JP4857435B2 - Oxide superconducting current lead, manufacturing method thereof, and superconducting system - Google Patents

Oxide superconducting current lead, manufacturing method thereof, and superconducting system Download PDF

Info

Publication number
JP4857435B2
JP4857435B2 JP2004028451A JP2004028451A JP4857435B2 JP 4857435 B2 JP4857435 B2 JP 4857435B2 JP 2004028451 A JP2004028451 A JP 2004028451A JP 2004028451 A JP2004028451 A JP 2004028451A JP 4857435 B2 JP4857435 B2 JP 4857435B2
Authority
JP
Japan
Prior art keywords
oxide superconductor
metal
current lead
oxide
metal electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004028451A
Other languages
Japanese (ja)
Other versions
JP2004304163A (en
Inventor
秀一 小早志
一志 上村
重夫 長屋
直二 鹿島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chubu Electric Power Co Inc
Dowa Electronics Materials Co Ltd
Original Assignee
Chubu Electric Power Co Inc
Dowa Electronics Materials Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chubu Electric Power Co Inc, Dowa Electronics Materials Co Ltd filed Critical Chubu Electric Power Co Inc
Priority to JP2004028451A priority Critical patent/JP4857435B2/en
Priority to US10/771,381 priority patent/US7394024B2/en
Priority to EP07015642A priority patent/EP1860736A3/en
Priority to EP04002691A priority patent/EP1445834B1/en
Priority to DE602004014046T priority patent/DE602004014046D1/en
Publication of JP2004304163A publication Critical patent/JP2004304163A/en
Application granted granted Critical
Publication of JP4857435B2 publication Critical patent/JP4857435B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Containers, Films, And Cooling For Superconductive Devices (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Description

本発明は、MRI、リニア、SMES等に用いられる超電導磁石等の超電導システムへ、電流を供給する際に用いられる酸化物超電導電流リードおよびその製造方法並びに超電導システムに関する。   The present invention relates to an oxide superconducting current lead used for supplying a current to a superconducting system such as a superconducting magnet used in MRI, linear, SMES, etc., a manufacturing method thereof, and a superconducting system.

超電導磁石等に大電流を供給する際に用いられる電流リードとは、室温部の電源から極低温の超電導磁石等の超電導システムへ、数百から数千アンペアの電流を供給するものである。従来はこの電流リードとして、電気抵抗値の低い銅線が用いられていた。しかし、銅線を電流リードとして用い、これに所定の大電流を流した際に発生するジュール熱を下げるために、銅線の線径を太いものにすると、今度は、この太い線径を有する銅線を介して超電導システム側へ熱伝導による熱侵入が起こり、この熱侵入による冷凍機の電力損失や冷媒のHeガスの損失が大きなものになっていた。そこで、熱伝導率が銅に比べて小さく、且つ大電流を流してもジュール熱が発生しない酸化物超電導体を、この電流リードの途中に介在させることが特許文献1に提案されている。   A current lead used when supplying a large current to a superconducting magnet or the like is for supplying a current of several hundred to several thousand amperes from a power supply at room temperature to a superconducting system such as a cryogenic superconducting magnet. Conventionally, a copper wire having a low electric resistance value has been used as the current lead. However, if a copper wire is used as a current lead and the wire diameter of the copper wire is increased in order to reduce the Joule heat generated when a predetermined large current is passed through the copper wire, then this wire diameter is increased. Heat penetration due to heat conduction occurred to the superconducting system via the copper wire, and the power loss of the refrigerator and the loss of He gas of the refrigerant due to this heat penetration were large. Therefore, Patent Document 1 proposes to interpose an oxide superconductor, which has a thermal conductivity smaller than copper and does not generate Joule heat even when a large current flows, in the middle of the current lead.

実開昭63−200307号公報Japanese Utility Model Publication No. 63-230307

近年、超電導応用機器の開発が進行し、酸化物超電導電流リードに対する要求性能の水準も高いものとなり、より大電流を流せること、よりジュール発生熱が少ないことに加えて、外界からの熱侵入も少ないことが求められてきた。
因みに、酸化物超電導電流リードの主要な用途である電力貯蔵用SMESにおいて、1MJ級SMESの酸化物超電導電流リードに対する要求水準の一例は、高温側温度77K、低温側温度4.2K、外部磁場0.5Tの下で、所定の電流として1000A以上の電流を流すことができ、さらに高温側から低温側への熱侵入は、0.5W以下、というものである。酸化物超電導電流リードの特性が、この水準を満たすことができれば、前記電力貯蔵用SMESの冷却用に、比較的低価格でコンパクトな冷凍機が使用できるからである。
In recent years, the development of superconducting application equipment has progressed, and the level of required performance for oxide superconducting current leads has become high, allowing more current to flow, less Joule heat generation, and heat penetration from the outside world. Less has been required.
Incidentally, in the SMES for power storage, which is the main application of the oxide superconducting current lead, examples of the required level for the oxide superconducting current lead of 1MJ class SMES are the high temperature side temperature 77K, the low temperature side temperature 4.2K, the external magnetic field 0 Under 5T, a predetermined current of 1000 A or more can be passed, and the heat penetration from the high temperature side to the low temperature side is 0.5 W or less. This is because if the characteristics of the oxide superconducting current lead can satisfy this level, a relatively low-cost and compact refrigerator can be used for cooling the power storage SMES.

しかし、酸化物超電導電流リードに用いられている酸化物超電導体は、セラミックであることから金属との接合性が悪く、金属電極(一般には、銅電極が用いられる。)との接合面で、無視できない電気抵抗(以下、接触抵抗と記載する。)が発生する。このため、酸化物超電導電流リードへ所定の電流を通電した際、ジュール熱による発熱という問題が起こってしまった。   However, the oxide superconductor used in the oxide superconducting current lead is a ceramic and has poor bondability with a metal, and at the joint surface with a metal electrode (generally, a copper electrode is used) Electric resistance that cannot be ignored (hereinafter referred to as contact resistance) occurs. For this reason, when a predetermined current is applied to the oxide superconducting current lead, a problem of heat generation due to Joule heat has occurred.

そこで上述の接触抵抗の値を低減するために、まず、酸化物超電導体と銅電極との間に、銀を銀コートの形で介在させることが試みられた。すなわち、銀と酸化物超電導体との接触抵抗値が、銅と酸化物超電導体との接触抵抗値より低いことに注目し、酸化物超電導体へ、銀箔を圧着、銀ペースト材を塗布、あるいは銀を溶射して付着させた後、これを焼き付けて銀コートとし、この銀コート付きの酸化物超電導体と、銅電極とを、例えばハンダのような接合用金属を用いて接合し、酸化物超電導電流リードとしたのである。   Therefore, in order to reduce the value of the contact resistance described above, it was first attempted to interpose silver in the form of a silver coat between the oxide superconductor and the copper electrode. That is, it is noted that the contact resistance value between silver and the oxide superconductor is lower than the contact resistance value between copper and the oxide superconductor, and a silver foil is pressure-bonded to the oxide superconductor, a silver paste material is applied, or After thermally spraying and adhering silver, this is baked into a silver coat, and the oxide superconductor with the silver coat and the copper electrode are joined using a joining metal such as solder, and the oxide It was a superconducting current lead.

しかし、電流リードに流す電流が増加してきた結果、上述の銀コート付きの酸化物超電導体を用いた電流リードでは、発生するジュール熱が看過し得なくなってきた。そこで電流リードに所定の電流を流しながら、ジュール熱の発生を抑制するため、酸化物超電導体を大型化し、銅電極との接触面積を大きくとることが行われた。
この結果、ジュール熱の発生抑制はできたものの、酸化物超電導体と銅電極との接触面積を大きくとるために、酸化物超電導体を大型化することが必要となり、今度は、この大型化した酸化物超電導体を介して高温側から低温側への熱侵入が増加することとなった。
However, as a result of an increase in the current flowing through the current lead, in the current lead using the above-described oxide superconductor with a silver coat, the generated Joule heat cannot be overlooked. Therefore, in order to suppress the generation of Joule heat while allowing a predetermined current to flow through the current lead, the oxide superconductor has been increased in size to increase the contact area with the copper electrode.
As a result, although the generation of Joule heat could be suppressed, it was necessary to increase the size of the oxide superconductor in order to increase the contact area between the oxide superconductor and the copper electrode. Heat penetration from the high temperature side to the low temperature side increased through the oxide superconductor.

そこで、例えば、図6に示すような酸化物超電導電流リードが考えられた。
図6に示す酸化物超電導電流リード100は、小さな断面積であっても大電流を流すことが可能な、熔融法で作製された希土類系酸化物超電導体110の両側に、金属電極として銅電極120が接続されている。そして、希土類系酸化物超電導体110の両端部112は、大きな断面積を有しているが、中央部111は、小さな断面積を有している。一方、銅電極120においても、酸化物超電導体の両端部112と接する接触部分121は、両端部112を包み込むように抉られており、両者が広い接触面積を確保できるようになっている。
この酸化物超電導電流リード100は、所定の電流を流しても、ジュール熱の発生、および高温側から低温側への熱侵入の両者を抑制できるものであった。
Thus, for example, an oxide superconducting current lead as shown in FIG. 6 has been considered.
The oxide superconducting current lead 100 shown in FIG. 6 has a copper electrode as a metal electrode on both sides of a rare earth oxide superconductor 110 manufactured by a melting method capable of flowing a large current even with a small cross-sectional area. 120 is connected. The both end portions 112 of the rare earth oxide superconductor 110 have a large cross-sectional area, while the central portion 111 has a small cross-sectional area. On the other hand, also in the copper electrode 120, the contact part 121 which contact | connects the both ends 112 of an oxide superconductor is wrapped so that both ends 112 may be wrapped, and both can ensure a wide contact area.
The oxide superconducting current lead 100 was able to suppress both generation of Joule heat and heat penetration from the high temperature side to the low temperature side even when a predetermined current was passed.

しかし、酸化物超電導体の中でも電流リードに適している、熔融法で作製された希土類系酸化物超電導体においては、図6に示すような中央部のみが細く縊れた形状の成形体を作製することが困難である。このため、このような形状の酸化物超電導体を作製するには、まず、金属電極との間で十分な接触面積を確保できるサイズの直方体形状の希土類系酸化物超電導体を作製し、次に、当該希土類系酸化物超電導体を介しての熱侵入を低減するため、中央部を切削加工して断面積を小さくする工程をとる必要があった。しかし、これでは、酸化物超電導電流リードへ流す所定の電流値が大きい場合、大型の希土類系酸化物超電導体を作製し、且つ、当該希土類系酸化物超電導体を、大きく切削せざるを得ず、当該希土類系酸化物超電導体の歩留まりが非常に悪く、工数もかかる。さらに金属電極の部分が大型化するため、酸化物超電導電流リード総体としての小型化も困難であった。   However, among oxide superconductors, suitable for current leads, rare-earth oxide superconductors manufactured by the melting method are manufactured in a shape in which only the central portion is narrowed as shown in FIG. Difficult to do. Therefore, in order to produce an oxide superconductor having such a shape, first, a rectangular parallelepiped rare earth-based oxide superconductor having a size capable of securing a sufficient contact area with a metal electrode is produced, and then In order to reduce the heat intrusion through the rare earth oxide superconductor, it is necessary to take a step of cutting the central portion to reduce the cross-sectional area. However, in this case, when a predetermined current value flowing to the oxide superconducting current lead is large, a large-scale rare earth oxide superconductor must be manufactured and the rare earth oxide superconductor must be largely cut. The yield of the rare earth-based oxide superconductor is very poor and requires a lot of man-hours. Further, since the metal electrode portion is enlarged, it is difficult to reduce the size of the oxide superconducting current lead as a whole.

本発明は、上記の課題を解決するためになされたものであり、以下の構成を有する。   The present invention has been made to solve the above problems, and has the following configuration.

すなわち、上記の課題を解決するための第1の構成は、酸化物超電導体の両側に金属電極が設けられ、且つ前記酸化物超電導体と前記金属電極とが形成する接合部分に接合用金属が設けられ、前記接合用金属によって、前記酸化物超電導体と前記金属電極とが接合されている酸化物超電導電流リードであって、
前記接合部分に設けられた前記接合用金属中の空孔の体積が、前記接合部分の容積の5%以下であることを特徴とする酸化物超電導電流リードである。
That is, the first configuration for solving the above-described problem is that a metal electrode is provided on both sides of the oxide superconductor, and a bonding metal is present at a joint portion formed by the oxide superconductor and the metal electrode. An oxide superconducting current lead provided, wherein the oxide superconductor and the metal electrode are joined by the joining metal;
The oxide superconducting current lead is characterized in that the volume of pores in the bonding metal provided in the bonding portion is 5% or less of the volume of the bonding portion.

第2の構成は、第1の構成に記載の酸化物超電導電流リードであって、
前記接合用金属により接合される前記酸化物超電導体の表面に、銀のコートが設けられていることを特徴とする酸化物超電導電流リードである。
The second configuration is the oxide superconducting current lead according to the first configuration,
The oxide superconducting current lead is characterized in that a silver coat is provided on the surface of the oxide superconductor joined by the joining metal.

第3の構成は、第1または第2の構成に記載の酸化物超電導電流リードであって、
前記接合用金属とは、Cd、Zn、Sbのいずれか一種以上と、Pb、Sn、Inのいずれか一種以上とを含むハンダであることを特徴とする酸化物超電導電流リードである。
A third configuration is the oxide superconducting current lead according to the first or second configuration,
The bonding metal is an oxide superconducting current lead characterized in that it is solder containing at least one of Cd, Zn, and Sb and at least one of Pb, Sn, and In.

第4の構成は、酸化物超電導体の両側に金属電極が設けられ、且つ前記酸化物超電導体と前記金属電極とが形成する接合部分に接合用金属が設けられ、前記接合用金属によって、前記酸化物超電導体と前記金属電極とが接合されている酸化物超電導電流リードの製造方法であって、
前記接合用金属によって、前記酸化物超電導体と前記金属電極とを接合する際、前記接合部分を、前記接合用金属の融点以上に加熱した後、減圧して、前記接合用金属を脱気させる工程を有することを特徴とする酸化物超電導電流リードの製造方法である。
In the fourth configuration, metal electrodes are provided on both sides of the oxide superconductor, and a bonding metal is provided at a bonding portion formed by the oxide superconductor and the metal electrode. A method of manufacturing an oxide superconducting current lead in which an oxide superconductor and the metal electrode are joined,
When joining the oxide superconductor and the metal electrode with the joining metal, the joining portion is heated to a temperature equal to or higher than the melting point of the joining metal and then depressurized to deaerate the joining metal. It is a manufacturing method of an oxide superconducting current lead characterized by having a process.

第5の構成は、第4の構成に記載の酸化物超電導電流リードの製造方法であって、
前記接合用金属の加熱および脱気の際、接合用金属が、前記接合部分より流れ出すのを抑制する封止部材を設けることを特徴とする酸化物超電導電流リードの製造方法である。
The fifth configuration is a method of manufacturing the oxide superconducting current lead according to the fourth configuration,
In the method of manufacturing an oxide superconducting current lead, a sealing member is provided that suppresses the joining metal from flowing out of the joining portion when the joining metal is heated and degassed.

第6の構成は、第1から第3の構成のいずれかに記載の酸化物超電導電流リードを用いたことを特徴とする超電導システムである。   The sixth configuration is a superconducting system using the oxide superconducting current lead according to any one of the first to third configurations.

本発明者らは、酸化物超電導電流リードの試料を作製し、酸化物超電導体と金属電極との接合面における接触抵抗の値を詳細に測定し、酸化物超電導電流リードの試料の試料毎に、接触抵抗の値が一定でないことを見いだした。そこで、この接触抵抗値のバラツキの原因を究明するため、酸化物超電導体と金属電極との接合面を、全面に亘り詳細に分解して検討した。
その結果、酸化物超電導体と金属電極との接合面にある接合金属中に、空孔があることが見いだされた。そして、この接合用金属中の空孔の体積を積算すると、接合部分の容積の概ね30%以上あることもわかった。そこで第1の構成に記載したように、この接合用金属中の空孔の体積を接合部分の容積の5%以下としたところ、酸化物超電導体と金属電極との接触抵抗値が低減し、酸化物超電導体と金属電極との接触部分において、酸化物超電導体の断面積を拡大せずに金属電極と接合し、所定の電流を流しても発生するジュール熱を抑制することが可能となった。
The present inventors prepared a sample of the oxide superconducting current lead, measured the value of the contact resistance at the interface between the oxide superconductor and the metal electrode in detail, and for each sample of the oxide superconducting current lead And found that the value of contact resistance is not constant. Therefore, in order to investigate the cause of the variation in the contact resistance value, the joint surface between the oxide superconductor and the metal electrode was examined in detail over the entire surface.
As a result, it has been found that there is a void in the bonding metal on the bonding surface between the oxide superconductor and the metal electrode. And when the volume of the void | hole in this metal for joining was integrated | accumulated, it turned out that it is about 30% or more of the volume of a junction part. Therefore, as described in the first configuration, when the volume of the voids in the bonding metal is 5% or less of the volume of the bonded portion, the contact resistance value between the oxide superconductor and the metal electrode is reduced, It is possible to suppress the Joule heat generated even when a predetermined current is passed by joining the metal electrode without enlarging the cross-sectional area of the oxide superconductor at the contact portion between the oxide superconductor and the metal electrode. It was.

第2の構成に記載したように、接合用金属と酸化物超電導体との間に銀のコートを介在させることで、前記酸化物超電導体と金属電極との接触抵抗値をさらに低下させることができ、所定の電流を安定的に流すことができた。   As described in the second configuration, the contact resistance value between the oxide superconductor and the metal electrode can be further reduced by interposing a silver coat between the bonding metal and the oxide superconductor. It was possible to flow a predetermined current stably.

第3の構成に記載したように、接合用金属としてCd、Zn、Sbのいずれか一種以上を含み且つ、Pb、Sn、Inのいずれか一種以上を含むハンダを用いると、金属電極と酸化物超電導体間の剥がれや、酸化物超電導体のクラックを抑制することができるため、接合用金属として上述のハンダを用いた酸化物超電導電流リードは、所定の電流を安定的に流すことができた。   As described in the third configuration, when a solder containing one or more of Cd, Zn, and Sb and one or more of Pb, Sn, and In is used as a bonding metal, a metal electrode and an oxide are used. Since it is possible to suppress peeling between superconductors and cracks in the oxide superconductor, the oxide superconducting current lead using the above-described solder as a bonding metal can stably flow a predetermined current. .

第4の構成に記載したように、酸化物超電導電流リードに用いられる接合用金属を融点以上に加熱した後、減圧して脱気することで、前記接合部分に設けられた前記接合用金属中の空孔の体積を低減することができた。   As described in the fourth configuration, after the bonding metal used for the oxide superconducting current lead is heated to the melting point or higher, the pressure is reduced and degassed, whereby the bonding metal provided in the bonding portion It was possible to reduce the volume of pores.

第5の構成に記載したように、接合用金属の脱気の際、前記接合用金属接合が外界と接触する部分へ前記接合用金属の流れ出しを抑制する封止部材を設け、接合用金属が前記接合部分から流出するのを抑制することで、接合部分において接合用金属の量の不足による空孔の発生を回避すると共に、接合用金属が接合部分以外の部分へ拡散し、当該拡散部分の接触抵抗値が上がることも回避することができた。   As described in the fifth configuration, when the joining metal is degassed, a sealing member that suppresses the joining metal from flowing out to a portion where the joining metal joint comes into contact with the outside world is provided. By suppressing the outflow from the joining portion, the occurrence of voids due to insufficient amount of joining metal in the joining portion is avoided, and the joining metal diffuses to portions other than the joining portion. It was also possible to avoid an increase in the contact resistance value.

第6の構成に記載したように、第1から第3の構成のいずれかに記載の酸化物超電導電流リードを用いた超電導システムは、所定の電流を流した際にも高温側から低温側への熱侵入が少ないので、冷凍機の負担を削減することができ、生産コストおよびランニングコストの低い超電導システムとなった。   As described in the sixth configuration, the superconducting system using the oxide superconducting current lead according to any one of the first to third configurations has a high current side to a low temperature side even when a predetermined current flows. Since there is little heat penetration, the burden on the refrigerator can be reduced, resulting in a superconducting system with low production and running costs.

以下、図面を参照しながら、本発明の実施の形態について説明する。
図1は、本発明に係る酸化物超電導電流リードにおける金属電極への酸化物超電導体の設置例を示す斜視図であり、図2は、図1に示す酸化物超電導体が設置された金属電極へ封止部材を設けた場合の斜視図であり、図3は、本発明に係る酸化物超電導電流リードの特性測定の概念図であり、図4は、酸化物超電導体と金属電極との接合体へ被覆部材を被覆するために、前記接合体を金型中へ納めた際の斜視図であり、図5は、従来の技術で作製した酸化物超電導電流リードにおける、酸化物超電導体と金属電極との接合部分の模式的な横断面図である。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a perspective view showing an installation example of an oxide superconductor on a metal electrode in an oxide superconducting current lead according to the present invention, and FIG. 2 is a metal electrode on which the oxide superconductor shown in FIG. 1 is installed. FIG. 3 is a conceptual diagram of characteristic measurement of an oxide superconducting current lead according to the present invention, and FIG. 4 is a diagram of bonding of an oxide superconductor and a metal electrode. FIG. 5 is a perspective view when the joined body is placed in a mold in order to coat a covering member on the body, and FIG. 5 is a diagram of an oxide superconductor and a metal in an oxide superconducting current lead manufactured by a conventional technique. It is a typical cross-sectional view of a junction part with an electrode.

図1において、本発明に係る酸化物超電導電流リード(以下、電流リードと記載する。)1は、金属電極10、偏流抑止部材50、酸化物超電導体60、および被覆部材70を有している。尚、図示していないが、酸化物超電導体60の他端には金属電極10と同様の金属電極が対向して設けられている。   In FIG. 1, an oxide superconducting current lead (hereinafter, referred to as a current lead) 1 according to the present invention has a metal electrode 10, a drift suppressing member 50, an oxide superconductor 60, and a covering member 70. . Although not shown, a metal electrode similar to the metal electrode 10 is provided opposite to the other end of the oxide superconductor 60.

まず金属電極10は、平板状のリード線接合部20と直方体状の酸化物超電導体設置部(以下、設置部と記載する。)30とを有する。リード線接合部20には、リード線やブスバー等を設置するためのリード線設置孔21が所望数設けられている。一方、設置部30の上面34と対向面33とには、酸化物超電導体設置溝(以下、設置溝と記載する。)31が設けられ 、さらに、対向面33には酸化物超電導体受継部(以下、受継部と記載する。)32が、設置溝31を囲うように上部を開口してコの字に設けられている。さらに設置溝31内壁は、後述する接合用金属との密着性を向上させるため、リード線接合部20は、ここに接合されるリード線やブスバー等との接触抵抗を低減するため、予め錫、銀、金、ニッケル、亜鉛、パラジウムの単体または合金を主成分とするメッキ、或いは前記メッキの積層体を設けておくことが好ましい。   First, the metal electrode 10 includes a flat lead wire joint portion 20 and a rectangular parallelepiped oxide superconductor installation portion (hereinafter referred to as an installation portion) 30. The lead wire joint portion 20 is provided with a desired number of lead wire installation holes 21 for installing lead wires, bus bars and the like. On the other hand, an oxide superconductor installation groove (hereinafter referred to as an installation groove) 31 is provided on the upper surface 34 and the opposing surface 33 of the installation part 30, and the oxide superconductor inheriting part is provided on the opposing surface 33. (Hereinafter, referred to as a “passing part”) 32 is provided in a U-shape with the upper part opened so as to surround the installation groove 31. Further, the inner wall of the installation groove 31 improves the adhesion with a bonding metal, which will be described later, and the lead wire bonding portion 20 is preliminarily made of tin, in order to reduce the contact resistance with the lead wire or bus bar to be bonded thereto. It is preferable to provide a plating containing silver, gold, nickel, zinc, palladium alone or an alloy as a main component, or a laminate of the plating.

次に、偏流抑制部材50は、偏流抑制部材本体51と偏流抑制部材突起部(以下、突起部と記載する。)52とを有し、上述した設置溝31へ填め込み可能な形状を有し、設置溝31填め込まれた後は、金属電極10と一体化する。この偏流抑制部材50および設置溝31も、後述する接合用金属との密着性を向上させるため、予め錫、銀、金、ニッケル、亜鉛、パラジウムの単体または合金を主成分とするメッキ、或いは前記メッキの積層体を設けておくことが好ましい。   Next, the drift suppression member 50 includes a drift suppression member main body 51 and a drift suppression member protrusion (hereinafter referred to as a protrusion) 52 and has a shape that can be fitted into the installation groove 31 described above. After the installation groove 31 is inserted, it is integrated with the metal electrode 10. The drift suppressing member 50 and the installation groove 31 are also plated with tin, silver, gold, nickel, zinc, palladium as a main component or an alloy as a main component in advance in order to improve adhesion with a bonding metal described later. It is preferable to provide a laminate of plating.

次に、酸化物超電導体60は、角柱形状を有し、その角柱の両端には銀コート61が設けられている。尚、本実施の形態においては、後述する電流リードの電気特性評価のため、角柱端部より適宜な位置に、測定用銀コート62が設けられている。   Next, the oxide superconductor 60 has a prismatic shape, and a silver coat 61 is provided on both ends of the prism. In the present embodiment, a silver coating for measurement 62 is provided at an appropriate position from the end of the prism for evaluating the electrical characteristics of a current lead to be described later.

さらに、角柱形状の酸化物超電導体60を挟んで対向する金属電極10の対向面33間には、酸化物超電導体60を被覆する被覆部材70が設けられている。この被覆部材70は対向面33に設けられた受継部32に支えられ、金属電極10に固定される。   Furthermore, a covering member 70 that covers the oxide superconductor 60 is provided between the opposing surfaces 33 of the metal electrodes 10 that face each other with the prismatic oxide superconductor 60 interposed therebetween. The covering member 70 is supported by the inheriting portion 32 provided on the facing surface 33 and is fixed to the metal electrode 10.

ここで、酸化物超電導体60には、小さな断面積であっても大電流を流すことが可能な、熔融法で作製された希土類系酸化物超電導体を用いることが好ましい。所定の電流を流すのに必要な酸化物超電導体60の断面積を小さくすることで、極低温の超電導磁石への熱侵入を、より低減することができるからである。
加えて、酸化物超電導体60は、全体に亘って実質的に同じ断面積を有しているので、母材となる酸化物超電導体からの切り出しにより作製でき、この切り出しの後、さらに大きな切削加工をする必要はない。
Here, as the oxide superconductor 60, it is preferable to use a rare earth-based oxide superconductor manufactured by a melting method capable of flowing a large current even with a small cross-sectional area. This is because heat penetration into the cryogenic superconducting magnet can be further reduced by reducing the cross-sectional area of the oxide superconductor 60 necessary for flowing a predetermined current.
In addition, since the oxide superconductor 60 has substantially the same cross-sectional area throughout, the oxide superconductor 60 can be manufactured by cutting out from the oxide superconductor as a base material, and after this cutting, a larger cutting There is no need to process.

次に、金属電極10への、酸化物超電導体60および偏流抑制部材50の設置について説明する。金属電極10に設けられた設置溝31は、酸化物超電導体60の端部が、填め込まれる形状を有しているが、当該部分に1000A以上の大電流が流れることを考慮すると、その幅・高さ・奥行きは3×3×10mm以上あることが好ましい。   Next, installation of the oxide superconductor 60 and the drift suppressing member 50 on the metal electrode 10 will be described. The installation groove 31 provided in the metal electrode 10 has a shape in which the end portion of the oxide superconductor 60 is filled, but considering that a large current of 1000 A or more flows through the portion, its width -The height and depth are preferably 3 x 3 x 10 mm or more.

この設置溝31には、酸化物超電導体60の端部が設置され、さらにその上に偏流抑制部材50が設置される。この偏流抑制部材50と設置溝31との隙間は、片側0.05〜0.5mm程度とすることが好ましい。そしてこの偏流抑制部材50と設置溝31との隙間が、図3にて説明する脱気部42となる。このとき隙間が、0.05mm以上あれば接合金属の脱気が十分に進み、0.5mm以下であれば接合金属の容積が大きくなることによる不必要な接触抵抗値の上昇を回避できるので好ましい。   In the installation groove 31, the end of the oxide superconductor 60 is installed, and the drift suppressing member 50 is further installed thereon. The gap between the drift suppressing member 50 and the installation groove 31 is preferably about 0.05 to 0.5 mm on one side. And the clearance gap between this drift suppression member 50 and the installation groove | channel 31 becomes the deaeration part 42 demonstrated in FIG. At this time, if the gap is 0.05 mm or more, deaeration of the bonding metal proceeds sufficiently, and if it is 0.5 mm or less, an unnecessary increase in contact resistance due to an increase in the volume of the bonding metal can be avoided. .

再び、図2に戻り、偏流抑制部材50を設置溝31へ設置したとき、偏流抑制部材本体51は、概ね金属電極の上面34および対向面33と面一になり、突起部52は受継部32と一体化するサイズであることが好ましい。そして、設置溝31に酸化物超電導体60の端部が設置され、さらにその上に偏流抑制部材50が設置された際、この設置溝31や偏流抑制部材50を含む金属電極10と、酸化物超電導体60の端部とに囲まれた部分が接合部分を構成する。   Returning again to FIG. 2, when the drift suppression member 50 is installed in the installation groove 31, the drift suppression member main body 51 is substantially flush with the upper surface 34 and the opposing surface 33 of the metal electrode, and the protrusion 52 is the inheriting portion 32. It is preferable that the size be integrated with the above. And when the edge part of the oxide superconductor 60 is installed in the installation groove | channel 31, and also when the drift suppression member 50 is installed on it, the metal electrode 10 containing this installation groove | channel 31 and the drift suppression member 50, and an oxide A portion surrounded by the end portion of the superconductor 60 constitutes a joint portion.

接合部分を構成する酸化物超電導体60の、設置溝31および偏流抑制部材50と対向する5つの面は、この部分の接触抵抗を減少させる観点より、予め銀コート61されていることが好ましい。銀コートの方法としては、銀ペースト材の塗布焼き付け法、メッキ法、蒸着法、スパッター法、および溶射法等が適用可能なので、生産性、量産性の観点より適宜選択すれば良い。そして、この銀コート61上へ、酸化物超電導体60を設置溝31へ接合するための接合用金属を熔融塗布しておくことが好ましい。この接合用金属としては、酸化物超電導体が加熱されて、ここから酸素が抜けてしまうのを回避するため、300℃以下の融点を有する各種のハンダが好個に用いられる。中でも、この接合部分の密着性を上げて接触抵抗を下げる観点から、例えば、セラミックとの密着性と塗れ性が高くなるようにCd、Zn、Sb等が添加されたPb−Sn系やIn系の半田材を用いることが望ましい。   It is preferable that the five surfaces of the oxide superconductor 60 constituting the joint portion facing the installation groove 31 and the drift suppressing member 50 are previously coated with silver 61 from the viewpoint of reducing the contact resistance of this portion. As a silver coating method, a silver paste material coating and baking method, a plating method, a vapor deposition method, a sputtering method, a thermal spraying method, and the like can be applied. Therefore, the method may be appropriately selected from the viewpoints of productivity and mass productivity. And it is preferable to melt-apply the joining metal for joining the oxide superconductor 60 to the installation groove 31 on the silver coat 61. As this bonding metal, various solders having a melting point of 300 ° C. or lower are preferably used in order to avoid that the oxide superconductor is heated and oxygen is released therefrom. Above all, from the viewpoint of increasing the adhesion of the joint portion and lowering the contact resistance, for example, Pb-Sn system and In system to which Cd, Zn, Sb, etc. are added so as to increase adhesion and paintability with ceramics. It is desirable to use this solder material.

即ち、Cd、Zn、Sbのいずれか一種以上を含み且つ、Pb、Sn、Inのいずれか一種以上を含むハンダは、金属電極とも酸化物超電導体とも接着強度が強い。このため、金属電極と酸化物超電導体間の線膨張差に起因して、液体窒素温度またはそれ以下の温度と室温までの熱履歴により、金属電極と酸化物超電導体間に応力が発生しても、この応力が局所に集中するのを回避できる。この結果、金属電極と酸化物超電導体間の剥がれや、酸化物超電導体のクラックの発生を抑制することができ、熱履歴の繰り返しに対しても抵抗の上昇などが起こらず、所定の電流を安定的に流すことができたものと考えられる。   That is, the solder containing one or more of Cd, Zn, and Sb and containing one or more of Pb, Sn, and In has high adhesion strength with both the metal electrode and the oxide superconductor. For this reason, due to the difference in linear expansion between the metal electrode and the oxide superconductor, a stress is generated between the metal electrode and the oxide superconductor due to the temperature of liquid nitrogen or lower and the thermal history up to room temperature. However, this stress can be prevented from being concentrated locally. As a result, peeling between the metal electrode and the oxide superconductor and the occurrence of cracks in the oxide superconductor can be suppressed, and the resistance does not increase even when the thermal history is repeated. It is thought that it was able to flow stably.

ここで、セラミック用半田材の好ましい例として、セラソルザ(登録商標)を記載する。
セラソルザ143 旭硝子(株)製
成分:Sn:45〜51(Wt%)、Pb:26〜32、Cd:16〜22、Zn:2〜4、Sb:1〜3
融点:143℃
セラソルザ123 旭硝子(株)製
成分:In:44〜50(Wt%)、Cd:45〜50、Zn:1〜3、Sb:1未満
融点:123℃
Here, Cerasolzer (registered trademark) is described as a preferred example of the solder material for ceramic.
Cerasolza 143 manufactured by Asahi Glass Co., Ltd. Ingredients: Sn: 45-51 (Wt%), Pb: 26-32, Cd: 16-22, Zn: 2-4, Sb: 1-3
Melting point: 143 ° C
Cerasolza 123 manufactured by Asahi Glass Co., Ltd. Ingredients: In: 44-50 (Wt%), Cd: 45-50, Zn: 1-3, less than Sb: 1 Melting point: 123 ° C

金属電極10に設けられた設置溝31へ、酸化物超電導体60の端部を填め込み、その上に偏流抑制部材50を設置して接合部分を形成し、そこへ接合用金属を設けて金属電極10と酸化物超電導体60とを接合する構成を採ることで、金属電極10と酸化物超電導体60とが、全て面接触の状態で電気的に接合されるので、この部分の接触抵抗値を下げることができ好ましい。もちろん、この他の実施の形態として、金属電極をキャップ状とし、そこへ酸化物超電導体を填め込む形態、あるいは、金属電極を分割可能な構造とし、酸化物超電導体を挟み込む形で金属電極を組み上げる形態を採ることも可能であり、酸化物超電導体の構造も円柱状、あるいは筒状であっても良い。   An end portion of the oxide superconductor 60 is inserted into the installation groove 31 provided in the metal electrode 10, and a drift suppressing member 50 is installed thereon to form a joint portion. By adopting a configuration in which the electrode 10 and the oxide superconductor 60 are joined, the metal electrode 10 and the oxide superconductor 60 are all electrically joined in a surface contact state. Is preferable. Of course, as another embodiment, the metal electrode is formed in a cap shape and the oxide superconductor is filled therein, or the metal electrode can be divided, and the metal electrode is sandwiched between the oxide superconductors. It is also possible to take a form of assembling, and the structure of the oxide superconductor may be cylindrical or cylindrical.

設置溝31内にも接合用金属を熔融塗布しておき、ここへ、銀コート上に接合用金属を熔融塗布した酸化物超電導体60を設置し、酸化物超電導体60と設置溝31とが形成する接合部分へ熔融した接合用金属を設置し、これを固化して両者を接合する。   In the installation groove 31, the bonding metal is melt-coated, and the oxide superconductor 60 in which the bonding metal is melt-coated is installed on the silver coat. The oxide superconductor 60 and the installation groove 31 are connected to each other. A molten bonding metal is placed at the bonding portion to be formed, and this is solidified and bonded together.

この接合用金属を用いた接合において、熔解させた接合用金属を酸化物超電導体60上や設置溝31壁に設置するため、塗布または注入等をおこなう際、大気等のガス状成分が巻き込まれる。この熔解した接合用金属中に巻き込まれたガス状成分は、接合用金属が固化する際、内部に空孔を形成する。接合用金属内に空孔が形成されると、接合用金属を介して金属電極と酸化物超電導体との間を流れていた電流の流路が狭まり、所定電流、例えば1000Aの通電時には、この部分が接触抵抗値の増加原因となっていたものと考えられる。   In the joining using this joining metal, in order to install the melted joining metal on the oxide superconductor 60 or on the wall of the installation groove 31, a gaseous component such as the atmosphere is involved when performing coating or injection. . The gaseous component entrained in the molten bonding metal forms voids inside when the bonding metal solidifies. When a hole is formed in the bonding metal, the flow path of the current flowing between the metal electrode and the oxide superconductor through the bonding metal is narrowed. It is thought that the part was the cause of the increase in the contact resistance value.

ここで、金属電極と酸化物超電導体との間の接触抵抗値と、空孔が形成された接合用金属との関係について図5を参照しながら説明する。
図5において、金属電極10に設けられた設置溝31中には、酸化物超電導体60の銀コート61がされた部分が設置され、金属電極10と酸化物超電導体60とで構成された接合部分には、接合用金属90が設けられている。そして、従来の技術により、金属電極10と酸化物超電導体60とを接合用金属90を用いて接合した場合、この接合用金属90中に空孔91が存在していたのである。この空孔91の体積が、接合部分の容積に占める割合は、例えば次のような方法で測定することができる。すなわち、接合部分を順次切断してゆき、その切断面に現れる、接合部分の断面の面積と空孔91の断面積との割合を測定し、その値を順次積算してゆけばよい。
Here, the relationship between the contact resistance value between the metal electrode and the oxide superconductor and the bonding metal in which the holes are formed will be described with reference to FIG.
In FIG. 5, in the installation groove 31 provided in the metal electrode 10, a portion coated with the silver coat 61 of the oxide superconductor 60 is installed, and a junction constituted by the metal electrode 10 and the oxide superconductor 60. The metal 90 for joining is provided in the part. Then, when the metal electrode 10 and the oxide superconductor 60 are bonded using the bonding metal 90 according to the conventional technique, the holes 91 exist in the bonding metal 90. The ratio of the volume of the air holes 91 to the volume of the joint portion can be measured by the following method, for example. That is, the joint portion is sequentially cut, the ratio of the cross-sectional area of the joint portion and the cross-sectional area of the hole 91 appearing on the cut surface is measured, and the values are sequentially integrated.

従来の方法により、接合用金属90を用いて金属電極10と酸化物超電導体60とを接合した場合、接合部分の容積に占める空孔91の体積の割合は、約50%を占めていることが判明した。そして、この接合用金属90中における空孔91の存在が、金属電極と酸化物超電導体との間における接触抵抗値の要因と考えられた。   When the metal electrode 10 and the oxide superconductor 60 are bonded using the bonding metal 90 by the conventional method, the volume ratio of the voids 91 to the volume of the bonded portion occupies about 50%. There was found. The presence of the holes 91 in the bonding metal 90 was considered as a factor of the contact resistance value between the metal electrode and the oxide superconductor.

そこで、この接合用金属中の空孔の生成を、抑制、回避する方法として、上述した接合用金属の塗布を真空中にて行うことが考えられた。しかし、作業性、生産性の観点から、接合用金属の塗布は大気中において行い、設置溝31へ酸化物超電導体60を設置して加熱し接合用金属を熔融して、これらを接合するときに、当該部分を真空中に暴露し、真空脱気法により接合用金属内のガス状成分を除去することが好ましいことに想到した。この真空脱気の条件として、接合用金属の加熱温度は融点以上とすれば良いが、脱気を短時間で進行させ、且つ接合用金属の酸化を抑制する観点から、融点+15〜100℃程度とすることが望ましい。また周囲の真空度は、0.01MPa以下であれば効果が得られるが、10Pa以下とすると4〜5秒で脱気が完了することからより望ましい。そして、この水準の温度、および時間であれば、酸化物超電導体60から酸素が抜けてしまうことを考慮する必要はない。   Therefore, as a method for suppressing or avoiding the generation of voids in the bonding metal, it has been considered to apply the bonding metal described above in a vacuum. However, from the viewpoint of workability and productivity, when the joining metal is applied in the atmosphere, the oxide superconductor 60 is placed in the installation groove 31 and heated to melt the joining metal and join them. Furthermore, it has been conceived that it is preferable to expose the part in a vacuum and remove the gaseous component in the bonding metal by vacuum degassing. As a condition for this vacuum deaeration, the heating temperature of the bonding metal may be higher than the melting point, but from the viewpoint of allowing the deaeration to proceed in a short time and suppressing the oxidation of the bonding metal, the melting point is about +15 to 100 ° C. Is desirable. The effect can be obtained if the ambient vacuum is 0.01 MPa or less, but if it is 10 Pa or less, degassing is completed in 4 to 5 seconds, which is more desirable. At this level of temperature and time, it is not necessary to consider that oxygen escapes from the oxide superconductor 60.

さらに、この真空脱気の際、熔解した接合用金属が、設置溝31から流出して金属電極10の他の部分へ拡散すると、設置溝31内は接合用金属量が不足する一方、拡散した部分においてはその部分の接触抵抗値上昇の原因となり、いずれも好ましくないことであるので、これを抑制する構成を採ることが好ましい。   Further, when the melted bonding metal flows out of the installation groove 31 and diffuses to other portions of the metal electrode 10 during the vacuum degassing, the amount of the bonding metal is insufficient in the installation groove 31 but diffused. In a portion, it causes an increase in the contact resistance value of that portion, which is not preferable, so it is preferable to adopt a configuration that suppresses this.

接合用金属の流失を抑制する具体的な構成例を、図2を用いて説明する。
図2において、金属電極10に設けられた設置溝31へ酸化物超電導体60の端部が設置されている。そして、設置溝31の外周縁部および酸化物超電導体に沿って封止部材41が設置されている。尚、封止部材41を設置溝31の外周縁部に沿って設置する際、設置溝31へ偏流抑制部材50を填め込むことで形成される脱気部42を閉塞しないように設置することが好ましい。そして、封止部材41としては、接合用金属の融点以上の温度でも変質せず、金属電極10や酸化物超電導体60への適宜な接着力を有し、且つ設置が容易なシリコンゴム等を好個に用いることができる。
A specific configuration example for suppressing the loss of the bonding metal will be described with reference to FIG.
In FIG. 2, the end portion of the oxide superconductor 60 is installed in the installation groove 31 provided in the metal electrode 10. A sealing member 41 is installed along the outer peripheral edge of the installation groove 31 and the oxide superconductor. In addition, when installing the sealing member 41 along the outer peripheral edge of the installation groove 31, it is possible to install the deaeration part 42 formed by inserting the drift suppressing member 50 into the installation groove 31 so as not to be blocked. preferable. As the sealing member 41, silicon rubber or the like that does not change even at a temperature equal to or higher than the melting point of the bonding metal, has an appropriate adhesive force to the metal electrode 10 or the oxide superconductor 60, and is easy to install. Can be used for personal use.

金属電極10への封止部材41の設置が完了したら、金属電極10および酸化物超電導体60を、接合用金属の融点より15〜100℃高い温度に加熱し、上述の条件により接合用金属を真空脱気すると、発生した気体成分は脱気部42より排出される。このとき、熔融した接合用金属の粘性が高いため、生成した空孔が破裂し難い場合は、例えば超音波ハンダ小手の超音波振動子を用い、機械的衝撃を加えて生成した空孔を破裂させ、さらに真空脱気を行うことが好ましい。本実施の形態においては、まず、熔融した接合用金属中から気体成分を真空脱気した後、偏流抑制部材50を設置溝31に填め込み、再度真空脱気を行う。このとき、偏流抑制部材50を介して機械的衝撃を加えることで、熔融した接合用金属中の空孔の破裂を容易に実現できる。この結果、金属電極10の設置溝31と偏流抑制部材50と酸化物超電導体60とが形成する接合部分に設置された接合用金属中から空孔の体積を、接合部分の容積の5%以下に抑制することが可能となった。   When the installation of the sealing member 41 to the metal electrode 10 is completed, the metal electrode 10 and the oxide superconductor 60 are heated to a temperature 15 to 100 ° C. higher than the melting point of the bonding metal, and the bonding metal is removed according to the above conditions. When the vacuum deaeration is performed, the generated gas component is discharged from the deaeration unit 42. At this time, if the generated void is difficult to burst due to the high viscosity of the molten bonding metal, for example, using an ultrasonic vibrator of an ultrasonic soldering hand, the void generated by mechanical impact is ruptured. And vacuum degassing is preferably performed. In the present embodiment, first, after the gas component is vacuum degassed from the molten bonding metal, the drift suppressing member 50 is fitted into the installation groove 31 and vacuum deaeration is performed again. At this time, by applying a mechanical impact through the drift suppressing member 50, it is possible to easily realize the rupture of the voids in the molten bonding metal. As a result, the volume of the voids in the bonding metal installed in the joint portion formed by the installation groove 31 of the metal electrode 10, the drift suppressing member 50, and the oxide superconductor 60 is 5% or less of the volume of the joint portion. It became possible to suppress it.

ここで接合用金属中の脱気条件を変え、接合部分の容積と接合用金属中の空孔との比率が、様々な値を有する複数の電流リード試料を作製した。そして作製した電流リード試料の接合部分の接触抵抗値を、後述する接触抵抗値測定方法を用いて測定し、接合部分の容積と接合用金属中の空孔との比率と、接触抵抗値と、の関係を求めた。   Here, the deaeration conditions in the bonding metal were changed, and a plurality of current lead samples having various values of the ratio of the volume of the bonding portion to the holes in the bonding metal were prepared. Then, the contact resistance value of the joined portion of the produced current lead sample was measured using a contact resistance value measuring method described later, the ratio between the volume of the joined portion and the voids in the joining metal, the contact resistance value, Sought the relationship.

ここで、酸化物超電導体60の例として、縦3mm横5mm長さ90mmの直方体形状を有する熔融法で作製されたGd系酸化物超電導体を用いた。Gd系酸化物超電導体をこの大きさとしたのは、当該酸化物超電導体を介しての熱侵入を0.3W以下とするためである。もちろん、断面形状は、正方形または円形であっても良い。このGd系酸化物超電導体の両端部10mmを各々金属電極と接合し(このとき、酸化物超電導体と金属電極との接合面積は175mm2となる。)、接合部分の容積に対する、接合用金属中の空孔の比率を変化させて、接触抵抗値を測定した。 Here, as an example of the oxide superconductor 60, a Gd-based oxide superconductor manufactured by a melting method having a rectangular parallelepiped shape having a length of 3 mm, a width of 5 mm, and a length of 90 mm was used. The reason why the size of the Gd-based oxide superconductor is set is that the heat penetration through the oxide superconductor is 0.3 W or less. Of course, the cross-sectional shape may be square or circular. Both end portions 10 mm of the Gd-based oxide superconductor are joined to the metal electrodes (at this time, the joining area of the oxide superconductor and the metal electrode is 175 mm 2 ), and the joining metal with respect to the volume of the joining portion The contact resistance value was measured by changing the ratio of the pores inside.

すると、接合用金属中の脱気操作を行わない場合は、上述したように、接合用金属中の空孔の比率は、接合部分の容積の30〜50%程度となり、所定の電流を流した際の接触抵抗値の大きさは0.8〜1.2μΩ程度であり、試料による接触抵抗値のバラツキも大きかった。ところが、接合用金属中の空孔の比率が、接合部分の容積の5%以下になると、所定の電流を流した際の接触抵抗値の大きさは0.5μΩを下回ると同時に、接触抵抗値のバラツキも少なくなった。   Then, when the deaeration operation in the joining metal is not performed, as described above, the ratio of the holes in the joining metal is about 30 to 50% of the volume of the joining portion, and a predetermined current is passed. The magnitude of the contact resistance value at that time was about 0.8 to 1.2 μΩ, and the variation in the contact resistance value depending on the sample was also large. However, when the ratio of the voids in the bonding metal is 5% or less of the volume of the bonded portion, the contact resistance value when a predetermined current flows is less than 0.5 μΩ, and at the same time, the contact resistance value There was less variation.

ここで、上述したように当該Gd系酸化物超電導体を介しての熱侵入量は0.3W以下であるので、この伝熱による熱侵入と、低温側を4.2Kまで冷却した場合の1000A通電時の接触抵抗によるジュール発熱とを足し合わせた低温側への侵入熱量は、0.5Wを十分下回ることが判明した。
従って、酸化物超電導体が母材から切り出したままの形状であり、大きな切削加工を施さなくても、酸化物超電導電流リードとして使用可能であることが判明した。この結果、酸化物超電導体に切削加工を必要とする酸化物超電導電流リードと比較して、遙かに酸化物超電導体の使用量を減らすことが可能になると同時に、酸化物超電導電流リード全体の小型化も可能となった。
Here, as described above, since the amount of heat penetration through the Gd-based oxide superconductor is 0.3 W or less, the heat penetration due to this heat transfer and 1000 A when the low temperature side is cooled to 4.2K. It has been found that the amount of heat entering the low temperature side, which is added to the Joule heat generated by the contact resistance during energization, is well below 0.5 W.
Therefore, it has been found that the oxide superconductor has a shape as cut from the base material and can be used as an oxide superconducting current lead without performing a large cutting process. As a result, compared to an oxide superconducting current lead that requires cutting in the oxide superconductor, the amount of oxide superconducting current can be greatly reduced, and at the same time, the entire oxide superconducting current lead can be reduced. Miniaturization is also possible.

ここで図1に戻り、金属電極10と酸化物超電導体60との接合が完了したら、封止部材を除去し、柱状の酸化物超電導体60の両端に対向して設けられた金属電極10の間へ、酸化物超電導体60を被覆する形で被覆部材70を設けることが好ましい。被覆部材70は、酸化物超電導体60を、機械的、環境的に保護するものなので、ガラス繊維を含んだ樹脂材料であるGFRP等が好ましく用いられる。   Returning to FIG. 1, when the joining of the metal electrode 10 and the oxide superconductor 60 is completed, the sealing member is removed, and the metal electrode 10 provided opposite to both ends of the columnar oxide superconductor 60 is removed. It is preferable to provide the covering member 70 so as to cover the oxide superconductor 60 therebetween. Since the covering member 70 protects the oxide superconductor 60 mechanically and environmentally, GFRP which is a resin material containing glass fibers is preferably used.

酸化物超電導体へ被覆部材を設ける工程を、図4を用いて説明する。
図4は、両端に金属電極が接合された酸化物超電導体へ、被覆部材を被覆するための金型中へ設置した状態を示す斜視図である。
図4において、金型80中には、両端に上述した金属電極10が接合された酸化物超電導体60が設置されている。そして金属電極10の設置部30と、コ字状の断面を有する金型80とが、金型空間81を形成する。また、両側の金属電極10より金型空間81へ向かって、酸化物超電導体受継部32と偏流抑制部材突起部52とが突起している。
一方、熱硬化型樹脂をガラス繊維へ含浸させ、GFRPのプリプレグを調製しておく。そして調製したGFRPのプリプレグを、金型空間81中へ充填し、加熱硬化させて酸化物超電導体60の被覆部材とした。この結果、被覆部材は、金属電極10より突起した偏流抑制部材突起部52、酸化物超電導体受継部32と嵌合し機械的強度を発揮するので、電気的特性に優れ、機械的、環境的に頑丈な電流リードを製造することができた。
The process of providing the covering member on the oxide superconductor will be described with reference to FIG.
FIG. 4 is a perspective view showing a state in which an oxide superconductor having metal electrodes bonded at both ends is installed in a mold for coating a covering member.
In FIG. 4, an oxide superconductor 60 in which the above-described metal electrode 10 is bonded to both ends is installed in a mold 80. The installation portion 30 of the metal electrode 10 and the mold 80 having a U-shaped cross section form a mold space 81. Further, the oxide superconductor inheriting portion 32 and the drift suppressing member protruding portion 52 protrude from the metal electrodes 10 on both sides toward the mold space 81.
Meanwhile, a glass fiber is impregnated with a thermosetting resin to prepare a GFRP prepreg. The prepared GFRP prepreg was filled into the mold space 81 and heated and cured to obtain a covering member for the oxide superconductor 60. As a result, the covering member fits with the drift suppressing member protrusion 52 and the oxide superconductor inheriting portion 32 protruding from the metal electrode 10 and exhibits mechanical strength. Therefore, the covering member is excellent in electrical characteristics, mechanical and environmental. A robust current lead could be manufactured.

以上に記載した電流リードを超電導システムに用いることで、当該超電導システムの冷却効率が著しく改善され、冷凍機容量のコンパクト化等による生産コストの削減と、システムのランニングコスト削減とを実現できるようになった。   By using the current leads described above in a superconducting system, the cooling efficiency of the superconducting system is remarkably improved, so that the production cost can be reduced by reducing the capacity of the refrigerator, and the running cost of the system can be reduced. became.

製造された電流リードの特性評価について、図3を用いて説明する。
図3において、酸化物超電導体60は幅5mm厚さ3mmであり、その両端部の幅10mmの位置と、両端部から15〜17mmまでの位置とに、Agペーストが焼き付けられている。そして、両端部の幅10mmの位置までは、銀コート61として金属電極10に接合され、両端部から15〜17mmまでの位置は、測定用銀コート62としてリード線が接続される。電流リード1に設けられた2箇所の金属電極10のリード線接合部20にはブスバーが接続され、各々のブスバーは電源(図示していない)に接続されている。電源には、所定の電流として、例えば1060Aの電流を供給するものを用いた。電流は、リード線接合部20より設置部30を通過し、被覆部材70に被覆された酸化物超電導体を流れ、対する金属電極10の設置部30に到達する。
The characteristic evaluation of the manufactured current lead will be described with reference to FIG.
In FIG. 3, the oxide superconductor 60 has a width of 5 mm and a thickness of 3 mm, and an Ag paste is baked at a position of 10 mm width at both ends and a position from 15 to 17 mm from both ends. And, up to the position of the width of 10 mm at both ends, it is joined to the metal electrode 10 as the silver coat 61, and the lead wire is connected as the measurement silver coat 62 at the position from 15 to 17 mm from both ends. Bus bars are connected to the lead wire joints 20 of the two metal electrodes 10 provided on the current lead 1, and each bus bar is connected to a power source (not shown). As the power source, a power source that supplies a current of 1060 A, for example, was used. The current passes through the installation portion 30 from the lead wire joint portion 20, flows through the oxide superconductor covered by the covering member 70, and reaches the installation portion 30 of the corresponding metal electrode 10.

この電流リード1を77Kに冷却し、両ブスバー間に1060Aの電流を流したときの、設置部30と酸化物超電導体60の端から15mmとの電位差を測定し、その値より、この部分の接触抵抗値Rを算定した。   When this current lead 1 was cooled to 77K and a current of 1060 A was passed between both bus bars, the potential difference between the installation portion 30 and 15 mm from the end of the oxide superconductor 60 was measured. The contact resistance value R was calculated.

以下、実施例に基づいて、本発明の実施の形態をさらに詳細に説明する。
(実施例1)
1)柱状の酸化物超電導体の製造
Sm23、BaCO3、CuOの各原料粉末を、モル比でSm:Ba:Cu=1.6:2.3:3.3になるように秤量した後、BaCO3とCuOのみを880℃で30時間焼成して、BaCuO2とCuOの仮焼粉を得た(モル比でBaCuO2:CuO=2.3:1.0)。次に、この仮焼粉へ前記予め秤量しておいたSm23を加え、さらにPt粉末(平均粒径0.01μm)およびAg2O粉末(平均粒径13.8μm)を加えて混合し、大気中900℃で10時間焼成しAg入り仮焼粉とした。但し、Pt含有量は0.42wt%、Ag含有量は15wt%とした。このAg入り仮焼粉をポットミルで粉砕して、平均粒径約2μmとし合成粉を得た。
Hereinafter, based on an Example, embodiment of this invention is described in detail.
Example 1
1) Manufacture of columnar oxide superconductor Weigh each raw material powder of Sm 2 O 3 , BaCO 3 and CuO so that the molar ratio is Sm: Ba: Cu = 1.6: 2.3: 3.3. After that, only BaCO 3 and CuO were fired at 880 ° C. for 30 hours to obtain a BaCuO 2 and CuO calcined powder (in terms of molar ratio BaCuO 2 : CuO = 2.3: 1.0). Next, the previously weighed Sm 2 O 3 is added to the calcined powder, and Pt powder (average particle size 0.01 μm) and Ag 2 O powder (average particle size 13.8 μm) are added and mixed. And it baked at 900 degreeC in air | atmosphere for 10 hours, and was set as the calcining powder containing Ag. However, the Pt content was 0.42 wt% and the Ag content was 15 wt%. The Ag-containing calcined powder was pulverized with a pot mill to obtain a synthetic powder having an average particle size of about 2 μm.

得られた合成粉を粉末X線回折により分析したところ、Sm1+pBa2+q(Cu1-bAgb37-x相およびSm2+rBa1+s(Cu1-dAgd)O5-r相が確認された。 The obtained synthetic powder was analyzed by powder X-ray diffraction. As a result, Sm 1 + p Ba 2 + q (Cu 1-b Ag b ) 3 O 7-x phase and Sm 2 + r Ba 1 + s (Cu 1− d Ag d ) O 5-r phase was confirmed.

この合成粉を、縦77mm、横106mm、厚さ26mmの板状にプレス成形し、前駆体を作製した。そして、この前駆体を炉体内に設置して、以下の工程を行った。
まず、室温から70時間で1100℃まで昇温させ、この温度で20分間保持して前駆体を半熔融状態にした後、前駆体の上部が低温側になるように前駆体の上下に5℃/cmの温度勾配を加え、上部の温度が1025℃になるまで0.4℃/minで降温させた。
This synthetic powder was press-molded into a plate shape having a length of 77 mm, a width of 106 mm, and a thickness of 26 mm to prepare a precursor. And this precursor was installed in the furnace and the following processes were performed.
First, the temperature is raised from room temperature to 1100 ° C. in 70 hours, and kept at this temperature for 20 minutes to bring the precursor into a semi-molten state, and then 5 ° C. above and below the precursor so that the upper portion of the precursor is on the low temperature side. A temperature gradient of / cm was applied, and the temperature was lowered at 0.4 ° C./min until the upper temperature reached 1025 ° C.

ここで、予め熔融法で作製しておいた、Agを含まずPtを0.5wt%含むNd1.8Ba2.4Cu3.4x組成の結晶を、縦横2mm、厚さ1mmに切り出して製造しておいた種結晶を、成長方向がc軸と平行になるように前駆体の上部の中心に接触させる。そして、上部の温度を1025℃から1℃/hrの速度で1015℃まで降温させた。この温度で100時間保持した後、945℃まで70時間かけて徐冷し、その後、上下の温度勾配が0℃/cmになるように前駆体の下部を20時間で945℃になるように冷却し、その後、室温まで100時間かけて徐冷し、前駆体の結晶化を行い、酸化物超電導体の結晶試料を得た。 Here, an Nd 1.8 Ba 2.4 Cu 3.4 O x composition crystal containing 0.5 wt% of Pt and not including Ag, which was previously prepared by a melting method, was cut into 2 mm length and 1 mm thickness and manufactured. The seed crystal was brought into contact with the upper center of the precursor so that the growth direction was parallel to the c-axis. The temperature of the upper part was lowered from 1025 ° C. to 1015 ° C. at a rate of 1 ° C./hr. After maintaining at this temperature for 100 hours, it is gradually cooled to 945 ° C. over 70 hours, and then the lower part of the precursor is cooled to 945 ° C. in 20 hours so that the temperature gradient is 0 ° C./cm. Then, it was gradually cooled to room temperature over 100 hours to crystallize the precursor, and a crystal sample of an oxide superconductor was obtained.

この酸化物超電導体の結晶試料を、上下方向の中心付近で切断して断面をEPMAで観察したところ、Sm1+pBa2+q(Cu1-bAgb37-x相中に0.1〜30μm程度のSm2+rBa1+s(Cu1-dAgd)O5-y相が微細に分散していた。
ここで、p、q、r、s、yはそれぞれ−0.2〜0.2の値であり、xは−0.2〜0.6の値であった。また、b、dは0.0〜0.05の値であり、平均的には0.008程度であった。さらに、結晶試料全体にわたって0.1〜100μm程度のAgが微細に分散していた。また、表面から1mmより深い部分には粒径5〜200μm程度の空孔が分散していた。また、結晶試料全体が種結晶を反映してディスク状材料の厚さ方向がc軸と平行であるように均一に配向し、隣接する結晶間の方位のずれが3°以下であり、実質的に単結晶状の結晶試料が得られた。この結晶試料の表面から1mmより深い部分を切り出して密度を測定したところ、6.87g/cm3(理論密度7.53g/cm3の91.2%)であった。
When a crystal sample of this oxide superconductor was cut near the center in the vertical direction and the cross section was observed with EPMA, it was found in the Sm 1 + p Ba 2 + q (Cu 1-b Ag b ) 3 O 7-x phase. In addition, about 0.1 to 30 μm of Sm 2 + r Ba 1 + s (Cu 1-d Ag d ) O 5-y phase was finely dispersed.
Here, p, q, r, s, and y were values of −0.2 to 0.2, respectively, and x was a value of −0.2 to 0.6. Moreover, b and d were values of 0.0 to 0.05, and were about 0.008 on average. Furthermore, about 0.1 to 100 μm of Ag was finely dispersed throughout the entire crystal sample. In addition, pores having a particle size of about 5 to 200 μm were dispersed in a portion deeper than 1 mm from the surface. In addition, the entire crystal sample reflects the seed crystal and is uniformly oriented so that the thickness direction of the disk-shaped material is parallel to the c-axis, and the deviation of the orientation between adjacent crystals is 3 ° or less. A single crystal sample was obtained. When a portion deeper than 1 mm was cut out from the surface of this crystal sample and the density was measured, it was 6.87 g / cm 3 (91.2% of the theoretical density 7.53 g / cm 3 ).

得られた結晶試料の表面から1mmの部分を削除した後、長さ方向が結晶のab面と平行になるように幅5mm厚さ3mm長さ90mmの柱状の酸化物超電導体を切り出した。また、この試料から別途3mm×3mm×20mm(但し、3mm方向のどちらかが結晶のc軸方向)の柱状試料を切り出し、アニール処理後の熱伝導率の温度依存性を測定したところ、温度77Kから10Kまでの積分平均値で、約113mW/cmKであり、銀が15wt%含有されているにもかかわらず低い値であった。   After removing a 1 mm portion from the surface of the obtained crystal sample, a columnar oxide superconductor having a width of 5 mm, a thickness of 3 mm, and a length of 90 mm was cut out so that the length direction was parallel to the ab plane of the crystal. Further, a columnar sample of 3 mm × 3 mm × 20 mm (where 3 mm direction is the c-axis direction of the crystal) was cut out from this sample, and the temperature dependence of the thermal conductivity after the annealing treatment was measured. The integrated average value from 10 to 10K was about 113 mW / cmK, which was a low value despite the inclusion of 15 wt% silver.

2)柱状の酸化物超電導体への銀コート設置
まず、エチルセルロース10wt%、テルピネオール30wt%、フタル酸ジブチル50wt%およびブチルカルビトールアセテート10wt%を混合して作製した有機ビヒクルと平均粒径3μmのAg粉末とを重量比3:7の割合で混合し、さらにリン酸エステルを2%添加してAgペーストを作製した。
2) Installation of a silver coat on a columnar oxide superconductor First, an organic vehicle prepared by mixing 10 wt% ethyl cellulose, 30 wt% terpineol, 50 wt% dibutyl phthalate and 10 wt% butyl carbitol acetate and Ag having an average particle diameter of 3 μm The powder was mixed at a weight ratio of 3: 7, and 2% of phosphoric acid ester was further added to prepare an Ag paste.

作製したAgペーストを、1)にて作製した柱状の酸化物超電導体の両端部10mm、および左右の端部から15mmの位置へ幅2mmにて、厚さ50μmを塗布し、真空含侵処理をした後、大気中80℃のオーブンの中で乾燥させた。次に、このAgペーストを塗布した柱状の酸化物超電導体を、再び、炉体中において920℃で10時間焼成してAgを焼き付けて銀コートとし、銀コート酸化物超電導体を作製した。焼き付け後のAgの膜厚は約30μmであった。   The prepared Ag paste was applied to both ends 10 mm of the column-shaped oxide superconductor prepared in 1), and 15 mm from the left and right ends with a width of 2 mm, a thickness of 50 μm, and vacuum impregnation treatment was performed. And then dried in an oven at 80 ° C. in the atmosphere. Next, the columnar oxide superconductor coated with this Ag paste was fired again at 920 ° C. for 10 hours in the furnace body, and Ag was baked to form a silver coat, thereby producing a silver-coated oxide superconductor. The film thickness of Ag after baking was about 30 μm.

3)銀コート酸化物超電導体のアニール処理
銀コート酸化物超電導体をガス置換可能な別の炉の中に設置し、まず、ロータリーポンプで0.1Torrまで炉内を排気した後、炉内へ酸素ガスを流し込んで、酸素分圧が99%以上である大気圧の雰囲気にした。その後は、0.5L/minの流量で酸素ガスを炉内に流しながら、室温から450℃まで10時間で昇温させ、次に450℃から250℃まで400時間かけて徐冷し、さらに250℃から室温まで10時間で降温させて、銀コート酸化物超電導体のアニール処理をおこなった。
3) Annealing treatment of the silver-coated oxide superconductor The silver-coated oxide superconductor was placed in another furnace capable of gas replacement. First, the furnace was evacuated to 0.1 Torr with a rotary pump, and then into the furnace. Oxygen gas was flowed into the atmosphere of atmospheric pressure with an oxygen partial pressure of 99% or more. Thereafter, while oxygen gas is flowed into the furnace at a flow rate of 0.5 L / min, the temperature is raised from room temperature to 450 ° C. over 10 hours, and then gradually cooled from 450 ° C. to 250 ° C. over 400 hours. The temperature was lowered from 0 ° C. to room temperature in 10 hours, and the silver-coated oxide superconductor was annealed.

4)金属電極および偏流抑制部材の作製
純度4Nの無酸素銅を加工して金属電極および偏流抑制部材を作製し、各々の表面にSnメッキを施した。この金属電極は、リード線接合部と設置部(酸化物超電導体設置部)とを有し、リード線接合部にはボルト穴が2箇所あり、設置部の対向面には被覆部材の接合強度を高めるための受継部が設けてある。尚、偏流抑制部材は、酸化物超電導体の設置と接合用金属の充填とを見込み、金属電極に設けられた設置溝のサイズより、高さ方向で3.5mm、幅方向で0.5mm削加工した形状とした。
4) Production of metal electrode and drift suppressing member A metal electrode and a drift suppressing member were fabricated by processing oxygen-free copper having a purity of 4N, and Sn plating was applied to each surface. This metal electrode has a lead wire joint portion and an installation portion (oxide superconductor placement portion), the lead wire joint portion has two bolt holes, and the bonding strength of the covering member on the opposite surface of the installation portion There is provided a succession part to increase The drift suppression member is expected to be installed in the height direction by 3.5 mm and in the width direction by 0.5 mm from the size of the installation groove provided in the metal electrode, considering the installation of the oxide superconductor and the filling of the bonding metal. It was set as the processed shape.

5)酸化物超電導体の金属電極への設置
金属電極の設置溝に接合用金属としてPbSn系ハンダであるセラソルザ143(以下、セラソルザと記載する。)を熔融塗布しておき、そこへ、Agを焼き付けた端部10mmにセラソルザを熔融塗布した酸化物超電導体を設置し、加熱して仮固定する。仮固定が完了したら酸化物超電導体の外周から設置溝の外縁部に亘って、耐熱シリコンゴムを封止部材として設けセラソルザの流出を防止する処理を行う。
5) Installation of oxide superconductor on metal electrode Cerasolzer 143 (hereinafter referred to as Cerasolzer), which is a PbSn solder, is melt-coated as a bonding metal in the metal electrode installation groove, and Ag is added thereto. An oxide superconductor in which Cerasolzer is melt-coated is placed on the baked end 10 mm, and is temporarily fixed by heating. When the temporary fixing is completed, heat-resistant silicon rubber is provided as a sealing member from the outer periphery of the oxide superconductor to the outer edge of the installation groove, and processing for preventing the cerasolzer from flowing out is performed.

6)接合用金属の脱気処理
流出防止処理が完了したら、金属電極をセラソルザの融点(143℃)以上である180℃で加熱してセラソルザを充分に熔融させ、素早く真空容器内に入れて約100Paで2分間脱気を行う。次に、金属電極を再度180℃に加熱し、予めセラソルザを熔融塗布した偏流抑制用部材をあてがい、再度真空容器内に入れて約100Paで2分間脱気を行う。そして、超音波ハンダ小手により、この偏流抑制部材を介して機械的衝撃を加え、既存のセラソルザの空孔を破裂させる。
6) Joining metal deaeration treatment When the outflow prevention treatment is completed, the metal electrode is heated at 180 ° C., which is higher than the melting point (143 ° C.) of the Cerasolzer, and the Cerasolzer is sufficiently melted. Deaerate at 100 Pa for 2 minutes. Next, the metal electrode is heated again to 180 ° C., and a member for suppressing drift, to which Cerasolzer has been melt-coated in advance, is applied, and again placed in a vacuum vessel and deaerated at about 100 Pa for 2 minutes. Then, a mechanical shock is applied by the ultrasonic soldering hand through the drift suppressing member, and the holes of the existing Cerasolzer are ruptured.

この結果、金属電極、酸化物超電導体、および偏流抑制部材は、空孔を含まない接合用金属にて、電気的にも機械的にも好ましい状態で接合される。接合が完了したら、封止部材は除去しておく。
尚、本実施例においては、作製した電流リードの特性を測定するため、酸化物超電導体の端から15〜17mmの位置に設けられたAgを焼き付けた部分に、特性測定用の直径0.1mmのステンレスリード線を、セラソルザを用いて接続した。
As a result, the metal electrode, the oxide superconductor, and the drift suppressing member are bonded in a preferable state both electrically and mechanically by the bonding metal that does not include the voids. When the joining is completed, the sealing member is removed.
In this example, in order to measure the characteristics of the manufactured current lead, the diameter of 0.1 mm for characteristic measurement was applied to the portion baked with Ag provided at a position of 15 to 17 mm from the end of the oxide superconductor. These stainless steel lead wires were connected using Cerasolzer.

7)被覆部材の設置
ビスフェノールA型エポキシ樹脂と芳香族アミンとからなる熱硬化型のエポキシ樹脂の接着剤を準備し、ガラスクロス繊維およびチョプドガラス繊維へ真空含侵させ、GFRPのプリプレグとした。
次に、両端が、前記銅電極が接合された酸化物超電導体において、酸化物超電導体部分だけがGFRPで覆われるように金型中へ設置した。そして、まず金型内の内壁に沿ってガラスクロス繊維のプリプレグを配置し、次にチョップドガラス繊維のプリプレグを、酸化物超電導体の周囲の金型空間へ充填し、ガラスクロス繊維のプリプレグで覆った後、120℃で熱硬化させて、ガラス繊維で被覆された酸化物超電導体電流リード試料を製造した。
7) Installation of covering member A thermosetting epoxy resin adhesive composed of a bisphenol A type epoxy resin and an aromatic amine was prepared and vacuum impregnated into glass cloth fibers and chopped glass fibers to obtain a GFRP prepreg.
Next, both ends of the oxide superconductor with the copper electrode bonded thereto were placed in the mold so that only the oxide superconductor portion was covered with GFRP. First, a glass cloth fiber prepreg is placed along the inner wall of the mold, and then the chopped glass fiber prepreg is filled into the mold space around the oxide superconductor and covered with the glass cloth fiber prepreg. Then, it was thermally cured at 120 ° C. to produce an oxide superconductor current lead sample coated with glass fiber.

8)電流リードの特性評価
製造された電流リード試料における、金属電極のリード線接合部にブスバーを接続して、金属電極と酸化物超電導体を77Kまで冷却し、両金属電極間に1060Aを通電した。そして通電を行いながら、金属電極と、酸化物超電導体の端部から15〜17mmの位置に接続した特性測定用ステンレス線との間の電圧を測定し、金属電極と酸化物超電導体との間の接触抵抗値を算定したところ、当該電流リード試料の両側の接触抵抗値とも0.19μΩと非常に低い値であることが判明した。
8) Characteristic evaluation of current lead In the manufactured current lead sample, a bus bar is connected to the lead wire joint of the metal electrode, the metal electrode and the oxide superconductor are cooled to 77K, and 1060A is energized between the two metal electrodes. did. Then, while energizing, the voltage between the metal electrode and the oxide superconductor was measured between the metal electrode and the oxide superconductor by measuring the voltage between the stainless steel wire for characteristic measurement connected at a position of 15 to 17 mm from the end of the oxide superconductor. As a result, the contact resistance values on both sides of the current lead sample were found to be very low, 0.19 μΩ.

さらに当該電流リード試料を4.2Kまで冷却して、同様に金属電極と酸化物超電導体との間の接触抵抗値を算定したところ、両側の接触抵抗値とも0.03μΩと非常に低い値であることが判明した。
また、この電流リード試料の低温側を4.2K、高温側を77Kに冷却した際の、低温側への伝熱による熱侵入量は0.28Wであった。
一方、当該電流リード試料の77K、0.5T磁場中における臨界電流値を2000Aまで通電して測定したところ、抵抗の発生が無く、2000A以上であることが判明した。そこで、超電導体試料の断面を3mm×5mmからφ1.9mmに幅0.7mm程度研削加工し、有効断面積を減らして再度通電試験を行ったところ、臨界電流値は670Aであった。この結果を当該電流リード試料における3mm×5mmに換算し直すと、0.5Tの磁場中で、約3500Aに相当する値である。
Further, when the current lead sample was cooled to 4.2 K and the contact resistance value between the metal electrode and the oxide superconductor was calculated in the same manner, the contact resistance value on both sides was as very low as 0.03 μΩ. It turned out to be.
When the current lead sample was cooled to 4.2 K on the low temperature side and 77 K on the high temperature side, the heat penetration amount due to heat transfer to the low temperature side was 0.28 W.
On the other hand, when the critical current value in the 77K, 0.5T magnetic field of the current lead sample was measured by applying current up to 2000A, it was found that there was no generation of resistance and it was 2000A or more. Then, when the cross section of the superconductor sample was ground from 3 mm × 5 mm to φ1.9 mm and the width was about 0.7 mm, the effective cross-sectional area was reduced and the current test was performed again. As a result, the critical current value was 670A. When this result is converted back to 3 mm × 5 mm in the current lead sample, it is a value corresponding to about 3500 A in a magnetic field of 0.5 T.

以上のことから、当該電流リード試料において、金属電極の一方を高温側(77K)、他方を低温側(4.2K)として0.5Tの磁場中で1000Aを通電した場合、低温側での熱発生量は、トータルで0.31Wと非常に低い値であることが判明した。
最後に、当該電流リード試料の両側の接合部分を切断し、接合部分に設置された接合用金属中の空孔の体積が、接合部分の容積の何%を占めているかを各々測定した。その結果、一方は、接合部分の容積の0.07%、他方は0.08%を占めていることが判明した。
From the above, in the current lead sample, when one of the metal electrodes is on the high temperature side (77K) and the other is the low temperature side (4.2K) and 1000 A is energized in a magnetic field of 0.5 T, the heat on the low temperature side The amount of generation was found to be a very low value of 0.31 W in total.
Finally, the joint portions on both sides of the current lead sample were cut, and the percentage of the volume of the joints in the bonding metal placed in the joint portion was measured. As a result, it was found that one occupies 0.07% of the volume of the joint portion and the other occupies 0.08%.

(実施例2)
1)柱状の酸化物超電導体の製造
Gd23、BaCO3、CuOの各原料粉末を、モル比でGd:Ba:Cu=1:2:3になるように秤量して混合し、920℃で30時間焼成してからポットミルを用いて平均粒径3μmに粉砕し、再び930℃で30時間焼成してからライカイ機およびポットミルにて平均粒径10μmに粉砕して、第1の仮焼粉であるGd1Ba2Cu37-xの粉末を作製した。
次に、前記各原料粉末をGd:Ba:Cu=2:1:1になるように秤量して混合し、890℃で20時間焼成してからポットミルを用いて平均粒径0.7μmに粉砕し、第2の仮焼粉であるGd2BaCuO5の粉末を作製した。
(Example 2)
1) Production of columnar oxide superconductor Gd 2 O 3 , BaCO 3 , and CuO raw material powders are weighed and mixed so that the molar ratio is Gd: Ba: Cu = 1: 2: 3. After firing at 30 ° C. for 30 hours, the powder is pulverized to an average particle size of 3 μm using a pot mill, again baked at 930 ° C. for 30 hours, and then pulverized to an average particle size of 10 μm using a lykai machine and pot mill. A powder of Gd 1 Ba 2 Cu 3 O 7-x that is a powder was produced.
Next, each raw material powder is weighed and mixed so that Gd: Ba: Cu = 2: 1: 1, fired at 890 ° C. for 20 hours, and then pulverized to an average particle size of 0.7 μm using a pot mill. and, to prepare a powder of Gd 2 BaCuO 5 is a second calcined powder.

第1、第2の仮焼粉をGd1Ba2Cu37-x:Gd2BaCuO5=1:0.4となるように秤量し、さらにPt粉末(平均粒径0.01μm)およびAg2O粉末(平均粒径13.8μm)を加えて混合し合成粉とした。ただし、Pt含有量は0.42wt%、Ag含有量は15wt%とした。 The first and second calcined powders are weighed so that Gd 1 Ba 2 Cu 3 O 7-x : Gd 2 BaCuO 5 = 1: 0.4, and further Pt powder (average particle size 0.01 μm) and Ag 2 O powder (average particle size 13.8 μm) was added and mixed to obtain a synthetic powder. However, the Pt content was 0.42 wt% and the Ag content was 15 wt%.

この合成粉を縦22mm、横120mm、厚さ26mmの板状に金型を用いてプレス成形して前駆体を作製した。そして、この前駆体を炉体内に設置して、以下の工程を行った。
まず、室温から70時間で1100℃まで昇温させ、この温度で20分間保持し、前駆体を半熔融状態にした後、前駆体の上部が低温側になるように前駆体の上下に5℃/cmの温度勾配を加え、上部の温度が995℃になるまで0.4℃/minで降温させた。
This synthetic powder was press-molded into a plate shape having a length of 22 mm, a width of 120 mm, and a thickness of 26 mm using a mold to prepare a precursor. And this precursor was installed in the furnace and the following processes were performed.
First, the temperature is raised from room temperature to 1100 ° C. in 70 hours, and kept at this temperature for 20 minutes to bring the precursor into a semi-molten state, and then 5 ° C. above and below the precursor so that the upper part of the precursor is on the low temperature side. A temperature gradient of / cm was applied, and the temperature was lowered at 0.4 ° C./min until the upper temperature reached 995 ° C.

ここで、予め熔融法で作製しておいた、Agを含まずPtを0.5wt%含むNd1.8Ba2.4Cu3.4x組成の種結晶を、縦横2mm、厚さ1mmに切り出して製造しておいた種結晶を、成長方向がc軸と平行になるように前駆体の上部の中心に接触させる。そして、上部の温度を995℃から1℃/hrの速度で985℃まで降温させた。この温度で100時間保持した後、915℃まで70時間かけて徐冷し、その後、上下の温度勾配が0℃/cmになるように前駆体の下部を20時間で915℃になるように冷却し、その後、室温まで100時間かけて徐冷して結晶化を行い、酸化物超電導体の結晶試料を得た。 Here, a seed crystal of Nd 1.8 Ba 2.4 Cu 3.4 O x composition containing 0.5 wt% of Pt not containing Ag, which was prepared in advance by a melting method, was cut into 2 mm length and 1 mm thickness and manufactured. The deposited seed crystal is brought into contact with the upper center of the precursor so that the growth direction is parallel to the c-axis. The temperature of the upper part was lowered from 995 ° C. to 985 ° C. at a rate of 1 ° C./hr. After maintaining at this temperature for 100 hours, it is gradually cooled to 915 ° C. over 70 hours, and then the lower part of the precursor is cooled to 915 ° C. in 20 hours so that the temperature gradient is 0 ° C./cm. Then, crystallization was performed by gradually cooling to room temperature over 100 hours to obtain a crystal sample of an oxide superconductor.

この酸化物超電導体の結晶試料を、上下方向の中心付近で切断して断面をEPMAで観察したところ、Gd1+pBa2+q(Cu1-bAgb37-x相中に0.1〜30μm程度のGd2+rBa1+s(Cu1-dAgd)O5-y相が微細に分散していた。
ここで、p、q、r、s、yはそれぞれ−0.2〜0.2の値であり、xは−0.2〜0.6の値であった。また、b、dは0.0〜0.05の値であり、平均的には0.008程度であった。さらに、結晶試料全体にわたって0.1〜100μm程度のAgが微細に分散していた。また、表面から1mmより深い部分には粒径5〜200μm程度の空孔が分散していた。また、結晶試料全体が種結晶を反映してディスク状材料の厚さ方向がc軸と平行であるように均一に配向し、隣接する結晶間の方位のずれが3°以下であり、実質的に単結晶状の結晶試料が得られた。この結晶試料の表面から1mmより深い部分を切り出して密度を測定したところ、7.0g/cm3(理論密度7.68g/cm3の91.1 %)であった。
A crystal sample of this oxide superconductor was cut near the center in the vertical direction and the cross section was observed with EPMA. As a result, it was found in the Gd 1 + p Ba 2 + q (Cu 1-b Ag b ) 3 O 7-x phase. Further, a Gd 2 + r Ba 1 + s (Cu 1-d Ag d ) O 5-y phase of about 0.1 to 30 μm was finely dispersed.
Here, p, q, r, s, and y were values of −0.2 to 0.2, respectively, and x was a value of −0.2 to 0.6. Moreover, b and d were values of 0.0 to 0.05, and were about 0.008 on average. Furthermore, about 0.1 to 100 μm of Ag was finely dispersed throughout the entire crystal sample. In addition, pores having a particle size of about 5 to 200 μm were dispersed in a portion deeper than 1 mm from the surface. In addition, the entire crystal sample reflects the seed crystal and is uniformly oriented so that the thickness direction of the disk-shaped material is parallel to the c-axis, and the deviation of the orientation between adjacent crystals is 3 ° or less. A single crystal sample was obtained. When a portion deeper than 1 mm was cut out from the surface of this crystal sample and the density was measured, it was 7.0 g / cm 3 (91.1% of the theoretical density 7.68 g / cm 3 ).

得られた結晶試料の表面から1mmの部分を削除した後、長さ方向が結晶のab面と平行になるように幅5mm厚さ3mm長さ105mmの柱状の酸化物超電導体を切り出した。また、この試料から別途3mm×3mm×20mm(但し、3mm方向のどちらかが結晶のc軸方向)の柱状試料を切り出し、アニール処理後の熱伝導率の温度依存性を測定したところ、銀が15wt%含有されているにもかかわらず、温度77Kから10Kまでの積分平均値で約141mW/cmKと低い値であった。   After removing a 1 mm portion from the surface of the obtained crystal sample, a columnar oxide superconductor having a width of 5 mm, a thickness of 3 mm and a length of 105 mm was cut out so that the length direction was parallel to the ab plane of the crystal. In addition, when a columnar sample of 3 mm × 3 mm × 20 mm (where 3 mm direction is the c-axis direction of the crystal) was cut out from this sample and the temperature dependence of the thermal conductivity after annealing was measured, Despite containing 15 wt%, the integrated average value from a temperature of 77K to 10K was a low value of about 141 mW / cmK.

以降、
2)柱状の酸化物超電導体への銀コート設置
3)銀コート酸化物超電導体のアニール処理
4)金属電極および偏流抑制部材の作製
5)酸化物超電導体の金属電極への設置
6)接合用金属の脱気処理
7)被覆部材の設置
8)電流リードの特性評価
を実施例1と同様に行い、以下の結果を得た。
まず、当該電流リード試料の両端にある、金属電極と酸化物超電導体との接合部分の接触抵抗値を算定したところ、一方が0.2μΩ、他方が0.21μΩと非常に低い値であることが判明した。
Or later,
2) Installation of silver coating on columnar oxide superconductor 3) Annealing treatment of silver coated oxide superconductor 4) Preparation of metal electrode and drift suppressing member 5) Installation of oxide superconductor on metal electrode 6) For bonding Metal deaeration treatment 7) Installation of covering member 8) The current lead characteristics were evaluated in the same manner as in Example 1, and the following results were obtained.
First, when the contact resistance value of the joint part between the metal electrode and the oxide superconductor at both ends of the current lead sample was calculated, one was 0.2 μΩ and the other was very low as 0.21 μΩ. There was found.

さらに当該電流リード試料を4.2Kまで冷却して、同様に金属電極と酸化物超電導体との間の接触抵抗値を算定したところ、両側の接触抵抗値とも0.03μΩと非常に低い値であることが判明した。
また、この電流リード試料の低温側を4.2K、高温側を77Kに冷却した際の、低温側への伝熱による熱侵入量は0.33Wであった。
一方、当該電流リード試料の77K、0.5T磁場中における臨界電流値を2000Aまで通電して測定したところ、抵抗の発生が無く、2000A以上であることが判明した。そこで、超電導体試料の断面を3mm×5mmからφ1.9mmに幅0.7mm程度研削加工し、有効断面積を減らして再度通電試験を行ったところ、臨界電流値は530Aであった。この結果を当該電流リード試料における3mm×5mmに換算し直すと、0.5Tの磁場中で、約2800Aに相当する値である。
Further, when the current lead sample was cooled to 4.2 K and the contact resistance value between the metal electrode and the oxide superconductor was calculated in the same manner, the contact resistance value on both sides was as very low as 0.03 μΩ. It turned out to be.
Further, when the current lead sample was cooled to 4.2 K on the low temperature side and 77 K on the high temperature side, the heat penetration amount due to heat transfer to the low temperature side was 0.33 W.
On the other hand, when the critical current value in the 77K, 0.5T magnetic field of the current lead sample was measured by applying current up to 2000A, it was found that there was no generation of resistance and it was 2000A or more. Therefore, when the cross section of the superconductor sample was ground from about 3 mm × 5 mm to φ1.9 mm and the width was about 0.7 mm, the effective cross-sectional area was reduced and the current test was performed again. The critical current value was 530A. When this result is converted back to 3 mm × 5 mm in the current lead sample, it is a value corresponding to about 2800 A in a magnetic field of 0.5 T.

以上のことから、当該電流リード試料において、金属電極の一方を高温側(77K)、他方を低温側(4.2K)として0.5Tの磁場中で1000Aを通電した場合、低温側での熱発生量は、トータルで0.36Wと非常に低い値であることが判明した。
最後に、当該電流リード試料の両側の接合部分を切断し、接合部分に設置された接合用金属中の空孔の体積が、接合部分の容積の何%を占めているかを各々測定した。その結果、両方とも接合部分の容積の約0.1%を占めていることが判明した。
From the above, in the current lead sample, when one of the metal electrodes is on the high temperature side (77K) and the other is the low temperature side (4.2K) and 1000 A is energized in a magnetic field of 0.5 T, the heat on the low temperature side The generated amount was found to be a very low value of 0.36 W in total.
Finally, the joint portions on both sides of the current lead sample were cut, and the percentage of the volume of the joints in the bonding metal placed in the joint portion was measured. As a result, it was found that both occupied about 0.1% of the volume of the joint portion.

(実施例3)
1)柱状の酸化物超電導体の製造
Sm23、BaCO3、CuOの各原料粉末を、モル比でSm:Ba:Cu=1:2:3になるように秤量して混合し、920℃で30時間焼成してからポットミルを用いて平均粒径3μmに粉砕し、再び930℃で30時間焼成してからライカイ機およびポットミルにて平均粒径10μmに粉砕して、第1の仮焼粉であるSm1Ba2Cu37-xの粉末を作製した。
次に、前記各原料粉末をSm:Ba:Cu=2:1:1になるように秤量して混合し、890℃で20時間焼成してからポットミルを用いて平均粒径0.7μmに粉砕し、第2の仮焼粉であるSm2BaCuO5の粉末を作製した。
(Example 3)
1) Production of columnar oxide superconductor Sm 2 O 3 , BaCO 3 , and CuO raw material powders are weighed and mixed so that the molar ratio is Sm: Ba: Cu = 1: 2: 3, and 920 After firing at 30 ° C. for 30 hours, the powder is pulverized to an average particle size of 3 μm using a pot mill, again baked at 930 ° C. for 30 hours, and then pulverized to an average particle size of 10 μm using a lykai machine and pot mill. A powder of Sm 1 Ba 2 Cu 3 O 7-x which is a powder was produced.
Next, the raw material powders are weighed and mixed so that Sm: Ba: Cu = 2: 1: 1, fired at 890 ° C. for 20 hours, and then pulverized to an average particle size of 0.7 μm using a pot mill. and, to prepare a powder of Sm 2 BaCuO 5 is a second calcined powder.

第1、第2の仮焼粉をSm1Ba2Cu37-x:Sm2BaCuO5=1:0.4となるように秤量し、さらにPt粉末(平均粒径0.01μm)およびAg2O粉末(平均粒径13.8μm)を加えて混合し合成粉Aとした。そして同様に第1、第2の仮焼粉を1:0.3となるように秤量し、Pt粉末およびAg2O粉末を加えて混合し合成粉Bとした。ただし、合成粉A、Bとも、Pt含有量は0.42wt%、Ag含有量は10wt%とした。 The first and second calcined powders are weighed so that Sm 1 Ba 2 Cu 3 O 7-x : Sm 2 BaCuO 5 = 1: 0.4, and further Pt powder (average particle diameter 0.01 μm) and Ag 2 O powder (average particle size 13.8 μm) was added and mixed to obtain a synthetic powder A. Similarly, the first and second calcined powders were weighed so as to be 1: 0.3, and Pt powder and Ag 2 O powder were added and mixed to obtain a synthetic powder B. However, in both the synthetic powders A and B, the Pt content was 0.42 wt% and the Ag content was 10 wt%.

この2種類の合成粉A、Bを、各々縦22mm、横120mm、厚さ26mmの板状に金型を用いてプレス成形し、合成粉Aを用いた前駆体A、および合成粉Bを用いた前駆体Bを作製した。そして、この前駆体A、Bを炉体内に設置して、以下の工程を行った。
まず、室温から70時間で1100℃まで昇温させ、この温度で20分間保持し、前駆体を半熔融状態にした後、前駆体の上部が低温側になるように前駆体の上下に5℃/cmの温度勾配を加え、上部の温度が995℃になるまで0.4℃/minで降温させた。
These two types of synthetic powders A and B are press-molded into a plate shape having a length of 22 mm, a width of 120 mm and a thickness of 26 mm, respectively, using a mold, and a precursor A and a synthetic powder B using the synthetic powder A are used. Precursor B was prepared. And this precursor A and B was installed in the furnace body, and the following processes were performed.
First, the temperature is raised from room temperature to 1100 ° C. in 70 hours, and kept at this temperature for 20 minutes to bring the precursor into a semi-molten state, and then 5 ° C. above and below the precursor so that the upper part of the precursor is on the low temperature side. A temperature gradient of / cm was applied, and the temperature was lowered at 0.4 ° C./min until the upper temperature reached 995 ° C.

ここで、予め熔融法で作製しておいた、Agを含まずPtを0.5wt%含むNd1.8Ba2.4Cu3.4x組成の種結晶を、縦横2mm、厚さ1mmに切り出して製造しておいた種結晶を、成長方向がc軸と平行になるように前駆体の上部の中心に接触させる。そして、上部の温度を995℃から1℃/hrの速度で985℃まで降温させた。この温度で100時間保持した後、915℃まで70時間かけて徐冷し、その後、上下の温度勾配が0℃/cmになるように前駆体の下部を20時間で915℃になるように冷却し、その後、室温まで100時間かけて徐冷して結晶化を行い、前駆体Aより酸化物超電導体の結晶試料A、前駆体Bより酸化物超電導体の結晶試料Bを得た。 Here, a seed crystal of Nd 1.8 Ba 2.4 Cu 3.4 O x composition containing 0.5 wt% of Pt not containing Ag, which was prepared in advance by a melting method, was cut into 2 mm length and 1 mm thickness and manufactured. The deposited seed crystal is brought into contact with the upper center of the precursor so that the growth direction is parallel to the c-axis. The temperature of the upper part was lowered from 995 ° C. to 985 ° C. at a rate of 1 ° C./hr. After maintaining at this temperature for 100 hours, it is gradually cooled to 915 ° C. over 70 hours, and then the lower part of the precursor is cooled to 915 ° C. in 20 hours so that the temperature gradient is 0 ° C./cm. Then, it was gradually cooled to room temperature over 100 hours for crystallization to obtain a crystal sample A of the oxide superconductor from the precursor A and a crystal sample B of the oxide superconductor from the precursor B.

この酸化物超電導体の結晶試料A、Bを、上下方向の中心付近で切断して断面をEPMAで観察したところ、いずれもSm1+pBa2+q(Cu1-bAgb37-x相中に0.1〜30μm程度のSm2+rBa1+s(Cu1-dAgd)O5-y相が微細に分散していた。ここで、p、q、r、s、yはそれぞれ−0.2〜0.2の値であり、xは−0.2〜0.6の値であった。また、b、dは0.0〜0.05の値であり、平均的には0.008程度であった。さらに、結晶試料全体にわたって0.1〜100μm程度のAgが微細に分散していた。また、表面から1mmより深い部分には粒径5〜200μm程度の空孔が分散していた。また、結晶試料全体が種結晶を反映してディスク状材料の厚さ方向がc軸と平行であるように均一に配向し、隣接する結晶間の方位のずれが3°以下であり、実質的に単結晶状の結晶試料A、Bが得られた。この結晶試料A、Bの表面から1mmより深い部分を切り出して密度を測定したところ、1:0.4の組成で作製した結晶Aでは6.7g/cm3(理論密度7.38g/cm3の90.8%)であり1:0.3の組成で作製した結晶Bでは6.7g/cm3(理論密度7.35g/cm3の91.2%)であった。 When the crystal samples A and B of the oxide superconductor were cut near the center in the vertical direction and the cross section was observed with EPMA, both were Sm 1 + p Ba 2 + q (Cu 1-b Ag b ) 3 O. Sm 2 + r Ba 1 + s (Cu 1-d Ag d ) O 5-y phase of about 0.1 to 30 μm was finely dispersed in the 7-x phase. Here, p, q, r, s, and y were values of −0.2 to 0.2, respectively, and x was a value of −0.2 to 0.6. Moreover, b and d were values of 0.0 to 0.05, and were about 0.008 on average. Furthermore, about 0.1 to 100 μm of Ag was finely dispersed throughout the entire crystal sample. In addition, pores having a particle size of about 5 to 200 μm were dispersed in a portion deeper than 1 mm from the surface. In addition, the entire crystal sample reflects the seed crystal and is uniformly oriented so that the thickness direction of the disk-shaped material is parallel to the c-axis, and the deviation of the orientation between adjacent crystals is 3 ° or less. Single crystalline crystal samples A and B were obtained. When a portion deeper than 1 mm was cut out from the surfaces of the crystal samples A and B and the density was measured, the crystal A produced with a composition of 1: 0.4 was 6.7 g / cm 3 (theoretical density 7.38 g / cm 3). In the crystal B produced with a composition of 1: 0.3, it was 6.7 g / cm 3 (91.2% of the theoretical density of 7.35 g / cm 3 ).

得られた結晶試料A、Bの表面から1mmの部分を削除した後、長さ方向が結晶のab面と平行になるように幅3mm厚さ3mm長さ90mmの柱状の酸化物超電導体A、Bを切り出した。
また、この試料から別途3mm×3mm×20mm(但し、3mm方向のどちらかが結晶のc軸方向)の柱状試料を切り出し、アニール処理後の熱伝導率の温度依存性を測定したところ、温度77Kから10Kまでの積分平均値でAは、約62.1mW/cmK、Bは、約62.9mW/cmKであり、銀が10wt%含有されているにもかかわらず低い値であった。
After removing a 1 mm portion from the surface of the obtained crystal samples A and B, a columnar oxide superconductor A having a width of 3 mm, a thickness of 3 mm, and a length of 90 mm so that the length direction is parallel to the ab plane of the crystal, B was cut out.
Further, a columnar sample of 3 mm × 3 mm × 20 mm (where 3 mm direction is the c-axis direction of the crystal) was cut out from this sample, and the temperature dependence of the thermal conductivity after the annealing treatment was measured. A was about 62.1 mW / cmK, B was about 62.9 mW / cmK, and the values were low despite containing 10 wt% of silver.

以降、
2)柱状の酸化物超電導体A、Bへの銀コート設置
3)銀コート酸化物超電導体A、Bのアニール処理
4)金属電極および偏流抑制部材の作製
5)酸化物超電導体A、Bの金属電極への設置
6)接合用金属の脱気処理
7)被覆部材の設置
を実施例1と同様に行い、酸化物超電導体Aを用いた電流リードA、酸化物超電導体Bを用いた電流リードBを得た。
8)電流リードA、Bの特性評価
得られた電流リードA、Bの電気的特性を実施例1と同様に測定し、以下の結果を得た。
まず、当該電流リードAの両端にある、金属電極と酸化物超電導体との接合部分の接触抵抗値を算定したところ、一方が0.28μΩ、他方が0.29μΩと非常に低い値であることが判明し、同様に、当該電流リードBの接合部分では、一方が0.30μΩ、他方が0.29μΩと非常に低い値であることが判明した。
Or later,
2) Installation of silver coat on columnar oxide superconductors A and B 3) Annealing treatment of silver coat oxide superconductors A and B 4) Preparation of metal electrodes and drift suppressing members 5) Preparation of oxide superconductors A and B Installation on metal electrode 6) Deaeration treatment of joining metal 7) Installation of covering member is performed in the same manner as in Example 1, and current lead A using oxide superconductor A, current using oxide superconductor B Lead B was obtained.
8) Evaluation of characteristics of current leads A and B The electrical characteristics of the obtained current leads A and B were measured in the same manner as in Example 1, and the following results were obtained.
First, when the contact resistance values of the junctions between the metal electrode and the oxide superconductor at both ends of the current lead A were calculated, one was 0.28 μΩ and the other was very low, 0.29 μΩ. Similarly, at the junction portion of the current lead B, it was found that one is 0.30 μΩ and the other is very low, 0.29 μΩ.

さらに当該電流リードA、Bを4.2Kまで冷却して、同様に金属電極と酸化物超電導体との間の接触抵抗値を算定したところ、A、B両方の両側の接触抵抗値とも0.05μΩと非常に低い値であることが判明した。
また、この電流リード試料の低温側を4.2K、高温側を77Kに冷却した際の、低温側への伝熱による熱侵入量はA、B共に約0.15Wであった。
一方、当該電流リード試料の77Kにおける臨界電流値は、0.5Tの磁場中で、Aは1300A、Bは1500Aであった。
以上のことから、当該電流リード試料において、金属電極の一方を高温側(77K)、他方を低温側(4.2K)として0.5Tの磁場中で1000Aを通電した場合、低温側での熱発生量は、トータルで0.2Wと非常に低い値であることが判明した。
最後に、当該電流リードA、Bの両側の接合部分を切断し、接合部分に設置された接合用金属中の空孔の体積が、接合部分の容積の何%を占めているかを各々測定した。その結果、電流リードAの一方では0.06%、他方では0.07%、電流リードBの一方では0.07%、他方では0.08%を占めていることが判明した。
Further, the current leads A and B were cooled to 4.2 K, and the contact resistance value between the metal electrode and the oxide superconductor was calculated in the same manner. It was found to be a very low value of 05 μΩ.
Further, when the current lead sample was cooled to 4.2 K on the low temperature side and 77 K on the high temperature side, the heat penetration amount due to heat transfer to the low temperature side was about 0.15 W for both A and B.
On the other hand, the critical current value at 77 K of the current lead sample was 1300 A for A and 1500 A for B in a magnetic field of 0.5 T.
From the above, in the current lead sample, when one of the metal electrodes is on the high temperature side (77K) and the other is the low temperature side (4.2K) and 1000 A is energized in a magnetic field of 0.5 T, the heat on the low temperature side The amount of generation was found to be a very low value of 0.2 W in total.
Finally, the joint portions on both sides of the current leads A and B were cut, and each percentage of the volume of the joint portion measured by the volume of the holes in the joining metal installed in the joint portions was measured. . As a result, it was found that one of the current leads A occupies 0.06%, the other 0.07%, one of the current leads B 0.07%, and the other 0.08%.

(実施例4)
実施例1において、6)接合用金属の脱気処理の温度を160℃とした以外は、実施例1と同様にして酸化物超電導体電流リード試料を製造した。
実施例1と同様に、当該電流リード試料の両側にある、金属電極と酸化物超電導体との接合部分の接触抵抗値を算定したところ、一方が0.3μΩ、他方が0.27μΩと非常に低い値であることが判明した。
さらに当該電流リード試料を4.2Kまで冷却して、同様に金属電極と酸化物超電導体との間の接触抵抗値を算定したところ、両側とも0.05μΩと非常に低い値であることが判明した。
一方、当該電流リード試料の77K、0.5T磁場中における臨界電流値および侵入熱は実施例1とほぼ同程度であった。
Example 4
In Example 1, 6) An oxide superconductor current lead sample was manufactured in the same manner as in Example 1 except that the temperature of the degassing treatment of the bonding metal was set to 160 ° C.
As in Example 1, when the contact resistance values of the joints between the metal electrode and the oxide superconductor on both sides of the current lead sample were calculated, one was 0.3 μΩ and the other was very much 0.27 μΩ. It was found to be a low value.
Further, the current lead sample was cooled to 4.2 K, and the contact resistance value between the metal electrode and the oxide superconductor was calculated in the same manner. As a result, it was found that both sides were very low, 0.05 μΩ. did.
On the other hand, the critical current value and penetration heat in the 77K, 0.5T magnetic field of the current lead sample were almost the same as those in Example 1.

以上のことから、当該電流リード試料において、金属電極の一方を高温側(77K)、他方を低温側(4.2K)として0.5Tの磁場中で1000Aを通電した場合、低温側での熱発生量は、トータルで約0.38Wと非常に低い値であることが判明した。
最後に、当該電流リード試料の両側の接合部分を切断し、接合部分に設置された接合用金属中の空孔の体積が、接合部分の容積の何%を占めているかを各々測定した。その結果、一方は、接合部分の容積の5%、他方は4%を占めていることが判明した。
From the above, in the current lead sample, when one of the metal electrodes is on the high temperature side (77K) and the other is the low temperature side (4.2K) and 1000 A is energized in a magnetic field of 0.5 T, the heat on the low temperature side The generated amount was found to be a very low value of about 0.38 W in total.
Finally, the joint portions on both sides of the current lead sample were cut, and the percentage of the volume of the joints in the bonding metal placed in the joint portion was measured. As a result, it was found that one accounted for 5% of the volume of the joint and the other accounted for 4%.

(比較例1)
実施例2と同様であるが、「6)接合用金属の脱気処理」の工程を行わずに、超音波ハンダ小手の設定温度を160℃および180℃に設定し、各々電流リードを製造し、「8)電流リードの特性評価」を行った。
まず、160℃設定で接合した試料について、実施例1と同様に、当該電流リード試料の両側にある、金属電極と酸化物超電導体との接合部分の接触抵抗値を算定したところ、一方が0.8μΩ、他方が0.9μΩと、絶対値が大きく、接触抵抗値のバラツキも大きいことが判明した。
180℃設定で接合した試料では、接合用金属の流れ出しが大きかったが、接触抵抗値を算定したところ、一方が1.2μΩ、他方が1.1μΩと、絶対値が大きく、接触抵抗値のバラツキも大きいことが判明した。
(Comparative Example 1)
As in Example 2, but without performing the step of “6) Deaeration treatment of metal for joining”, the set temperatures of ultrasonic soldering hands are set to 160 ° C. and 180 ° C., and current leads are manufactured respectively. And “8) Characteristic evaluation of current leads”.
First, with respect to a sample joined at a setting of 160 ° C., the contact resistance value of the joined portion between the metal electrode and the oxide superconductor on both sides of the current lead sample was calculated in the same manner as in Example 1. It was found that the absolute value was large, 0.8 μΩ, and the other 0.9 μΩ, and the variation in contact resistance value was large.
In the sample joined at 180 ° C., the joining metal flowed out greatly, but when the contact resistance value was calculated, one was 1.2 μΩ, the other was 1.1 μΩ, the absolute value was large, and the contact resistance value varied. Was also found to be large.

最後に、当該電流リード試料の両側の接合部分を切断し、接合部分に設置された接合用金属中の空孔の体積が、接合部分の容積の何%を占めているかを各々測定した。その結果、160℃設定で接合した試料の、一方は、接合部分の容積の30%、他方は35%を占めていることが判明し、180℃設定で接合した試料は接合部分の一方は、接合部分の容積の50%、他方は45%を占めていることが判明した。   Finally, the joint portions on both sides of the current lead sample were cut, and the percentage of the volume of the joints in the bonding metal placed in the joint portion was measured. As a result, it was found that one of the samples bonded at 160 ° C. accounted for 30% of the volume of the bonded portion, and the other accounted for 35%. It was found that 50% of the volume of the joint portion and the other accounted for 45%.

以上、説明したように、酸化物超電導体の両側に金属電極が設けられ、且つ前記酸化物超電導体と前記金属電極とが形成する接合部分に接合用金属が設けられ、前記接合用金属によって、前記酸化物超電導体と前記金属電極とが接合されている酸化物超電導電流リードであって、
前記接合部分に設けられた前記接合用金属中の空孔の体積が、前記接合部分の容積の5%以下の酸化物超電導電流リードであるが、当該酸化物超電導電流リードは、酸化物超電導体と金属電極との間に十分な電流の流路が確保される結果、用いられる酸化物超電導体が、全体に亘って実質的に同じ断面積であっても、所定の条件下において、低い接触抵抗値と、低温側への低い熱侵入とを実現した。
As described above, metal electrodes are provided on both sides of the oxide superconductor, and a bonding metal is provided at a bonding portion formed by the oxide superconductor and the metal electrode. An oxide superconducting current lead in which the oxide superconductor and the metal electrode are joined,
The oxide superconducting current lead has a volume of pores in the joining metal provided in the joining portion of 5% or less of the volume of the joining portion. The oxide superconducting current lead is an oxide superconductor. As a result of ensuring a sufficient current flow path between the metal electrode and the metal electrode, even if the oxide superconductor used has substantially the same cross-sectional area throughout, low contact under certain conditions Achieved resistance and low heat penetration to the low temperature side.

尚、上述した実施例1〜4および比較例1の、処理条件および評価結果の一覧表を図7に示した。図7において、電流リード試料の両側にある金属電極と酸化物超電導体との接合部分の、一方を「右」、他方を「左」と便宜的に記載した。   A list of processing conditions and evaluation results of Examples 1 to 4 and Comparative Example 1 described above is shown in FIG. In FIG. 7, for convenience, one of the joining portions of the metal electrode and the oxide superconductor on both sides of the current lead sample is described as “right” and the other as “left”.

本発明に係る電流リードの金属電極への超電導体の設置例を示す斜視図である。It is a perspective view which shows the example of installation of the superconductor to the metal electrode of the current lead which concerns on this invention. 図1に示す金属電極へ封止部材を設けた場合の斜視図である。It is a perspective view at the time of providing a sealing member in the metal electrode shown in FIG. 本発明に係る酸化物超電導電流リードの特性測定の概念図である。It is a conceptual diagram of the characteristic measurement of the oxide superconducting current lead according to the present invention. 酸化物超電導体と金属電極との接合体を金型中へ納めた際の斜視図である。It is a perspective view at the time of putting the conjugate | zygote of an oxide superconductor and a metal electrode in a metal mold | die. 従来の技術に係る、酸化物超電導体と金属電極との接合部分の横断面図である。It is a cross-sectional view of the junction part of an oxide superconductor and a metal electrode based on a prior art. 前駆的な発明に係る酸化物超電導電流リードの斜視図である。1 is a perspective view of an oxide superconducting current lead according to a precursor invention. FIG. 実施例1〜4および比較例の、処理条件および評価結果の一覧表である。It is a table | surface of the processing conditions and evaluation result of Examples 1-4 and a comparative example.

符号の説明Explanation of symbols

1.(酸化物超電導体)電流リード
10.金属電極
31.(酸化物超電導体)設置溝
41.(酸化物超電導体設置溝の外縁)封止部材
42.脱気部
50.偏流抑制部材
60.酸化物超電導体
61.銀コート
70.被覆部材
1. (Oxide superconductor) Current lead 10. Metal electrode 31. (Oxide superconductor) installation groove 41. (Outer edge of oxide superconductor installation groove) Sealing member 42. Deaeration unit 50. Diffusion suppression member 60. Oxide superconductor 61. Silver coat 70. Covering member

Claims (6)

酸化物超電導体の両側に金属電極が設けられ、且つ前記酸化物超電導体と前記金属電極とが形成する接合部分に接合用金属が設けられ、前記接合用金属によって、前記酸化物超電導体と前記金属電極とが接合されている酸化物超電導電流リードであって、
前記接合部分に設けられた前記接合用金属中の空孔の体積が、前記接合部分の容積の5%以下であることを特徴とする酸化物超電導電流リード。
Metal electrodes are provided on both sides of the oxide superconductor, and a joining metal is provided at a joint portion formed by the oxide superconductor and the metal electrode. The joining metal forms the oxide superconductor and the oxide superconductor. An oxide superconducting current lead joined to a metal electrode,
The oxide superconducting current lead, wherein a volume of pores in the bonding metal provided in the bonding portion is 5% or less of a volume of the bonding portion.
請求項1に記載の酸化物超電導電流リードであって、
前記接合用金属により接合される前記酸化物超電導体の表面に、銀のコートが設けられていることを特徴とする酸化物超電導電流リード。
The oxide superconducting current lead of claim 1,
An oxide superconducting current lead, wherein a silver coat is provided on a surface of the oxide superconductor joined by the joining metal.
請求項1または2に記載の酸化物超電導電流リードであって、
前記接合用金属とは、Cd、Zn、Sbのいずれか一種以上と、Pb、Sn、Inのいずれか一種以上とを含むハンダであることを特徴とする酸化物超電導電流リード。
The oxide superconducting current lead according to claim 1 or 2,
The oxide superconducting current lead is characterized in that the bonding metal is solder containing at least one of Cd, Zn, and Sb and at least one of Pb, Sn, and In.
酸化物超電導体の両側に金属電極が設けられ、且つ前記酸化物超電導体と前記金属電極とが形成する接合部分に接合用金属が設けられ、前記接合用金属によって、前記酸化物超電導体と前記金属電極とが接合されている酸化物超電導電流リードの製造方法であって、
前記接合用金属によって、前記酸化物超電導体と前記金属電極とを接合する際、前記接合部分を、前記接合用金属の融点以上に加熱した後、減圧して、前記接合用金属を脱気させる工程を有することを特徴とする酸化物超電導電流リードの製造方法。
Metal electrodes are provided on both sides of the oxide superconductor, and a joining metal is provided at a joint portion formed by the oxide superconductor and the metal electrode. The joining metal forms the oxide superconductor and the oxide superconductor. A method of manufacturing an oxide superconducting current lead in which a metal electrode is joined,
When joining the oxide superconductor and the metal electrode with the joining metal, the joining portion is heated to a temperature equal to or higher than the melting point of the joining metal and then depressurized to deaerate the joining metal. A method for producing an oxide superconducting current lead, comprising a step.
請求項4に記載の酸化物超電導電流リードの製造方法であって、
前記接合用金属の加熱および脱気の際、接合用金属が、前記接合部分より流れ出すのを抑制する封止部材を設けることを特徴とする酸化物超電導電流リードの製造方法。
A method of manufacturing an oxide superconducting current lead according to claim 4,
A method of manufacturing an oxide superconducting current lead, comprising: a sealing member that suppresses the joining metal from flowing out of the joining portion during heating and degassing of the joining metal.
請求項1から3のいずれかに記載の酸化物超電導電流リードを用いたことを特徴とする超電導システム。   A superconducting system using the oxide superconducting current lead according to any one of claims 1 to 3.
JP2004028451A 2003-02-06 2004-02-04 Oxide superconducting current lead, manufacturing method thereof, and superconducting system Expired - Fee Related JP4857435B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2004028451A JP4857435B2 (en) 2003-02-06 2004-02-04 Oxide superconducting current lead, manufacturing method thereof, and superconducting system
US10/771,381 US7394024B2 (en) 2003-02-06 2004-02-05 Oxide superconductor current lead and method of manufacturing the same, and superconducting system
EP07015642A EP1860736A3 (en) 2003-02-06 2004-02-06 Oxide superconductor current lead and method of manufacturing the same, and superconducting system
EP04002691A EP1445834B1 (en) 2003-02-06 2004-02-06 Oxide superconductor current lead and method of manufacturing the same, and superconducting system
DE602004014046T DE602004014046D1 (en) 2003-02-06 2004-02-06 Oxide superconductor fitting, manufacturing process and superconductor device

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2003030057 2003-02-06
JP2003030057 2003-02-06
JP2003070507 2003-03-14
JP2003070507 2003-03-14
JP2004028451A JP4857435B2 (en) 2003-02-06 2004-02-04 Oxide superconducting current lead, manufacturing method thereof, and superconducting system

Publications (2)

Publication Number Publication Date
JP2004304163A JP2004304163A (en) 2004-10-28
JP4857435B2 true JP4857435B2 (en) 2012-01-18

Family

ID=33424748

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004028451A Expired - Fee Related JP4857435B2 (en) 2003-02-06 2004-02-04 Oxide superconducting current lead, manufacturing method thereof, and superconducting system

Country Status (1)

Country Link
JP (1) JP4857435B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4728847B2 (en) * 2006-03-14 2011-07-20 新日本製鐵株式会社 Oxide superconductor conducting element
JP5037146B2 (en) * 2007-01-16 2012-09-26 新日本製鐵株式会社 Oxide superconductor energization element and manufacturing method thereof

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05279140A (en) * 1992-03-31 1993-10-26 Chodendo Hatsuden Kanren Kiki Zairyo Gijutsu Kenkyu Kumiai Method for joining oxide superconductor
JPH0997637A (en) * 1995-09-29 1997-04-08 Chodendo Hatsuden Kanren Kiki Zairyo Gijutsu Kenkyu Kumiai Joint part of oxide superconductor and metal terminal, and its forming method
GB9819545D0 (en) * 1998-09-09 1998-10-28 Bicc Plc Superconducting leads
JP3717683B2 (en) * 1998-10-30 2005-11-16 株式会社フジクラ Connection structure and connection method of oxide superconducting conductor

Also Published As

Publication number Publication date
JP2004304163A (en) 2004-10-28

Similar Documents

Publication Publication Date Title
JP4568894B2 (en) Composite conductor and superconducting equipment system
JP4985129B2 (en) Bonded body, electronic module, and bonding method
US20080272180A1 (en) Method of manufacturing heat spreader module
US5998043A (en) Member for semiconductor device using an aluminum nitride substrate material, and method of manufacturing the same
JP5568361B2 (en) Superconducting wire electrode joint structure, superconducting wire, and superconducting coil
KR20110135855A (en) Method for fabricating thermoelectric device
EP3050169B1 (en) Method for forming a superconducting connection structure and superconducting connection structure
EP2724392B1 (en) Sealing assembly of battery, method of fabricating the same and lithium battery
US20100041560A1 (en) Metal-ceramic high temperature superconductor composite and process for bonding a ceramic high temperature superconductor to a metal
US6783867B2 (en) Member for semiconductor device using an aluminum nitride substrate material, and method of manufacturing the same
JP4857435B2 (en) Oxide superconducting current lead, manufacturing method thereof, and superconducting system
JP2012256744A (en) Superconductive coil
US10804624B2 (en) Joint portion of superconducting wires and method of joining superconducting wires
EP1445834B1 (en) Oxide superconductor current lead and method of manufacturing the same, and superconducting system
JP4857436B2 (en) Oxide superconducting current lead, superconducting system, and method for connecting metal conductor to metal superconducting conductor
JPH06321649A (en) Metallized carbon member, its production and semiconductor equipment using the same
JP6268648B2 (en) High temperature superconducting current lead
KR20140051142A (en) Joints with very low resistance between superconducting wires and methods for making such joints
JP2004235367A (en) Thermoelectric module
JP5697162B2 (en) Current lead
JPH08186195A (en) Package for electronic part
JP5640022B2 (en) Superconducting wire and external terminal joining method, and superconducting wire external terminal joining structure
EP3358581B1 (en) Oxide superconducting bulk magnet
JP2022042748A (en) COMPOSITE Cu MATERIAL, ELECTRONIC COMPONENT OR MOUNTING BOARD INCLUDING THE SAME, ELECTRONIC COMPONENT MOUNTING BOARD, MANUFACTURING METHOD OF COMPOSITE Cu MATERIAL, AND MANUFACTURING METHOD OF BONDED BODY
JPH0782927B2 (en) Insulation anchor for low temperature equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070109

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110111

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111004

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20111011

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111011

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20111011

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141111

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees