JP4858289B2 - Exhaust gas recirculation device for internal combustion engine - Google Patents

Exhaust gas recirculation device for internal combustion engine Download PDF

Info

Publication number
JP4858289B2
JP4858289B2 JP2007114159A JP2007114159A JP4858289B2 JP 4858289 B2 JP4858289 B2 JP 4858289B2 JP 2007114159 A JP2007114159 A JP 2007114159A JP 2007114159 A JP2007114159 A JP 2007114159A JP 4858289 B2 JP4858289 B2 JP 4858289B2
Authority
JP
Japan
Prior art keywords
passage
egr
exhaust
exhaust gas
flow rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007114159A
Other languages
Japanese (ja)
Other versions
JP2008267335A (en
Inventor
彰生 松永
茂樹 中山
知美 大西
曉幸 家村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2007114159A priority Critical patent/JP4858289B2/en
Publication of JP2008267335A publication Critical patent/JP2008267335A/en
Application granted granted Critical
Publication of JP4858289B2 publication Critical patent/JP4858289B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Exhaust-Gas Circulating Devices (AREA)

Description

本発明は、排気通路と吸気通路とを連通するEGR通路を複数備えた内燃機関の排気還流装置に関する。   The present invention relates to an exhaust gas recirculation device for an internal combustion engine that includes a plurality of EGR passages that connect an exhaust passage and an intake passage.

排気浄化触媒が担持されたフィルタを内蔵した触媒コンバータの出口部に連結された排気管と排気ターボチャージャのコンプレッサ上流の空気吸込管とが第1のEGR通路にて連結され、排気ターボチャージャの排気タービンよりも上流に位置する排気マニホルドと内燃機関の吸気ポートに連結されるサージタンクとが第2のEGR通路にて連結された内燃機関が知られている(特許文献1参照)。その他、本発明に関連する先行技術文献として特許文献2が存在する。   An exhaust pipe connected to an outlet portion of a catalytic converter incorporating a filter carrying an exhaust purification catalyst and an air suction pipe upstream of the compressor of the exhaust turbocharger are connected by a first EGR passage, and the exhaust of the exhaust turbocharger is connected. An internal combustion engine is known in which an exhaust manifold located upstream of a turbine and a surge tank connected to an intake port of the internal combustion engine are connected by a second EGR passage (see Patent Document 1). In addition, there is Patent Document 2 as a prior art document related to the present invention.

特開2005−076456号公報Japanese Patent Laying-Open No. 2005-076456 特開平10−141147号公報JP-A-10-141147

特許文献1の内燃機関のように複数のEGR通路を備えた内燃機関では各EGR通路を介して吸気通路に還流される排気(以下、EGRガスと称することがある。)の流量をそれぞれ適切に制御する必要がある。複数のEGR通路を備えた内燃機関では、いずれかのEGR通路に設けられたEGR弁を予め設定したEGR弁の開度とEGRガスの流量との対応関係に基づいてオープンループ制御することがある。EGRガスの流量は排気取り入れ位置の排気の圧力と排気導入位置の吸気の圧力との圧力差に影響され、この圧力差は排気通路や各EGR通路の圧力損失に応じて変化する。例えば、内燃機関から排出されたススなどが排気通路の内壁やEGR弁などに付着して排気通路やEGR通路の圧力損失が増加すると排気取り入れ位置における排気の圧力が高くなり圧力差が拡大する。この場合、吸気通路に還流される排気の流量が増加する。このようにEGRガスの流量は、排気通路などの状態に応じて変化する。そのため、適切な量のEGRガスが吸気通路に導入されるようにEGR弁の開度とEGRガスの流量との対応関係を適宜補正する必要がある。特許文献2の内燃機関では吸気の酸素濃度に応じてEGR弁の開度を制御しているが、これはEGR通路が1つの内燃機関に適用されるものであり、複数のEGR通路を備えた内燃機関に適用することは難しい。   In an internal combustion engine having a plurality of EGR passages such as the internal combustion engine of Patent Document 1, the flow rate of exhaust gas (hereinafter sometimes referred to as EGR gas) recirculated to the intake passage through each EGR passage is appropriately set. Need to control. In an internal combustion engine having a plurality of EGR passages, an EGR valve provided in any one of the EGR passages may be open-loop controlled based on a correspondence relationship between a preset opening degree of the EGR valve and the flow rate of EGR gas. . The flow rate of EGR gas is affected by the pressure difference between the exhaust pressure at the exhaust intake position and the intake pressure at the exhaust introduction position, and this pressure difference changes according to the pressure loss in the exhaust passage and each EGR passage. For example, when the soot discharged from the internal combustion engine adheres to the inner wall of the exhaust passage, the EGR valve, or the like and the pressure loss in the exhaust passage or the EGR passage increases, the pressure of the exhaust at the exhaust intake position increases and the pressure difference increases. In this case, the flow rate of the exhaust gas recirculated to the intake passage increases. Thus, the flow rate of EGR gas changes according to the state of the exhaust passage and the like. For this reason, it is necessary to appropriately correct the correspondence between the opening degree of the EGR valve and the flow rate of the EGR gas so that an appropriate amount of EGR gas is introduced into the intake passage. In the internal combustion engine of Patent Document 2, the opening degree of the EGR valve is controlled according to the oxygen concentration of the intake air. This is an EGR passage applied to one internal combustion engine, and has a plurality of EGR passages. It is difficult to apply to an internal combustion engine.

そこで、本発明は、複数のEGR通路を有する内燃機関において吸気通路に導入される排気の流量をそれぞれ適切に制御することが可能な内燃機関の排気還流装置を提供することを目的とする。   Accordingly, an object of the present invention is to provide an exhaust gas recirculation device for an internal combustion engine capable of appropriately controlling the flow rate of exhaust gas introduced into an intake passage in an internal combustion engine having a plurality of EGR passages.

本発明の第1の内燃機関の排気還流装置は、排気通路から排気の一部を取り出して吸気通路に導入するための第1EGR通路と、前記第1EGR通路の排気取り出し位置よりも排気通路の上流に排気取り出し位置が設けられるとともに前記第1EGR通路の排気導入位置よりも吸気通路の下流に排気導入位置が設けられる第2EGR通路と、前記第1EGR通路を介して前記吸気通路に還流される排気の流量を調整する第1EGR弁と、前記第2EGR通路を介して前記吸気通路に還流される排気の流量を調整する第2EGR弁と、を備えた内燃機関の排気還流装置において、前記第1EGR通路の排気導入位置よりも吸気通路の下流に配置され、前記吸気通路に導入される排気の流量に応じて変化する吸気の物理量を検出する検出手段と、前記内燃機関の運転状態が所定状態であり、かつ前記第2EGR弁の開度を全閉に維持させた状態において前記所定状態に対応した目標流量の排気が前記第1EGR通路を介して前記吸気通路に導入されるように前記第1EGR弁の開度を調整する適合を行ったときの前記第1EGR弁の開度が目標開度として記憶されるとともにその適合時に前記検出手段にて検出された前記吸気の物理量の値が基準値として記憶されている記憶手段と、前記第1EGR弁の開度を前記目標開度に調整するとともに前記第2EGR弁の開度を全閉に調整し、かつ前記内燃機関の運転状態を前記所定状態に調整した場合に前記検出手段により検出された前記吸気の物理量の値と前記記憶手段に記憶されている前記基準値との差に基づいて前記第1EGR弁の開度と前記第1EGR通路を介して前記吸気通路に導入される排気である第1EGRガスの流量との対応関係を補正する補正手段と、を備えていることにより、上述した課題を解決する(請求項1)。 An exhaust gas recirculation device for a first internal combustion engine according to the present invention includes a first EGR passage for taking a part of exhaust gas from an exhaust passage and introducing it into an intake passage, and an upstream side of the exhaust passage from an exhaust take-out position of the first EGR passage. An exhaust take-out position and a second EGR passage in which an exhaust introduction position is provided downstream of the intake passage from the exhaust introduction position of the first EGR passage, and an exhaust gas recirculated to the intake passage through the first EGR passage. An exhaust gas recirculation apparatus for an internal combustion engine, comprising: a first EGR valve that adjusts a flow rate; and a second EGR valve that adjusts the flow rate of exhaust gas recirculated to the intake passage through the second EGR passage. A detecting means that is disposed downstream of the intake passage from the exhaust introduction position and detects a physical quantity of intake air that changes in accordance with a flow rate of exhaust gas introduced into the intake passage; Serial engine operating condition is in a predetermined state, and the intake passage exhaust through the first 1EGR passage opening a target flow rate corresponding to the predetermined state in the state of being maintained in the fully closed of the first 2EGR valve The opening degree of the first EGR valve when the adjustment for adjusting the opening degree of the first EGR valve is performed so as to be introduced into the engine is stored as a target opening degree, and the detection means detects the opening degree when the adaptation is performed. Storage means in which the value of the physical quantity of intake air is stored as a reference value; the opening of the first EGR valve is adjusted to the target opening; the opening of the second EGR valve is fully closed; based operating state of the engine to a difference between the reference value stored in the value and the storage means of the physical quantity detected the intake by the detecting means when adjusted to the predetermined state opening of the first 1EGR valve And the correction means for correcting the correspondence between the flow rate of the first EGR gas that is the exhaust gas introduced into the intake passage through the first EGR passage, to solve the above-described problem. 1).

排気通路などの圧力損失が変化した場合、内燃機関の運転状態、第1EGR弁の開度、及び第2EGR弁の開度を適合時の状態に調整しても第1EGRガスの流量は目標流量とは異なる。この際に検出手段にて検出される吸気の物理量の値と基準値の差は、そのときの第1EGRガスの流量と目標流量との差と相関している。そのため、記憶手段に記憶されている基準値と、内燃機関の運転状態、第1EGR弁の開度、及び第2EGR弁の開度を適合時の状態にそれぞれ調整したときに検出手段で検出された吸気の物理量との差に基づいて第1EGR弁の開度と第1EGRガスの流量との対応関係を補正することにより、この対応関係を排気通路などの圧力損失の変化を考慮して適切に補正することができる。従って、第1EGR通路を介して吸気通路に還流される排気の流量を適切に制御することができる。   When the pressure loss in the exhaust passage or the like changes, the flow rate of the first EGR gas is equal to the target flow rate even if the operating state of the internal combustion engine, the opening degree of the first EGR valve, and the opening degree of the second EGR valve are adjusted to the adapted state. Is different. At this time, the difference between the physical quantity value of the intake air detected by the detecting means and the reference value correlates with the difference between the flow rate of the first EGR gas and the target flow rate at that time. Therefore, the reference value stored in the storage means, the operating state of the internal combustion engine, the opening degree of the first EGR valve, and the opening degree of the second EGR valve are detected by the detecting means when adjusted to the state at the time of adaptation, respectively. By correcting the correspondence between the opening degree of the first EGR valve and the flow rate of the first EGR gas based on the difference from the physical quantity of intake air, this correspondence is appropriately corrected in consideration of changes in pressure loss such as in the exhaust passage. can do. Therefore, it is possible to appropriately control the flow rate of the exhaust gas recirculated to the intake passage through the first EGR passage.

本発明の第2の内燃機関の排気還流装置は、排気通路から排気の一部を取り出して吸気通路に導入するための第1EGR通路と、前記第1EGR通路の排気取り出し位置よりも排気通路の上流に排気取り出し位置が設けられるとともに前記第1EGR通路の排気導入位置よりも吸気通路の下流に排気導入位置が設けられる第2EGR通路と、前記第1EGR通路を介して前記吸気通路に還流される排気の流量を調整する第1EGR弁と、前記第2EGR通路を介して前記吸気通路に還流される排気の流量を調整する第2EGR弁と、を備えた内燃機関の排気還流装置において、前記第2EGR通路の排気導入位置よりも吸気通路の下流に配置され、前記吸気通路に導入される排気の流量に応じて変化する吸気の物理量を検出する検出手段と、前記内燃機関の運転状態が所定状態であり、かつ前記第1EGR弁の開度を全閉に維持させた状態において前記所定状態に対応した目標流量の排気が前記第2EGR通路を介して前記吸気通路に導入されるように前記第2EGR弁の開度を調整する適合を行ったときの前記第2EGR弁の開度が目標開度として記憶されるとともにその適合時に前記検出手段にて検出された前記吸気の物理量の値が基準値として記憶されている記憶手段と、前記第1EGR弁の開度を全閉に調整するとともに前記第2EGR弁の開度を前記目標開度に調整し、かつ前記内燃機関の運転状態を前記所定状態に調整した場合に前記検出手段により検出された前記吸気の物理量の値と前記記憶手段に記憶されている前記基準値との差に基づいて前記第2EGR弁の開度と前記第2EGR通路を介して前記吸気通路に導入される排気である第2EGRガスの流量との対応関係を補正する補正手段と、を備えていることにより、上述した課題を解決する(請求項2)。本発明の第2の排気還流装置によれば、第2EGR通路を介して吸気通路に還流される排気の流量を適切に制御することができる。 An exhaust gas recirculation device for a second internal combustion engine according to the present invention includes a first EGR passage for extracting a part of exhaust gas from an exhaust passage and introducing it into the intake passage, and an upstream side of the exhaust passage from an exhaust extraction position of the first EGR passage. An exhaust take-out position and a second EGR passage in which an exhaust introduction position is provided downstream of the intake passage from the exhaust introduction position of the first EGR passage, and an exhaust gas recirculated to the intake passage through the first EGR passage. An exhaust gas recirculation device for an internal combustion engine, comprising: a first EGR valve that adjusts a flow rate; and a second EGR valve that adjusts the flow rate of exhaust gas recirculated to the intake passage via the second EGR passage. A detecting means that is disposed downstream of the intake passage from the exhaust introduction position and detects a physical quantity of intake air that changes in accordance with a flow rate of exhaust gas introduced into the intake passage; When the operating state of the internal combustion engine is a predetermined state and the opening degree of the first EGR valve is kept fully closed, the exhaust gas having a target flow rate corresponding to the predetermined state passes through the second EGR passage to the intake passage. The opening degree of the second EGR valve when the adjustment is performed to adjust the opening degree of the second EGR valve so as to be introduced into the engine is stored as a target opening degree, and the detection means detects the opening degree when the adaptation is performed. Storage means in which the value of the physical quantity of the intake air is stored as a reference value; the opening of the first EGR valve is adjusted to be fully closed; the opening of the second EGR valve is adjusted to the target opening; When the engine operating state is adjusted to the predetermined state, the opening of the second EGR valve is based on the difference between the physical quantity value of the intake air detected by the detecting means and the reference value stored in the storage means. By being and a correcting means for correcting the relationship between the first 2EGR gas flow rate is the exhaust gas introduced into the intake passage through the first 2EGR passage, to solve the problems described above (claim 2 ). According to the second exhaust gas recirculation device of the present invention, it is possible to appropriately control the flow rate of the exhaust gas recirculated to the intake passage via the second EGR passage.

本発明の第1又は第2の排気還流装置において、前記吸気の物理量は吸気の温度であり、前記補正手段は、前記検出手段により検出された吸気の温度が前記記憶手段に記憶されている基準値より高い場合は補正対象のEGR弁が設けられたEGR通路を介して前記吸気通路に導入される排気の流量が減少するように前記補正対象のEGR弁の開度とそのEGR弁が設けられたEGR通路を介して前記吸気通路に導入される排気の流量との対応関係を補正してもよい(請求項3)。吸気通路に導入されるEGRガスの流量が多くなるほど、吸気の温度は上昇する。そのため、検出手段によって検出された吸気の温度が基準値より高い場合は、目標流量よりも多くの流量のEGRガスが吸気通路に導入されていると考えられる。そこで、EGRガスの流量が減少するように対応関係を補正する。 In the first or second exhaust gas recirculation apparatus of the present invention, the physical quantity of the intake air is an intake air temperature, and the correction means is a reference in which the temperature of the intake air detected by the detection means is stored in the storage means. When the value is higher than the value, the opening degree of the EGR valve to be corrected and the EGR valve are provided so that the flow rate of the exhaust gas introduced into the intake passage through the EGR passage provided with the EGR valve to be corrected is reduced. It may be corrected correspondence relationship between the flow rate of exhaust gas introduced into the intake passage via the EGR passageway (claim 3). As the flow rate of EGR gas introduced into the intake passage increases, the temperature of the intake air increases. Therefore, when the temperature of the intake air detected by the detection means is higher than the reference value, it is considered that EGR gas having a flow rate higher than the target flow rate is introduced into the intake passage. Therefore, the correspondence relationship is corrected so that the flow rate of the EGR gas decreases.

本発明の第1又は第2の排気還流装置において、前記吸気の物理量は、吸気の圧力又は吸気の流量であってもよい(請求項4)。これらの物理量もEGRガスの流量に応じて変化するため、これらに基づいて対応関係を補正することができる。 In the first or second exhaust gas recirculation system of the present invention, the physical quantity of the intake air, may be a pressure or flow of the intake air in the intake (claim 4). Since these physical quantities also change according to the flow rate of the EGR gas, the correspondence can be corrected based on them.

以上に説明したように、本発明の排気還流装置によれば、記憶手段に記憶されている基準値と、内燃機関の運転状態、第1EGR弁の開度、及び第2EGR弁の開度を適合時の状態にそれぞれ調整したときに検出手段で検出された吸気の物理量との差に基づいて補正対象のEGR弁の開度とそのEGR弁が設けられたEGR通路のEGRガスの流量との対応関係を補正するので、この対応関係を排気通路などの圧力損失の変化を考慮して適切に補正することができる。従って、吸気通路に還流される排気の流量を適切に制御することができる。   As described above, according to the exhaust gas recirculation device of the present invention, the reference value stored in the storage means, the operating state of the internal combustion engine, the opening degree of the first EGR valve, and the opening degree of the second EGR valve are adapted. Correspondence between the opening degree of the EGR valve to be corrected and the flow rate of the EGR gas in the EGR passage in which the EGR valve is provided based on the difference between the physical quantity of the intake air detected by the detecting means when each is adjusted to the time state Since the relationship is corrected, this correspondence can be appropriately corrected in consideration of a change in pressure loss such as in the exhaust passage. Therefore, the flow rate of the exhaust gas recirculated to the intake passage can be appropriately controlled.

(第1の形態)
図1は、本発明の第1の形態に係る排気還流装置が組み込まれた内燃機関を示している。図1に示した内燃機関(以下、エンジンと称することがある。)1は、車両に走行用動力源として搭載されるディーゼルエンジンであり、複数(図1では4つ)の気筒2と、各気筒2にそれぞれ接続される吸気通路3及び排気通路4とを備えている。吸気通路3には、吸気濾過用のエアフィルタ5、吸入空気量に対応した信号を出力するエアフローメータ6、吸入空気量を調整するためのスロットル弁7、ターボ過給機8のコンプレッサ8a、及び吸気を冷却するためのインタークーラ9が設けられている。排気通路4には、ターボ過給機8のタービン8b、排気を浄化するための排気浄化触媒10、及び排気流量を調整するための排気絞り弁11が設けられている。
(First form)
FIG. 1 shows an internal combustion engine in which an exhaust gas recirculation apparatus according to a first embodiment of the present invention is incorporated. An internal combustion engine (hereinafter sometimes referred to as an engine) 1 shown in FIG. 1 is a diesel engine mounted on a vehicle as a driving power source, and includes a plurality (four in FIG. 1) of cylinders 2, An intake passage 3 and an exhaust passage 4 connected to the cylinder 2 are provided. In the intake passage 3, an air filter 5 for filtering the intake air, an air flow meter 6 for outputting a signal corresponding to the intake air amount, a throttle valve 7 for adjusting the intake air amount, a compressor 8a of the turbocharger 8, and An intercooler 9 for cooling the intake air is provided. The exhaust passage 4 is provided with a turbine 8b of the turbocharger 8, an exhaust purification catalyst 10 for purifying exhaust, and an exhaust throttle valve 11 for adjusting the exhaust flow rate.

排気通路4と吸気通路3とは、低圧EGR通路20及び高圧EGR通路21にて接続されている。図1に示したように低圧EGR通路20は排気浄化触媒10より下流の排気通路4とコンプレッサ8aより上流の吸気通路3とを接続している。一方、高圧EGR通路21はタービン8bより上流の排気通路4とコンプレッサ8aより下流の吸気通路3とを接続している。そのため、低圧EGR通路20が本発明の第1EGR通路に相当し、高圧EGR通路21が本発明の第2EGR通路に相当する。低圧EGR通路20には、吸気通路4に導かれる排気、すなわちEGRガスを冷却するためのEGRクーラ22、及び低圧EGR通路20を介して吸気通路3に還流されるEGRガス(以下、第1EGRガスと称することがある。)の流量を調整するための第1EGR弁としての低圧EGR弁23が設けられている。高圧EGR通路21には、高圧EGR通路21を介して吸気通路3に還流されるEGRガス(以下、第2EGRガスと称することがある。)の流量を調整するために第2EGR弁としての高圧EGR弁24が設けられている。 The exhaust passage 4 and the intake passage 3 are connected by a low pressure EGR passage 20 and a high pressure EGR passage 21. As shown in FIG. 1, the low pressure EGR passage 20 connects the exhaust passage 4 downstream of the exhaust purification catalyst 10 and the intake passage 3 upstream of the compressor 8a. On the other hand, the high pressure EGR passage 21 connects the exhaust passage 4 upstream of the turbine 8b and the intake passage 3 downstream of the compressor 8a. Therefore, the low pressure EGR passage 20 corresponds to the first EGR passage of the present invention, and the high pressure EGR passage 21 corresponds to the second EGR passage of the present invention. The low pressure EGR passage 20 has exhaust gas guided to the intake passage 4, that is, an EGR cooler 22 for cooling the EGR gas, and EGR gas recirculated to the intake passage 3 through the low pressure EGR passage 20 (hereinafter referred to as first EGR gas). The low pressure EGR valve 23 is provided as a first EGR valve for adjusting the flow rate. The high pressure EGR passage 21 has a high pressure EGR as a second EGR valve for adjusting the flow rate of EGR gas (hereinafter sometimes referred to as second EGR gas) recirculated to the intake passage 3 through the high pressure EGR passage 21. A valve 24 is provided.

スロットル弁7、低圧EGR弁23、及び高圧EGR弁24の動作はエンジンコントロールユニット(ECU)30にてそれぞれ制御される。ECU30は、マイクロプロセッサ及びその動作に必要なRAM、ROM等の周辺機器を含んだコンピュータとして構成され、エンジン1に設けられた各種センサからの出力信号に基づいてエンジン1の運転状態を制御する周知のコンピュータユニットである。ECU30は、例えば吸気通路3にEGRガスを導入する場合、エンジン1の回転数及び負荷に応じて低圧EGR通路20及び高圧EGR通路21のいずれを介して吸気通路3に排気を導入するか判定し、エンジン1の運転状態に応じて目標流量のEGRガスが吸気通路3に導入されるように各低圧EGR弁23の開度及び高圧EGR弁24の開度がそれぞれ制御される。このような制御を行う際に参照するセンサとしてECU30には、例えばクランク角に対応した信号を出力するクランク角センサ31、エアフローメータ6などが接続されている。この他にもECU30には、吸気の温度に対応した信号を出力する検出手段としての吸気温センサ32、吸気の酸素濃度に対応した信号を出力する酸素濃度センサ33、排気浄化触媒10の前後の差圧に対応した信号を出力する差圧センサ34、アクセル開度に対応した信号が出力されるアクセル開度センサ35などが接続される。なお、図1に示したように吸気温センサ32は、低圧EGR通路20の排気導入位置よりも下流の吸気通路3に設けられている。これらは一般にエンジンに設けられる周知のセンサでよいため、詳細な説明は省略する。   The operations of the throttle valve 7, the low pressure EGR valve 23, and the high pressure EGR valve 24 are controlled by an engine control unit (ECU) 30, respectively. The ECU 30 is configured as a computer including a microprocessor and peripheral devices such as a RAM and a ROM necessary for its operation, and controls the operating state of the engine 1 based on output signals from various sensors provided in the engine 1. Computer unit. For example, when introducing EGR gas into the intake passage 3, the ECU 30 determines whether to introduce exhaust gas into the intake passage 3 via the low pressure EGR passage 20 or the high pressure EGR passage 21 according to the rotational speed and load of the engine 1. The opening degree of each low pressure EGR valve 23 and the opening degree of the high pressure EGR valve 24 are controlled so that EGR gas having a target flow rate is introduced into the intake passage 3 according to the operating state of the engine 1. For example, a crank angle sensor 31 that outputs a signal corresponding to the crank angle and an air flow meter 6 are connected to the ECU 30 as sensors to be referred to when performing such control. In addition to this, the ECU 30 includes an intake air temperature sensor 32 as a detection unit that outputs a signal corresponding to the temperature of the intake air, an oxygen concentration sensor 33 that outputs a signal corresponding to the oxygen concentration of the intake air, and before and after the exhaust purification catalyst 10. A differential pressure sensor 34 that outputs a signal corresponding to the differential pressure, an accelerator opening sensor 35 that outputs a signal corresponding to the accelerator opening, and the like are connected. As shown in FIG. 1, the intake air temperature sensor 32 is provided in the intake passage 3 downstream of the exhaust introduction position of the low pressure EGR passage 20. Since these may be known sensors generally provided in the engine, a detailed description thereof will be omitted.

ECU30は低圧EGR弁23及び高圧EGR弁24の動作をそれぞれ制御するが、その制御方法は異なる。高圧EGR弁24は、各気筒2に吸入される吸気の酸素濃度がエンジン1の運転状態に応じて設定される目標値になるようにフィードバック制御される。一方、低圧EGR弁23は、エンジン1の回転数及び負荷などのエンジン1の運転状態に基づいて目標流量が設定され、ECU30はその目標流量の第1EGRガスが吸気通路3に導入されるように低圧EGR弁23の開度を制御する。すなわち、低圧EGR弁23はオープンループ制御で制御される。この制御は、例えば図2に一例を示した低圧EGR弁23の開度と第1EGRガスの流量との対応関係をマップとしてECU30のRAMに記憶させておき、このマップを参照して低圧EGR弁23の開度を制御すればよい。第1EGRガスの流量は、低圧EGR通路20の圧力損失及び排気浄化触媒11の圧力損失により変化する。そこで、ECU30は、低圧EGR弁23の開度と第1EGRガスの流量との対応関係を適宜補正する。   The ECU 30 controls the operations of the low pressure EGR valve 23 and the high pressure EGR valve 24, respectively, but the control method is different. The high pressure EGR valve 24 is feedback controlled so that the oxygen concentration of the intake air sucked into each cylinder 2 becomes a target value set according to the operating state of the engine 1. On the other hand, the low pressure EGR valve 23 has a target flow rate set based on the operating state of the engine 1 such as the rotational speed and load of the engine 1, and the ECU 30 introduces the first EGR gas at the target flow rate into the intake passage 3. The opening degree of the low pressure EGR valve 23 is controlled. That is, the low pressure EGR valve 23 is controlled by open loop control. In this control, for example, the correspondence relationship between the opening degree of the low pressure EGR valve 23 and the flow rate of the first EGR gas shown as an example in FIG. 2 is stored in the RAM of the ECU 30 as a map, and the low pressure EGR valve is referenced with reference to this map. What is necessary is just to control the opening degree of 23. The flow rate of the first EGR gas varies depending on the pressure loss of the low pressure EGR passage 20 and the pressure loss of the exhaust purification catalyst 11. Therefore, the ECU 30 appropriately corrects the correspondence relationship between the opening degree of the low pressure EGR valve 23 and the flow rate of the first EGR gas.

まず、低圧EGR弁23の開度と第1EGRガスの流量との対応関係の補正方法について説明する。周知のように吸気通路3に導入されるEGRガスの量が多いほど吸気の温度は上昇し、これらの間には相関関係がある。そこで、エンジン1の運転状態を所定状態であり、かつ高圧EGR弁24の開度を所定開度に維持させた状態においてその所定状態に対応した目標流量の第1EGRガスが低圧EGR通路20を介して吸気通路3に導入されるように低圧EGR弁23の開度を調整する適合を予め行い、そのときの低圧EGR弁23の開度を目標開度としてECU30のROMに記憶させるとともにそのときに吸気温センサ32にて検出された温度を基準値としてECU30のROMに記憶させておく。これにより、ECU30が本発明の記憶手段として機能する。排気通路4にススなどが付着し、排気通路4の圧力損失が変化した場合は、低圧EGR通路20の排気取り出し位置と排気導入位置との圧力差が変化する。この場合、エンジン1の運転状態を所定状態に調整するとともに高圧EGR弁24の開度を所定開度に調整し、かつ低圧EGR弁23の開度を適合時に調整した目標開度に調整しても第1EGRガスの流量が目標流量とずれるため、基準値とは異なる吸気の温度が吸気温センサ32にて検出される。この際、吸気温センサ32にて検出された吸気の温度と基準値との差(以下、温度差と称することがある。)は、そのときに流れていた第1EGRガスの流量と目標流量との差と相関しているため、温度差に応じて対応関係を補正する。図3は、第1EGRガスの流量と吸気温度との関係の一例を示している。なお、図3の点Pは、目標流量の第1EGRガスが吸気通路3に導入された場合の吸気温度、すなわち適合時における関係を示している。検出された吸気温度が図3の温度T2であり、基準値T1よりも高かった場合、目標流量よりも多くの第1EGRガスが吸気通路3に導入されていると考えられる。そこで、温度差(T2−T1)に応じて補正量を算出し、その補正量に応じて図2のマップを修正すればよい。例えば、検出された吸気温度が基準値よりも高い場合は図2の矢印B方向に対応関係を補正する。一方、検出された吸気温度が基準値よりも低い場合は図2の矢印A方向に対応関係を補正する。なお、この補正を行う際のエンジン1の運転状態としては、例えばアイドリング状態が設定される。また、高圧EGR弁24が調整される所定開度としては、例えば全閉が設定される。 First, a method for correcting the correspondence relationship between the opening degree of the low pressure EGR valve 23 and the flow rate of the first EGR gas will be described. As is well known, as the amount of EGR gas introduced into the intake passage 3 increases, the intake air temperature rises, and there is a correlation between them. Therefore, when the operating state of the engine 1 is a predetermined state and the opening degree of the high pressure EGR valve 24 is maintained at the predetermined opening degree, the first EGR gas having a target flow rate corresponding to the predetermined state passes through the low pressure EGR passage 20. The opening of the low-pressure EGR valve 23 is adjusted in advance so as to be introduced into the intake passage 3, and the opening of the low-pressure EGR valve 23 at that time is stored in the ROM of the ECU 30 as the target opening, and at that time The temperature detected by the intake air temperature sensor 32 is stored in the ROM of the ECU 30 as a reference value. Thereby, ECU30 functions as a memory | storage means of this invention. When soot or the like adheres to the exhaust passage 4 and the pressure loss in the exhaust passage 4 changes, the pressure difference between the exhaust take-out position and the exhaust introduction position of the low-pressure EGR passage 20 changes. In this case, the operating state of the engine 1 is adjusted to a predetermined state, the opening degree of the high pressure EGR valve 24 is adjusted to a predetermined opening degree, and the opening degree of the low pressure EGR valve 23 is adjusted to the target opening degree adjusted at the time of adaptation. Since the flow rate of the first EGR gas deviates from the target flow rate, the intake air temperature sensor 32 detects the intake air temperature different from the reference value. At this time, the difference between the temperature of the intake air detected by the intake air temperature sensor 32 and the reference value (hereinafter sometimes referred to as a temperature difference) is the flow rate of the first EGR gas and the target flow rate that were flowing at that time. The correlation is corrected according to the temperature difference. FIG. 3 shows an example of the relationship between the flow rate of the first EGR gas and the intake air temperature. Note that a point P in FIG. 3 shows the intake air temperature when the first EGR gas having the target flow rate is introduced into the intake passage 3, that is, the relationship at the time of adaptation. When the detected intake air temperature is the temperature T2 in FIG. 3 and is higher than the reference value T1, it is considered that more first EGR gas than the target flow rate is introduced into the intake passage 3. Therefore, a correction amount may be calculated according to the temperature difference (T2-T1), and the map of FIG. 2 may be corrected according to the correction amount. For example, if the detected intake air temperature is higher than the reference value , the correspondence is corrected in the direction of arrow B in FIG . On the other hand, if the detected intake air temperature is lower than the reference value , the correspondence is corrected in the direction of arrow A in FIG . For example, an idling state is set as the operating state of the engine 1 when performing this correction. Further, as the predetermined opening degree at which the high-pressure EGR valve 24 is adjusted, for example, fully closed is set.

ECU30は、上述した補正方法で低圧EGR弁23の開度と第1EGRガスの流量との対応関係を補正するべく図4に示した対応関係学習ルーチンをエンジン1の運転中に所定の周期で繰り返し実行する。図4のルーチンを実行することにより、ECU30が本発明の補正手段として機能する。図4のルーチンにおいてECU30は、まずステップS11でエンジン1の運転状態を取得する。エンジン1の運転状態としては、エンジン1の回転数、エンジン1の負荷及びアクセル開度などが取得される。続くステップS12においてECU30は、所定の学習条件が成立しているか否か判断する。上述したように対応関係を補正する際は、エンジン1をアイドリング状態に調整するとともに高圧EGR弁24を全閉に調整する。そこで、エンジン1の運転状態及び高圧EGR弁24の開度をこのように調整することが可能、例えばエンジン1が搭載された車両が停止中などの場合に所定の学習条件が成立したと判断される。所定の学習条件が不成立と判断した場合は今回のルーチンを終了する。   The ECU 30 repeats the correspondence learning routine shown in FIG. 4 at predetermined intervals during the operation of the engine 1 in order to correct the correspondence between the opening degree of the low pressure EGR valve 23 and the flow rate of the first EGR gas by the correction method described above. Execute. By executing the routine of FIG. 4, the ECU 30 functions as the correcting means of the present invention. In the routine of FIG. 4, the ECU 30 first acquires the operating state of the engine 1 in step S11. As the operating state of the engine 1, the rotational speed of the engine 1, the load of the engine 1, the accelerator opening, and the like are acquired. In subsequent step S12, ECU 30 determines whether or not a predetermined learning condition is satisfied. As described above, when correcting the correspondence, the engine 1 is adjusted to the idling state and the high-pressure EGR valve 24 is adjusted to be fully closed. Therefore, the operating state of the engine 1 and the opening degree of the high pressure EGR valve 24 can be adjusted in this way. For example, it is determined that a predetermined learning condition is satisfied when the vehicle on which the engine 1 is mounted is stopped. The If it is determined that the predetermined learning condition is not satisfied, the current routine is terminated.

一方、所定の学習条件が成立していると判断した場合はステップS13に進み、ECU30は低圧EGR弁23の開度を適合時に調整した目標開度に調整するとともに高圧EGR弁24の開度を全閉に調整し、かつエンジン1の運転状態をアイドリング状態に調整する。続くステップS14においてECU30は、吸気温センサ32の出力信号に基づいて吸気の温度を検出する。次のステップS15においてECU30は、検出した吸気温度とECU30のROMに記憶されている基準値との温度差に基づいて補正量を算出する。その後、ステップS16において低圧EGR弁23の開度と第1EGRガスの流量との対応関係、すなわち図2のマップを補正する。その後、今回のルーチンを終了する。   On the other hand, if it is determined that the predetermined learning condition is satisfied, the process proceeds to step S13, where the ECU 30 adjusts the opening degree of the low pressure EGR valve 23 to the target opening degree adjusted at the time of adaptation and the opening degree of the high pressure EGR valve 24. The engine 1 is adjusted to be fully closed and the operating state of the engine 1 is adjusted to the idling state. In subsequent step S14, the ECU 30 detects the temperature of the intake air based on the output signal of the intake air temperature sensor 32. In the next step S15, the ECU 30 calculates a correction amount based on the temperature difference between the detected intake air temperature and the reference value stored in the ROM of the ECU 30. Thereafter, in step S16, the correspondence relationship between the opening degree of the low pressure EGR valve 23 and the flow rate of the first EGR gas, that is, the map of FIG. 2 is corrected. Thereafter, the current routine is terminated.

以上に説明したように第1の形態によれば、エンジン1の運転状態、高圧EGR弁24の開度、及び低圧EGR弁23の開度をそれぞれ適合時の状態に調整し、そのときに吸気温センサ32にて検出された温度と適合時に検出された基準値の温度差に基づいて低圧EGR弁23の開度と第1EGRガスの流量との対応関係を補正するので、対応関係を適切、かつ簡易に補正することができる。そのため、第1EGRガスの流量を適切に制御することができる。また、これにより吸気温度の変動を抑制し、吸気温度を安定に制御できるので、エンジン1の排気エミッションを改善することができる。   As described above, according to the first embodiment, the operating state of the engine 1, the opening degree of the high pressure EGR valve 24, and the opening degree of the low pressure EGR valve 23 are respectively adjusted to the adapted state, The correspondence between the opening of the low pressure EGR valve 23 and the flow rate of the first EGR gas is corrected based on the temperature difference between the temperature detected by the temperature sensor 32 and the reference value detected at the time of adaptation. And it can correct easily. Therefore, the flow rate of the first EGR gas can be controlled appropriately. In addition, this makes it possible to suppress fluctuations in the intake air temperature and stably control the intake air temperature, so that the exhaust emission of the engine 1 can be improved.

(第2の形態)
図5及び図6を参照して本発明の第2の形態について説明する。図5は第1の形態の図1に対応する図である。図5に示したように、第2の形態では、吸気温センサ32が高圧EGR通路21の排気導入位置よりも下流の吸気通路3に設けられる点が異なり、他は第1の形態と同じである。そのため、図5において図1と共通の部分には同一の符号を付して説明を省略する。また、この形態では、ECU30のRAMに高圧EGR弁24の開度と第2EGRガスの流量との対応関係がマップとして記憶されており、ECU30はこのマップも参照して高圧EGR弁24の開度を制御する。
(Second form)
The second embodiment of the present invention will be described with reference to FIGS. FIG. 5 is a diagram corresponding to FIG. 1 of the first embodiment. As shown in FIG. 5, the second embodiment is different from the first embodiment except that the intake air temperature sensor 32 is provided in the intake passage 3 downstream of the exhaust introduction position of the high-pressure EGR passage 21. is there. Therefore, in FIG. 5, the same reference numerals are given to the same parts as in FIG. In this embodiment, the correspondence between the opening degree of the high-pressure EGR valve 24 and the flow rate of the second EGR gas is stored in the RAM of the ECU 30 as a map. The ECU 30 also refers to this map to open the opening degree of the high-pressure EGR valve 24. To control.

上述した第1の形態では、低圧EGR弁23の開度と第1EGRガスの流量との対応関係を補正したが、排気通路4の圧力損失の変化は高圧EGR弁24の開度と第2EGRガスの流量との対応関係も変化させる。そこで、第2の形態では、高圧EGR弁24の開度と第2EGRガスの流量との対応関係の補正を行う。この対応関係の補正方法は、第1の形態と同様に行えばよい。なお、第2の形態では、高圧EGR弁24の開度と第2EGRガスの流量との対応関係を補正するので、エンジン1の運転状態を所定状態であり、かつ低圧EGR弁23の開度を所定開度に維持させた状態においてその所定状態に対応した目標流量の第2EGRガスが高圧EGR通路21を介して吸気通路3に導入されるように高圧EGR弁24の開度を調整する適合を予め行い、そのときの高圧EGR弁24の開度を目標開度としてECU30のROMに記憶させるとともにそのときに吸気温センサ32にて検出された温度を基準値としてECU30のROMに記憶させておく。なお、適合時におけるエンジン1の運転状態としてはアイドリング状態が設定され、低圧EGR弁23の開度には全閉が設定される。図6は、ECU30が高圧EGR弁24の開度と第2EGRガスの流量との対応関係を補正するべくエンジン1の運転中に所定の周期で繰り返し実行する対応関係学習ルーチンを示している。なお、図6において図4と同一の処理には同一の参照符号を付して説明を省略する。   In the first embodiment described above, the correspondence between the opening degree of the low pressure EGR valve 23 and the flow rate of the first EGR gas is corrected, but the change in the pressure loss in the exhaust passage 4 is caused by the opening degree of the high pressure EGR valve 24 and the second EGR gas. The correspondence with the flow rate is also changed. Therefore, in the second embodiment, the correspondence relationship between the opening degree of the high pressure EGR valve 24 and the flow rate of the second EGR gas is corrected. This correction method for the correspondence relationship may be performed in the same manner as in the first embodiment. In the second embodiment, since the correspondence between the opening degree of the high pressure EGR valve 24 and the flow rate of the second EGR gas is corrected, the operating state of the engine 1 is in a predetermined state and the opening degree of the low pressure EGR valve 23 is Adapting to adjust the opening degree of the high-pressure EGR valve 24 so that the second EGR gas having a target flow rate corresponding to the predetermined state is introduced into the intake passage 3 through the high-pressure EGR passage 21 in a state where the predetermined opening degree is maintained. The opening of the high pressure EGR valve 24 at that time is stored in the ROM of the ECU 30 as a target opening, and the temperature detected by the intake air temperature sensor 32 is stored in the ROM of the ECU 30 as a reference value. . Note that the idling state is set as the operating state of the engine 1 at the time of adaptation, and the opening degree of the low pressure EGR valve 23 is set to be fully closed. FIG. 6 shows a correspondence learning routine that the ECU 30 repeatedly executes at a predetermined cycle during operation of the engine 1 to correct the correspondence between the opening degree of the high-pressure EGR valve 24 and the flow rate of the second EGR gas. In FIG. 6, the same processes as those in FIG. 4 are denoted by the same reference numerals, and description thereof is omitted.

図6のルーチンにおいてECU30は、ステップS12まで図4と同様に処理を進める。ステップS12が肯定判断された場合、ステップS21に進み、ECU30は高圧EGR弁24の開度を適合時に調整した目標開度に調整するとともに低圧EGR弁23の開度を全閉に調整し、かつエンジン1の運転状態をアイドリング状態に調整する。続くステップS14においてECU30は吸気の温度を検出し、その後ステップS15において検出した吸気温度とECU30のROMに記憶されている基準値との温度差に基づいて補正量を算出する。次のステップS22においてECU30は、高圧EGR弁24の開度と第2EGRガスの流量との対応関係、すなわちECU30のRAMに記憶されているマップを補正する。その後、今回のルーチンを終了する。   In the routine of FIG. 6, the ECU 30 proceeds to the same process as in FIG. 4 until step S12. If the determination in step S12 is affirmative, the process proceeds to step S21, in which the ECU 30 adjusts the opening of the high pressure EGR valve 24 to the target opening adjusted during adaptation, adjusts the opening of the low pressure EGR valve 23 to fully closed, and The operating state of the engine 1 is adjusted to the idling state. In subsequent step S14, ECU 30 detects the temperature of the intake air, and then calculates a correction amount based on the temperature difference between the intake air temperature detected in step S15 and the reference value stored in the ROM of ECU 30. In the next step S22, the ECU 30 corrects the correspondence relationship between the opening degree of the high pressure EGR valve 24 and the flow rate of the second EGR gas, that is, the map stored in the RAM of the ECU 30. Thereafter, the current routine is terminated.

このように高圧EGR弁24の開度と第2EGRガスの流量との対応関係を補正することにより、第2EGRガスの流量を適切に制御することができる。   Thus, the flow rate of the second EGR gas can be appropriately controlled by correcting the correspondence relationship between the opening degree of the high pressure EGR valve 24 and the flow rate of the second EGR gas.

次に図7及び図8を参照して本発明に関係する参考例について説明する。  Next, reference examples related to the present invention will be described with reference to FIGS.

上述したようにエンジン1では、エンジン1の回転数及び負荷に応じて低圧EGR通路20及び高圧EGR通路21のいずれを介して吸気通路3に排気を導入するか判定しており、排気通路4から吸気通路3に排気を還流させるための複数種類のEGRモードがエンジン1の運転状態に対応付けられて設定されている。EGRモードとしては、低圧EGR通路20のみを介して排気を吸気通路3に還流する低圧EGRモードとしてのロープレッシャーループ(LPL)モード、高圧EGR通路21のみを介して排気を吸気通路3に還流する高圧EGRモードとしてのハイプレッシャーループ(HPL)モード、及び低圧EGR通路20及び高圧EGR通路21の両方のEGR通路を介して排気を吸気通路3に導入する混合EGRモードとしてのMPLモードが設定されている。図7は、これら各EGRモードとエンジン1の運転状態との対応関係の一例を示す図である。ECU20は、吸気通路3への排気の還流を行う場合、図7の対応関係を参照し、エンジン1の運転状態を示す回転数及び負荷に応じてLPLモード、MPLモード、又はHPLモードのいずれかのEGRモードを選択する。なお、LPLモードは、高圧EGR弁24が全閉に維持されるとともに低圧EGR弁23が開けられることにより実行される。HPLモードは、低圧EGR弁23が全閉に維持されるとともに高圧EGR弁24が開けられることにより実行される。MPLモードは、低圧EGR弁23及び高圧EGR弁24の両方が開けられることにより実行される。なお、図7に示した関係は、予め実験又は数値計算などにより求めてECU20のROMにマップとして記憶されている。   As described above, the engine 1 determines whether exhaust is introduced into the intake passage 3 via the low pressure EGR passage 20 or the high pressure EGR passage 21 according to the rotational speed and load of the engine 1. A plurality of types of EGR modes for returning the exhaust gas to the intake passage 3 are set in association with the operating state of the engine 1. The EGR mode includes a low pressure loop (LPL) mode as a low pressure EGR mode in which exhaust gas is returned to the intake passage 3 only through the low pressure EGR passage 20, and exhaust gas is returned to the intake passage 3 only through the high pressure EGR passage 21. The high pressure loop (HPL) mode as the high pressure EGR mode and the MPL mode as the mixed EGR mode for introducing the exhaust gas to the intake passage 3 through both the low pressure EGR passage 20 and the high pressure EGR passage 21 are set. Yes. FIG. 7 is a diagram illustrating an example of a correspondence relationship between each EGR mode and the operating state of the engine 1. When the ECU 20 performs the recirculation of the exhaust gas to the intake passage 3, the ECU 20 refers to the correspondence relationship in FIG. 7 and selects any one of the LPL mode, the MPL mode, and the HPL mode according to the rotation speed and the load indicating the operating state of the engine 1. Select the EGR mode. The LPL mode is executed when the high pressure EGR valve 24 is kept fully closed and the low pressure EGR valve 23 is opened. The HPL mode is executed by keeping the low pressure EGR valve 23 fully closed and opening the high pressure EGR valve 24. The MPL mode is executed when both the low pressure EGR valve 23 and the high pressure EGR valve 24 are opened. It should be noted that the relationship shown in FIG. 7 is obtained in advance by experiment or numerical calculation and stored as a map in the ROM of the ECU 20.

例えば、エンジン1がLPLモードで運転される場合は高圧EGR弁24が全閉に維持されるため、温度差に基づいて低圧EGR弁23の開度と第1EGRガスの流量との対応関係を補正することにより、温度差をEGRガスの流量の補正に適切に反映させることができる。   For example, when the engine 1 is operated in the LPL mode, the high pressure EGR valve 24 is kept fully closed, so that the correspondence between the opening of the low pressure EGR valve 23 and the flow rate of the first EGR gas is corrected based on the temperature difference. By doing so, the temperature difference can be appropriately reflected in the correction of the flow rate of the EGR gas.

MPLモードで運転される場合は、低圧EGR通路20及び高圧EGR通路21の両方のEGR通路を介して吸気通路3にEGRガスが導入されるため、各EGR弁23、24の対応関係をそれぞれ補正することにより、EGRガスの制御精度を向上させることができる。この際、低圧EGR弁23の対応関係と高圧EGR弁の対応関係とをそれぞれ同じずつ補正してもよいし、それぞれの対応関係への反映の度合い(以下、反映度と称することがある。)を設定し、その設定した反映度に応じて各EGR弁23、24の対応関係をそれぞれ補正してもよい。   When operating in the MPL mode, since the EGR gas is introduced into the intake passage 3 through both the low pressure EGR passage 20 and the high pressure EGR passage 21, the correspondence between the EGR valves 23 and 24 is corrected. By doing so, the control accuracy of EGR gas can be improved. At this time, the correspondence relationship between the low-pressure EGR valve 23 and the correspondence relationship between the high-pressure EGR valve may be corrected by the same amount, or the degree of reflection in each correspondence relationship (hereinafter sometimes referred to as the reflection degree). And the correspondence relationship between the EGR valves 23 and 24 may be corrected according to the set reflection degree.

反映度の設定方法について説明する。図8は、図5のエンジン1における各部のガス流れを示す図である。図8における領域Aの圧力損失の変化、すなわち低圧EGR通路20における圧力損失の変化は、第1EGRガスの流量に影響を与える。図8の領域B、Cの圧力損失の変化、すなわち高圧EGR通路21の圧力損失の変化、及び高圧EGR通路21の排気取り出し位置と低圧EGR通路20の排気取り出し位置との間の排気通路4の圧力損失の変化は、第2EGRガスの流量に影響を与える。図8の領域Dの圧力損失の変化、すなわち低圧EGR通路20の排気取り出し位置よりも下流側の排気通路4の圧力損失の変化は第1EGRガスの流量及び第2EGRガスの流量の両方に影響を与える。それぞれの領域A〜Dにおける圧力損失の変化は、第1EGRガスの流量及び第2EGRガスの流量に影響を与えるため、吸気温度に影響を与える。そこで、これらの領域A〜Dにおける圧力損失の変化を吸気温度の変化ΔTA〜ΔTDに置き換えると、低圧EGR弁23の開度を適合時の目標開度に調整したときにおける吸気の温度と基準値との温度差ΔTLは式(1)に示したように、高圧EGR弁24の開度を適合時の目標開度に調整したときにおける吸気の温度と基準値との温度差ΔTHは式(2)に示したようにそれぞれ表すことができる。   A method for setting the reflection level will be described. FIG. 8 is a diagram showing the gas flow of each part in the engine 1 of FIG. The change in the pressure loss in the region A in FIG. 8, that is, the change in the pressure loss in the low pressure EGR passage 20 affects the flow rate of the first EGR gas. The change in the pressure loss in the regions B and C of FIG. 8, that is, the change in the pressure loss in the high pressure EGR passage 21, and the exhaust passage 4 between the exhaust extraction position of the high pressure EGR passage 21 and the exhaust extraction position of the low pressure EGR passage 20. The change in the pressure loss affects the flow rate of the second EGR gas. The change in the pressure loss in the region D in FIG. 8, that is, the change in the pressure loss in the exhaust passage 4 on the downstream side of the exhaust extraction position of the low pressure EGR passage 20 affects both the flow rate of the first EGR gas and the flow rate of the second EGR gas. give. The change in pressure loss in each of the regions A to D affects the flow rate of the first EGR gas and the flow rate of the second EGR gas, and thus affects the intake air temperature. Therefore, if the change in pressure loss in these regions A to D is replaced with the change in intake air temperature ΔTA to ΔTD, the intake air temperature and the reference value when the opening of the low pressure EGR valve 23 is adjusted to the target opening at the time of adaptation. As shown in the equation (1), the temperature difference ΔTH between the intake air temperature and the reference value when the opening of the high-pressure EGR valve 24 is adjusted to the target opening at the time of adaptation is expressed by the equation (2). ), Respectively.

ΔTL=ΔTA+ΔTD ・・・(1)
ΔTH=ΔTB+ΔTC+ΔTD ・・・(2)
ΔTL = ΔTA + ΔTD (1)
ΔTH = ΔTB + ΔTC + ΔTD (2)

ここで、高圧EGR通路21が低圧EGR通路20よりも詰まり易いことがエンジン1の運転履歴、例えばエンジン1の回転数NE、トルクTrq、又は運転時間timeなどの関数として表せると仮定すると、領域B及び領域Cの圧力損失の変化に対応する吸気温度の変化ΔTBC(=ΔTB+ΔTC)と領域Aの圧力損失の変化に対応する吸気温度の変化ΔTAとの関係は、以下の式(3)で示すことができる。   Here, assuming that the high-pressure EGR passage 21 is more easily clogged than the low-pressure EGR passage 20, it can be expressed as a function of the operation history of the engine 1, for example, the rotational speed NE, the torque Trq, or the operation time time of the engine 1. The relationship between the change in intake temperature ΔTBC (= ΔTB + ΔTC) corresponding to the change in pressure loss in region C and the change in intake temperature ΔTA corresponding to the change in pressure loss in region A is expressed by the following equation (3). Can do.

ΔTBC/ΔTA=f(NE、Trq、time)・・・(3)   ΔTBC / ΔTA = f (NE, Trq, time) (3)

この式(3)の関係を定数Cに置き換えると、式(3)’及び式(3)’’を導き出すことができる。   When the relationship of the expression (3) is replaced with a constant C, the expressions (3) ′ and (3) ″ can be derived.

ΔTBC/ΔTA=C ・・・(3)’
ΔTBC=CΔTA ・・・(3)’’
ΔTBC / ΔTA = C (3) ′
ΔTBC = CΔTA (3) ''

この式(3)’’を式(2)に代入すると、以下の式(4)を導くことができる。   Substituting this equation (3) ″ into equation (2), the following equation (4) can be derived.

ΔTH=CΔTA+ΔTD ・・・(4)   ΔTH = CΔTA + ΔTD (4)

そして、式(1)から式(4)を引くことにより、領域Dにおける圧力損失の変化に対応する吸気温度の変化ΔTDは、以下の式(5)で示すことができる。   Then, by subtracting the equation (4) from the equation (1), the change ΔTD in the intake air temperature corresponding to the change in the pressure loss in the region D can be expressed by the following equation (5).

ΔTD=(ΔTL−CΔTH)/(1−C) ・・・(5)   ΔTD = (ΔTL−CΔTH) / (1-C) (5)

この式(5)の関係を式(1)及び式(2)に代入することにより、領域Aの圧力損失の変化に対応する吸気温度の変化ΔTAを式(6)で、領域B及び領域Cの圧力損失の変化に対応する吸気温度の変化ΔTBCを式(7)で示すことができる。   By substituting the relationship of the equation (5) into the equations (1) and (2), the change ΔTA in the intake air temperature corresponding to the change in the pressure loss in the region A is expressed by the equation (6). The change in the intake air temperature ΔTBC corresponding to the change in the pressure loss can be expressed by equation (7).

ΔTA=ΔTL−(ΔTL−CΔTH)/(1−C) ・・・(6)
ΔTBC=ΔTH−(ΔTL−CΔTH)/(1−C) ・・・(7)
ΔTA = ΔTL− (ΔTL−CΔTH) / (1-C) (6)
ΔTBC = ΔTH− (ΔTL−CΔTH) / (1-C) (7)

低圧EGR弁23の開度を適合時の目標開度に調整したときにおける吸気の温度と基準値との温度差ΔTL、及び高圧EGR弁24の開度を適合時の目標開度に調整したときにおける吸気の温度と基準値との温度差ΔTHは上述した補正方法を行うことにより算出することができるので、未知数が2つで式が2つであるため、領域Aの圧力損失の変化に対応する吸気温度の変化ΔTA、及び領域B及び領域Cの圧力損失の変化に対応する吸気温度の変化ΔTBCを算出することができる。吸気温度の変化ΔTAと吸気温度の変化ΔTBCとの比は、排気通路4などの圧力損失の変化が第1EGRガスの流量及び第2EGRガスの流量を変化させた度合いに対応している。そこで、吸気温度の変化ΔTAと吸気温度の変化ΔTBCとの比に応じて各EGR弁23、24の対応関係への反映度を設定し、その設定した反映度に応じて各EGR弁23、24の対応関係の補正に使用する補正量を設定するとともにそれら補正量で各対応関係をそれぞれ補正する。この場合、さらに精度良く各EGR弁23、24の対応関係を補正することができる When the opening of the low pressure EGR valve 23 is adjusted to the target opening at the time of adaptation, the temperature difference ΔTL between the intake air temperature and the reference value, and the opening of the high pressure EGR valve 24 are adjusted to the target opening at the time of adaptation. Since the temperature difference ΔTH between the intake air temperature and the reference value can be calculated by performing the correction method described above, since there are two unknowns and two equations, it corresponds to a change in pressure loss in the region A. It is possible to calculate the change ΔTAC in the intake air temperature corresponding to the change ΔTAC in the intake air temperature and the pressure loss in the regions B and C. The ratio between the change ΔTA in intake air temperature and the change ΔTBC in intake temperature corresponds to the degree to which the change in pressure loss in the exhaust passage 4 or the like changes the flow rate of the first EGR gas and the flow rate of the second EGR gas. Therefore, the degree of reflection on the correspondence relationship between the EGR valves 23 and 24 is set according to the ratio of the change ΔTAC of the intake air temperature and the change ΔTBC of the intake air temperature, and the EGR valves 23, 24 are set according to the set reflection degree. A correction amount used for correcting the corresponding relationship is set, and each corresponding relationship is corrected by the correction amount. In this case, the correspondence between the EGR valves 23 and 24 can be corrected with higher accuracy .

排気浄化触媒10には排気中のススなどが付着し易いため、図8の領域Cにおける圧力損失の変化は、排気浄化触媒10の詰まり具合によってほぼ決まると考えることができる。そこで、排気浄化触媒10の詰まり具合を考慮して反映度を設定してもよい。この場合、反映度をより簡易に設定することができる。   Since soot and the like in the exhaust gas easily adhere to the exhaust purification catalyst 10, it can be considered that the change in pressure loss in the region C in FIG. 8 is almost determined by the degree of clogging of the exhaust purification catalyst 10. Therefore, the reflection degree may be set in consideration of the degree of clogging of the exhaust purification catalyst 10. In this case, the reflection degree can be set more easily.

MPLモードでエンジン1を運転している場合においても、温度差に基づいて低圧EGR弁23の対応関係のみを補正してもよい。低圧EGR弁23の開度が第1EGRガスの流量に与える影響は、高圧EGR弁24の開度が第2EGRガスの流量に与える影響よりも大きい。そこで、温度差に基づいて低圧EGR弁23の対応関係のみを補正する。この場合、反映度を考慮する必要がないため、対応関係の補正を簡易に行うことができる。   Even when the engine 1 is operating in the MPL mode, only the correspondence relationship of the low pressure EGR valve 23 may be corrected based on the temperature difference. The influence of the opening degree of the low pressure EGR valve 23 on the flow rate of the first EGR gas is larger than the influence of the opening degree of the high pressure EGR valve 24 on the flow rate of the second EGR gas. Therefore, only the correspondence relationship of the low pressure EGR valve 23 is corrected based on the temperature difference. In this case, since it is not necessary to consider the degree of reflection, the correspondence can be easily corrected.

本発明は、上述した各形態に限定されることなく、種々の形態にて実施することができる。例えば、本発明はディーゼルエンジンに限らず、ガソリンその他の燃料を利用する各種の内燃機関に適用してよい This invention is not limited to each form mentioned above, It can implement with a various form. For example, the present invention is not limited to a diesel engine, and may be applied to various internal combustion engines that use gasoline or other fuels .

上述した各形態では、適合時の吸気の温度に応じて対応関係の補正を行っているが、吸気通路に導入されるEGRガスの量に応じて吸気の圧力及び吸気の流量も変化する。そのため、適合時におけるこれらの値を基準値として記憶させておき、この記憶させておいた基準値と実際に検出した値とに応じて対応関係を補正してもよい。   In each embodiment described above, the correspondence is corrected according to the temperature of the intake air at the time of adaptation, but the pressure of the intake air and the flow rate of the intake air also change according to the amount of EGR gas introduced into the intake passage. Therefore, these values at the time of adaptation may be stored as a reference value, and the correspondence relationship may be corrected according to the stored reference value and the actually detected value.

上述した各形態では、エンジン1の運転状態をアイドリング状態にして適合を行っているが、適合時の運転状態はこの状態に限定されない。例えば、補正を行う期間中、吸気の温度を安定にすることができる種々の運転状態で適合を行ってもよい In each embodiment described above, the adaptation is performed by setting the operation state of the engine 1 to the idling state, but the operation state at the time of adaptation is not limited to this state. For example, the adjustment may be performed in various operating states that can stabilize the temperature of the intake air during the correction period .

本発明の第1の形態に係る排気還流装置が組み込まれた内燃機関の一例を示す図。The figure which shows an example of the internal combustion engine in which the exhaust gas recirculation apparatus which concerns on the 1st form of this invention was integrated. 低圧EGR弁の開度と第1EGRガスの流量との対応関係の一例を示す図。The figure which shows an example of the correspondence of the opening degree of a low pressure EGR valve, and the flow volume of 1st EGR gas. 第1EGRガスの流量と吸気温度との関係の一例を示す図。The figure which shows an example of the relationship between the flow volume of 1st EGR gas, and intake air temperature. 図1のECUが実行する対応関係学習ルーチンを示すフローチャート。The flowchart which shows the correspondence learning routine which ECU of FIG. 1 performs. 本発明の第2の形態に係る排気還流装置が組み込まれた内燃機関の一例を示す図。The figure which shows an example of the internal combustion engine in which the exhaust gas recirculation apparatus which concerns on the 2nd form of this invention was integrated. 図5のECUが実行する対応関係学習ルーチンを示すフローチャート。The flowchart which shows the correspondence learning routine which ECU of FIG. 5 performs. 各EGRモードとエンジンの運転状態との対応関係の一例を示す図。The figure which shows an example of the correspondence of each EGR mode and the driving | running state of an engine. 図5のエンジンにおける各部のガス流れを示す図。The figure which shows the gas flow of each part in the engine of FIG.

符号の説明Explanation of symbols

1 内燃機関
3 吸気通路
4 排気通路
7 スロットル弁
10 排気浄化触媒
20 低圧EGR通路(第1EGR通路)
21 高圧EGR通路(第2EGR通路)
23 低圧EGR弁
24 高圧EGR弁
30 エンジンコントロールユニット(記憶手段、補正手段)
32 吸気温センサ(検出手段)
1 Internal combustion engine 3 Intake passage 4 Exhaust passage 7 Throttle valve 10 Exhaust purification catalyst 20 Low pressure EGR passage (first EGR passage)
21 High pressure EGR passage (second EGR passage)
23 low-pressure EGR valve 24 the high-pressure EGR valve 30 engine control unit (storage means, correcting hand stage)
32 Intake air temperature sensor (detection means)

Claims (4)

排気通路から排気の一部を取り出して吸気通路に導入するための第1EGR通路と、前記第1EGR通路の排気取り出し位置よりも排気通路の上流に排気取り出し位置が設けられるとともに前記第1EGR通路の排気導入位置よりも吸気通路の下流に排気導入位置が設けられる第2EGR通路と、前記第1EGR通路を介して前記吸気通路に還流される排気の流量を調整する第1EGR弁と、前記第2EGR通路を介して前記吸気通路に還流される排気の流量を調整する第2EGR弁と、を備えた内燃機関の排気還流装置において、
前記第1EGR通路の排気導入位置よりも吸気通路の下流に配置され、前記吸気通路に導入される排気の流量に応じて変化する吸気の物理量を検出する検出手段と、前記内燃機関の運転状態が所定状態であり、かつ前記第2EGR弁の開度を全閉に維持させた状態において前記所定状態に対応した目標流量の排気が前記第1EGR通路を介して前記吸気通路に導入されるように前記第1EGR弁の開度を調整する適合を行ったときの前記第1EGR弁の開度が目標開度として記憶されるとともにその適合時に前記検出手段にて検出された前記吸気の物理量の値が基準値として記憶されている記憶手段と、前記第1EGR弁の開度を前記目標開度に調整するとともに前記第2EGR弁の開度を全閉に調整し、かつ前記内燃機関の運転状態を前記所定状態に調整した場合に前記検出手段により検出された前記吸気の物理量の値と前記記憶手段に記憶されている前記基準値との差に基づいて前記第1EGR弁の開度と前記第1EGR通路を介して前記吸気通路に導入される排気である第1EGRガスの流量との対応関係を補正する補正手段と、を備えていることを特徴とする内燃機関の排気還流装置。
A first EGR passage for extracting a part of the exhaust from the exhaust passage and introducing it into the intake passage, and an exhaust extraction position is provided upstream of the exhaust passage from the exhaust extraction position of the first EGR passage, and the exhaust of the first EGR passage A second EGR passage in which an exhaust introduction position is provided downstream from the introduction position, a first EGR valve for adjusting a flow rate of exhaust gas recirculated to the intake passage through the first EGR passage, and the second EGR passage. An exhaust gas recirculation device for an internal combustion engine, comprising: a second EGR valve that adjusts a flow rate of exhaust gas recirculated to the intake passage through
A detecting means disposed downstream of the intake passage from the exhaust introduction position of the first EGR passage and detecting a physical quantity of intake air that changes in accordance with a flow rate of the exhaust gas introduced into the intake passage; and an operating state of the internal combustion engine. The exhaust gas having a target flow rate corresponding to the predetermined state is introduced into the intake passage through the first EGR passage in a predetermined state and in a state where the opening degree of the second EGR valve is kept fully closed. The opening degree of the first EGR valve when the adjustment for adjusting the opening degree of the first EGR valve is performed is stored as a target opening degree, and the physical quantity value of the intake air detected by the detecting means at the time of the adaptation is used as a reference. Storage means stored as a value; adjusting the opening of the first EGR valve to the target opening; adjusting the opening of the second EGR valve to fully closed; The opening degree of the first EGR valve and the first EGR passage based on the difference between the value of the physical quantity of the intake air detected by the detection means and the reference value stored in the storage means when adjusted to a constant state An exhaust gas recirculation device for an internal combustion engine, comprising: correction means for correcting a correspondence relationship with a flow rate of the first EGR gas that is exhaust gas introduced into the intake passage through the exhaust gas.
排気通路から排気の一部を取り出して吸気通路に導入するための第1EGR通路と、前記第1EGR通路の排気取り出し位置よりも排気通路の上流に排気取り出し位置が設けられるとともに前記第1EGR通路の排気導入位置よりも吸気通路の下流に排気導入位置が設けられる第2EGR通路と、前記第1EGR通路を介して前記吸気通路に還流される排気の流量を調整する第1EGR弁と、前記第2EGR通路を介して前記吸気通路に還流される排気の流量を調整する第2EGR弁と、を備えた内燃機関の排気還流装置において、
前記第2EGR通路の排気導入位置よりも吸気通路の下流に配置され、前記吸気通路に導入される排気の流量に応じて変化する吸気の物理量を検出する検出手段と、前記内燃機関の運転状態が所定状態であり、かつ前記第1EGR弁の開度を全閉に維持させた状態において前記所定状態に対応した目標流量の排気が前記第2EGR通路を介して前記吸気通路に導入されるように前記第2EGR弁の開度を調整する適合を行ったときの前記第2EGR弁の開度が目標開度として記憶されるとともにその適合時に前記検出手段にて検出された前記吸気の物理量の値が基準値として記憶されている記憶手段と、前記第1EGR弁の開度を全閉に調整するとともに前記第2EGR弁の開度を前記目標開度に調整し、かつ前記内燃機関の運転状態を前記所定状態に調整した場合に前記検出手段により検出された前記吸気の物理量の値と前記記憶手段に記憶されている前記基準値との差に基づいて前記第2EGR弁の開度と前記第2EGR通路を介して前記吸気通路に導入される排気である第2EGRガスの流量との対応関係を補正する補正手段と、を備えていることを特徴とする内燃機関の排気還流装置。
A first EGR passage for extracting a part of the exhaust from the exhaust passage and introducing it into the intake passage, and an exhaust extraction position is provided upstream of the exhaust passage from the exhaust extraction position of the first EGR passage, and the exhaust of the first EGR passage A second EGR passage in which an exhaust introduction position is provided downstream from the introduction position, a first EGR valve for adjusting a flow rate of exhaust gas recirculated to the intake passage through the first EGR passage, and the second EGR passage. An exhaust gas recirculation device for an internal combustion engine, comprising: a second EGR valve that adjusts a flow rate of exhaust gas recirculated to the intake passage through
A detecting means disposed downstream of the intake passage from the exhaust introduction position of the second EGR passage and detecting a physical quantity of intake air that changes in accordance with a flow rate of the exhaust gas introduced into the intake passage; and an operating state of the internal combustion engine. The exhaust gas having a target flow rate corresponding to the predetermined state is introduced into the intake passage through the second EGR passage in a predetermined state and in a state in which the opening degree of the first EGR valve is kept fully closed. The opening degree of the second EGR valve when the adjustment for adjusting the opening degree of the second EGR valve is performed is stored as a target opening degree, and the value of the physical quantity of the intake air detected by the detection means at the time of the adaptation is used as a reference Storage means stored as a value, the opening degree of the first EGR valve is adjusted to be fully closed, the opening degree of the second EGR valve is adjusted to the target opening degree, and the operating state of the internal combustion engine is The opening degree of the second EGR valve and the second EGR passage based on the difference between the value of the physical quantity of the intake air detected by the detection means and the reference value stored in the storage means when adjusted to a constant state An exhaust gas recirculation device for an internal combustion engine, comprising: correction means for correcting a correspondence relationship with a flow rate of the second EGR gas that is exhaust gas introduced into the intake passage via the exhaust gas.
前記吸気の物理量は吸気の温度であり、
前記補正手段は、前記検出手段により検出された吸気の温度が前記記憶手段に記憶されている基準値より高い場合は補正対象のEGR弁が設けられたEGR通路を介して前記吸気通路に導入される排気の流量が減少するように前記補正対象のEGR弁の開度とそのEGR弁が設けられたEGR通路を介して前記吸気通路に導入される排気の流量との対応関係を補正することを特徴とする請求項1又は2に記載の内燃機関の排気還流装置。
The physical quantity of the intake air is the intake air temperature,
The correction means is introduced into the intake passage through an EGR passage provided with an EGR valve to be corrected when the temperature of the intake air detected by the detection means is higher than a reference value stored in the storage means. Correcting the correspondence between the opening degree of the EGR valve to be corrected and the flow rate of the exhaust gas introduced into the intake passage through the EGR passage provided with the EGR valve so that the flow rate of the exhaust gas is reduced. The exhaust gas recirculation device for an internal combustion engine according to claim 1 or 2, wherein the exhaust gas recirculation device is an internal combustion engine.
前記吸気の物理量は、吸気の圧力又は吸気の流量であることを特徴とする請求項1又は2に記載の内燃機関の排気還流装置。 The exhaust gas recirculation device for an internal combustion engine according to claim 1 , wherein the physical quantity of the intake air is an intake air pressure or an intake air flow rate.
JP2007114159A 2007-04-24 2007-04-24 Exhaust gas recirculation device for internal combustion engine Expired - Fee Related JP4858289B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007114159A JP4858289B2 (en) 2007-04-24 2007-04-24 Exhaust gas recirculation device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007114159A JP4858289B2 (en) 2007-04-24 2007-04-24 Exhaust gas recirculation device for internal combustion engine

Publications (2)

Publication Number Publication Date
JP2008267335A JP2008267335A (en) 2008-11-06
JP4858289B2 true JP4858289B2 (en) 2012-01-18

Family

ID=40047129

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007114159A Expired - Fee Related JP4858289B2 (en) 2007-04-24 2007-04-24 Exhaust gas recirculation device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP4858289B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016113959A (en) * 2014-12-15 2016-06-23 三菱自動車工業株式会社 Exhaust gas recirculation control device
JP2016113960A (en) * 2014-12-15 2016-06-23 三菱自動車工業株式会社 Exhaust gas recirculation control device

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5476359B2 (en) * 2011-11-22 2014-04-23 本田技研工業株式会社 Pressure estimation device for internal combustion engine
US10508606B2 (en) * 2014-10-22 2019-12-17 Ge Global Sourcing Llc Method and systems for airflow control
JP6487981B1 (en) * 2017-09-26 2019-03-20 株式会社Subaru EGR control device
EP4026998A4 (en) * 2019-09-06 2022-09-28 NISSAN MOTOR Co., Ltd. Egr control method and egr control apparatus
JP7243648B2 (en) * 2020-01-24 2023-03-22 トヨタ自動車株式会社 internal combustion engine control system

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63143373A (en) * 1986-12-06 1988-06-15 Mazda Motor Corp Exhaust gas recirculation device for engine
JPH1077883A (en) * 1996-08-30 1998-03-24 Suzuki Motor Corp Air-fuel ratio control device for internal combustion engine
JP3518203B2 (en) * 1996-11-14 2004-04-12 トヨタ自動車株式会社 Internal combustion engine with EGR device
JP4042649B2 (en) * 2003-08-29 2008-02-06 トヨタ自動車株式会社 Internal combustion engine
JP2006249962A (en) * 2005-03-09 2006-09-21 Toyota Motor Corp Exhaust gas recirculation controller for internal combustion engine

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016113959A (en) * 2014-12-15 2016-06-23 三菱自動車工業株式会社 Exhaust gas recirculation control device
JP2016113960A (en) * 2014-12-15 2016-06-23 三菱自動車工業株式会社 Exhaust gas recirculation control device

Also Published As

Publication number Publication date
JP2008267335A (en) 2008-11-06

Similar Documents

Publication Publication Date Title
JP4380754B2 (en) Exhaust gas recirculation device for internal combustion engine
JP4595701B2 (en) Control device for internal combustion engine having supercharger with electric motor
US7801669B2 (en) Exhaust gas control system for internal combustion engine
US7895838B2 (en) Exhaust gas recirculation apparatus of an internal combustion engine and control method thereof
EP2532867B1 (en) An exhaust gas recirculation system for an internal combustion engine
RU2719200C2 (en) Method of open and closed control of exhaust gas recirculation system (versions)
JP4858289B2 (en) Exhaust gas recirculation device for internal combustion engine
EP2518291B1 (en) Internal combustion engine control apparatus
US9228508B2 (en) Method for determining the low pressure exhaust gas recirculation mass flow in the air system of an internal combustion engine
US10309298B2 (en) Control device of an engine
US11242813B2 (en) Internal combustion engine control device
JP2008274836A (en) Failure diagnostic device for intake air flow rate sensor
JP4798019B2 (en) Diesel engine control device
JP6323140B2 (en) EGR control device
JP2007303380A (en) Exhaust gas control device for internal combustion engine
JP5111534B2 (en) EGR control device for internal combustion engine
JP2011185160A (en) Abnormality detection device and abnormality detection method for egr system
JP2019203435A (en) Control device of engine
JP4561652B2 (en) Control device for internal combustion engine
US8855892B2 (en) Control device for internal combustion engine
JP2011226438A (en) Abnormality detection apparatus and method for egr system
JP2009013872A (en) Intake control device for internal combustion engine
JP2019152122A (en) Internal combustion engine system
JP4455947B2 (en) Fuel injection valve abnormality judgment system for compression ignition internal combustion engine
JP6311363B2 (en) Control device for internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100112

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110301

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110427

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110628

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110804

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111004

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111017

R151 Written notification of patent or utility model registration

Ref document number: 4858289

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141111

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees