JP5111534B2 - EGR control device for internal combustion engine - Google Patents

EGR control device for internal combustion engine Download PDF

Info

Publication number
JP5111534B2
JP5111534B2 JP2010022650A JP2010022650A JP5111534B2 JP 5111534 B2 JP5111534 B2 JP 5111534B2 JP 2010022650 A JP2010022650 A JP 2010022650A JP 2010022650 A JP2010022650 A JP 2010022650A JP 5111534 B2 JP5111534 B2 JP 5111534B2
Authority
JP
Japan
Prior art keywords
egr
flow rate
valve
pressure
intake
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010022650A
Other languages
Japanese (ja)
Other versions
JP2011157942A (en
Inventor
隆信 市原
和彦 兼利
隆史 松村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Astemo Ltd
Original Assignee
Hitachi Automotive Systems Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Automotive Systems Ltd filed Critical Hitachi Automotive Systems Ltd
Priority to JP2010022650A priority Critical patent/JP5111534B2/en
Publication of JP2011157942A publication Critical patent/JP2011157942A/en
Application granted granted Critical
Publication of JP5111534B2 publication Critical patent/JP5111534B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Exhaust-Gas Circulating Devices (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Description

本発明は、内燃機関の排気ガスに含まれるNOx等の低減のためにEGR流量を制御するEGR制御装置に関する。   The present invention relates to an EGR control device that controls an EGR flow rate to reduce NOx and the like contained in exhaust gas of an internal combustion engine.

内燃機関(エンジン)の燃費向上のため、ディーゼルエンジンやリーンバーンエンジンが有望とされている。しかし、ディーゼルエンジンやリーンバーンエンジンは排気ガスにNOxを多く含む傾向がある。排気ガスに含まれるNOxを低減するには燃焼温度を低下させることが有効であり、排気ガスの一部を吸気側に戻して燃焼制御を行う排気ガス再循環(EGR)制御が従来より行われている。   Diesel engines and lean burn engines are considered promising for improving the fuel efficiency of internal combustion engines. However, diesel engines and lean burn engines tend to contain a lot of NOx in the exhaust gas. In order to reduce NOx contained in the exhaust gas, it is effective to lower the combustion temperature, and exhaust gas recirculation (EGR) control for performing combustion control by returning a part of the exhaust gas to the intake side has been conventionally performed. ing.

また、ガソリンエンジンではEGR導入によりノッキングの抑制,排気温度の低下を図り燃費を向上したエンジンが実用化されている。   In gasoline engines, the introduction of EGR has been put to practical use in which knocking is suppressed and exhaust temperature is lowered to improve fuel efficiency.

過給エンジンにおいては過給域で吸気管の圧力が増加すると必要なEGR量が得られない場合が有る。このため近年では過給器(コンプレッサ)上流にEGRを導入してEGR量を増加できる低圧EGRシステムの実用化が検討されている。   In a supercharged engine, if the pressure of the intake pipe increases in the supercharging region, the required EGR amount may not be obtained. Therefore, in recent years, practical application of a low pressure EGR system capable of increasing the EGR amount by introducing EGR upstream of the supercharger (compressor) has been studied.

特許文献1では吸入空気量センサと、吸気管に設けられる圧力センサによりEGR量を推定してEGR弁を制御するものが開示されている。   Patent Document 1 discloses an apparatus that estimates an EGR amount by an intake air amount sensor and a pressure sensor provided in an intake pipe and controls an EGR valve.

また、特許文献2では吸入空気量センサと、吸気管に設けられる酸素濃度センサの検出信号によりEGR量を推定してEGR弁を制御するものが開示されている。   Japanese Patent Application Laid-Open No. H10-228561 discloses an apparatus that estimates an EGR amount based on a detection signal from an intake air amount sensor and an oxygen concentration sensor provided in an intake pipe and controls an EGR valve.

特開平5−231244号公報JP-A-5-231244 特開2009−74459号公報JP 2009-74459 A

一般にEGR量を制御するためのEGR弁は、制御信号が入力されてから実際のEGR弁開度が目標値となるまでに応答遅れを生じる。このため加減速等の過渡運転時ではEGR量を速やかに推定してEGR弁を制御することが望ましい。   Generally, an EGR valve for controlling the EGR amount causes a response delay from when a control signal is input until the actual EGR valve opening reaches a target value. For this reason, it is desirable to control the EGR valve by quickly estimating the EGR amount during transient operation such as acceleration / deceleration.

上記特許文献1ではEGR量の推定のために吸気管に設けられる圧力センサを使用するが、吸気管圧力はスロットル弁下流の吸気管にEGRガスが充填されてから上昇するので、EGR量の推定に吸気管の容量に応じた応答遅れを生じる。これにより加減速等の過渡運転時にEGR量の推定値に誤差を生じることとなる。   In Patent Document 1, a pressure sensor provided in the intake pipe is used for estimating the EGR amount. However, since the intake pipe pressure rises after EGR gas is filled in the intake pipe downstream of the throttle valve, the EGR amount is estimated. A response delay corresponding to the capacity of the intake pipe is generated. As a result, an error occurs in the estimated value of the EGR amount during transient operation such as acceleration / deceleration.

上記特許文献2ではEGR量の推定のために酸素濃度センサを使用するが、酸素濃度センサは応答遅れが大きく、EGR量の推定に応答遅れを生じる。これにより加減速等の過渡運転時はEGR量の推定値に誤差を生じてしまう。   In Patent Document 2, an oxygen concentration sensor is used for estimating the EGR amount. However, the oxygen concentration sensor has a large response delay and causes a response delay in estimating the EGR amount. As a result, an error occurs in the estimated value of the EGR amount during transient operation such as acceleration / deceleration.

このため上記従来技術では過渡運転時にEGR量を排気ガス低減に適した目標値に制御できず、NOxやPMを多く排出してしまうという課題があった。   For this reason, the above-described prior art has a problem that the EGR amount cannot be controlled to a target value suitable for exhaust gas reduction during transient operation, and a large amount of NOx and PM are exhausted.

また、上記特許文献1の圧力センサによりEGR量を推定する方式では、バルブタイミングの機差ばらつき等によりEGR量が同一であっても吸気管圧力がばらつくためEGR量を精度良く推定することが困難であった。   Further, in the method of estimating the EGR amount using the pressure sensor disclosed in Patent Document 1, it is difficult to accurately estimate the EGR amount because the intake pipe pressure varies even if the EGR amount is the same due to variations in valve timing. Met.

さらに上記特許文献2の吸気管に設けられる酸素濃度センサによりEGR量を推定する方式においては、吸気管の酸素濃度が排気管に比べて高く、一般に酸素濃度が高い条件では酸素濃度センサの検出精度が低下するのでEGR量の推定精度が低下する。   Further, in the method of estimating the EGR amount by the oxygen concentration sensor provided in the intake pipe of Patent Document 2 above, the detection accuracy of the oxygen concentration sensor is generally high under the condition that the oxygen concentration of the intake pipe is higher than that of the exhaust pipe and the oxygen concentration is generally high. Therefore, the estimation accuracy of the EGR amount decreases.

このため上記従来技術では定常運転時でもEGR量の推定誤差を生じ、NOxやPMの排出量が増加する場合があった。   For this reason, in the above-described prior art, there is a case where an estimation error of the EGR amount occurs even during steady operation, and the amount of NOx and PM emissions increases.

本発明のEGR制御装置は、主にコンプレッサ上流にEGRガスを導入する低圧EGR通路を備えた内燃機関に適用され、EGR量を高応答かつ高精度に推定し、NOxやPMの排出量を低減することを目的とする。   The EGR control device of the present invention is mainly applied to an internal combustion engine having a low-pressure EGR passage that introduces EGR gas upstream of a compressor, and estimates the EGR amount with high response and high accuracy to reduce NOx and PM emissions. The purpose is to do.

上記課題を解決するための本発明の第1の構成は、排気管と吸気管を連通するEGR通路と、前記EGR通路に取り付けられたEGR弁と、前記吸気管に流入する吸入空気量を検出する空気量検出手段を備えた内燃機関に適用され、
前記吸気管と前記EGR通路の合流部下流の前記吸気管内に設けられる流量調節弁または絞り部と、前記流量調節弁または絞り部の上流位置の圧力と下流位置の圧力、または上流位置と下流位置の圧力差を検出する圧力検出手段と、前記吸気管内の吸気温度を検出する手段と、前記流量調節弁または絞り部の開口面積を算出する手段と、前記流量調節弁または絞り部の上流位置の圧力と下流位置の圧力差と、前記開口面積と、前記吸気温度から前記流量調節弁または絞り部を通過する混合ガスの流量を算出するガス流量算出手段と、前記混合ガスの流量と前記吸入空気量の差分で算出されるEGRガスの流量に応じて前記EGR弁の開度を制御する手段とで構成される。
The first configuration of the present invention for solving the above problem is to detect an EGR passage communicating the exhaust pipe and the intake pipe, an EGR valve attached to the EGR passage, and an intake air amount flowing into the intake pipe Applied to an internal combustion engine equipped with an air amount detecting means,
A flow rate adjusting valve or a throttle portion provided in the intake pipe downstream of the junction portion of the intake pipe and the EGR passage, a pressure at an upstream position and a pressure at a downstream position of the flow rate adjusting valve or the throttle portion, or an upstream position and a downstream position A pressure detecting means for detecting a pressure difference between the pressure adjusting means, a means for detecting an intake air temperature in the intake pipe, a means for calculating an opening area of the flow regulating valve or the throttle, and an upstream position of the flow regulating valve or the throttle. A gas flow rate calculating means for calculating a flow rate of the mixed gas passing through the flow rate adjusting valve or the throttle portion from the pressure difference between the pressure and the downstream position, the opening area, and the intake air temperature; the flow rate of the mixed gas and the intake air And means for controlling the opening degree of the EGR valve in accordance with the flow rate of the EGR gas calculated by the difference in amount.

本発明の第2の構成は、前記ガス流量算出手段が、前記EGR弁が閉じているときに、前記空気量検出手段による吸入空気量検出値より、前記混合ガスの流量算出値を校正するようにした。   In the second configuration of the present invention, the gas flow rate calculation means calibrates the flow rate calculation value of the mixed gas from the intake air amount detection value by the air amount detection means when the EGR valve is closed. I made it.

本発明の第3の構成は、前記ガス流量算出手段は、前記EGR弁が閉じている状態で、アイドリングを含む低負荷時、または減速時に前記空気量検出手段による吸入空気量の検出値より、前記混合ガスの流量算出値を校正するようにした。   According to a third configuration of the present invention, the gas flow rate calculation means is based on a detected value of the intake air amount by the air amount detection means when the EGR valve is closed and at a low load including idling or during deceleration. The flow rate calculation value of the mixed gas was calibrated.

本発明の第1のEGR制御装置の構成によれば、前記流量調節弁または絞り部の上流位置の圧力と下流位置の圧力差によりEGR量を高応答に推定することができ、加減速等の過渡運転時でもEGR量を排気ガス低減に最適な量に制御することができるので、NOx,PMの排出量を低減できる。   According to the configuration of the first EGR control device of the present invention, the EGR amount can be estimated with high response from the pressure difference between the upstream position and the downstream position of the flow rate adjusting valve or the throttle portion, and acceleration / deceleration, etc. Since the EGR amount can be controlled to an optimum amount for exhaust gas reduction even during transient operation, the NOx and PM emissions can be reduced.

本発明の第2のEGR制御装置の構成によれば、吸入空気量検出手段により混合ガス量の算出値を校正することによりEGR量を高精度に推定でき、常にEGR量を排気ガス低減に最適な量に制御することができるので、NOx,PMの排出量を低減できる。   According to the configuration of the second EGR control device of the present invention, the EGR amount can be estimated with high accuracy by calibrating the calculated value of the mixed gas amount by the intake air amount detecting means, and the EGR amount is always optimal for exhaust gas reduction. Since it can be controlled to an appropriate amount, NOx and PM emissions can be reduced.

本発明の第3のEGR制御装置の構成によれば、EGR弁を閉じた状態またはEGR弁を強制的に閉じた状態で前記校正を実施するにあたり、前記校正を低負荷時,減速時に実施することでEGR弁の洩れによるEGR量推定の誤差を低減できる。またEGR弁を強制的に閉じることによるNOx等の排出量の増加を防止できる。   According to the configuration of the third EGR control device of the present invention, when the calibration is performed with the EGR valve closed or the EGR valve closed forcibly, the calibration is performed at low load or deceleration. Thus, an error in estimating the EGR amount due to leakage of the EGR valve can be reduced. Further, it is possible to prevent an increase in the discharge amount of NOx and the like due to forcibly closing the EGR valve.

本発明のEGR制御装置によれば、EGR量を高応答かつ高精度に推定し、常に排気ガス低減に最適なEGR量に制御することができるので、過渡運転時や定常運転時のNOx,PMの排出量を低減することができる。   According to the EGR control device of the present invention, the EGR amount can be estimated with high response and high accuracy, and can be controlled to the optimum EGR amount for exhaust gas reduction at all times, so that NOx, PM during transient operation or steady operation Can be reduced.

本発明のEGR制御装置をエンジンに適用したときの構成例。The structural example when the EGR control apparatus of this invention is applied to an engine. 本発明のEGR制御装置のハード構成図。The hardware block diagram of the EGR control apparatus of this invention. 本発明のEGR制御装置のフローチャート。The flowchart of the EGR control apparatus of this invention. 本発明のEGR制御装置の補正特性を示す図。The figure which shows the correction | amendment characteristic of the EGR control apparatus of this invention. 本発明のEGR制御装置の校正部のフローチャート。The flowchart of the calibration part of the EGR control apparatus of this invention.

以下、本発明の実施例を説明する。   Examples of the present invention will be described below.

本発明のEGR制御装置をディーゼルエンジンに適用した実施例について説明する。ここで本発明のEGR制御装置はディーゼルエンジンに限定されず、EGR流量を制御するガソリンエンジンにも適用可能である。   An embodiment in which the EGR control device of the present invention is applied to a diesel engine will be described. Here, the EGR control device of the present invention is not limited to a diesel engine, but can also be applied to a gasoline engine that controls the EGR flow rate.

図1に示されるディーゼルエンジン(以下、エンジン1と云う)の吸入空気は、吸気管2に設けられるエアクリーナ3より取り込まれ、ターボチャージャ4のコンプレッサ4Aによって過給される。ここで吸入空気量は吸入空気量センサ15によって計測される。過給された空気はインタークーラ5によって冷却され、インテークマニホールド8を経て燃焼室9内に吸入される。吸入空気量はターボチャージャ4(可変容量)の過給効率およびスロットル弁6により制御される。スロットル弁6にはスロットル弁を駆動するためのモーター(図示略),スロットル開度を検出する開度センサ19が設けられる。   Intake air of a diesel engine (hereinafter referred to as engine 1) shown in FIG. 1 is taken in from an air cleaner 3 provided in an intake pipe 2 and is supercharged by a compressor 4 </ b> A of a turbocharger 4. Here, the intake air amount is measured by the intake air amount sensor 15. The supercharged air is cooled by the intercooler 5 and sucked into the combustion chamber 9 through the intake manifold 8. The intake air amount is controlled by the supercharging efficiency of the turbocharger 4 (variable capacity) and the throttle valve 6. The throttle valve 6 is provided with a motor (not shown) for driving the throttle valve and an opening sensor 19 for detecting the throttle opening.

エンジン1には燃焼室8内に燃料を噴射する燃料噴射弁10が取り付けられる。   A fuel injection valve 10 for injecting fuel into the combustion chamber 8 is attached to the engine 1.

排気管11から、インテークマニホールド8の集合部にEGRガスを導入する高圧EGR通路25が設けられ、高圧EGR通路25にはEGR弁26、およびEGRクーラー27が装着される。   A high-pressure EGR passage 25 for introducing EGR gas from the exhaust pipe 11 to the collecting portion of the intake manifold 8 is provided, and an EGR valve 26 and an EGR cooler 27 are attached to the high-pressure EGR passage 25.

排気管11のタービン4Bの下流には触媒28,DPF29が設けられる。DPF29の下流の排気管12からEGRガスを取り入れ、吸気管2のコンプレッサ4Aの上流にEGRガスを導入する低圧EGR通路13が設けられる。低圧EGR通路13にはEGR弁14,EGRクーラー17が設けられる。   A catalyst 28 and a DPF 29 are provided in the exhaust pipe 11 downstream of the turbine 4B. A low pressure EGR passage 13 is provided for taking EGR gas from the exhaust pipe 12 downstream of the DPF 29 and introducing EGR gas upstream of the compressor 4 </ b> A of the intake pipe 2. The low pressure EGR passage 13 is provided with an EGR valve 14 and an EGR cooler 17.

本発明のEGR制御装置では、吸入空気とEGRガスの混合ガスの流量を検出して、EGR流量を推定するため、スロットル弁6(吸気絞り部)の上流の吸気通路の圧力と、下流の吸気通路の圧力の圧力差を検出可能な圧力センサ20が設けられる。21,22は圧力導入部である。ここで本実施例の圧力センサ20はスロットル弁上流,下流の差圧を検出できるほか、スロットル弁上流の吸気通路の絶対圧も検出できる構成としている。上記絶対圧を検出するセンサは圧力センサ20(差圧センサ)とは別に設けるようにしても良い。また、スロットル弁6の上流の吸気通路の絶対圧力と、下流の吸気通路の絶対圧力を検出する圧力センサをそれぞれ設け、スロットル弁上流,下流の差圧を算出するようにしても良い。   In the EGR control device of the present invention, the pressure of the intake passage upstream of the throttle valve 6 (intake throttle portion) and the intake air downstream of the throttle valve 6 are estimated in order to detect the flow rate of the mixed gas of intake air and EGR gas and estimate the EGR flow rate. A pressure sensor 20 capable of detecting the pressure difference between the passages is provided. 21 and 22 are pressure introduction parts. Here, the pressure sensor 20 of the present embodiment is configured to detect not only the differential pressure upstream and downstream of the throttle valve, but also the absolute pressure of the intake passage upstream of the throttle valve. The sensor for detecting the absolute pressure may be provided separately from the pressure sensor 20 (differential pressure sensor). In addition, a pressure sensor that detects the absolute pressure of the intake passage upstream of the throttle valve 6 and the absolute pressure of the downstream intake passage may be provided to calculate the differential pressure upstream and downstream of the throttle valve.

インタークーラ5の下流には吸気温度センサ18が設けられる。   An intake air temperature sensor 18 is provided downstream of the intercooler 5.

エンジン制御装置30は、EGR制御装置の機能を含み、各センサの信号を取り込み、制御量を演算し各アクチュエータへ制御信号を出力する。   The engine control device 30 includes the function of the EGR control device, takes in signals from each sensor, calculates a control amount, and outputs a control signal to each actuator.

エンジン制御装置30の構成を図2に示す。エンジンのクランク角度位置,回転速度を検出するためのクランク角センサ(図示略),吸入空気量センサ15,吸気温度センサ18,スロットルセンサ19,圧力センサ20等の信号は入力回路31を介してマイクロコンピュータ32に取り込まれる。マイクロコンピュータ32にはCPU33,ROM(読み出し用メモリ)34,RAM(書き込み用メモリ)35を内蔵している。   The configuration of the engine control device 30 is shown in FIG. A crank angle sensor (not shown) for detecting the crank angle position and rotation speed of the engine, an intake air amount sensor 15, an intake air temperature sensor 18, a throttle sensor 19, a pressure sensor 20, and other signals are transmitted via an input circuit 31. It is captured by the computer 32. The microcomputer 32 includes a CPU 33, a ROM (read memory) 34, and a RAM (write memory) 35.

マイクロコンピュータ32では燃料噴射量(噴射弁パルス幅),スロットル弁開度(目標値),EGR弁開度(目標値)等が演算され、出力回路36を介して、燃料噴射弁10,スロットル弁6,EGR弁14およびEGR弁26等の各アクチュエータに出力される。   The microcomputer 32 calculates the fuel injection amount (injection valve pulse width), the throttle valve opening (target value), the EGR valve opening (target value), etc., and outputs the fuel injection valve 10 and the throttle valve via the output circuit 36. 6, output to each actuator such as the EGR valve 14 and the EGR valve 26.

本発明のEGR制御装置(エンジン制御装置)におけるEGR流量の推定方法について図3のフローチャートにより説明する。   A method for estimating the EGR flow rate in the EGR control device (engine control device) of the present invention will be described with reference to the flowchart of FIG.

以下のEGR流量の推定の演算は、所定の周期ごとに実施され、例としては10msec周期ごとに実施される。   The following calculation for estimating the EGR flow rate is performed every predetermined cycle, for example, every 10 msec cycle.

ステップ100で低圧EGR通路よりEGRガスを導入する条件であるかを判定する。一般に、コンプレッサ4Aによる過給でインテークマニホールド8の圧力が上昇し、排気管との差圧が減少することで必要なEGR流量が得られないときに低圧EGR通路よりEGRガスを導入する。   In step 100, it is determined whether or not the condition for introducing EGR gas from the low pressure EGR passage is satisfied. In general, EGR gas is introduced from the low-pressure EGR passage when the pressure of the intake manifold 8 increases due to supercharging by the compressor 4A and the differential pressure with respect to the exhaust pipe decreases and the required EGR flow rate cannot be obtained.

EGRガスを導入する条件であれば、ステップ110,ステップ120でEGR流量を推定するために必要なパラメータ:吸入空気量Qa,吸気温度Tt,スロットル弁開度α、およびスロットル弁上流と下流の圧力差ΔP,スロットル弁上流の絶対圧Ptを各センサの信号より取り込む。   If the conditions for introducing the EGR gas are satisfied, parameters required for estimating the EGR flow rate in step 110 and step 120: intake air amount Qa, intake air temperature Tt, throttle valve opening α, and pressure upstream and downstream of the throttle valve The difference ΔP and the absolute pressure Pt upstream of the throttle valve are taken in from the signals of the sensors.

次にステップ130で排気ガス低減に適した目標EGR率Rtを読み込む。目標EGR率は予めメモリ(ROM34)に記憶されており、一般に負荷,回転数に対するマップで設定される。   Next, at step 130, a target EGR rate Rt suitable for exhaust gas reduction is read. The target EGR rate is stored in advance in a memory (ROM 34) and is generally set as a map for the load and the rotational speed.

次にステップ140で、吸入空気量Qaと目標EGR率Rtより目標EGR流量Qetを下式で算出する。   Next, at step 140, the target EGR flow rate Qet is calculated from the intake air amount Qa and the target EGR rate Rt by the following equation.

Qet=Qa×(Rt/1−Rt) …(式1)
ここで吸入空気量は、ターボチャージャ(過給効率)やスロットル弁の制御により排気ガス低減に適した量に調節されている。
Qet = Qa × (Rt / 1−Rt) (Formula 1)
Here, the intake air amount is adjusted to an amount suitable for exhaust gas reduction by controlling the turbocharger (supercharging efficiency) and the throttle valve.

次にステップ150で、吸入空気とEGRガスの混合ガス量(全吸入ガス量)の推定値Qgを、スロットル弁上流と下流の圧力差ΔP,スロットル弁上流の絶対圧Pt,吸気温度Tt、およびスロットル弁の開口面積(絞り開口面積)A2より下式で算出する。 Next, at step 150, the estimated value Qg of the mixed gas amount (total intake gas amount) of the intake air and the EGR gas is determined from the pressure difference ΔP upstream and downstream of the throttle valve, the absolute pressure Pt upstream of the throttle valve, the intake air temperature Tt, and The throttle valve opening area (throttle opening area) A 2 is calculated by the following equation.

Figure 0005111534
Figure 0005111534

ここでスロットル弁の開口面積A2は、スロットル弁開度センサによるスロットル開度検出値より算出される。 Here, the opening area A 2 of the throttle valve is calculated from the detected value of the throttle opening by the throttle valve opening sensor.

ここで圧力差ΔPよる全吸入ガス量の推定精度を確保するため、ΔPが所定値以上となるようスロットル弁開度が制御される。   Here, in order to ensure the estimation accuracy of the total intake gas amount based on the pressure difference ΔP, the throttle valve opening is controlled so that ΔP becomes a predetermined value or more.

このときΔPが大きいとポンプ損失が増加するので、全吸入ガス量が変動したときにスロットル弁開度を調整してΔPを必要最小限の値となるように制御する。具体的には全吸入ガス量が少ないときは、ガス量検出のために必要な圧力差を確保するためスロットル弁開度を小さくし、全吸入ガス量が多いときは、スロットル弁の圧損によりポンプ損失が増加しないようスロットル弁開度を大きくする。   At this time, if ΔP is large, the pump loss increases. Therefore, when the total intake gas amount fluctuates, the throttle valve opening is adjusted to control ΔP to a necessary minimum value. Specifically, when the total intake gas amount is small, the throttle valve opening is reduced to ensure the pressure difference necessary for gas amount detection. When the total intake gas amount is large, the pump is caused by pressure loss of the throttle valve. Increase the throttle valve opening so that the loss does not increase.

また、ΔPは吸気脈動の影響で変動するので圧力センサ信号にフィルタ処理等を実施して変動分を低減することが望ましい。   Moreover, since ΔP varies due to the influence of intake pulsation, it is desirable to reduce the variation by performing filter processing or the like on the pressure sensor signal.

次にステップ160で現在EGR流量の推定値Qeを、全吸入ガス量推定値Qgと吸入空気量Qaの差(Qg−Qa)で算出する。   Next, at step 160, the estimated value Qe of the current EGR flow rate is calculated by the difference (Qg−Qa) between the total intake gas amount estimated value Qg and the intake air amount Qa.

ここで、吸入空気量Qaは吸気管の吸入空気量センサ位置からスロットル弁までの輸送遅れを考慮して補正するようにしても良い。   Here, the intake air amount Qa may be corrected in consideration of transport delay from the intake air amount sensor position of the intake pipe to the throttle valve.

このようにしてスロットル弁上流と下流の圧力差より算出されるEGR流量の推定値は、スロットル弁から燃焼室までの吸気管容量による輸送遅れの影響を受けず、従来のインテークマニホールドの絶対圧力を検出してEGR流量の推定を行う方式に対し、EGR流量の推定の応答遅れを低減できる。   Thus, the estimated value of the EGR flow rate calculated from the pressure difference between the upstream and downstream of the throttle valve is not affected by the transportation delay due to the intake pipe capacity from the throttle valve to the combustion chamber, and the absolute pressure of the conventional intake manifold is Compared to the method of detecting and estimating the EGR flow rate, the response delay in estimating the EGR flow rate can be reduced.

また、従来の吸気管に設けられる酸素濃度センサの信号よりEGR流量の推定を行う方式では200〜300ms程度の大きな応答遅れを生じるのに対し、本発明のEGR流量推定方式ではEGR流量の推定の応答遅れは数10ms程度に低減できる。   Further, in the conventional method of estimating the EGR flow rate from the signal of the oxygen concentration sensor provided in the intake pipe, a large response delay of about 200 to 300 ms occurs, whereas in the EGR flow rate estimation method of the present invention, the estimation of the EGR flow rate is performed. Response delay can be reduced to about several tens of ms.

次にQeと目標EGR流量Qetの偏差を算出し、QeがQetに一致するよう、EGR弁開度をフィードバック制御する。   Next, the deviation between Qe and the target EGR flow rate Qet is calculated, and the EGR valve opening is feedback-controlled so that Qe matches Qet.

ステップ170で、EGR弁開度(開口面積)のフィードバック補正量CEGRを下式により算出する。   In step 170, the feedback correction amount CEGR of the EGR valve opening (opening area) is calculated by the following equation.

CEGRn=CEGRn-1+DEGR …(式3)
DEGR :計算周期あたりの補正量更新値
CEGRn :今回補正量計算値
CEGRn-1:前回補正量計算値
DEGRは図4に示す偏差Qe−Qetに対する補正特性等(テーブル)で予めメモリに記憶され、偏差Qe−Qetに対する補正量をテーブルから読み出しDEGRとする。
CEGR n = CEGR n-1 + DEGR ... ( Equation 3)
DEGR: Correction amount update value per calculation cycle CEGR n : Current correction amount calculation value CEGR n-1 : Previous correction amount calculation value DEGR is stored in advance in a memory as a correction characteristic (table) for the deviation Qe-Qet shown in FIG. Then, the correction amount for the deviation Qe-Qet is read from the table and is set as DEGR.

次にステップ180で、目標EGR弁開度を下式等で算出し、EGR弁に制御信号を出力する。   Next, at step 180, the target EGR valve opening is calculated by the following equation or the like, and a control signal is output to the EGR valve.

目標EGR弁開度(開口面積)AEGR=AEGRBS×(1+CEGR) …(式4)
AEGRBS:開口面積基本値
AEGRBS(開口面積基本値)は、負荷,回転等に対するマップで予めメモリに記憶されている。
Target EGR valve opening (opening area) AEGR = AEGRBS × (1 + CEGR) (Formula 4)
AEGRBS: Opening area basic value AEGRBS (opening area basic value) is stored in advance in a memory as a map for load, rotation, and the like.

ここで、EGR流量の推定精度を向上するために、ステップ150の全吸入ガス量Qの計算値を予め以下に示す手順で校正するようにしてもよい。   Here, in order to improve the estimation accuracy of the EGR flow rate, the calculated value of the total intake gas amount Q in step 150 may be calibrated in advance by the following procedure.

図5のステップ200で校正条件が成立しているかを判定する。校正条件としてはアイドリング時,定常運転時,減速時などが挙げられる。EGR弁が閉じているときには、全吸入ガス量Qgが吸入空気量Qaと一致することから、校正はEGR弁が閉じているときに実施する。ここでEGR弁の洩れがあると校正時に誤差を生じるので排気圧力の比較的小さい低負荷時や減速時に校正すると良い。   In step 200 of FIG. 5, it is determined whether the calibration condition is satisfied. Calibration conditions include idling, steady operation, and deceleration. When the EGR valve is closed, the total intake gas amount Qg coincides with the intake air amount Qa. Therefore, calibration is performed when the EGR valve is closed. Here, if there is leakage of the EGR valve, an error occurs at the time of calibration. Therefore, it is preferable to calibrate at a low load or a low speed when the exhaust pressure is relatively small.

校正条件が成立していればステップ210でEGR弁が閉じているかを判定する。ここで校正のために短時間EGR弁を強制的に閉じるようにしても良い。   If the calibration condition is satisfied, it is determined in step 210 whether the EGR valve is closed. Here, the EGR valve may be forcibly closed for a short time for calibration.

また、EGR弁を強制的に閉じて校正を実施する場合は、校正を燃焼温度の低い低負荷時,減速時に実施することでEGR弁を閉じることによるNOx等の排出量の増加を防止できる。   Further, when the calibration is performed by forcibly closing the EGR valve, the calibration is performed at a low load with a low combustion temperature and at a deceleration to prevent an increase in the amount of NOx and the like emitted by closing the EGR valve.

EGR弁が閉じていればステップ220で吸入空気量センサによる吸入空気量の検出値Qaを読み込む。   If the EGR valve is closed, in step 220, the intake air amount detection value Qa by the intake air amount sensor is read.

式2よりQgの校正係数をKcとして、下式が得られる。   From Equation 2, the following equation is obtained with the calibration coefficient of Qg as Kc.

Figure 0005111534
Figure 0005111534

EGR弁が閉じているとき、Qg=Qaとなるので、式5に代入するとKcは下式で算出できる。   Since Qg = Qa when the EGR valve is closed, Kc can be calculated by the following equation by substituting into Equation 5.

Figure 0005111534
Figure 0005111534

このとき算出された校正係数Kcを、メモリに記憶しておき、以後全吸入ガス量Qgを図3のステップ150で算出するときにKcを読み込み、式6によりQgを算出する。   The calibration coefficient Kc calculated at this time is stored in the memory, and Kc is read when calculating the total intake gas amount Qg in step 150 in FIG.

ここで、吸入空気量の異なる複数の運転条件で校正係数Kcを求め、運転条件ごとに校正係数Kcを、メモリに記憶しておくようにしてもよい。   Here, the calibration coefficient Kc may be obtained under a plurality of operating conditions with different intake air amounts, and the calibration coefficient Kc may be stored in the memory for each operating condition.

これにより、スロットル弁の汚損によるスロットル開口面積(絞り断面積)の変化,スロットル開度センサの誤差,圧力センサや吸気温度センサの誤差等による全吸入ガス量Qgの推定誤差を低減することができる。   As a result, it is possible to reduce an estimation error of the total intake gas amount Qg due to a change in the throttle opening area (throttle sectional area) due to the contamination of the throttle valve, an error of the throttle opening sensor, an error of the pressure sensor or the intake temperature sensor, and the like. .

さらに本EGR流量の推定方式によれば、吸入空気量センサが誤差を持つ場合でも、校正によりQgの推定値が吸入空気量センサとほぼ同じ割合の誤差を持つようになるので、下式で示されるようにEGR率には吸入空気量センサの誤差の影響が無く、吸入空気量センサの誤差によりEGR率の制御誤差が生じにくいという利点がある。   Furthermore, according to the estimation method of the EGR flow rate, even if the intake air amount sensor has an error, the estimated value of Qg has an error of almost the same ratio as the intake air amount sensor by calibration. As described above, the EGR rate is not affected by the error of the intake air amount sensor, and there is an advantage that the control error of the EGR rate is hardly caused by the error of the intake air amount sensor.

Figure 0005111534
Figure 0005111534

これにより、EGR率の制御精度が向上し、エンジンのNOx等の排出量を低減することができる。   As a result, the control accuracy of the EGR rate can be improved, and the amount of engine NOx emissions can be reduced.

ステップ240では校正終了後(校正係数Kc計算後)に校正終了フラグをセットする。   In step 240, a calibration end flag is set after completion of calibration (after calculation of the calibration coefficient Kc).

本発明は、内燃機関制御に関連したものであり、自動車だけでなく船舶用エンジンや建設機用エンジン,半固定発電機用エンジンにも適用可能である。   The present invention relates to internal combustion engine control, and is applicable not only to automobiles but also to marine engines, construction machine engines, and semi-fixed generator engines.

6 スロットル弁(絞り部)
9 燃焼室
13 低圧EGR通路
14 EGR弁
15 吸入空気量センサ
18 吸気温度センサ
20 圧力センサ
6 Throttle valve (throttle part)
9 Combustion chamber 13 Low pressure EGR passage 14 EGR valve 15 Intake air amount sensor 18 Intake air temperature sensor 20 Pressure sensor

Claims (3)

排気管と吸気管を連通するEGR通路と、前記EGR通路に取り付けられたEGR弁と、前記吸気管に流入する吸入空気量を検出する空気量検出手段を備えた内燃機関に適用され、
前記吸気管と前記EGR通路の合流部下流の前記吸気管内に設けられる流量調節弁または絞り部と、前記流量調節弁または前記絞り部の上流位置の圧力と下流位置の圧力、または上流位置と下流位置の圧力差を検出する圧力検出手段と、前記吸気管内の吸気温度を検出する手段と、前記流量調節弁または絞り部の開口面積を算出する手段と、前記流量調節弁または前記絞り部の上流位置の圧力と下流位置の圧力差と、前記開口面積と、前記吸気温度から前記流量調節弁または前記絞り部を通過する混合ガスの流量を算出するガス流量算出手段と、前記混合ガスの流量と前記吸入空気量の差分で算出されるEGRガスの流量に応じて前記EGR弁の開度を制御する手段を有することを特徴とするEGR制御装置。
Applied to an internal combustion engine having an EGR passage communicating an exhaust pipe and an intake pipe, an EGR valve attached to the EGR passage, and an air amount detecting means for detecting an intake air amount flowing into the intake pipe;
A flow rate adjustment valve or throttle portion provided in the intake pipe downstream of the merge portion of the intake pipe and the EGR passage, a pressure at the upstream position and a pressure at the downstream position of the flow rate adjustment valve or the throttle portion, or an upstream position and a downstream position Pressure detecting means for detecting a pressure difference between positions, means for detecting an intake air temperature in the intake pipe, means for calculating an opening area of the flow rate adjusting valve or the throttle portion, upstream of the flow rate adjusting valve or the throttle portion A gas flow rate calculating means for calculating a flow rate of the mixed gas passing through the flow rate adjusting valve or the throttle part from the intake air temperature, a pressure difference between the position pressure and the downstream position, the opening area, and the flow rate of the mixed gas. An EGR control device comprising means for controlling the opening of the EGR valve in accordance with the flow rate of EGR gas calculated by the difference in the intake air amount.
前記ガス流量算出手段は、前記EGR弁が閉じているときに、前記空気量検出手段による吸入空気量検出値より、前記混合ガスの流量算出値を校正することを特徴とする請求項1に記載のEGR制御装置。   The said gas flow rate calculation means calibrates the flow rate calculation value of the said mixed gas from the intake air amount detection value by the said air amount detection means when the said EGR valve is closed. EGR control device. 前記ガス流量算出手段は、前記EGR弁が閉じている状態で、アイドリングを含む低負荷時、または減速時に前記空気量検出手段による吸入空気量の検出値より、前記混合ガスの流量算出値を校正することを特徴とする請求項1に記載のEGR制御装置。   The gas flow rate calculation means calibrates the calculated flow rate value of the mixed gas from the detected value of the intake air amount by the air amount detection means at a low load including idling or when the vehicle is decelerated while the EGR valve is closed. The EGR control device according to claim 1, wherein:
JP2010022650A 2010-02-04 2010-02-04 EGR control device for internal combustion engine Expired - Fee Related JP5111534B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010022650A JP5111534B2 (en) 2010-02-04 2010-02-04 EGR control device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010022650A JP5111534B2 (en) 2010-02-04 2010-02-04 EGR control device for internal combustion engine

Publications (2)

Publication Number Publication Date
JP2011157942A JP2011157942A (en) 2011-08-18
JP5111534B2 true JP5111534B2 (en) 2013-01-09

Family

ID=44590092

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010022650A Expired - Fee Related JP5111534B2 (en) 2010-02-04 2010-02-04 EGR control device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP5111534B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6000761B2 (en) * 2012-08-31 2016-10-05 日野自動車株式会社 EGR control device
JP2014169684A (en) * 2013-03-05 2014-09-18 Denso Corp Egr control device of internal combustion engine
US11236710B2 (en) 2020-03-30 2022-02-01 Komatsu Ltd. Engine system and engine control method

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05231244A (en) * 1992-02-25 1993-09-07 Hitachi Ltd Engine control device
JPH11236857A (en) * 1998-02-20 1999-08-31 Mazda Motor Corp Control device for engine
US6370935B1 (en) * 1998-10-16 2002-04-16 Cummins, Inc. On-line self-calibration of mass airflow sensors in reciprocating engines
JP2003222039A (en) * 2002-01-30 2003-08-08 Mazda Motor Corp Controller for engine
JP4380754B2 (en) * 2007-09-21 2009-12-09 トヨタ自動車株式会社 Exhaust gas recirculation device for internal combustion engine

Also Published As

Publication number Publication date
JP2011157942A (en) 2011-08-18

Similar Documents

Publication Publication Date Title
JP5043899B2 (en) EGR flow control device for internal combustion engine
CN101688483B (en) Exhaust gas recirculation device for internal combustion engine
CN108626038B (en) Control device for internal combustion engine
JP4715799B2 (en) Exhaust gas recirculation device for internal combustion engine
US20120271529A1 (en) Internal combustion engine control apparatus
US20130133634A1 (en) Controller for internal combustion engine
JP2015075036A (en) Internal combustion engine control device
CN102859172B (en) Abnormality detection device and abnormality detection method for EGR system
JP6860313B2 (en) Engine control method and engine
JP3888024B2 (en) Exhaust gas recirculation device
US7769531B2 (en) Control device of internal combustion engine
KR100649403B1 (en) Device and method for estimating occlusion amount of ??? occlusion catalyst
US8751137B2 (en) Apparatus for estimating exhaust gas recirculation quantity
JP5331613B2 (en) In-cylinder gas amount estimation device for internal combustion engine
JP2009047130A (en) Control device for internal combustion engine
JP4622719B2 (en) PM deposition amount estimation device
JP5111534B2 (en) EGR control device for internal combustion engine
CN110168212B (en) Intake control method and intake control device for internal combustion engine
JP4228953B2 (en) Control device for internal combustion engine
JP2010106734A (en) Egr control method for internal combustion engine, and internal combustion engine
JP2006274905A (en) NOx GENERATION AMOUNT ESTIMATION DEVICE FOR INTERNAL COMBUSTION ENGINE
JP5608614B2 (en) Engine EGR flow rate detection device
JP5004036B2 (en) Exhaust gas purification device for internal combustion engine
JP5695878B2 (en) Combustion control apparatus and method for internal combustion engine
JP2011179425A (en) Exhaust recirculation device of internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111114

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111114

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120907

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120911

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121009

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151019

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5111534

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees