JPS63143373A - Exhaust gas recirculation device for engine - Google Patents

Exhaust gas recirculation device for engine

Info

Publication number
JPS63143373A
JPS63143373A JP61291194A JP29119486A JPS63143373A JP S63143373 A JPS63143373 A JP S63143373A JP 61291194 A JP61291194 A JP 61291194A JP 29119486 A JP29119486 A JP 29119486A JP S63143373 A JPS63143373 A JP S63143373A
Authority
JP
Japan
Prior art keywords
exhaust gas
exhaust
recirculation
temperature
engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61291194A
Other languages
Japanese (ja)
Inventor
Tsugio Hatsuhira
次男 服平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP61291194A priority Critical patent/JPS63143373A/en
Publication of JPS63143373A publication Critical patent/JPS63143373A/en
Pending legal-status Critical Current

Links

Landscapes

  • Exhaust-Gas Circulating Devices (AREA)

Abstract

PURPOSE:To reduce the NOx exhaust quantity furthermore by increase- correcting the recirculation quantity of exhaust gas when the temperature of the exhaust gas the recirculation of which does not give influences onto the combustion faculty and stability of an engine is high. CONSTITUTION:In an exhaust gas recirculation device, a portion of the exhaust gas in an exhaust passage A is allowed to recirculate into an intake passage B by an exhaust recirculation means C, which is controlled by an exhaust recirculation control means D according to the engine operation state. In this case, an exhaust temperature detecting means E for detecting the temperature of the exhaust gas (or the related temperature) is installed. A recirculation quantity correcting means F corrects the exhaust gas recirculation quantity by the exhaust quantity recirculation control means D or the exhaust recirculation means C according to the detected exhaust temperature. The correction is executed so that the exhaust gas recirculation flow rate is increased when the exhaust gas temperature is higher than the standard temperature corresponding to the engine operation state.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は排気ガスの一部を吸気通路に還流させることに
よりNOx  (窒素酸化物)の排出量を低減させるよ
うにしたエンジンの排気ガス還流装置に関する。
Detailed Description of the Invention (Industrial Application Field) The present invention relates to an engine exhaust gas recirculation system that reduces NOx (nitrogen oxide) emissions by recirculating a part of the exhaust gas to the intake passage. Regarding equipment.

(従来の技術) 自動車用等のエンジンにおいては、排気対策として、排
気ガスの一部を吸気通路に還流させて燃焼温度を抑制す
ることにより、NOxの排出量を低減する排気ガス還流
装置が備えられるが、この排気ガス還流は、一方におい
てエンジンの燃焼性ないし安定性或いは出力性能を低下
させる原因となる。そこで、例えば特開昭57−148
049号公報に示されているように、エンジンの運転領
域に応じて予め排気ガスの最適還流量(還流率)を設定
し、こ9設定した量となるように還流制御を行うことに
より、各領域でNOxの排出量を十分に低減しながら、
エンジンの安定性や出力性能に対する影響を最小限に抑
制することが行われる。
(Prior Art) Engines for automobiles, etc. are equipped with exhaust gas recirculation devices that reduce NOx emissions by recirculating part of the exhaust gas into the intake passage to suppress combustion temperature. However, on the one hand, this exhaust gas recirculation causes deterioration in the combustibility, stability, or output performance of the engine. Therefore, for example, JP-A-57-148
As shown in Publication No. 049, the optimal recirculation amount (recirculation rate) of exhaust gas is set in advance according to the operating range of the engine, and the recirculation is controlled to reach the set amount. While sufficiently reducing NOx emissions in the area,
The effect on engine stability and output performance is minimized.

(発明が解決しようとする問題点) しかし、上記のように各運転領域で最適排気ガス還流量
を設定しても、排気ガスの還流によるNo×排出吊の低
減とエンジンの安定性等とは本質的に両立しないもので
あるため、この2つの要求を常に満足させるのは困難で
あり、特にエンジン自体及び外的条件等のばらつきによ
り、ある場合はNOx排出量が十分に低減されず、他の
場合はエンジン安定性等が徒らに犠牲される、といった
問題が生じる。
(Problem to be solved by the invention) However, even if the optimal exhaust gas recirculation amount is set in each operating range as described above, the reduction of NOx emission hanging due to exhaust gas recirculation and the stability of the engine are not achieved. Since these two requirements are essentially incompatible, it is difficult to always satisfy these two requirements. In particular, due to variations in the engine itself and external conditions, in some cases NOx emissions may not be reduced sufficiently and in others. In this case, a problem arises in that engine stability etc. are needlessly sacrificed.

本発明は、排気ガスの還流によってNOX排出量を低減
させる場合における上記のような実情に対処するもので
、所要のエンジン安定性や出力性能等を維持しながらN
OX排出量を可能な限り低減させることをことを目的と
する。
The present invention addresses the above-mentioned situation when reducing NOx emissions by recirculating exhaust gas, and reduces NOx emissions while maintaining required engine stability and output performance.
The aim is to reduce OX emissions as much as possible.

(問題点を解決するための手段) 即ち、本発明に係るエンジンの排気ガス還流装置は、第
1図に示すように排気通路A内の排気ガスの一部を吸気
通路Bに還流する排気還流手段Cと、該手段Cによる排
気ガスの還流量をエンジンの運転状態に応じて制御する
排気還流制御手段りとが備えられた構成において、排気
ガスの温度(もしくはこれに関連する温度、以下同様)
を検出する排気温度検出手段Eと、該手段Eで検出され
る排気ガス温度に応じて上記排気還流制御手段りないし
排気還流手段Cによる排気ガス還流量を補正する還流間
補正手段Fとを備えたことを特徴とする。この還流間補
正手段Fは、具体的には、排気ガス温度がエンジンの運
転状態に応じた標準温度より高い場合に排気ガス還流R
を増量させるように動作する。
(Means for Solving the Problems) That is, the exhaust gas recirculation device for an engine according to the present invention has an exhaust gas recirculation system that recirculates part of the exhaust gas in the exhaust passage A to the intake passage B, as shown in FIG. In a configuration including a means C and an exhaust recirculation control means for controlling the amount of recirculation of exhaust gas by the means C according to the operating state of the engine, the temperature of the exhaust gas (or a temperature related thereto, hereinafter the same) is provided. )
and an inter-recirculation correction means F for correcting the amount of exhaust gas recirculated by the exhaust gas recirculation control means or the exhaust gas recirculation means C according to the exhaust gas temperature detected by the means E. It is characterized by: Specifically, this recirculation period correction means F adjusts the exhaust gas recirculation R when the exhaust gas temperature is higher than a standard temperature depending on the operating state of the engine.
It works to increase the amount of

(作′  用) 上記の構成によれば、排気ガスの還流間は排気還流制御
手段りにより運転状態に応じて制御されて、各運転状喋
で予め設定された最適の1とされるが、排気ガスの温度
が標準温度より高い時は、還流量補正手段Fにより上記
の設定優に対して増量されることになる。
(Operation) According to the above configuration, the exhaust gas recirculation period is controlled according to the operating condition by the exhaust gas recirculation control means, and is set to the optimal one preset for each operating condition. When the temperature of the exhaust gas is higher than the standard temperature, the recirculation amount correction means F increases the amount relative to the above-mentioned set value.

ところで、排気ガスの温度が高い時は、その一部が吸気
通路に還流されることにより燃料を加熱して気化、霧化
を促進させる効果が1qられ、この効果により排気還流
による燃焼性に対する悪影響が解消され或いは弱められ
ることになる。従って、排気ガスの温度が標準温度より
高い時に、上記のように遠amを増量しても燃焼性ない
しエンジンの安定性、出力性能等に対する影響が少なく
、その分だけNOx排出量が一層低減されることになる
By the way, when the temperature of exhaust gas is high, part of it is recirculated to the intake passage, which has the effect of heating the fuel and promoting vaporization and atomization, and this effect has a negative effect on combustibility due to exhaust gas recirculation. will be eliminated or weakened. Therefore, when the exhaust gas temperature is higher than the standard temperature, increasing the far am as described above has little effect on combustibility, engine stability, output performance, etc., and NOx emissions are reduced accordingly. That will happen.

(実  施  例ン 以下、本発明の実施例について説明する。(Example of implementation) Examples of the present invention will be described below.

第2図に示すようにエンジン1には吸、排気弁2.3を
介して燃焼室4に夫々連通する吸気通路5と排気通路6
とが設けられ、吸気通路5には上流側からエアクリーナ
7、エアフローメータ8及びスロットルバルブ9が配設
されていると共に、この実施例では該吸気通路5の下流
部が通路断面積の小さい低負荷用通路5aと通路断面積
の大きい高負荷用通路5bとに分岐されている。そして
、高負荷用通路5bにはアクチュエータ10により開閉
されるシャッタバルブ11が備えられていると共に、そ
の下流側に燃料噴射弁12が設置されている。
As shown in FIG. 2, the engine 1 includes an intake passage 5 and an exhaust passage 6, which communicate with the combustion chamber 4 via intake and exhaust valves 2.3, respectively.
An air cleaner 7, an air flow meter 8, and a throttle valve 9 are arranged in the intake passage 5 from the upstream side, and in this embodiment, the downstream part of the intake passage 5 has a small passage cross-sectional area and a low-load It is branched into a passage 5a for use and a passage 5b for high load with a large passage cross-sectional area. The high-load passage 5b is equipped with a shutter valve 11 that is opened and closed by an actuator 10, and a fuel injection valve 12 is installed downstream thereof.

また、上記吸気通路5と排気通路6との間には両通路5
.6を連通させる排気還流通路(以下、EGR通路とい
う)13が設けられ、該通路13上に排気通路6側から
吸気通路5側へ流れる排気ガスの還流1 (EGR量)
を制御する排気還流制御弁(EGR弁)14が介設され
ていると共に、該弁14の上流側(排気通路6側)に排
気ガスの温度を検出する排気温度センサ15が設置され
ている。
Further, between the intake passage 5 and the exhaust passage 6, both passages 5
.. An exhaust gas recirculation passage (hereinafter referred to as an EGR passage) 13 is provided which communicates the exhaust gas recirculation passage 1 (EGR amount) from the exhaust passage 6 side to the intake passage 5 side on the passage 13.
An exhaust gas recirculation control valve (EGR valve) 14 is provided to control the exhaust gas recirculation, and an exhaust temperature sensor 15 is installed upstream of the valve 14 (on the exhaust passage 6 side) to detect the temperature of the exhaust gas.

一方、このエンジン1には上記シャッタバルブ11の開
閉制御と、燃料噴射弁12からの燃料噴射量制御と、E
GR弁14によるEGRffl制御とを行うコントロー
ルユニット20が備えられ、該ユニット20に上記エア
フローメータ8からの吸入空気量信号aと、ディストリ
ビュータ21からのエンジン回転数信号すと、上記排気
温度センサ15からの排気温度信号Cとが入力されるよ
うになっている。
On the other hand, this engine 1 has functions such as opening/closing control of the shutter valve 11, fuel injection amount control from the fuel injection valve 12, and E
A control unit 20 is provided that performs EGRffl control using the GR valve 14, and the unit 20 receives an intake air amount signal a from the air flow meter 8, an engine rotational speed signal from the distributor 21, and receives an intake air amount signal a from the exhaust temperature sensor 15. The exhaust gas temperature signal C is inputted.

そして、このコントロールユニット20は、上記吸入空
気量信号aとエンジン回転数信号すとに基いてエンジ夛
負荷に対応する1サイクル当りに燃焼室4に供給される
空気量を算出すると共に、これに対応する燃料噴射Mを
設定し、これに所定の補正を加えた上で各気筒の燃料噴
射弁12・・・12に燃料噴射信号d・・・dを出力す
るようになっている。また、上記1サイクル当りの空気
量に対応するエンジン負荷が低負荷の時にはシャッタバ
ルブ11のアクチュエータ10に駆動信号eを出力して
高負荷用通路5bを遮断させ、これにより吸入空気mの
少ない低負荷時に通路断面積の小さい低負荷用通路5a
のみから空気を供給して燃焼空4内にスワールを形成し
、低負荷時における燃焼性を改善するようになっている
Then, this control unit 20 calculates the amount of air supplied to the combustion chamber 4 per cycle corresponding to the engine load based on the intake air amount signal a and the engine speed signal S, and also calculates the amount of air supplied to the combustion chamber 4 per cycle corresponding to the engine load. After setting the corresponding fuel injection M and adding a predetermined correction to this, fuel injection signals d...d are output to the fuel injection valves 12...12 of each cylinder. Further, when the engine load corresponding to the amount of air per cycle is low, a drive signal e is output to the actuator 10 of the shutter valve 11 to shut off the high load passage 5b. Low-load passage 5a with a small passage cross-sectional area when loaded
Air is supplied from the combustion chamber 4 to form a swirl in the combustion air 4, thereby improving combustion performance at low loads.

一方、本発明の特徴部分であるEGR制御については、
コントロールユニット20は第3図に示すフローチャー
トに従って動作する。次にこの動作について説明すると
、コントロールユニット20は、先ずフローチャートの
ステップS1で上記信号a、bに基づいてエンジン回転
数とエンジン負荷とを読込み、次いでステップS2でこ
れらの値によって示されるエンジンの現実の運転領域が
予め設定されたEGR領域に属するか否かを判定する。
On the other hand, regarding EGR control, which is a characteristic part of the present invention,
The control unit 20 operates according to the flowchart shown in FIG. Next, to explain this operation, the control unit 20 first reads the engine speed and engine load based on the above signals a and b in step S1 of the flowchart, and then reads the actual engine speed indicated by these values in step S2. It is determined whether or not the operating range belongs to a preset EGR range.

そして、EGRiiii!に属さない場合はステップS
3でEGRffiVを零とする。一方、運転領域がEG
R領域に属する時は、ステップS4で上記回転数と負荷
とに応じて予め設定されたマツプから基準EGRIVo
と基準排気温度TOとを読取る。これらのマツプは、基
本的に高負荷高回転側はど基IEGRfiVoを多く、
また基準排気温度Toを高く設定したもので、エンジン
の各種条件が標準的な場合ものである。
And EGRiii! If it does not belong to step S
3, set EGRffiV to zero. On the other hand, the driving range is EG
When it belongs to the R region, the reference EGRIVo is determined from a map preset according to the rotation speed and load in step S4.
and the reference exhaust temperature TO. These maps basically have a lot of IEGRfiVo on the high-load, high-speed side,
Further, the reference exhaust temperature To is set high, and the various engine conditions are standard.

また、コントロールユニット20はステップS5で排気
温度センサ15からの信号Cに基づいてEGR通路13
内の排気ガスの温度Tを検出する。
Further, the control unit 20 controls the EGR passage 13 based on the signal C from the exhaust gas temperature sensor 15 in step S5.
Detects the temperature T of the exhaust gas inside.

そして、ステップS6でこの温度Tと上記マツプから読
取った基準排気温度TOとを比較し、両者が等しい時は
ステップS7でEGRfMVを同じくマツプから読取っ
た基準EGR量vOに設定する。
Then, in step S6, this temperature T is compared with the reference exhaust gas temperature TO read from the map, and if the two are equal, then in step S7 EGRfMV is set to the reference EGR amount vO also read from the map.

そして、ステップS8でこの慢■0となるように上記E
GR通路13上のEGR弁14に制御信号fを出力する
Then, in step S8, the above E is set so that this arrogance becomes 0.
A control signal f is output to the EGR valve 14 on the GR passage 13.

一方、上記ステップS6で実際の排気温度Tとマツプか
ら読取った基準排気温度TOとが等しくない場合は、ス
テップS9.S10に従って両温度の差AT(T−To
)を算出すると共に、エンジン回転数と負荷とに応じて
予め設定された温度差1℃当りのEGR補正量AVをマ
ツプから読取る。
On the other hand, if the actual exhaust gas temperature T and the reference exhaust gas temperature TO read from the map are not equal in step S6, step S9. According to S10, the difference AT (T-To
) is calculated, and the EGR correction amount AV per 1° C. temperature difference, which is preset according to the engine speed and load, is read from the map.

このマツプにおいても、高負荷高回転側はど上記補正m
AVが大きくなるように設定されている。
In this map as well, where is the high load, high rotation side?
The AV is set to be large.

そして、コントロールユニット20は、ステップS11
で上記温度差ATとEGR補正量AVとを用いて基準E
GR値Voを次式に従って補正して最終EGRffiV
を求め、ステップS8でこの糟となるように上記EGR
弁14に制御信号「を出力する。
Then, the control unit 20 performs step S11.
Then, using the above temperature difference AT and EGR correction amount AV, the reference E
The final EGRffiV is obtained by correcting the GR value Vo according to the following formula.
is calculated, and in step S8, the above EGR is
A control signal "is output to the valve 14.

式:V=Vo+AT−AV これにより、排気温度Tが基準温度TOより高い場合に
、その差に応じてEGRffiVが増量されることにな
る。また、該排気温度Tが基準温度TOより低い場合(
AT<O)は、EGR量Vが減量されることになる。
Formula: V=Vo+AT-AV As a result, when the exhaust gas temperature T is higher than the reference temperature TO, EGRffiV is increased according to the difference. Also, if the exhaust gas temperature T is lower than the reference temperature TO (
AT<O), the EGR amount V is reduced.

ところで、エンジン運転状態の安定性とEGR率とは第
4図に示すような関係にあり、安定性限界に達するEG
R量が排気温度が高いほど多くなる。従って、上記のよ
うに排気温度Tが高い場合にEGR量Vを増量してもエ
ンジン運転状態の安定性を損うことがなく、またEGR
率とNOx排出量とは第5図に示すような関係にあるか
ら、排気温度Tが高い場合にEGR量Vを増量すること
により、エンジン運転状態の安定性を維持しながらNO
x排出量を低減させることが可能となる。
By the way, there is a relationship between the stability of the engine operating state and the EGR rate as shown in Figure 4, and when the EGR reaches its stability limit,
The R amount increases as the exhaust temperature increases. Therefore, as mentioned above, even if the EGR amount V is increased when the exhaust gas temperature T is high, the stability of the engine operating condition will not be impaired, and the EGR
Since the relationship between the rate and the amount of NOx emissions is shown in Figure 5, by increasing the EGR amount V when the exhaust temperature T is high, NOx can be reduced while maintaining the stability of the engine operating condition.
It becomes possible to reduce x emissions.

尚、この実施例では上記温度差WIT)1℃当高負荷高
回転領域で排気温度Tが基準温度Toより高い場合に、
このNOxの排出を効果的に抑制することが可能となる
。また、排気温度Tが基準温度Toより低い場合は、E
GRIVが減量されることにより所要のエンジン安定性
が確保される一方で、NOx排出量が増大することにな
るが、基準EGR量Voを予め十分な値に設定しておく
ことによりNOX排出量を許容限度以内とすることがで
きる。
In this embodiment, when the exhaust temperature T is higher than the reference temperature To in the high load, high rotation region, when the temperature difference WIT) is 1°C,
It becomes possible to effectively suppress the emission of NOx. Furthermore, if the exhaust gas temperature T is lower than the reference temperature To, E
While reducing GRIV will ensure the required engine stability, it will also increase NOx emissions; however, by setting the standard EGR amount Vo to a sufficient value in advance, NOx emissions can be reduced. It can be within the permissible limits.

また、この実施例においては、排気温度センサ15をE
GR通路13に配設し、直接排気温度を検出するように
したが、排気ガスを還流した後の燃焼室近傍の吸気通路
に温度センサを設け、該温度センサにより検出された温
度に基づいてEGR量を補正するようにしてもよく、こ
の場合、吸気温の影響を考慮した補正を行うことがより
好ましい。
Further, in this embodiment, the exhaust temperature sensor 15 is
Although it was arranged in the GR passage 13 to directly detect the exhaust gas temperature, a temperature sensor was installed in the intake passage near the combustion chamber after the exhaust gas was recirculated, and the EGR The amount may be corrected, and in this case, it is more preferable to perform the correction in consideration of the influence of the intake air temperature.

(発明の効果) 以上のように本発明によれば、エンジンの運転状態に応
じて排気ガスの還流量を制御するようにしたエンジンに
おいて、排気ガスの還流がエンジンの燃焼性ないし安定
性或いは出力性能に影響を及ぼすことが少ない排気ガス
の高温時に該排気ガスの還流量を増量するようにしたの
で、上記エンジンの安定性等を損うことなくNOxOx
排出一層低減することが可能となる。これにより、安定
性や出力性能等のエンジン性能と排気浄化性能の両者に
優れたエンジンが実現されることになる。
(Effects of the Invention) As described above, according to the present invention, in an engine in which the amount of recirculation of exhaust gas is controlled according to the operating state of the engine, the recirculation of exhaust gas affects the combustibility, stability, or output of the engine. Since the amount of recirculation of exhaust gas is increased when the exhaust gas is at high temperature, which has little effect on performance, NOxOx can be reduced without impairing the stability of the engine.
This makes it possible to further reduce emissions. This makes it possible to realize an engine that is excellent in both engine performance such as stability and output performance, and exhaust purification performance.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の全体構成図、第2図は本発明の実施例
に係るエンジンの制御システム図、第3図は該実施例に
おける排気還流制御の動作を示すフローチャート図、第
4図は本発明が前提とするEGR率とエンジン安定性の
関係を示すグラフ、第5図は同じ<、 E G R率と
NOX排気量の関係を示すグラフである。 1・・・エンジン、5・・・吸気通路、6・・・排気通
路、13.14・・・排気還流手段(EGR通路、EG
R弁)、15・・・排気温度検出手段(排気温度センサ
)、20・・・排気還流制御手段、還流量補正手段(コ
ントロールユニット)。 第3図 第4図 15図 ヒ(rkv
FIG. 1 is an overall configuration diagram of the present invention, FIG. 2 is a diagram of an engine control system according to an embodiment of the present invention, FIG. 3 is a flow chart diagram showing the operation of exhaust gas recirculation control in the embodiment, and FIG. A graph showing the relationship between the EGR rate and engine stability, which is a premise of the present invention, and FIG. 5 are graphs showing the relationship between the EGR rate and the NOx emissions. 1... Engine, 5... Intake passage, 6... Exhaust passage, 13.14... Exhaust gas recirculation means (EGR passage, EG
R valve), 15...Exhaust temperature detection means (exhaust temperature sensor), 20...Exhaust gas recirculation control means, recirculation amount correction means (control unit). Figure 3 Figure 4 Figure 15

Claims (1)

【特許請求の範囲】[Claims] (1)排気ガスの一部を吸気通路に還流する排気還流手
段と、エンジンの運転状態に応じて上記排気還流手段に
よる排気ガスの還流量を制御する排気還流制御手段と、
排気ガス温度に関連する温度を検出する排気温度検出手
段と、該検出手段で検出される排気ガス温度に関連する
温度が運転状態に応じた標準温度よりも高い時に上記排
気還流手段による排気ガスの還流量を増量させる還流量
補正手段とを有することを特徴とするエンジンの排気ガ
ス還流装置。
(1) an exhaust gas recirculation device that recirculates part of the exhaust gas to the intake passage; and an exhaust gas recirculation control device that controls the amount of exhaust gas recirculated by the exhaust gas recirculation device according to the operating state of the engine;
an exhaust gas temperature detection means for detecting a temperature related to the exhaust gas temperature; and an exhaust gas temperature detection means for detecting a temperature related to the exhaust gas temperature; An exhaust gas recirculation device for an engine, comprising a recirculation amount correction means for increasing a recirculation amount.
JP61291194A 1986-12-06 1986-12-06 Exhaust gas recirculation device for engine Pending JPS63143373A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61291194A JPS63143373A (en) 1986-12-06 1986-12-06 Exhaust gas recirculation device for engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61291194A JPS63143373A (en) 1986-12-06 1986-12-06 Exhaust gas recirculation device for engine

Publications (1)

Publication Number Publication Date
JPS63143373A true JPS63143373A (en) 1988-06-15

Family

ID=17765674

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61291194A Pending JPS63143373A (en) 1986-12-06 1986-12-06 Exhaust gas recirculation device for engine

Country Status (1)

Country Link
JP (1) JPS63143373A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007127043A (en) * 2005-11-02 2007-05-24 Mitsubishi Heavy Ind Ltd Intake device and gas engine equipped with same
JP2008267335A (en) * 2007-04-24 2008-11-06 Toyota Motor Corp Exhaust gas recirculation device for internal combustion engine

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5898637A (en) * 1981-12-07 1983-06-11 Nissan Motor Co Ltd Air-fuel ratio controlling device for internal combustion engine
JPS6040772A (en) * 1983-08-12 1985-03-04 Mikuni Kogyo Co Ltd Egr control device in internal-combustion engine
JPS6161975A (en) * 1984-09-03 1986-03-29 Yanmar Diesel Engine Co Ltd Decision method of misfiring in engine
JPS6130601B2 (en) * 1980-03-19 1986-07-15 En Chengu Chen
JPS6251727A (en) * 1985-08-29 1987-03-06 Toyota Central Res & Dev Lab Inc Stratified combustion engine

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6130601B2 (en) * 1980-03-19 1986-07-15 En Chengu Chen
JPS5898637A (en) * 1981-12-07 1983-06-11 Nissan Motor Co Ltd Air-fuel ratio controlling device for internal combustion engine
JPS6040772A (en) * 1983-08-12 1985-03-04 Mikuni Kogyo Co Ltd Egr control device in internal-combustion engine
JPS6161975A (en) * 1984-09-03 1986-03-29 Yanmar Diesel Engine Co Ltd Decision method of misfiring in engine
JPS6251727A (en) * 1985-08-29 1987-03-06 Toyota Central Res & Dev Lab Inc Stratified combustion engine

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007127043A (en) * 2005-11-02 2007-05-24 Mitsubishi Heavy Ind Ltd Intake device and gas engine equipped with same
JP2008267335A (en) * 2007-04-24 2008-11-06 Toyota Motor Corp Exhaust gas recirculation device for internal combustion engine

Similar Documents

Publication Publication Date Title
JPH10176568A (en) Fuel control device for internal combustion engine
JPS6335819B2 (en)
JPS6270652A (en) Exhaust gas recirculation control method for internal combustion engine
US20100115945A1 (en) Exhaust gas recirculation system and exhaust gas recirculation method for internal combustion engine
JPS63143373A (en) Exhaust gas recirculation device for engine
JP3005718B2 (en) Exhaust gas recirculation control system for diesel engine
JPH06323201A (en) Exhaust gas recirculation system of engine
JP3728930B2 (en) Exhaust gas recirculation control device for internal combustion engine
JP3743078B2 (en) In-cylinder internal combustion engine
KR102460277B1 (en) Eexhaust gas recirculation control method and system during high load operation and combustion engine vehicle including the same system
JP2002188524A (en) Egr control device for engine with turbocharger
JP2867816B2 (en) Air-fuel ratio control device for internal combustion engine
JPH0517394Y2 (en)
JP2590237B2 (en) Exhaust gas recirculation control system for diesel engine
JPS61155639A (en) Method for controlling idle of internal-combustion engine
JPH0410359Y2 (en)
JPH02275055A (en) Exhaust gas recirculation controller for engine
JPH04166633A (en) Air-fuel ratio control method for internal combustion engine
JPH03199653A (en) Atmospheric pressure detection for internal combustion engine
JPH0330601Y2 (en)
JP2001090595A (en) Control device for diesel engine
JPS587101Y2 (en) Engine ignition timing control device
JPH04140449A (en) Supercharge pressure control device of engine
JPS6267265A (en) Exhaust reflux controlling method for internal combustion engine
JPS63280828A (en) Air-fuel ratio correcting method