μm透明樹脂ハードコート層透明導電膜が形成されていた。   As a result of observing a cross section of this transparent conductive substrate with a transmission electron microscope, a thickness of about 3 μm transparent resin hard coat layer transparent conductive film was formed on the transparent conductive film (transparent binder layer / transparent conductive layer) of Example 1 It had been.

透明バインダー層/透明導電層/透明樹脂ハードコート層からなる3層膜の膜特性は、可視光線透過率=98.4%、ヘイズ値=0%、表面抵抗値=3×10Ω/□であった。 The film properties of the three-layer film comprising a transparent binder layer / transparent conductive layer / transparent resin hard coat layer are as follows: visible light transmittance = 98.4%, haze value = 0%, surface resistance value = 3 × 10 8 Ω / □ Met.

上記透明導電性基材をツメで擦り、その傷のつき具合を目視で判断し、耐擦傷性を評価(○:全く傷つかない、△:少し傷つく、×:著しく傷つく)したところ、○であった。   The transparent conductive substrate was rubbed with a nail, the degree of scratching was visually judged, and the scratch resistance was evaluated (○: not damaged at all, Δ: slightly damaged, ×: markedly damaged). It was.

ここで、上述の3層膜の可視光線透過率、ヘイズ値は、それぞれ3層膜だけの(可視光線)透過率、ヘイズ値であって、以下の様にして求められている。すなわち、
3層膜の透過率(%)
=[(透明導電性基材ごと測定した透過率)/(プラスチック基板の透過率)]×100
3層膜のヘイズ値(%)
=(透明導電性基材ごと測定したヘイズ値)−(プラスチック基板のヘイズ値)
[比較例1]
実施例1で、ITO微粒子、紫外線硬化性バインダー樹脂、TACフィルムを溶解しない溶媒を主成分とする溶媒からなる透明導電膜形成用塗布液(ITO:3.0%、高分子分散剤:0.03%、バインダー樹脂:12.0%、ジアセトンアルコール(DAA):4.4%、メチルイソブチルケトン(MIBK):80.5%)を用いた以外は、実施例1と同様に行い、プラスチック基板/透明バインダー層/透明導電層からなる比較例1に係る透明導電性基材を得た。
Here, the visible light transmittance and haze value of the above-described three-layer film are (visible light) transmittance and haze value of only the three-layer film, and are obtained as follows. That is,
Transmittance of three-layer membrane (%)
= [(Transmittance measured for each transparent conductive substrate) / (Transmittance of plastic substrate)] × 100
Haze value of 3 layer film (%)
= (Haze value measured for each transparent conductive substrate)-(Haze value of plastic substrate)
[Comparative Example 1]
In Example 1, a coating solution for forming a transparent conductive film (ITO: 3.0%, polymer dispersing agent: 0.00%) composed of a solvent mainly composed of ITO fine particles, an ultraviolet curable binder resin, and a solvent that does not dissolve the TAC film. 03%, binder resin: 12.0%, diacetone alcohol (DAA): 4.4%, methyl isobutyl ketone (MIBK): 80.5%) A transparent conductive substrate according to Comparative Example 1 comprising a substrate / transparent binder layer / transparent conductive layer was obtained.

この透明導電性基材の断面を透過電子顕微鏡で観察した結果、透明導電膜の部分は、バインダー樹脂にITO微粒子が均一に分散した透明導電層(厚さ:約3μm)の単層で構成されていた。   As a result of observing the cross section of this transparent conductive substrate with a transmission electron microscope, the transparent conductive film portion is composed of a single layer of a transparent conductive layer (thickness: about 3 μm) in which ITO fine particles are uniformly dispersed in a binder resin. It was.

透明バインダー層/透明導電層からなる透明導電膜の膜特性は、可視光線透過率=99.2%、ヘイズ値=0.1%、表面抵抗値=1014Ω/□以上であった。 The film characteristics of the transparent conductive film comprising the transparent binder layer / transparent conductive layer were visible light transmittance = 99.2%, haze value = 0.1%, surface resistance value = 10 14 Ω / □ or more.

上記透明導電性基材をツメで擦り、その傷のつき具合を目視で判断し、耐擦傷性を評価(○:全く傷つかない、△:少し傷つく、×:著しく傷つく)したところ、○であった。   The transparent conductive substrate was rubbed with a nail, the degree of scratching was visually judged, and the scratch resistance was evaluated (○: not damaged at all, Δ: slightly damaged, ×: markedly damaged). It was.

従来の透明導電膜を具備する透明導電性基材を示す断面図である。It is sectional drawing which shows the transparent conductive base material which comprises the conventional transparent conductive film. 本発明に係わる透明導電膜(透明導電層/透明バインダー層)を具備する基本的構造の透明導電性基材を示す断面図である。It is sectional drawing which shows the transparent conductive base material of the basic structure which comprises the transparent conductive film (transparent conductive layer / transparent binder layer) concerning this invention. 本発明に係わる透明導電膜(透明導電層/透明バインダー層)を具備する別な構造の透明導電性基材を示す断面図である。It is sectional drawing which shows the transparent conductive base material of another structure which comprises the transparent conductive film (transparent conductive layer / transparent binder layer) concerning this invention.

符号の説明Explanation of symbols

1 プラスチック基板
2 透明導電膜
2−a 透明導電層
2−b 透明バインダー層
3 導電性微粒子
4 透明ハードコート層
DESCRIPTION OF SYMBOLS 1 Plastic substrate 2 Transparent conductive film 2-a Transparent conductive layer 2-b Transparent binder layer 3 Conductive fine particle 4 Transparent hard-coat layer

Claims (11)

プラスチック基板上に、バインダーを含有する溶媒中に導電性微粒子を分散させた透明導電膜形成用塗布液を塗布・乾燥、硬化させて透明導電膜を形成する透明導電性基材の製造方法において、
該透明導電膜形成用塗布液の溶媒が、プラスチック基板を溶解する少なくとも1種類以上の溶媒を含有し、形成された該透明導電膜が、バインダーを主成分とし導電性微粒子を含まない透明バインダー層と濃縮されて緻密に充填した導電性微粒子を主成分とする透明導電層の2層に分かれて構成され、プラスチック基板、透明バインダー層、透明導電層の順に積層された構造となることを特徴とする、透明導電性基材の製造方法。
In a method for producing a transparent conductive substrate, a transparent conductive film is formed by applying a coating liquid for forming a transparent conductive film in which conductive fine particles are dispersed in a solvent containing a binder on a plastic substrate, drying, and curing.
A transparent binder layer in which the solvent of the coating liquid for forming the transparent conductive film contains at least one solvent that dissolves the plastic substrate, and the formed transparent conductive film contains a binder as a main component and does not contain conductive fine particles. It is composed of two layers of a transparent conductive layer mainly composed of conductive fine particles that are concentrated and densely packed, and has a structure in which a plastic substrate, a transparent binder layer, and a transparent conductive layer are laminated in this order. A method for producing a transparent conductive substrate.
導電性微粒子が導電性酸化物微粒子であることを特徴とする請求項1に記載の透明導電性基材の製造方法。 The method for producing a transparent conductive substrate according to claim 1, wherein the conductive fine particles are conductive oxide fine particles. 導電性酸化物微粒子が、酸化インジウム、酸化錫、酸化亜鉛のいずれかを主成分とする微粒子であることを特徴とする請求項1または2に記載の透明導電性基材の製造方法。 The method for producing a transparent conductive substrate according to claim 1 or 2, wherein the conductive oxide fine particles are fine particles mainly containing any one of indium oxide, tin oxide, and zinc oxide. バインダーが紫外線硬化性樹脂、電子線硬化性樹脂、熱硬化性樹脂、乾燥硬化性樹脂のいずれかであることを特徴とする請求項1〜3のいずれかに記載の透明導電性基材の製造方法。 Binders, ultraviolet curable resin, electron beam curable resin, thermosetting resin, the transparent conductive substrate according to any one of claims 1 to 3, characterized in that either a dry-curable resin Production method. バインダーが、透明バインダー層がハードコート機能を有するように選定されたハードコート性バインダーであることを特徴とする請求項1〜4のいずれかに記載の透明導電性基材の製造方法。 The method for producing a transparent conductive substrate according to any one of claims 1 to 4 , wherein the binder is a hard coat binder selected so that the transparent binder layer has a hard coat function. 透明導電膜形成用塗布液の溶媒が、プラスチック基板を溶解する溶媒を5〜50重量%の範囲で含有することを特徴とする請求項1〜5のいずれかに記載の透明導電性基材の製造方法。 The solvent of the coating liquid for forming transparent conductive film is a transparent conductive substrate according to any one of claims 1 to 5, characterized in that it contains a solvent which dissolves the plastic substrate in the range of 5 to 50 wt% Production method. プラスチック基板が、トリアセチルセルロース、ノルボルネン系樹脂、アクリル樹脂、ポリカーボネートのいずれかであることを特徴とする請求項1〜5のいずれかに記載の透明導電性基材の製造方法。 The method for producing a transparent conductive substrate according to any one of claims 1 to 5 , wherein the plastic substrate is any one of triacetyl cellulose, norbornene resin, acrylic resin, and polycarbonate. 請求項1〜7のいずれかの方法で製造された、プラスチック基板、透明バインダー層、透明導電層の順に積層された構造を有することを特徴とする透明導電性基材。 A transparent conductive substrate having a structure in which a plastic substrate, a transparent binder layer, and a transparent conductive layer are laminated in this order, which is produced by the method according to claim 1. 透明導電膜の表面抵抗値が100〜1012Ω/□で、透過率が80〜100%であることを特徴とする請求項8に記載の透明導電性基材。 The transparent conductive substrate according to claim 8, wherein the transparent conductive film has a surface resistance value of 100 to 10 12 Ω / □ and a transmittance of 80 to 100%. 透明バインダー層の厚みが2〜20μmで、透明バインダー層がハードコート機能を有していることを特徴とする請求項8または9に記載の透明導電性基材。 The transparent conductive substrate according to claim 8 or 9, wherein the transparent binder layer has a thickness of 2 to 20 µm, and the transparent binder layer has a hard coat function. 透明導電膜の上に、さらに透明ハードコート層がオーバーコートされていることを特徴とする請求項8〜10のいずれかに記載の透明導電性基材。
The transparent conductive base material according to claim 8, wherein a transparent hard coat layer is further overcoated on the transparent conductive film.
JP2004295528A 2004-10-08 2004-10-08 Transparent conductive substrate and method for producing the same Expired - Fee Related JP4858669B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004295528A JP4858669B2 (en) 2004-10-08 2004-10-08 Transparent conductive substrate and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004295528A JP4858669B2 (en) 2004-10-08 2004-10-08 Transparent conductive substrate and method for producing the same

Publications (3)

Publication Number Publication Date
JP2006108008A JP2006108008A (en) 2006-04-20
JP2006108008A5 JP2006108008A5 (en) 2007-11-15
JP4858669B2 true JP4858669B2 (en) 2012-01-18

Family

ID=36377456

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004295528A Expired - Fee Related JP4858669B2 (en) 2004-10-08 2004-10-08 Transparent conductive substrate and method for producing the same

Country Status (1)

Country Link
JP (1) JP4858669B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4991228B2 (en) * 2006-09-22 2012-08-01 信越ポリマー株式会社 Method for producing antistatic film
JP2010059280A (en) * 2008-09-02 2010-03-18 Toppan Printing Co Ltd Hardcoat coating liquid, hardcoat film, and upper electrode plate for touch panel
JP5596918B2 (en) * 2008-11-17 2014-09-24 パナソニック株式会社 Painted product and manufacturing method thereof
JP2012068415A (en) * 2010-09-22 2012-04-05 Toppan Printing Co Ltd Hardcoat coating liquid and antireflection film
JP6197304B2 (en) * 2013-02-18 2017-09-20 凸版印刷株式会社 Method for producing fine particle laminated composite
JP7157729B2 (en) * 2019-06-28 2022-10-20 日東電工株式会社 Polarizing film with adhesive layer and liquid crystal panel

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63269415A (en) * 1987-04-28 1988-11-07 Showa Denko Kk Manufacture of transparent composite conductor
JPH0820734A (en) * 1994-07-06 1996-01-23 Sumitomo Osaka Cement Co Ltd Conductive coating material and transparent conductive film
JP4029952B2 (en) * 1998-02-17 2008-01-09 日本化薬株式会社 Transparent sheet or film
JPH11227740A (en) * 1998-02-19 1999-08-24 Sumitomo Osaka Cement Co Ltd Conductive plate having transparent conductive film, and manufacture thereof
JP2004203940A (en) * 2002-12-24 2004-07-22 Sumitomo Osaka Cement Co Ltd Transparent electroconductive film-forming coating material, transparent electroconductive film, manufacturing method therefor, and display having the film

Also Published As

Publication number Publication date
JP2006108008A (en) 2006-04-20

Similar Documents

Publication Publication Date Title
KR101796808B1 (en) Optical laminate, method for manufacturing an optical laminate, polarizing plate, and image display device
TWI385420B (en) Method for producing optical film
JP5414127B2 (en) Diimonium compounds
JP4463272B2 (en) Transparent laminate
TW201042281A (en) Antireflection film and polarizing plate comprising the same
CN103299217A (en) Anti-reflective film, anti-reflective film production method, polarization plate and image display device
TW201213840A (en) Optical film and method for producing the same
CN103080778A (en) Optical laminate, polarizing plate and image display device
TW201100872A (en) Anti-glare film, method of manufacturing same, and display device
JP6234798B2 (en) Transparent conductive film and use thereof
TWI479179B (en) Optical film, method of producting optical film, polarizer, display panel, and display
TW201736135A (en) Hard coat film and application of same
KR20130122964A (en) Anti-glare film, method for producing anti-glare film, anti-glare anti-reflection film, polarizing plate, and image display device
JP5125046B2 (en) Coating composition for low refractive index layer and antireflection film
JP4858669B2 (en) Transparent conductive substrate and method for producing the same
JP5165689B2 (en) Optical filter for display panel and manufacturing method thereof
US20090087593A1 (en) Antistatic optical film, polarizing plate, image display, and liquid crystal display
KR101949558B1 (en) Optical laminate and method for manufacturing thereof
JP2009222801A (en) Optical film
JP2006343630A (en) Glare-proof film
JP2013105178A (en) Antistatic anti-glare antireflection coating composition, and antistatic anti-glare antireflection film, polarizer and display device using the same
JP5156753B2 (en) Optical filter for display panel and manufacturing method thereof
JP2008233371A (en) Antireflection film
KR20090073619A (en) Anti-static anti-glare coating composition and anti-static anti-glare film using the same
JP2008070459A (en) Antireflection film, optical member, and display device

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071002

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071002

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101220

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110216

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111005

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111018

R150 Certificate of patent or registration of utility model

Ref document number: 4858669

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141111

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees