JP4857677B2 - Conductive powder molded body electrode and manufacturing method thereof - Google Patents

Conductive powder molded body electrode and manufacturing method thereof Download PDF

Info

Publication number
JP4857677B2
JP4857677B2 JP2005262247A JP2005262247A JP4857677B2 JP 4857677 B2 JP4857677 B2 JP 4857677B2 JP 2005262247 A JP2005262247 A JP 2005262247A JP 2005262247 A JP2005262247 A JP 2005262247A JP 4857677 B2 JP4857677 B2 JP 4857677B2
Authority
JP
Japan
Prior art keywords
powder
conductive
molded body
body electrode
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005262247A
Other languages
Japanese (ja)
Other versions
JP2007070712A (en
Inventor
利郎 梶原
健 荒木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2005262247A priority Critical patent/JP4857677B2/en
Publication of JP2007070712A publication Critical patent/JP2007070712A/en
Application granted granted Critical
Publication of JP4857677B2 publication Critical patent/JP4857677B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Description

この発明は、導電性を有する電極と被加工物との間にパルス状の放電を発生させ、このパルス状の放電エネルギーによって被加工物表面に電極材料あるいは電極材料が放電エネルギーにより反応した物質からなる被膜を形成する放電表面処理に用いられる電極に関するものである。   According to the present invention, a pulsed discharge is generated between a conductive electrode and a workpiece, and the electrode material or a material in which the electrode material reacts on the workpiece surface by the discharge energy by the pulsed discharge energy. The present invention relates to an electrode used for discharge surface treatment to form a coating film.

加工液中の放電加工法を応用して、被加工物の表面に被膜を形成して耐食性あるいは耐磨耗性を高める放電表面処理が知られている。例えば、加工液中における放電表面処理による硬質被膜形成の研究のひとつとして、電極と被加工物とにそれぞれTi金属とWC−Co超硬合金とを用いた被膜形成実験では、被加工物に堆積した被膜はTiCとなりこの被膜は被加工物の2倍以上の硬度が得られることが開示されている(例えば、非特許文献1参照)。このような放電表面処理に用いる電極としては、被膜の硬度を高めるために、金属粉末、金属化合物粉末あるいはセラミック粉末を加圧成形した圧粉体電極において、炭素、黒鉛粉末あるいは放電エネルギーにより炭素を発生させる例えばエポキシ系あるいはパラフィン系接着剤などの物質を混合した電極が開示されている(例えば、特許文献1参照)。   An electric discharge surface treatment is known in which an electric discharge machining method in a machining fluid is applied to form a film on the surface of a workpiece to enhance corrosion resistance or wear resistance. For example, as one of the studies of hard film formation by discharge surface treatment in machining fluid, film formation experiments using Ti metal and WC-Co cemented carbide for the electrode and workpiece respectively deposited on the workpiece. It is disclosed that the coated film becomes TiC, and this film has a hardness twice or more that of the workpiece (for example, see Non-Patent Document 1). As an electrode used for such a discharge surface treatment, in order to increase the hardness of the coating film, carbon, graphite powder, or carbon by discharge energy is used in a green compact electrode formed by pressing metal powder, metal compound powder or ceramic powder. An electrode in which a substance such as an epoxy-based or paraffin-based adhesive to be generated is mixed is disclosed (for example, see Patent Document 1).

また、他の放電表面処理に用いる電極として、金属粉末あるいは金属化合物粉末に接着剤としてエポキシ樹脂やフェノール樹脂を混合して成形性を高め、さらに電気抵抗を下げるために軟質金属を加えて加圧成形したものが開示されている(例えば、特許文献2参照)。   In addition, as an electrode used for other discharge surface treatment, metal powder or metal compound powder is mixed with epoxy resin or phenol resin as an adhesive to improve moldability, and soft metal is added to reduce electrical resistance and pressurization What was shape | molded is disclosed (for example, refer patent document 2).

さらに別の放電表面処理に用いる電極として、cBN(立方晶窒化硼素)のような絶縁性の硬質物質に導電性の粉末を加えて加圧成形したものが開示されている(例えば、特許文献3参照)。   Further, as an electrode used for another discharge surface treatment, an electrode obtained by press-molding an electrically conductive powder into an insulating hard substance such as cBN (cubic boron nitride) is disclosed (for example, Patent Document 3). reference).

国際公開第99/047730号パンフレット(第5頁)WO99 / 047730 pamphlet (5th page) 国際公開第99/046423号パンフレット(第5−6頁)International Publication No. 99/046423 Pamphlet (Pages 5-6) 国際公開第01/023641号パンフレット(第5頁)International Publication No. 01/023641 Pamphlet (5th page) 後藤昭弘、外5名、「放電加工による硬質被膜の形成」、電気加工学会誌、1997年、第31巻、第68号、p.26−31Akihiro Goto, 5 others, “Formation of hard coating by electrical discharge machining”, Journal of Electrical Machining Society, 1997, Vol. 31, No. 68, p. 26-31

従来の金属粉末、金属化合物粉末あるいはセラミック粉末に、炭素、黒鉛粉末あるいは放電エネルギーにより炭素を発生させる、例えばエポキシ系あるいはパラフィン系接着剤など絶縁性の有機材料を混合して加圧成形した放電表面処理用の電極では、使用する金属などの材料が、放電エネルギーにより炭化物になりうる材料に限定されるという問題があった。さらに、エポキシ系接着剤などのような絶縁物を混合する場合は、その混合量とともに電極の電気抵抗が増加して放電開始が困難になるという問題もあった。これを避けるために、電極を加圧成形した後に接着剤を加熱分解除去するとともに金属粉末などを焼結する方法が考えられるが、この場合は電極を高温・真空中で加熱処理する必要があり、電極形成工程が複雑になるという問題があった。   Discharge surface formed by mixing conventional metal powder, metal compound powder or ceramic powder with carbon, graphite powder or insulating organic materials such as epoxy or paraffin adhesives that generate carbon by discharge energy. In the electrode for a process, there existed a problem that materials, such as a metal to be used, were limited to the material which can become a carbide | carbonized_material by discharge energy. Furthermore, when an insulator such as an epoxy-based adhesive is mixed, there is a problem in that the electric resistance of the electrode increases with the amount of mixing and it becomes difficult to start discharge. In order to avoid this, it is possible to consider a method in which the adhesive is thermally decomposed and removed after the electrode is pressure-molded and the metal powder is sintered. In this case, it is necessary to heat the electrode in high temperature and vacuum. There is a problem that the electrode forming process becomes complicated.

また、電極の電気抵抗を下げるために軟質金属を加えて加圧成形した放電表面処理用の電極では、放電開始が困難になるという課題は回避できるものの、放電表面処理で形成した被膜に不要な軟質金属が混入するという問題があった。   Moreover, in the electrode for discharge surface treatment that is pressure-molded by adding a soft metal to lower the electric resistance of the electrode, the problem that it becomes difficult to start discharge can be avoided, but it is unnecessary for the coating formed by the discharge surface treatment. There was a problem that soft metal was mixed.

さらに、絶縁性の硬質物質に導電性の粉末を加えて加圧成形した放電表面処理用の電極では、放電エネルギーにより被加工物に被膜を形成する場合、導電性の粉末は被加工物と同一組成の材料または被加工物と不要な反応をしない導電性材料に限定され、電極を構成する材料に制約があるという問題があった。   Furthermore, in the case of an electrode for discharge surface treatment that is pressure-molded by adding conductive powder to an insulating hard substance, the conductive powder is the same as the workpiece when a coating is formed on the workpiece by the discharge energy. There is a problem that the material constituting the electrode is limited because it is limited to a conductive material that does not react unnecessarily with the material of the composition or the workpiece.

この発明は、上述のような課題を解決するためになされたもので、電極材料の選択に制約を与えることがなく、また高温・真空中での加熱処理を行うことなく電極の抵抗を下げることができ、さらには被加工物に形成する被膜に不要な材料が混入することのない放電表面処理用の導電性粉末成形体電極を得るものである。   The present invention has been made to solve the above-described problems, and does not limit the selection of the electrode material, and lowers the resistance of the electrode without performing heat treatment in a high temperature / vacuum. Further, it is possible to obtain a conductive powder molded body electrode for discharge surface treatment in which unnecessary materials are not mixed in a film formed on a workpiece.

この発明に係る導電性粉末成形体電極は、被加工物との間にパルス状の放電を発生させ前記被加工物の表面に被膜を形成する放電表面処理に用いられる導電性粉末成形体電極であって、前記被膜される材料が金属粉末、金属化合物粉末、ガラス粉末およびセラミック粉末のうちの少なくともいずれかであり、前記被膜される材料が主鎖にπ共役系結合を有する導電性有機材料に分散されて加圧成形体をなし、前記加圧成形体の比抵抗が104Ω・cm以下であることを特徴とするものである。
また、この発明に係る導電性粉末成形体電極の製造方法は、被加工物との間にパルス状の放電を発生させ前記被加工物の表面に被膜を形成する放電表面処理に用いられる導電性粉末成形体電極の製造方法であって、金属粉末、金属化合物粉末、ガラス粉末およびセラミック粉末のうちの少なくともいずれかの粉末粒子に、主鎖にπ共役系結合を有する材料からなる導電性有機材料粉末を混合して混合粉末を作製する工程と、前記混合粉末を加圧して前記導電性有機材料粉末を前記粉末粒子の間に入り込ませ、前記粉末粒子の間に前記導電性有機材料を充填して比抵抗が10 Ω・cm以下の加圧性形体に成形する工程とを備えたことを特徴とするものである。
The conductive powder molded body electrode according to the present invention is a conductive powder molded body electrode used for discharge surface treatment in which a pulsed discharge is generated between the workpiece and a film is formed on the surface of the workpiece. The material to be coated is at least one of metal powder, metal compound powder, glass powder and ceramic powder, and the material to be coated is a conductive organic material having a π-conjugated bond in the main chain. Dispersed to form a pressure molded body, and the specific resistance of the pressure molded body is 104 Ω · cm or less.
In addition, the method for producing a conductive powder formed body electrode according to the present invention is a method for generating a pulsed discharge between a workpiece and a conductive surface used for a discharge surface treatment for forming a film on the surface of the workpiece. A method for producing a powder molded body electrode, comprising a conductive organic material comprising a material having a π-conjugated bond in the main chain on at least one of powder particles of metal powder, metal compound powder, glass powder and ceramic powder Mixing the powder to produce a mixed powder, pressurizing the mixed powder to cause the conductive organic material powder to enter between the powder particles, and filling the conductive organic material between the powder particles And a step of forming into a pressurizing form having a specific resistance of 10 4 Ω · cm or less .

この発明は、導電性粉末成形体電極のバインダ成分として導電性有機材料を用いているので、電極の抵抗を下げるために高温・真空中での脱脂および被膜となる材料の焼結処理を目的とした加熱処理を行わなくても電極の電気抵抗を下げることができるとともに、加工液中での放電表面処理におけるパルス状の放電が導電性有機材料に集中して導電性有機材料が瞬時に分解・気化するので、被膜を形成する材料が炭化物に限定されることもなく、不要な材料が被膜に混入することもないという顕著な効果を奏するものである。   The present invention uses a conductive organic material as a binder component of a conductive powder molded body electrode. Therefore, in order to reduce the resistance of the electrode, the object is to degrease in a high temperature / vacuum and sinter the material to be a film. The electrical resistance of the electrode can be lowered without performing the heat treatment, and the pulsed discharge in the discharge surface treatment in the machining liquid is concentrated on the conductive organic material, so that the conductive organic material is instantly decomposed and Since it evaporates, the material forming the coating is not limited to carbides, and there is a remarkable effect that unnecessary materials are not mixed into the coating.

実施の形態1.
図1は、この発明を実施するための実施の形態1における導電性粉末成形体電極の断面内部構造を拡大して示す模式図である。図1において、本実施の形態における導電性粉末成形体電極1は、放電表面処理によって被加工物に形成される被膜の材料となる粉末粒子2を取り囲むように導電性有機材料3が充填されて加圧成形されたものである。
Embodiment 1 FIG.
FIG. 1 is a schematic diagram showing an enlarged cross-sectional internal structure of a conductive powder molded body electrode according to Embodiment 1 for carrying out the present invention. In FIG. 1, a conductive powder molded body electrode 1 according to the present embodiment is filled with a conductive organic material 3 so as to surround powder particles 2 that are materials of a film formed on a workpiece by discharge surface treatment. It is pressure-molded.

本実施の形態における導電性粉末成形体電極の作製方法を説明する。図2は、本実施の形態における導電性粉末成形体電極を作製するための製造装置の一部を示した模式図である。図2において、ダイプレート4の上に固定されダイ5は、中央に導電性粉末成形体電極の形状と一致する例えば円筒形の空間を備えている。粒径が1〜20μmで比抵抗が約7×10−5Ω・cmのSUS304(組成は表1参照)の粉末に、粒径が0.1〜5μmで比抵抗が約3×10−4Ω・cmのポリピロールの粉末をSUS304の粉末の重量に対して約10wt%の割合で混合し、この混合粉末6をダイ5の円筒形の空間に充填した。ダイ5の円筒形の空間と嵌合するプレスパンチ7で混合粉末6に100〜500MPaの圧力を加えて加圧して混合粉末6を加圧成形した。この加圧成形された混合粉末6をダイプレート4、ダイ5およびプレスパンチ7から取り出して、本実施の形態の導電性粉末成形体電極1を得た。 A method for producing a conductive powder molded body electrode in the present embodiment will be described. FIG. 2 is a schematic view showing a part of a production apparatus for producing a conductive powder molded body electrode in the present embodiment. In FIG. 2, the die 5 fixed on the die plate 4 has, for example, a cylindrical space that matches the shape of the conductive powder molded body electrode at the center. A powder of SUS304 (see Table 1 for the composition) having a particle size of 1 to 20 μm and a specific resistance of about 7 × 10 −5 Ω · cm is added to a powder of 0.1 to 5 μm and a specific resistance of about 3 × 10 −4. An Ω · cm polypyrrole powder was mixed at a ratio of about 10 wt% with respect to the weight of the SUS304 powder, and the mixed powder 6 was filled in the cylindrical space of the die 5. The mixed powder 6 was press-molded by applying a pressure of 100 to 500 MPa to the mixed powder 6 with a press punch 7 fitted into the cylindrical space of the die 5. The pressure-molded mixed powder 6 was taken out of the die plate 4, the die 5 and the press punch 7 to obtain the conductive powder molded body electrode 1 of the present embodiment.

導電性のポリピロールの粉末は可塑性を有するため、混合粉末6を加圧成形するときに、図1に示すように被膜の材料となるSUS304の粉末粒子2の粒子間に入り込み、粉末粒子2の粒子間の形状に合わせて組成変形して導電性有機材料3が充填された状態となる。   Since the conductive polypyrrole powder has plasticity, when the mixed powder 6 is pressure-molded, it enters between the particles of the SUS304 powder particles 2 as a coating material as shown in FIG. The composition is deformed in accordance with the shape in between, and the conductive organic material 3 is filled.

図3は、本実施の形態における、導電性粉末成形体電極1の成形圧力と比抵抗の逆数である導電率との関係を示した特性図である。図3において、成形圧力を上昇させて導電率が飽和したときの導電率および成形圧力を100%と定義している。導電性粉末成形体電極1の形状を保つための強度の観点から、最適な相対成形圧力の範囲は10〜80%であることが好ましい。相対成形圧力が10%より小さいと、導電性粉末成形体電極1の強度が不十分となり、導電性粉末成形体電極1を放電表面処理装置に取り付けるときに損傷あるいは破損する場合がある。また、相対成形圧力が80%より大きいと、加圧形成された混合粉末6とダイプレート4あるいはダイ5との密着強度が高くなり、加圧形成された混合粉末6をダイプレート4、ダイ5およびプレスパンチ7から取り出すときに損傷あるいは破損する恐れがある。また、導電性粉末成形体電極1を形成するときの相対成形圧力が適正な範囲であっても、導電性粉末成形体電極1の比抵抗が10Ω・cmを超える場合には、放電表面処理装置の電極として用いた場合、加工液中での放電が不安定となり、欠陥のない被膜を形成することができなくなる。 FIG. 3 is a characteristic diagram showing the relationship between the molding pressure of the conductive powder molded body electrode 1 and the conductivity which is the reciprocal of the specific resistance in the present embodiment. In FIG. 3, the conductivity and molding pressure when the molding pressure is increased and the conductivity is saturated are defined as 100%. From the viewpoint of strength for maintaining the shape of the conductive powder molded body electrode 1, the optimum range of the relative molding pressure is preferably 10 to 80%. When the relative molding pressure is less than 10%, the strength of the conductive powder molded body electrode 1 becomes insufficient, and the conductive powder molded body electrode 1 may be damaged or broken when attached to the discharge surface treatment apparatus. On the other hand, when the relative molding pressure is greater than 80%, the adhesion strength between the pressure-formed mixed powder 6 and the die plate 4 or 5 increases, and the pressure-formed mixed powder 6 is used as the die plate 4 and die 5. In addition, there is a risk of damage or breakage when taking out from the press punch 7. Even if the relative molding pressure when forming the conductive powder molded body electrode 1 is in an appropriate range, if the specific resistance of the conductive powder molded body electrode 1 exceeds 10 4 Ω · cm, the discharge surface When used as an electrode of a processing apparatus, the discharge in the machining fluid becomes unstable, and a film having no defect cannot be formed.

このように構成された導電性粉末成形体電極1は、被膜の材料となるSUS304の粉末粒子2の粒子間に導電性有機材料3が充填された状態となっており、この導電性有機材料3は粉末粒子2を結合させる十分な結合強度と粉末粒子との接触抵抗を軽減する導電性とを有しているので、放電表面処理装置の電極として用いた場合に必要な強度と電気抵抗とをもつものである。   The conductive powder molded body electrode 1 configured as described above is in a state in which the conductive organic material 3 is filled between the particles of the powder particles 2 of SUS304, which is the material of the coating, and the conductive organic material 3 Has sufficient bonding strength for bonding the powder particles 2 and conductivity for reducing the contact resistance with the powder particles, so that the necessary strength and electric resistance when used as an electrode of a discharge surface treatment apparatus are obtained. It has.

本実施の形態で得られた導電性粉末成形体電極を放電表面処理装置の電極として用いた場合、加工液中で放電が発生したときには、導電性粉末成形体電極に含まれる導電性有機材料は瞬時に炭化水素などに分解されて加工液中に溶融されるので、被膜を形成したときに不要な材料が被膜に混入することもなく、また、被膜となる材料が放電エネルギーにより炭化物になりうる材料に限定されることもない。さらには、エポキシ系接着剤などのような絶縁物を混合する場合に必要であった高温・真空中での脱脂および焼結を目的とした加熱処理をする必要もない。   When the conductive powder molded body electrode obtained in the present embodiment is used as an electrode of a discharge surface treatment apparatus, when discharge occurs in the processing liquid, the conductive organic material contained in the conductive powder molded body electrode is Since it is instantly decomposed into hydrocarbons and melted in the working fluid, unnecessary materials do not enter the coating when the coating is formed, and the coating material can become carbide by the discharge energy. The material is not limited. Furthermore, there is no need to perform heat treatment for degreasing and sintering in high temperature and vacuum, which is necessary when mixing an insulator such as an epoxy adhesive.

また、導電性有機材料で導電性粉末成形体電極の抵抗値を調整することができるので、従来のように被膜の材料としては不要であるが抵抗値の調整のために必要な導電性金属を加えなくても、導電性粉末成形体電極の抵抗値を放電表面処理の条件に合わせることができる。   In addition, since the resistance value of the conductive powder molded body electrode can be adjusted with a conductive organic material, a conductive metal that is not necessary as a coating material as in the prior art, but is necessary for adjusting the resistance value. Without addition, the resistance value of the conductive powder molded body electrode can be adjusted to the conditions of the discharge surface treatment.

さらには、導電性有機材料に加えて、成形性を向上させるために他の有機バインダを併用することもできるので、複雑な形状の導電性粉末成形体電極を作製することもできる。   Furthermore, in addition to the conductive organic material, other organic binders can be used in combination in order to improve the moldability, so that it is possible to produce a conductive powder molded body electrode having a complicated shape.

実施の形態2.
実施の形態2においては、実施の形態1と同様の組成および製造方法で得られた導電性粉末成形体電極と、従来の製造方法で得られた成形体電極とを比較したものである。
Embodiment 2. FIG.
In Embodiment 2, the conductive powder molded body electrode obtained by the same composition and manufacturing method as in Embodiment 1 is compared with the molded body electrode obtained by the conventional manufacturing method.

本実施の形態において、実施の形態1と同様の方法で得られる導電性粉末成形体電極について説明する。平均粒径が1μmで比抵抗が約7×10−5Ω・cmのSUS304の粉末に、平均粒径が0.5μmで比抵抗が約3×10−4Ω・cmのポリピロールの粉末をSUS304の粉末の重量に対して約10wt%の割合で混合し、実施の形態1と同様な装置で200〜300MPaの圧力を加えて加圧成形して、この発明の導電性粉末成形体電極を得た。得られた導電性粉末成形体電極の比抵抗は、約5.5×10−3Ω・cmであった。 In the present embodiment, a conductive powder molded body electrode obtained by the same method as in the first embodiment will be described. An SUS304 powder having an average particle size of 1 μm and a specific resistance of about 7 × 10 −5 Ω · cm is added to a SUS304 powder having an average particle size of 0.5 μm and a specific resistance of about 3 × 10 −4 Ω · cm. Is mixed at a ratio of about 10 wt% with respect to the weight of the powder, and is pressure-molded by applying a pressure of 200 to 300 MPa with the same apparatus as in the first embodiment to obtain the conductive powder molded body electrode of the present invention. It was. The specific resistance of the obtained conductive powder molded body electrode was about 5.5 × 10 −3 Ω · cm.

次に、比較のために従来の製造方法で作製した成形体電極について説明する。150〜200℃に加熱溶融したパラフィンとポリエチレンとの混合物に数%のステアリン酸を添加した有機バインダと、平均粒径が1μmで比抵抗が約7×10−5Ω・cmのSUS304の粉末とを、体積比が1:1で混合し、この混合物を十分に混練したのちに、50〜200MPaの圧力を加えて加圧成形した。この加圧成形したものを300〜500℃で真空脱脂したのち、真空炉を用いて約1000℃で焼成して従来の製造方法で作製した成形体電極を得た。 Next, a molded body electrode produced by a conventional production method will be described for comparison. An organic binder obtained by adding several percent of stearic acid to a mixture of paraffin and polyethylene heated and melted at 150 to 200 ° C., and a powder of SUS304 having an average particle diameter of 1 μm and a specific resistance of about 7 × 10 −5 Ω · cm Were mixed at a volume ratio of 1: 1, and the mixture was sufficiently kneaded, and then pressure-molded by applying a pressure of 50 to 200 MPa. The pressure-molded product was vacuum degreased at 300 to 500 ° C., and then fired at about 1000 ° C. using a vacuum furnace to obtain a molded electrode produced by a conventional manufacturing method.

本実施の形態の導電性粉末成形体電極と従来の製造方法で得られた成形体電極とを用いて、放電表面処理装置で鏡面研磨されたFe系合金の被加工物の表面に被膜を形成し、被膜のビッカース強度を測定した。なお、被膜の膜厚は約10μmである。本実施の形態の導電性粉末成形体電極で形成した被膜の強度と従来の製造方法で得られた成形体電極で形成した被膜のビッカース硬度は、共に1300〜1320Hvであり、また付着力も強固であり、酸・アルカリに対する耐食性に対しても両者に差はなかった。   A film is formed on the surface of an Fe-based alloy workpiece that has been mirror-polished by a discharge surface treatment apparatus using the conductive powder molded body electrode of the present embodiment and the molded body electrode obtained by a conventional manufacturing method. The Vickers strength of the coating was measured. The film thickness of the coating is about 10 μm. Both the strength of the film formed with the conductive powder molded body electrode of the present embodiment and the Vickers hardness of the film formed with the molded body electrode obtained by the conventional manufacturing method are 1300 to 1320 Hv, and the adhesive strength is also strong. There was no difference between the two in terms of corrosion resistance to acids and alkalis.

上述のように、本実施の形態による導電性粉末成形体電極で形成した被膜は、従来の製造方法で作製した成形体電極で形成した被膜と同等の特性を有していることから、導電性有機材料を用いた場合には、従来の高温・真空中で加熱処理を行わなくても従来と同等の性能をもつ放電表面処理用の電極を得ることができる。   As described above, the film formed with the conductive powder molded body electrode according to the present embodiment has the same characteristics as the film formed with the molded body electrode produced by the conventional manufacturing method. When an organic material is used, an electrode for discharge surface treatment having the same performance as the conventional one can be obtained without performing the heat treatment in the conventional high temperature and vacuum.

なお、本実施の形態では、被加工物としてFe系合金を使用したが、これに限るものではなく、Co系、Ni系、Al系、Cu系などの純金属あるいは合金を用いることもできる。   In this embodiment, an Fe-based alloy is used as a workpiece. However, the present invention is not limited to this, and pure metals or alloys such as Co-based, Ni-based, Al-based, and Cu-based materials can also be used.

実施の形態3.
実施の形態3では、実施の形態1と同様な方法で導電性粉末成形体電極を作製するときに、被膜となる材料と導電性有機材料とをいろいろ組み合わせて導電性粉末成形体電極を作製したものである。
Embodiment 3 FIG.
In Embodiment 3, when forming a conductive powder molded body electrode by the same method as in Embodiment 1, a conductive powder molded body electrode was manufactured by variously combining a material to be a film and a conductive organic material. Is.

表1は、本実施の形態における被膜となる材料の粉末名と組成との関係を示したものである。また、表2は、本実施の形態における導電性有機材料の材料名を分類したものである。   Table 1 shows the relationship between the powder name and the composition of the material to be the coating in the present embodiment. Table 2 classifies the names of the conductive organic materials in the present embodiment.

Figure 0004857677
Figure 0004857677

Figure 0004857677
Figure 0004857677

本実施の形態においては、表1に示す粉末名の中から選択した粉末と表2に示すπ共役系結合導電性有機材料粉末の中から選択した導電性有機材料粉末とを混合して、実施の形態1と同様な方法で導電性粉末成形体電極を作製した。作製した導電性粉末成形体電極の比抵抗が10Ω・cmのオーダ以下であれば、放電表面処理装置の電極として用いたときに、表1から選択した粉末の材料のもつ本来の特性(耐食性、耐磨耗性、耐衝撃性など)と同等の特性をもつ被膜が形成できることがわかった。ただし、比抵抗を10Ω・cmのオーダ以下にするために、導電性有機材料の占める割合が増加すると、その増加割合にしたがって被膜の堆積速度が低下し、同時に堆積した被膜の表面粗さも増加する。このような堆積速度の低下の原因は、導電性粉末成形体電極の被膜形成外成分(導電性有機材料)の増加による放電エネルギーの利用効率の低下に基づくものと考えられる。また、堆積した被膜の表面粗さの増加は、放電エネルギーにより導電性有機材料が分解されて生じるガスが加工液中に大量に混ざり、このガスが主放電の放電経路となる加工油の解離ガスに影響を与えて不安定な放電を誘起していること、および導電性粉末成形体電極の最表面に際立った凹凸が発生して最短電極間に火花放電が集中することに基づく被膜形成の偏りが原因と考えられる。このような不安定な放電は、導電性粉末成形体電極の極性が負電位の場合、導電性粉末成形体電極の表面に到達する加工液の電離ガス(プラスイオン)の衝突に基づく電極のスパッタおよび衝突エネルギーによる温度上昇に起因した導電性有機材料の分解ガスが主放電で生じている加工液の電離プロセスに影響を与えることが原因していると考えられる。このことは、放電のピーク電流を通常10〜20Aのところを5〜10%まで低減し、さらに放電パルス幅を通常20〜100μsのところを5〜10%まで低減させると、不安定な放電が改善されることを実験で確かめたことからも導電性有機材料の分解ガス(が電離プロセスへ与える影響)の量的効果(上述の放電注入エネルギーを減らし、熱的要因を減らして分解ガスの発生量を抑制した場合の効果)を推認できる。 In this embodiment, the powder selected from the powder names shown in Table 1 is mixed with the conductive organic material powder selected from the π-conjugated bond conductive organic material powder shown in Table 2. A conductive powder molded body electrode was produced in the same manner as in Embodiment 1. If the specific resistance of the produced conductive powder molded body electrode is less than or equal to the order of 10 4 Ω · cm, the original characteristics of the powder material selected from Table 1 when used as an electrode for a discharge surface treatment apparatus ( It was found that a film having characteristics equivalent to corrosion resistance, abrasion resistance, impact resistance, etc. can be formed. However, when the proportion of the conductive organic material increases in order to make the specific resistance less than the order of 10 4 Ω · cm, the deposition rate of the coating decreases according to the increase proportion, and the surface roughness of the deposited coating also increases. To increase. The reason for such a decrease in the deposition rate is considered to be based on a decrease in the use efficiency of the discharge energy due to an increase in the component outside the film formation (conductive organic material) of the conductive powder compact electrode. In addition, the increase in the surface roughness of the deposited film is caused by the large amount of gas generated by the decomposition of the conductive organic material by the discharge energy, which is mixed in the processing liquid, and this gas is the dissociation gas of the processing oil that becomes the discharge path of the main discharge. Unbalanced coating formation based on the fact that unstable discharge is induced to affect the surface of the electrode and that the surface of the conductive powder molded body electrode has conspicuous unevenness and the spark discharge is concentrated between the shortest electrodes. Is considered to be the cause. Such an unstable discharge is caused by the sputtering of the electrode based on the collision of the ionizing gas (plus ions) of the working fluid reaching the surface of the conductive powder compact electrode when the polarity of the conductive powder compact electrode is negative. It is considered that the decomposition gas of the conductive organic material resulting from the temperature rise due to the collision energy affects the ionization process of the machining fluid generated by the main discharge. This means that when the discharge peak current is reduced to 5 to 10%, usually at 10 to 20 A, and the discharge pulse width is reduced to 5 to 10%, usually at 20 to 100 μs, unstable discharge is caused. It was confirmed from experiments that the improvement was achieved by the quantitative effect of the decomposition gas of conductive organic materials (the effect of this on the ionization process) (reducing the above-mentioned discharge injection energy, reducing the thermal factors, and generating decomposition gas. The effect when the amount is suppressed can be inferred.

なお、本実施の形態では、導電性粉末成形体電極を作製するときに、表2の示した導電性有機材料から選択した1つの材料を被膜形成用の材料と混合したが、表2の中から2つ以上の導電性有機材料を選択して用いてもよい。   In this embodiment, one material selected from the conductive organic materials shown in Table 2 was mixed with the material for forming the film when the conductive powder molded body electrode was produced. Two or more conductive organic materials may be selected and used.

実施の形態4.
実施の形態1においては、通常の加圧成形法を用いて導電性粉末成形体電極を作製したが、実施の形態4では、同一形状の導電性粉末成形体電極を大量生産するために、押出し成形法用いたものである。
Embodiment 4 FIG.
In the first embodiment, the conductive powder molded body electrode was produced by using a normal pressure molding method. However, in the fourth embodiment, in order to mass-produce the conductive powder molded body electrode having the same shape, extrusion was performed. The molding method is used.

本実施の形態おける導電性粉末成形体電極の作製方法を説明する。平均粒径が2μmの石英ガラス粉末、ドーパント処理されたピロールオリゴマーとポリアセチレンとを重量比20:80の割合で混合した導電性有機材料粉末および溶剤としてのテトラハイドロフラン(THF)を、重量比80:3:17の割合で混合した。この混合物にさらに分散剤を0.3wt%添加して混合して押出し成形機に投入した。投入された混合物は、押出し成形機内のスクリュー式混練機で十分混練され、真空室内でTHFが除去された後、オーガー羽根により20MPaで押し出し成形されて導電性粉末成形体電極を得た。得られた導電性粉末成形体電極の比抵抗は、1.0〜2.0×10−2Ω・cmであり、その内部構造は図1に示したものと同様であった。 A method for producing a conductive powder molded body electrode in the present embodiment will be described. A quartz glass powder having an average particle diameter of 2 μm, a conductive organic material powder in which a pyrrole oligomer treated with a dopant and polyacetylene are mixed at a weight ratio of 20:80 and tetrahydrofuran (THF) as a solvent are mixed at a weight ratio of 80 : 3:17 mixed. Further, 0.3 wt% of a dispersant was added to the mixture, mixed, and charged into an extrusion molding machine. The charged mixture was sufficiently kneaded by a screw-type kneader in the extruder, and after THF was removed in a vacuum chamber, the mixture was extruded at 20 MPa with an auger blade to obtain a conductive powder molded body electrode. The specific resistance of the obtained conductive powder molded body electrode was 1.0 to 2.0 × 10 −2 Ω · cm, and the internal structure was the same as that shown in FIG.

このようにして作製された導電性粉末成形体電極を放電表面処理装置の電極として用いて、鏡面研磨されたMo製の被加工物の表面に被膜を形成した。導電性粉末成形体電極を負極として、ピーク電流5A以下、パルス幅20μs以下の条件で放電表面処理を行ったところ、被膜の平均表面粗さが1μmで、付着力および耐食性とも十分な石英の被膜を形成することができた。また、この被膜の元素分析を行ったところ、炭素などの有機物に起因した不純物の混入は検知されなかった。   The conductive powder molded body electrode thus produced was used as an electrode of a discharge surface treatment apparatus to form a film on the surface of a mirror-finished workpiece made of Mo. Discharge surface treatment was performed using a conductive powder molded body electrode as a negative electrode under conditions of a peak current of 5 A or less and a pulse width of 20 μs or less. As a result, an average surface roughness of the film was 1 μm, and a quartz film with sufficient adhesion and corrosion resistance. Could be formed. Further, when elemental analysis of this film was performed, contamination of impurities due to organic substances such as carbon was not detected.

本実施の形態では、従来の放電表面処理では作製が困難であった絶縁物の被膜を形成することを可能としたもので、導電性粉末成形体電極に用いる被膜となる材料の適用範囲を著しく広げたものである。本実施の形態では、溶剤および分散剤を用いて導電性有機材料粉末と、被膜となる絶縁性の石英ガラス粉末とを均一に混練したことにより、この混合物の押出し成形で作製された導電性粉末成形体電極では、導電性有機材料が絶縁性の粉末の周囲を密に取り囲むように入り込み、極めて均質な導電性粉末成形体となっている。とくに、比較的可塑性の低いポリアセチレンに、可塑性の高いピロールオリゴマーを混合したことにより、得られた導電性粉末成形体電極の比抵抗を小さくできるとともに、押出し成形の成形圧力を必要以上に大きくすることなく必要な強度を有する導電性粉末成形体電極を作製することができるので、導電性粉末成形体電極の歩留まりが改善されるという効果もある。   In this embodiment, it is possible to form an insulating film, which has been difficult to produce by conventional discharge surface treatment, and the application range of the material to be a film used for the conductive powder molded body electrode is remarkably increased. It is an expanded one. In this embodiment, the conductive organic material powder and the insulating quartz glass powder to be a film are uniformly kneaded using a solvent and a dispersant, and the conductive powder produced by extrusion molding of this mixture. In the molded body electrode, the conductive organic material enters the insulating powder so as to surround the periphery of the insulating powder, thereby forming a very homogeneous conductive powder molded body. In particular, by mixing pyrrole oligomers with high plasticity into polyacetylene with relatively low plasticity, the specific resistance of the obtained conductive powder molded body electrode can be reduced, and the molding pressure of extrusion molding can be increased more than necessary. In addition, since the conductive powder molded body electrode having the required strength can be produced, there is an effect that the yield of the conductive powder molded body electrode is improved.

なお、本実施の形態では、被膜となる材料として石英ガラス粉末を用いた例を示したが、平均粒径が20μm以下であれば、通常のガラス粉末、セラミック粉末などの絶縁性の粉末を用いることもできる。この場合、導電性有機材料と組み合わせて作製した導電性粉末成形体電極の比抵抗が10Ω・cmのオーダ以下であれば、放電表面処理の電極として用いた場合に均一な被膜を形成することができる。 In this embodiment, an example in which quartz glass powder is used as a material for a coating film is shown. However, if the average particle size is 20 μm or less, insulating powder such as normal glass powder and ceramic powder is used. You can also. In this case, if the specific resistance of the conductive powder molded body electrode produced in combination with the conductive organic material is less than or equal to the order of 10 4 Ω · cm, a uniform film is formed when used as an electrode for discharge surface treatment. be able to.

また、本実施の形態では、導電性有機材料としてピロールオリゴマーを用いた例を示したが、溶剤、重合剤およびドーパント剤を含むモノマーを用いてもよい。この場合、被膜となる材料粉末とこのモノマーとを混合し、押出し成形機での混練プロセスにおいて導電性有機材料がゲル化し、真空室内で溶剤を除去した後に押出し成形して導電性粉末成形体電極を得ることができる。この方法によると、混練プロセスにおける粘度調整が容易になるなどの作業上の利点がある。   In this embodiment mode, an example in which a pyrrole oligomer is used as the conductive organic material has been described. However, a monomer including a solvent, a polymerization agent, and a dopant agent may be used. In this case, the material powder to be coated and this monomer are mixed, and the conductive organic material is gelled in the kneading process in the extrusion molding machine. After removing the solvent in the vacuum chamber, extrusion molding is performed to form a conductive powder molded body electrode. Can be obtained. This method has operational advantages such as easy viscosity adjustment in the kneading process.

さらには、本実施の形態においては、鏡面研磨されたMoの被加工物を用いたが、これに限られるものではなく、Fe系、Co系、Ni系、Al系、Cu系などの純金属あるいは合金を用いることもできる。   Further, in the present embodiment, the mirror-polished Mo workpiece is used, but the present invention is not limited to this, and pure metals such as Fe-based, Co-based, Ni-based, Al-based, and Cu-based materials are used. Alternatively, an alloy can be used.

実施の形態5.
実施の形態4においては、同一の形状をもつ導電性粉末成形体電極を大量生産することを目的とした押出し成形法による製造方法の例を示したが、実施の形態5では、より複雑な形状の導電性粉末成形体電極を大量生産できる射出成形法を用いたものである。
Embodiment 5 FIG.
In the fourth embodiment, an example of the manufacturing method by the extrusion molding method for the purpose of mass-producing conductive powder molded body electrodes having the same shape has been shown. However, in the fifth embodiment, a more complicated shape is used. This is an injection molding method capable of mass-producing a conductive powder molded body electrode.

本実施の形態おける導電性粉末成形体電極の作製方法を説明する。平均粒径が5μmのアルミナ粉末、重合開始剤とドーパントを含むP−フェニレンビニレンモノマーと比抵抗が3×10−3Ω・cmのポリチオフェンとを重量比70:30の割合で混合した導電性有機材料粉末および溶剤としてのTHFを重量比80:3:17の割合で混合した。この混合物にさらに分散剤を0.25wt%添加してスクリュー式混練機で十分混練した。得られた混練物を真空室内に搬送して溶剤を除去した後、再びスクリュー式混練機で今度は重合開始剤の重合温度より低い温度で加熱しながら混練した。この混練物を重合温度に温度が保たれた金型へ50〜200MPaの射出圧で圧入して成形体とし、この成形体に20〜60MPaの保圧を印加した状態で混練物を重合させて成形体を完全に固化させた。最後に、完全に固化した成形体を室温まで冷却したのち、金型内を大気圧に開放して成形体を金型から取り出して導電性粉末成形体電極を得た。得られた導電性粉末成形体電極の比抵抗は、6.3〜6.8×10−2Ω・cmであり、その内部構造は図1に示したものと同様であった。 A method for producing a conductive powder molded body electrode in the present embodiment will be described. Conductive organic material in which alumina powder having an average particle size of 5 μm, P-phenylene vinylene monomer containing a polymerization initiator and a dopant, and polythiophene having a specific resistance of 3 × 10 −3 Ω · cm are mixed at a weight ratio of 70:30. The material powder and THF as a solvent were mixed at a weight ratio of 80: 3: 17. Further, 0.25 wt% of a dispersant was added to this mixture and sufficiently kneaded with a screw kneader. The obtained kneaded material was conveyed into a vacuum chamber to remove the solvent, and then kneaded again with a screw kneader while heating at a temperature lower than the polymerization temperature of the polymerization initiator. The kneaded product is pressed into a mold kept at the polymerization temperature at an injection pressure of 50 to 200 MPa to form a molded body, and the kneaded product is polymerized in a state where a holding pressure of 20 to 60 MPa is applied to the molded body. The molded body was completely solidified. Finally, after the completely solidified molded body was cooled to room temperature, the inside of the mold was opened to atmospheric pressure, and the molded body was taken out of the mold to obtain a conductive powder molded body electrode. The specific resistance of the obtained conductive powder molded body electrode was 6.3 to 6.8 × 10 −2 Ω · cm, and the internal structure was the same as that shown in FIG.

このようにして作製された導電性粉末成形体電極を放電表面処理装置の電極として用いて、鏡面研磨されたAl製の被加工物の表面に被膜を形成した。導電性粉末成形体電極を負極として、ピーク電流7A以下、パルス幅20μs以下の条件で放電表面処理を行ったところ、被膜の平均表面粗さが1.2μmで、付着力および耐食性とも十分なアルミナの被膜を形成することができた。また、この被膜の元素分析を行ったところ、炭素などの有機物に起因した不純物の混入は検知されなかった。   The conductive powder molded body electrode thus produced was used as an electrode of a discharge surface treatment apparatus to form a coating on the surface of a mirror-finished workpiece made of Al. Discharge surface treatment was performed using a conductive powder molded body electrode as a negative electrode under conditions of a peak current of 7 A or less and a pulse width of 20 μs or less. The average surface roughness of the coating was 1.2 μm, and the alumina had sufficient adhesion and corrosion resistance. It was possible to form a coating. Further, when elemental analysis of this film was performed, contamination of impurities due to organic substances such as carbon was not detected.

本実施の形態では、実施の形態4と同様に、従来の放電表面処理では作製が困難であった絶縁物の被膜を形成することを可能としたもので、導電性粉末成形体電極に用いる被膜となる材料の適用範囲を著しく広げたものである。また、射出成形法によって導電性粉末成形体電極を形成することができるので、複雑な形状の導電性粉末成形体電極を形成することができるという効果もある。さらには、本実施の形態で用いたP−フェニレンビニレンモノマーは、重合前は液状または可塑性を示すので混練時には混練物の流動性が高くなるとともに、重合後は導電性を示すので成形体となった後に保圧を加えられながら重合されて完全に固化されるときは導電性が付与される。その結果、射出成形が容易になるとともに、強度が高く、比抵抗の低い導電性粉末成形体電極が得られる効果がある。   In the present embodiment, as in the fourth embodiment, it is possible to form a coating of an insulator that has been difficult to produce by conventional discharge surface treatment, and a coating used for a conductive powder molded body electrode. This greatly expands the range of application of the material. In addition, since the conductive powder molded body electrode can be formed by an injection molding method, there is an effect that a conductive powder molded body electrode having a complicated shape can be formed. Furthermore, since the P-phenylene vinylene monomer used in the present embodiment exhibits liquidity or plasticity before polymerization, the kneaded product has high fluidity during kneading and becomes electrically conductive after polymerization, so that it becomes a molded product. In addition, conductivity is imparted when it is polymerized and completely solidified with a holding pressure applied. As a result, injection molding is facilitated, and there is an effect that a conductive powder molded body electrode having high strength and low specific resistance can be obtained.

さらには、本実施の形態で得られた導電性粉末成形体電極の抗折力を測定したところ、
導電性有機材料粉末のみで成形された従来の電極の5〜10倍以上の抗折力を示し、極めて均質で低い比抵抗の導電性粉末成形体を得ることができた。なお、抗折力とは、材料の曲げ強度を示すもので、板状の試験片を2つの支点で支えた状態で、支点間の試験片の上方中央部に荷重をかけたときの最大破壊荷重による単位断面積あたりの荷重(Kg/cm)である。また、射出成形による電極の圧縮成形の可能性を確認できたことにより、材料選択の自由度を広げたと同時に、複雑な形状の絶縁物を電極として高精度で大量生産できるようにしたという効果がある。
Furthermore, when measuring the bending strength of the conductive powder molded body electrode obtained in the present embodiment,
A bending strength of 5 to 10 times or more that of a conventional electrode formed only with a conductive organic material powder was exhibited, and a conductive powder molded body having a very uniform and low specific resistance could be obtained. The bending strength indicates the bending strength of the material. The maximum fracture when a plate-shaped specimen is supported by two fulcrums and a load is applied to the upper center of the specimen between the fulcrums. It is a load per unit cross-sectional area (Kg / cm 2 ) due to the load. In addition, by confirming the possibility of compression molding of electrodes by injection molding, it has the effect of expanding the freedom of material selection and at the same time enabling high-precision mass production of insulators with complex shapes as electrodes. is there.

なお、本実施の形態では、被膜となる材料としてアルミナ粉末を用いた例を示したが、平均粒径が20μm以下であれば、通常のガラス粉末、セラミック粉末などの絶縁性の粉末を用いることもできる。この場合、導電性有機材料と組み合わせて作製した導電性粉末成形体電極の比抵抗が10Ω・cmのオーダ以下であれば、放電表面処理の電極として用いた場合に均一な被膜を形成することができる。 In this embodiment, an example in which alumina powder is used as a material for the coating film is shown. However, if the average particle size is 20 μm or less, insulating powder such as normal glass powder or ceramic powder should be used. You can also. In this case, if the specific resistance of the conductive powder molded body electrode produced in combination with the conductive organic material is less than or equal to the order of 10 4 Ω · cm, a uniform film is formed when used as an electrode for discharge surface treatment. be able to.

また、本実施の形態では、導電性有機材料としてP−フェニレンビニレンモノマーとポリチオフェンとを用いたが、ドーパントと重合開始剤とを含み重合後に導電性を示す材料であれば、表2に示したモノマーまたはオリゴマーあるいは導電性高分子材料などを射出成形に適した混合比で混合して用いることもできる。この場合も、導電性有機材料と被膜となる粉末材料とを組み合わせて作製した導電性粉末成形体電極の比抵抗が10Ω・ cmのオーダ以下であればよい。 In the present embodiment, P-phenylene vinylene monomer and polythiophene are used as the conductive organic material. Table 2 shows a material that includes a dopant and a polymerization initiator and exhibits conductivity after polymerization. Monomers, oligomers, conductive polymer materials, and the like can be mixed and used at a mixing ratio suitable for injection molding. Also in this case, the specific resistance of the conductive powder molded body electrode produced by combining the conductive organic material and the powder material to be the film may be less than or equal to the order of 10 4 Ω · cm.

この方法によると、混練物を金型へ圧入後、保圧を印加しながら重合後に高い導電性を示すモノマーおよびオリゴマーを重合させたため、導電性有機材料が効率よく粉末を覆い、かつ粉末粒子間の密着性を高めるため、比抵抗が小さく、電極の強度が高まるという効果がある。   According to this method, after press-fitting the kneaded material into a mold, a monomer and an oligomer exhibiting high conductivity after polymerization were polymerized while applying a holding pressure, so that the conductive organic material efficiently covered the powder, and between the powder particles Therefore, the specific resistance is small and the strength of the electrode is increased.

また、本実施の形態では、導電性有機材料粉末として、導電性高分子粉末とモノマーあるいはオリゴマーの混合物について示したが、導電性有機材料としてモノマーあるいはオリゴマーのみを被膜となる材料粉末と混合・混練し、金型内に圧入後、重合・固化しても比抵抗が104Ω・cm以下であれば、本実施の形態で示した電極と同等の液中放電加工用導電性粉末成形体電極が得られる。 In this embodiment, the conductive organic material powder is a mixture of a conductive polymer powder and a monomer or oligomer. However, as the conductive organic material, only the monomer or oligomer is mixed and kneaded with a material powder that forms a film. If the specific resistance is 10 4 Ω · cm or less even after polymerization and solidification after press-fitting into the mold, a conductive powder molded electrode for submerged electric discharge machining equivalent to the electrode shown in the present embodiment Is obtained.

さらには、本実施の形態においては、鏡面研磨されたAl製の被加工物を用いたが、これに限られるものではなく、Fe系、Co系、Ni系、Cu系などの純金属または合金あるいはAl−Mn系、Al−Si系、Al−Mg系などの合金を用いることもできる。   Furthermore, in the present embodiment, a mirror-finished workpiece made of Al is used, but the present invention is not limited to this, and pure metals or alloys such as Fe, Co, Ni, and Cu are used. Alternatively, alloys such as Al—Mn, Al—Si, and Al—Mg can be used.

実施の形態6.
実施の形態6では、可塑性の高い導電性有機材料粉末と可塑性の低い導電性有機材料粉末とを組み合わせることにより、成形性を一層高めた導電性粉末成形体電極を得ることを目的としたものである。
Embodiment 6 FIG.
Embodiment 6 aims to obtain a conductive powder molded body electrode with further improved formability by combining a highly plastic conductive organic material powder and a low plastic conductive organic material powder. is there.

本実施の形態おける導電性粉末成形体電極の作製方法を説明する。平均粒径が1.0μm、比抵抗が2.6×10−6Ω・cmの純Al粉末、可塑性の高い比抵抗3×10−3Ω・cmのポリアニリンと可塑性の低い(可塑性が多少改善された)比抵抗が5×10−4Ω・cmのポリアセチレンとを重量比30:70の割合で混合した導電性有機材料および溶剤としてのN−メチル−2−ピロリドン(NMP)を重量比80:8:12の割合で混合した。この混合物を用いて、実施の形態1と同様な加圧成形法で導電性粉末成形体電極を作製した。加圧成形時の圧力は100〜200MPaである。また、比較のために、有機導電性材料がポリアニリンのみを用いた導電性粉末成形体電極とポリアセチレンのみを用いた導電性粉末成形体電極を同時に作製した。 A method for producing a conductive powder molded body electrode in the present embodiment will be described. Pure Al powder with an average particle size of 1.0 μm and specific resistance of 2.6 × 10 −6 Ω · cm, high plasticity polyaniline with specific resistance of 3 × 10 −3 Ω · cm and low plasticity (the plasticity is somewhat improved) A conductive organic material mixed with polyacetylene having a specific resistance of 5 × 10 −4 Ω · cm at a weight ratio of 30:70 and N-methyl-2-pyrrolidone (NMP) as a solvent in a weight ratio of 80 : Mixed at a ratio of 8:12. Using this mixture, a conductive powder molded body electrode was produced by the same pressure molding method as in the first embodiment. The pressure at the time of pressure molding is 100 to 200 MPa. For comparison, a conductive powder molded body electrode using only polyaniline as an organic conductive material and a conductive powder molded body electrode using only polyacetylene were simultaneously produced.

表3は、作製した導電性粉末成形体電極の材料と比抵抗および抗折力との関係を示したものである。電極Aは、可塑性の高い導電性有機材料粉末と可塑性の低い導電性有機材料粉末とを組み合わせて作製した導電性粉末成形体電極であり、電極Bおよび電極Cは、それぞれ可塑性の高い導電性有機材料粉末のみ、可塑性の低い導電性有機材料粉末のみで作製した導電性粉末成形体電極である。   Table 3 shows the relationship between the material of the produced conductive powder molded body electrode, the specific resistance, and the bending strength. Electrode A is a conductive powder molded body electrode produced by combining a highly plastic conductive organic material powder and a low plastic conductive organic material powder. Electrode B and electrode C are each a highly plastic conductive organic material. This is a conductive powder molded body electrode made only of a material powder and a conductive organic material powder having low plasticity.

Figure 0004857677
Figure 0004857677

表3から、可塑性の高い導電性有機材料粉末と可塑性の低い導電性有機材料粉末とを組み合わせて作製した電極Aは、可塑性の高い導電性有機材料粉末のみで作製した電極Bに比べて抗折力は劣るものの比抵抗は低くなり、また、可塑性の低い導電性有機材料粉末のみで作製した電極Cに比べて抗折力は高くなる。   From Table 3, the electrode A produced by combining the highly plastic conductive organic material powder and the low plastic conductive organic material powder is more resistant to bending than the electrode B produced only from the highly plastic conductive organic material powder. Although the strength is inferior, the specific resistance is low, and the bending strength is higher than that of the electrode C made of only the conductive organic material powder having low plasticity.

また、導電性粉末成形体電極の比抵抗は、表3に示すように、電極1は比抵抗の小さいt−PAを添加した電極Cよりも改善された。これは、Al粒子間に導電性有機材料が入り込み、溶剤を除去する過程でAl粒子を被覆しながら強固に結合していき、外力が作用した場合、軟・硬有機材料と無機材料粉末相互の緩衝効果および静電効果により形状を維持すると考えられる。このことから、モノマーの側鎖を可撓性の優れたアルキル基などで(分子鎖に平面性が失われると導電性が悪くなるため、導電性を極端に犠牲にしない程度に)置換した導電性有機材料を使用して導電性粉末成形体電極を作製すれば、電極強度および比抵抗を改善する効果を期待できる。   Further, as shown in Table 3, the specific resistance of the conductive powder molded body electrode was improved as compared with the electrode C to which t-PA having a small specific resistance was added. This is because the conductive organic material enters between the Al particles and is firmly bonded while covering the Al particles in the process of removing the solvent, and when an external force is applied, the soft / hard organic material and the inorganic material powder interact with each other. It is thought that the shape is maintained by the buffer effect and the electrostatic effect. For this reason, the conductivity in which the side chain of the monomer is replaced with an alkyl group having excellent flexibility (to the extent that conductivity is deteriorated when the planarity of the molecular chain is lost, so that conductivity is not extremely sacrificed) If a conductive powder molded body electrode is produced using a conductive organic material, an effect of improving electrode strength and specific resistance can be expected.

このようにして作製された電極Aを放電表面処理装置の電極として用いて、鏡面研磨されたFe系合金の被加工物の表面に被膜を形成した。電極Aを負極として、ピーク電流4A以下、パルス幅20μs以下の条件で放電表面処理を行ったところ、被膜の比抵抗がほぼ純Alと同程度で、付着力および耐食性とも十分なAl被膜を形成することができた。   The electrode A thus produced was used as an electrode of a discharge surface treatment apparatus, and a coating film was formed on the surface of an Fe-based alloy workpiece that was mirror-polished. When the discharge surface treatment was performed with the electrode A as the negative electrode and a peak current of 4 A or less and a pulse width of 20 μs or less, the specific resistance of the film was almost the same as that of pure Al, and an Al film with sufficient adhesion and corrosion resistance was formed. We were able to.

なお、本実施の形態においては、鏡面研磨されたFe系合金の被加工物を用いたが、これに限られるものではなく、Co系、Ni系、Al系、Cu系などの純金属または合金を用いることもできる。   In the present embodiment, a mirror-finished workpiece of an Fe-based alloy is used. However, the present invention is not limited to this, and pure metals or alloys such as Co-based, Ni-based, Al-based, and Cu-based are used. Can also be used.

実施の形態7.
実施の形態7では、実施の形態6において、被膜を形成する材料として純Alの替わりにAlにSiを12wt%添加したAl−Si合金粉末を用いたものである。導電性有機材料は、可塑性の高い導電性有機材料粉末と可塑性の低い導電性有機材料粉末とを組み合わせたものである。
Embodiment 7 FIG.
In the seventh embodiment, the Al—Si alloy powder obtained by adding 12 wt% of Si to Al is used instead of pure Al as the material for forming the film in the sixth embodiment. The conductive organic material is a combination of a highly plastic conductive organic material powder and a low plastic conductive organic material powder.

本実施の形態おける導電性粉末成形体電極の作製方法を説明する。平均粒径が1.5μm、比抵抗が5.0×10−6Ω・cmのAl−Si合金粉末、可塑性の高い比抵抗3×10−3Ω・cmのポリアニリンと可塑性の低い比抵抗が5×10−4Ω・cmのポリアセチレンとを重量比30:70の割合で混合した導電性有機材料および溶剤としてのN−メチル−2−ピロリドン(NMP)を重量比80:8:12の割合で混合した。この混合物を用いて、実施の形態1と同様な加圧成形法で導電性粉末成形体電極を作製した。加圧成形時の圧力は100〜200MPaである。 A method for producing a conductive powder molded body electrode in the present embodiment will be described. Al-Si alloy powder having an average particle diameter of 1.5 μm and a specific resistance of 5.0 × 10 −6 Ω · cm, a polyaniline having a high plastic resistivity of 3 × 10 −3 Ω · cm and a low plastic resistivity Conductive organic material mixed with 5 × 10 −4 Ω · cm polyacetylene at a weight ratio of 30:70 and N-methyl-2-pyrrolidone (NMP) as a solvent at a weight ratio of 80: 8: 12 Mixed. Using this mixture, a conductive powder molded body electrode was produced by the same pressure molding method as in the first embodiment. The pressure at the time of pressure molding is 100 to 200 MPa.

このようにして作製された導電性粉末成形体電極の抗折力は、実施の形態6の電極Aとほぼ同等の抗折力を示した。さらに、本実施の形態で得られた導電性粉末成形体電極を放電表面処理装置の電極として用いて、鏡面研磨されたFe系合金の被加工物の表面に被膜を形成した。導電性粉末成形体電極を負極として、ピーク電流4A以下、パルス幅20μs以下の条件で放電表面処理を行ったところ、被膜の比抵抗がほぼAl−Si合金と同程度で、付着力および耐食性とも十分なAl−Si合金被膜を形成することができた。   The bending strength of the conductive powder molded body electrode thus produced showed a bending strength substantially equivalent to that of the electrode A of the sixth embodiment. Furthermore, using the conductive powder molded body electrode obtained in the present embodiment as an electrode of a discharge surface treatment apparatus, a coating was formed on the surface of a mirror-polished Fe-based alloy workpiece. Discharge surface treatment was performed under the conditions of a peak current of 4 A or less and a pulse width of 20 μs or less using a conductive powder molded body electrode as a negative electrode. A sufficient Al—Si alloy film could be formed.

実施の形態8.
実施の形態8では、可塑性の高い絶縁性の有機バインダ粉末と可塑性の低い導電性有機材料粉末とを組み合わせることにより、成形性を一層高めた導電性粉末成形体電極を得ることを目的としたものである。
Embodiment 8 FIG.
Embodiment 8 aims at obtaining a conductive powder molded body electrode with further improved formability by combining a highly plastic insulating organic binder powder and a low plastic conductive organic material powder. It is.

本実施の形態おける導電性粉末成形体電極の作製方法を説明する。平均粒径が1.2μm、比抵抗が6.0×10−6Ω・cmの純Zn粉末と可塑性の高い絶縁性ポリエチレンとを重量比93:7の割合で混合し、この混合物をアルゴンガス雰囲気中で150〜200℃に加熱しながら十分均一になるまで混練する。この混練物を室温まで冷却して微粉砕した後、可塑性が低く比抵抗が5.0×10−5Ω・cmのt−PA(ポリアセチレン)を、混練物中のポリエチレンの重量に対して70wt%となる量だけ添加してさらに十分均一に混練する。最後に、実施の形態1と同様に加圧成形して導電性粉末成形体電極を形成した。加圧成形時の圧力は100〜200MPaである。 A method for producing a conductive powder molded body electrode in the present embodiment will be described. Pure Zn powder having an average particle diameter of 1.2 μm and a specific resistance of 6.0 × 10 −6 Ω · cm and highly plastic insulating polyethylene are mixed at a weight ratio of 93: 7, and this mixture is mixed with argon gas. Kneading in an atmosphere while heating to 150 to 200 ° C. until sufficiently uniform. The kneaded product was cooled to room temperature and finely pulverized, and then t-PA (polyacetylene) having low plasticity and a specific resistance of 5.0 × 10 −5 Ω · cm was 70 wt% relative to the weight of polyethylene in the kneaded product. %, And knead uniformly enough. Finally, pressure forming was performed in the same manner as in Embodiment 1 to form a conductive powder molded body electrode. The pressure at the time of pressure molding is 100 to 200 MPa.

図4は、本実施の形態で得られた導電性粉末成形体電極の内部断面構造を拡大して示す模式図である。図4において、本実施の形態における導電性粉末成形体電極1は、放電表面処理によって被加工物に形成される被膜の材料となる純Zn粒子8を取り囲むようにポリエチレン9が存在し、さらにその周りにポリアセチレン10が充填されて加圧成形されたものである。このようにして作製された導電性粉末成形体電極の比抵抗は2.0×10−3Ω・cmであった。さらに、この導電性粉末成形体電極を放電表面処理装置の電極として用いて、鏡面研磨されたFe系合金の被加工物の表面に被膜を形成したところ、所定の抵抗値および耐食性を有する被膜が得られた。 FIG. 4 is an enlarged schematic view showing the internal cross-sectional structure of the conductive powder molded body electrode obtained in the present embodiment. In FIG. 4, the conductive powder molded body electrode 1 in the present embodiment includes polyethylene 9 so as to surround pure Zn particles 8 as a material of a film formed on the workpiece by the discharge surface treatment, The polyacetylene 10 is filled around and pressure-molded. The specific resistance of the conductive powder molded body electrode thus produced was 2.0 × 10 −3 Ω · cm. Furthermore, when this conductive powder molded body electrode was used as an electrode of a discharge surface treatment apparatus and a film was formed on the surface of a mirror-finished Fe-based alloy workpiece, a film having a predetermined resistance value and corrosion resistance was obtained. Obtained.

このように、可塑性の高い絶縁性の有機バインダ粉末と可塑性の低い導電性有機材料粉末とを組み合わせることにより、Zn粒子間に導電性有機材料が入り込み、溶剤を除去する過程でZn粒子を被覆しながら強固に結合して行き、加圧成形時に、可塑性の高い有機材料と可塑性の低い有機材料とZn粉末相互との緩衝効果および静電効果により形状を維持することがで、電極強度および比抵抗を改善する効果がある。   In this way, by combining a highly plastic insulating organic binder powder and a low plastic conductive organic material powder, the conductive organic material enters between the Zn particles, and the Zn particles are coated in the process of removing the solvent. The electrode strength and specific resistance can be maintained by pressing and molding, and maintaining the shape by the buffering effect and electrostatic effect between the highly plastic organic material, the low plastic organic material and the Zn powder. There is an effect to improve.

なお、本実施の形態では、可塑性の高い絶縁性の有機バインダとしてポリエチレンを用いた例を示したが、パラフィンまたはエポキシ系の材料であっても高い成形性が得られる。また、被膜となる材料として純Zn粉末を用いる例を示したが、他の材料、例えば表1に示した金属や合金、またはガラスあるいはセラミックスなどの粉末を用いることもできる。この場合、導電性有機材料と組み合わせて作製した導電性粉末成形体電極の比抵抗が10Ω・cmのオーダ以下であればよい。さらに、導電性の有機材料についても、ポリアセチレン以外の材料、例えば表2に示した材料を用いることができ、この場合も、作製した導電性粉末成形体電極の比抵抗が10Ω・cmのオーダ以下であればよい。 In the present embodiment, an example in which polyethylene is used as an insulating organic binder having high plasticity is shown, but high moldability can be obtained even with a paraffin or epoxy material. Moreover, although the example which uses pure Zn powder as a material used as a film was shown, other materials, for example, powders such as metals and alloys shown in Table 1 or glass or ceramics may be used. In this case, the specific resistance of the conductive powder molded electrode produced in combination with the conductive organic material may be no more than the order of 10 4 Ω · cm. Further, as the conductive organic material, materials other than polyacetylene, for example, the materials shown in Table 2 can be used. In this case, the specific resistance of the produced conductive powder molded body electrode is 10 4 Ω · cm. Any order or less is acceptable.

実施の形態9.
実施の形態9では、実施の形態8と同様に、可塑性の高い絶縁性の有機バインダ粉末と可塑性の低い導電性有機材料粉末とを組み合わせて、射出成形法を用いて導電性粉末成形体電極を作製することを目的としたものである。
Embodiment 9 FIG.
In the ninth embodiment, similarly to the eighth embodiment, a conductive powder molded body electrode is formed by using an injection molding method by combining a highly plastic insulating organic binder powder and a low plastic conductive organic material powder. The purpose is to produce.

本実施の形態おける導電性粉末成形体電極の作製方法を説明する。平均粒径が1.0μm、比抵抗が3.4×10−5Ω・cmのNi−Cu合金粉末(Cu:30wt%)、可塑性の高い絶縁性ポリエチレンおよび導電性のポリアセチレンを重量比75:15:10の割合で混合し、この混合物を窒素ガス雰囲気中で150〜200℃に加熱しながら十分均一になるまで混練する。この混練物をスクリュー射出機により金型に約200MPaの圧力で圧入した後、約50MPaの保圧を加えた状態で室温まで冷却して導電性粉末成形体電極を得た。 A method for producing a conductive powder molded body electrode in the present embodiment will be described. A Ni—Cu alloy powder (Cu: 30 wt%) having an average particle diameter of 1.0 μm and a specific resistance of 3.4 × 10 −5 Ω · cm, highly plastic insulating polyethylene and conductive polyacetylene in a weight ratio of 75: The mixture is mixed at a ratio of 15:10, and the mixture is kneaded in a nitrogen gas atmosphere while being heated to 150 to 200 ° C. until sufficiently uniform. The kneaded product was press-fitted into the mold at a pressure of about 200 MPa by a screw injector, and then cooled to room temperature with a holding pressure of about 50 MPa to obtain a conductive powder molded body electrode.

このようにして作製された導電性粉末成形体電極の比抵抗は7.0×10−2Ω・cmであった。さらに、この導電性粉末成形体電極を放電表面処理装置の電極として用いて、鏡面研磨されたFe系合金の被加工物の表面に被膜を形成したところ、所定の抵抗値および耐食性を有するNi−Cu合金被膜が得られた。 The specific resistance of the conductive powder molded body electrode thus produced was 7.0 × 10 −2 Ω · cm. Furthermore, when this conductive powder molded body electrode was used as an electrode of a discharge surface treatment apparatus and a film was formed on the surface of a mirror-finished Fe-based alloy workpiece, Ni- having a predetermined resistance value and corrosion resistance A Cu alloy coating was obtained.

本実施の形態においては、導電性有機材料として、導電性のポリアセチレンと絶縁性ポリエチレンを混合して用い、さらにポリエチレンが溶融する150〜200℃で混練を行っているので、成形性が向上し、射出成形時の高い歩留まりと形状に対する高い精度を維持することができる。   In the present embodiment, conductive polyacetylene and insulating polyethylene are mixed and used as the conductive organic material, and further, kneading is performed at 150 to 200 ° C. at which polyethylene is melted. It is possible to maintain high yield and shape accuracy during injection molding.

なお、本実施の形態では、可塑性の高い絶縁性の有機バインダとしてポリエチレンを用いた例を示したが、パラフィンまたはエポキシ系の材料であっても高い成形性が得られる。また、被膜となる材料としてNi−Cu合金粉末を用いる例を示したが、他の材料、例えば表1に示した金属や合金、またはガラスあるいはセラミックスなどの粉末を用いることもできる。この場合、導電性有機材料と組み合わせて作製した導電性粉末成形体電極の比抵抗が10Ω・cmのオーダ以下であればよい。さらに、導電性の有機材料についても、ポリアセチレン以外の材料、例えば表2に示した材料を用いることができ、この場合も、作製した導電性粉末成形体電極の比抵抗が10Ω・cmのオーダ以下であればよい。 In the present embodiment, an example in which polyethylene is used as an insulating organic binder having high plasticity is shown, but high moldability can be obtained even with a paraffin or epoxy material. Moreover, although the example which uses Ni-Cu alloy powder as a material used as a film was shown, other materials, for example, powders such as metals and alloys shown in Table 1 or glass or ceramics may be used. In this case, the specific resistance of the conductive powder molded electrode produced in combination with the conductive organic material may be no more than the order of 10 4 Ω · cm. Further, as the conductive organic material, materials other than polyacetylene, for example, the materials shown in Table 2 can be used. In this case, the specific resistance of the produced conductive powder molded body electrode is 10 4 Ω · cm. Any order or less is acceptable.

実施の形態10.
実施の形態10では、射出成形法を用いて導電性粉末成形体電極を作製するときに、重合開始剤とモノマーとを用いてさらに強度を向上させることを目的としたものである。
Embodiment 10 FIG.
The tenth embodiment aims to further improve the strength by using a polymerization initiator and a monomer when an electroconductive powder molded body electrode is produced using an injection molding method.

本実施の形態おける導電性粉末成形体電極の作製方法を説明する。平均粒径が1.0μmのSKH51合金粉末と重合開始剤を含むドーパント処理済チオフェンモノマーとを重量比85:15の割合で混合した。この混合物にさらに分散剤を0.25wt%添加してスクリュー式混練機に投入し、重合開始剤の重合温度より低い温度で加熱しながら混練する。この混練物を重合温度に温度が保たれた金型へ50〜200MPaの射出圧で圧入して成形体とし、この成形体に20〜60MPaの保圧を印加した状態で混練物を重合させて成形体を完全に固化させる。最後に、完全に固化した成形体を室温まで冷却したのち、金型内を大気圧に開放して成形体を金型から取り出して導電性粉末成形体電極を得た。得られた導電性粉末成形体電極の比抵抗は、4.5×10−3Ω・cmであった。 A method for producing a conductive powder molded body electrode in the present embodiment will be described. The SKH51 alloy powder having an average particle diameter of 1.0 μm and a dopant-treated thiophene monomer containing a polymerization initiator were mixed at a weight ratio of 85:15. Further, 0.25 wt% of a dispersant is added to this mixture, and the mixture is put into a screw kneader and kneaded while being heated at a temperature lower than the polymerization temperature of the polymerization initiator. The kneaded product is pressed into a mold kept at the polymerization temperature at an injection pressure of 50 to 200 MPa to form a molded body, and the kneaded product is polymerized in a state where a holding pressure of 20 to 60 MPa is applied to the molded body. The molded body is completely solidified. Finally, after the completely solidified molded body was cooled to room temperature, the inside of the mold was opened to atmospheric pressure, and the molded body was taken out of the mold to obtain a conductive powder molded body electrode. The specific resistance of the obtained conductive powder molded body electrode was 4.5 × 10 −3 Ω · cm.

このようにして作製された導電性粉末成形体電極を放電表面処理装置の電極として用いて、鏡面研磨されたFe製の被加工物の表面に被膜を形成した。導電性粉末成形体電極を負極として、ピーク電流8A以下、パルス幅20μs以下の条件で放電表面処理を行ったところ、被膜の平均表面粗さが0.9μmで、ビッカース強度が1600〜1650HvのSKH51合金被膜を形成することができた。また、この被膜の元素分析を行ったところ、炭素などの有機物に起因した不純物の混入は検知されなかった。   The conductive powder molded body electrode thus produced was used as an electrode of a discharge surface treatment apparatus to form a film on the surface of a mirror-finished workpiece made of Fe. Discharge surface treatment was performed using a conductive powder molded body electrode as a negative electrode under conditions of a peak current of 8 A or less and a pulse width of 20 μs or less. As a result, SKH51 having an average surface roughness of 0.9 μm and a Vickers strength of 1600 to 1650 Hv. An alloy coating could be formed. Further, when elemental analysis of this film was performed, contamination of impurities due to organic substances such as carbon was not detected.

本実施の形態においては、導電性有機材料に重合開始剤を含むモノマーを用いているので、加圧成形時に重合して粉末粒子同士が十分に密着することによって、電極強度が向上するとともに、比抵抗も小さくなる効果がある。   In the present embodiment, since a monomer containing a polymerization initiator is used for the conductive organic material, the electrode strength is improved by polymerizing at the time of pressure molding and sufficiently adhering the powder particles, and the ratio The resistance is also reduced.

なお、本実施の形態では、被膜となる材料としてSKH51合金粉末を用いる例を示したが、他の材料、例えば表1に示した金属や合金、またはガラスあるいはセラミックスなどの粉末を用いることもできる。この場合、導電性有機材料と組み合わせて作製した導電性粉末成形体電極の比抵抗が10Ω・cmのオーダ以下であればよい。さらに、導電性の有機材料についても、ポリアセチレン以外の材料、例えば表2に示した材料を用いることができ、この場合も、作製した導電性粉末成形体電極の比抵抗が10Ω・cmのオーダ以下であればよい。 In the present embodiment, an example in which the SKH51 alloy powder is used as the material for the coating film is shown. However, other materials, for example, metals and alloys shown in Table 1, or powders of glass or ceramics may be used. . In this case, the specific resistance of the conductive powder molded electrode produced in combination with the conductive organic material may be no more than the order of 10 4 Ω · cm. Further, as the conductive organic material, materials other than polyacetylene, for example, the materials shown in Table 2 can be used. In this case, the specific resistance of the produced conductive powder molded body electrode is 10 4 Ω · cm. Any order or less is acceptable.

この発明の実施の形態1による導電性粉末成形体電極の内部断面構造を示す模式図である。It is a schematic diagram which shows the internal cross-section of the electroconductive powder molded object electrode by Embodiment 1 of this invention. この発明の実施の形態1における製造装置の一部を示す模式図である。It is a schematic diagram which shows a part of manufacturing apparatus in Embodiment 1 of this invention. この発明の実施の形態1による導電性粉末成形体電極の特性図である。It is a characteristic view of the electroconductive powder molded object electrode by Embodiment 1 of this invention. この発明の実施の形態8による導電性粉末成形体電極の内部断面構造を示す模式図である。It is a schematic diagram which shows the internal cross-section of the electroconductive powder molded object electrode by Embodiment 8 of this invention.

符号の説明Explanation of symbols

1 導電性粉末成形体電極
2 粉末粒子
3 導電性有機材料
4 ダイプレート
5 ダイ
6 混合粉末
7 プレスパンチ
8 純Zn粒子
9 ポリエチレン
10 ポリアセチレン
DESCRIPTION OF SYMBOLS 1 Electroconductive powder molded body electrode 2 Powder particle 3 Conductive organic material 4 Die plate 5 Die 6 Mixed powder 7 Press punch 8 Pure Zn particle 9 Polyethylene 10 Polyacetylene

Claims (5)

被加工物との間にパルス状の放電を発生させ前記被加工物の表面に被膜を形成する放電表面処理に用いられる導電性粉末成形体電極であって、
前記被膜される材料が金属粉末、金属化合物粉末、ガラス粉末およびセラミック粉末のうちの少なくともいずれかであり、
前記被膜される材料が主鎖にπ共役系結合を有する導電性有機材料に分散されて加圧成形体をなし、
前記加圧成形体の比抵抗が10Ω・cm以下であることを特徴とする導電性粉末成形体電極。
A conductive powder molded body electrode used for discharge surface treatment for generating a pulsed discharge between a workpiece and forming a film on the surface of the workpiece,
The material to be coated is at least one of metal powder, metal compound powder, glass powder and ceramic powder;
The material to be coated is dispersed in a conductive organic material having a π-conjugated bond in the main chain to form a pressure molded body,
A conductive powder molded body electrode, wherein the pressure molded body has a specific resistance of 10 4 Ω · cm or less.
導電性有機材料は、アセン系化合物、ピロール系化合物、チオフェン系化合物、アニリン系化合物、p−フェニレン系化合物およびアセチレン系化合物の少なくとも1種類の材料であることを特徴とする請求項記載の導電性粉末成形体電極。 Conductive organic materials, acene-based compounds, pyrrole-based compounds, thiophene-based compounds, aniline-based compounds, conductive according to claim 1, wherein the at least one material of p- phenylene compounds and acetylene compounds Powder molded body electrode. 導電性有機材料は、ポリアセン、ポリピロール、ポリチオフェン、ポリアニリン、ポリ−p−フェニレン、ポリ−p−フェニレンビニレンおよびポリアセチレンの少なくとも1種類の材料であることを特徴とする請求項記載の導電性粉末成形体電極。 2. The conductive powder molding according to claim 1 , wherein the conductive organic material is at least one material of polyacene, polypyrrole, polythiophene, polyaniline, poly-p-phenylene, poly-p-phenylene vinylene and polyacetylene. Body electrode. 被膜される材料を取り囲むように絶縁性の有機バインダが存在し、さらにその周りに前記導電性有機材料が充填されていることを特徴とする請求項1に記載の導電性粉末成形体電極。 The conductive powder molded body electrode according to claim 1 , wherein an insulating organic binder is present so as to surround the material to be coated , and the conductive organic material is filled therearound. 被加工物との間にパルス状の放電を発生させ前記被加工物の表面に被膜を形成する放電表面処理に用いられる導電性粉末成形体電極の製造方法であって、
金属粉末、金属化合物粉末、ガラス粉末およびセラミック粉末のうちの少なくともいずれかの粉末粒子に、主鎖にπ共役系結合を有する材料からなる導電性有機材料粉末を混合して混合粉末を作製する工程と、
前記混合粉末を加圧して前記導電性有機材料粉末を前記粉末粒子の間に入り込ませ、前記粉末粒子の間に前記導電性有機材料を充填して比抵抗が10 Ω・cm以下の加圧性形体に成形する工程と
を備えたことを特徴とする導電性粉末成形体電極の製造方法。
A method for producing a conductive powder molded body electrode used for discharge surface treatment for generating a pulsed discharge between a workpiece and forming a coating on the surface of the workpiece,
A step of mixing a conductive organic material powder made of a material having a π-conjugated bond in the main chain with a powder particle of at least one of metal powder, metal compound powder, glass powder, and ceramic powder to produce a mixed powder When,
The mixed powder is pressurized to allow the conductive organic material powder to enter between the powder particles, and the conductive organic material is filled between the powder particles so that the specific resistance is 10 4 Ω · cm or less. A process for producing a conductive powder molded body electrode comprising a step of molding into a shape .
JP2005262247A 2005-09-09 2005-09-09 Conductive powder molded body electrode and manufacturing method thereof Expired - Fee Related JP4857677B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005262247A JP4857677B2 (en) 2005-09-09 2005-09-09 Conductive powder molded body electrode and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005262247A JP4857677B2 (en) 2005-09-09 2005-09-09 Conductive powder molded body electrode and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2007070712A JP2007070712A (en) 2007-03-22
JP4857677B2 true JP4857677B2 (en) 2012-01-18

Family

ID=37932424

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005262247A Expired - Fee Related JP4857677B2 (en) 2005-09-09 2005-09-09 Conductive powder molded body electrode and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4857677B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8440931B2 (en) 2006-12-27 2013-05-14 Mitsubishi Electric Corporation Electrode for electrical-discharge surface treatment and method of manufacturing the same
US8372313B2 (en) 2007-11-19 2013-02-12 Mitsubishi Electric Corporation Electrical-discharge surface-treatment electrode and metal coating film formed using the same
CN101925692A (en) 2008-01-30 2010-12-22 株式会社Ihi Discharge surface treatment method and coating block for discharge surface treatment
JP5177121B2 (en) * 2009-11-11 2013-04-03 三菱電機株式会社 Repair method of machine parts
KR101952843B1 (en) * 2011-07-07 2019-02-27 삼성전기주식회사 Conductive paste composition for internal electrode and multilayer ceramic electronic component
WO2017051963A1 (en) * 2015-09-25 2017-03-30 금오공과대학교 산학협력단 Carbon fiber electrode using carbon fiber and manufacturing method therefor

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07252460A (en) * 1994-03-16 1995-10-03 Fujitsu Ltd Adhesive
CN100506434C (en) * 1998-03-11 2009-07-01 三菱电机株式会社 Method for manufacturing pressed compact electrode for processing discharge surface
JP2004263110A (en) * 2003-03-04 2004-09-24 Mitani Sangyo Kk Organic conductive composition, its conductive film and resin composite material

Also Published As

Publication number Publication date
JP2007070712A (en) 2007-03-22

Similar Documents

Publication Publication Date Title
JP4857677B2 (en) Conductive powder molded body electrode and manufacturing method thereof
TWI438171B (en) A sintered body, a sputtering target and a forming die, and a sintered body manufacturing method using the same
CN108558398B (en) Method for pulse discharge room temperature flash sintering nano ceramic material
KR20000057987A (en) Method of electric sintering method and mold for use in the method
JP6383726B2 (en) Sputtering target and manufacturing method thereof
CN111056841A (en) Method for manufacturing rare earth reinforced graphite plate
CN1367726A (en) Electrode for discharge surface treating and production method thereof and discharge surface treating method
JPH01226767A (en) Electrically conductive material and production thereof
KR100580296B1 (en) Niobium Powder, Sintered Body Thereof and Capacitor Using the Same
JP6722089B2 (en) Method for producing aluminum-graphite-carbide composite
WO2005056496A1 (en) Ceramic sintered compact, method for producing ceramic sintered compact, exothermic element for vapor deposition of metal
KR101221060B1 (en) Carbon-based aluminium composite and method for fabricating the same which silicon carbide is formed at the interface of compacted or sintered carbon bulk and aluminium
JP2004169064A (en) Copper-tungsten alloy, and method of producing the same
RU2697987C1 (en) Method of making ceramics based on silicon nitride - titanium nitride composite
JP4206476B2 (en) Method for producing aluminum sintered material
JP5648178B2 (en) Method for producing hexagonal boron nitride sintered body and hexagonal boron nitride sintered body
JP7394500B1 (en) Aluminum composite material containing metal and/or ceramics and graphite, and method for producing aluminum composite material containing metal and/or ceramics and graphite
AU715872B2 (en) Manufacturing particles and articles having engineered properties
JP4580250B2 (en) Method for manufacturing discharge surface treatment electrode, electrode and discharge surface treatment method
JP2677287B2 (en) Nickel-molybdenum compound boride-based sintered body
JP2003277152A (en) Silicon carbide sintered compact, production method therefor and its use
JP6490476B2 (en) Electrode for electrical discharge machining
JP4868641B2 (en) Method for manufacturing aluminum nitride substrate
CN116765391A (en) Preparation method of molybdenum-copper composite material part blank
JP4119461B2 (en) Manufacturing method of electrode for discharge surface treatment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071107

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100916

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100928

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110809

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110906

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111004

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111017

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141111

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees