JP4856465B2 - Optical semiconductor element mounting substrate and optical transmission module - Google Patents

Optical semiconductor element mounting substrate and optical transmission module Download PDF

Info

Publication number
JP4856465B2
JP4856465B2 JP2006115147A JP2006115147A JP4856465B2 JP 4856465 B2 JP4856465 B2 JP 4856465B2 JP 2006115147 A JP2006115147 A JP 2006115147A JP 2006115147 A JP2006115147 A JP 2006115147A JP 4856465 B2 JP4856465 B2 JP 4856465B2
Authority
JP
Japan
Prior art keywords
electrode
optical
bonding wire
transmission line
semiconductor chip
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006115147A
Other languages
Japanese (ja)
Other versions
JP2007286454A (en
Inventor
修 加賀谷
Original Assignee
日本オプネクスト株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2006115147A priority Critical patent/JP4856465B2/en
Application filed by 日本オプネクスト株式会社 filed Critical 日本オプネクスト株式会社
Priority to EP07000378A priority patent/EP1848075B1/en
Priority to EP08004913A priority patent/EP2009751B1/en
Priority to DE602007010752T priority patent/DE602007010752D1/en
Priority to DE602007000701T priority patent/DE602007000701D1/en
Priority to US11/622,511 priority patent/US7400791B2/en
Priority to CNB2007100063265A priority patent/CN100499115C/en
Publication of JP2007286454A publication Critical patent/JP2007286454A/en
Application granted granted Critical
Publication of JP4856465B2 publication Critical patent/JP4856465B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/023Mount members, e.g. sub-mount members
    • H01S5/02325Mechanically integrated components on mount members or optical micro-benches
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/4501Shape
    • H01L2224/45012Cross-sectional shape
    • H01L2224/45014Ribbon connectors, e.g. rectangular cross-section
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48135Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/48137Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being arranged next to each other, e.g. on a common substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/4911Disposition the connectors being bonded to at least one common bonding area, e.g. daisy chain
    • H01L2224/49111Disposition the connectors being bonded to at least one common bonding area, e.g. daisy chain the connectors connecting two common bonding areas, e.g. Litz or braid wires
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/4912Layout
    • H01L2224/49175Parallel arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L24/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L24/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00014Technical content checked by a classifier the subject-matter covered by the group, the symbol of which is combined with the symbol of this group, being disclosed without further technical details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/12Passive devices, e.g. 2 terminal devices
    • H01L2924/1204Optical Diode
    • H01L2924/12042LASER
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/301Electrical effects
    • H01L2924/30107Inductance
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/301Electrical effects
    • H01L2924/3011Impedance
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/0206Substrates, e.g. growth, shape, material, removal or bonding
    • H01S5/0208Semi-insulating substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/02208Mountings; Housings characterised by the shape of the housings
    • H01S5/02212Can-type, e.g. TO-CAN housings with emission along or parallel to symmetry axis
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/0233Mounting configuration of laser chips
    • H01S5/02345Wire-bonding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/026Monolithically integrated components, e.g. waveguides, monitoring photo-detectors, drivers
    • H01S5/0265Intensity modulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/04Processes or apparatus for excitation, e.g. pumping, e.g. by electron beams
    • H01S5/042Electrical excitation ; Circuits therefor
    • H01S5/0421Electrical excitation ; Circuits therefor characterised by the semiconducting contacting layers
    • H01S5/0422Electrical excitation ; Circuits therefor characterised by the semiconducting contacting layers with n- and p-contacts on the same side of the active layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/04Processes or apparatus for excitation, e.g. pumping, e.g. by electron beams
    • H01S5/042Electrical excitation ; Circuits therefor
    • H01S5/0427Electrical excitation ; Circuits therefor for applying modulation to the laser
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/062Arrangements for controlling the laser output parameters, e.g. by operating on the active medium by varying the potential of the electrodes
    • H01S5/06226Modulation at ultra-high frequencies
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/068Stabilisation of laser output parameters
    • H01S5/0683Stabilisation of laser output parameters by monitoring the optical output parameters

Description

本発明は光通信用の光送信モジュールにかかり、特に高速伝送レート(例えば、10Gbit/s)を有する光トランシーバの送信部に用いられる光送信モジュールに関する。   The present invention relates to an optical transmission module for optical communication, and more particularly to an optical transmission module used in a transmission unit of an optical transceiver having a high transmission rate (for example, 10 Gbit / s).

半導体レーザを用いた光送信モジュールは光ファイバー伝送用トランシーバのキーデバイスの一つである。光送信モジュールは近年のブロードバンドネットワークの普及とともに高速化がはかられ、ビットレートが10Gbit/sまでのものが広く用いられるようになっている。上記用途に適した光送信モジュールとしては小型、低コストであるとともに、良好な送信波形品質を実現することが強く要求されている。   An optical transmission module using a semiconductor laser is one of key devices of an optical fiber transmission transceiver. Optical transmission modules have become faster with the spread of broadband networks in recent years, and those with bit rates up to 10 Gbit / s are widely used. As an optical transmission module suitable for the above-mentioned use, it is strongly required to realize a small transmission cost and a good transmission waveform quality.

従来、高周波特性の改善を目的とした光送信モジュールとして、特許文献1〜2に示すものが開示されている。特許文献1および特許文献2には、電界吸収型光変調器集積レーザダイオードの変調器と信号線とを接続する第一のボンディングワイヤと、変調器と終端抵抗とを接続する第二のボンディングワイヤとのインダクタンスの関係を最適化して、高周波入力側の特性インピーダンス50オームに対する小信号反射係数(S11)の低減と、光変調器の小信号通過特性(S21)における3dB帯域の確保の両立を図った光送信モジュールが記載されている。   Conventionally, what is shown to patent documents 1-2 is disclosed as an optical transmission module aiming at the improvement of a high frequency characteristic. Patent Document 1 and Patent Document 2 include a first bonding wire that connects a modulator and a signal line of an electroabsorption optical modulator integrated laser diode, and a second bonding wire that connects the modulator and a termination resistor. By optimizing the inductance relationship with the high-frequency input side, both the reduction of the small signal reflection coefficient (S11) for the characteristic impedance of 50 ohms on the high frequency input side and the securing of the 3dB band in the small signal pass characteristic (S21) of the optical modulator are achieved. An optical transmission module is described.

これらの文献に記載されているように、従来の光送信モジュールでは終端抵抗の一端はボンディングワイヤにより変調器に接続するが、他の一端は変調器には接続せずにグラウンドビアなどを介して接地電極に接続されていた。また変調器集積レーザダイオードにはチップ裏面に電界吸収型変調器のカソード電極あるいはアノード電極が設けられていた。   As described in these documents, in the conventional optical transmission module, one end of the terminating resistor is connected to the modulator by a bonding wire, but the other end is not connected to the modulator but via a ground via or the like. It was connected to the ground electrode. The modulator integrated laser diode is provided with a cathode electrode or an anode electrode of an electroabsorption modulator on the back surface of the chip.

一方、特許文献3には、他のデバイス構造の電界吸収型光変調器集積レーザダイオードが記載されており、半絶縁性半導体基板上に光変調器素子とレーザダイオード素子を設け、各デバイスのアノードとカソードを電気的に分離することにより、単一電源による駆動を可能にしている。   On the other hand, Patent Document 3 describes an electroabsorption type optical modulator integrated laser diode having another device structure, in which an optical modulator element and a laser diode element are provided on a semi-insulating semiconductor substrate, and an anode of each device is provided. By electrically separating the cathode and the cathode, it is possible to drive with a single power source.

特開2001-257412号公報JP 2001-257412 特開2001-308130号公報JP 2001-308130 A 特開2005-353910号公報JP 2005-353910 A

10Gbit/s光ファイバー伝送用トランシーバの市場は、従来のSONET/SDH方式からEthernet(Ethernetは登録商標)方式へと拡大している。トランシーバへの供給電源として、前者では正負の2電源が外部から供給可能であったのに対し、後者では正電源のみの単一電源供給方式への変更が強く求められている。   The market for 10 Gbit / s transceivers for optical fiber transmission is expanding from the conventional SONET / SDH system to the Ethernet (Ethernet is a registered trademark) system. As the power supply to the transceiver, the former can supply two positive and negative power supplies from the outside, while the latter strongly demands a change to a single power supply system with only a positive power supply.

従来の正負2電源で駆動する電界吸収型光変調器集積レーザダイオードをトランシーバの送信部に用いた場合、上記の単一電源供給方式へ対応するためにはトランシーバ内部で別途、負電源を確保しなくてはならず、例えば、トランシーバ内部に新たにDC-DCコンバータ等を搭載する必要がある。このため、搭載部品数およびその搭載面積が増加し、トランシーバの小型化と低コスト化において極めて不利である。   When the conventional electroabsorption optical modulator integrated laser diode driven by two positive and negative power supplies is used for the transmitter part of the transceiver, a separate negative power supply must be secured inside the transceiver in order to support the above single power supply system. For example, it is necessary to install a DC-DC converter or the like inside the transceiver. For this reason, the number of mounted components and the mounting area thereof are increased, which is extremely disadvantageous in reducing the size and cost of the transceiver.

このような問題を解決する一手段として、上記特許文献3に示されるような半絶縁性半導体基板上に光変調器素子とレーザダイオード素子を集積化した単一電源による駆動が可能な光変調器集積レーザダイオードを光送信モジュールに適用することが挙げられる。上記特許文献1および特許文献2に開示されているような終端抵抗の一端を接地電極に接続する回路形式を採用した場合、上記特許文献3に開示されている光変調器集積レーザダイオードチップを用いるためには、チップ表面に設けた光変調器素子のカソード端子あるいはアノード端子をボンディングワイヤにて接地電極に接続する必要がある。   As one means for solving such a problem, an optical modulator capable of being driven by a single power source in which an optical modulator element and a laser diode element are integrated on a semi-insulating semiconductor substrate as shown in Patent Document 3 above. Application of an integrated laser diode to an optical transmission module can be mentioned. When the circuit form in which one end of the terminating resistor is connected to the ground electrode as disclosed in Patent Document 1 and Patent Document 2, the optical modulator integrated laser diode chip disclosed in Patent Document 3 is used. For this purpose, it is necessary to connect the cathode terminal or anode terminal of the light modulator element provided on the chip surface to the ground electrode with a bonding wire.

しかし、この回路形式では追加したボンディングワイヤの微小なインダクタンスが光変調器の小信号通過特性(S21)において不要な利得(ピーキング)を生じさせることとなる。その結果、接地電極へのボンディングワイヤ長を実装上可能な範囲で短縮して特性の改善を図ったとしても、良好な出力波形品質を得ることが困難となる。   However, in this circuit format, the minute inductance of the added bonding wire causes an unnecessary gain (peaking) in the small signal passing characteristic (S21) of the optical modulator. As a result, even if the length of the bonding wire to the ground electrode is shortened within a range that can be mounted, it is difficult to obtain good output waveform quality even if the characteristics are improved.

本発明の目的は、単一電源駆動方式の光送信モジュールにおいて光変調器の出力波形を良好にするため、小信号通過特性(S21)におけるピーキングの抑圧と小信号反射係数(S11)の低減とを両立する構造を提案し、高速信号(例えば10Gbit/s)用光伝送トランシーバに最適な光送信モジュールを提供することにある。   An object of the present invention is to suppress peaking in the small signal passing characteristic (S21) and reduce the small signal reflection coefficient (S11) in order to improve the output waveform of the optical modulator in an optical transmission module driven by a single power source. To provide an optical transmission module optimal for an optical transmission transceiver for high-speed signals (for example, 10 Gbit / s).

上記目的は基板表面上にカソード電極が設けられた光変調器を有する光変調器集積レーザ素子と接地電極と前記光変調器へ電気信号を入力する入力伝送線路と入力された電気信号に対する終端抵抗とを基板上に搭載した光送信モジュールにおいて、前記終端抵抗の接地側の電極と、前記接地電極と接続された前記光変調器のカソード電極もしくはアノード電極とをボンディングワイヤにて接続することによって達成できる。   The object is to provide an optical modulator integrated laser device having an optical modulator provided with a cathode electrode on the substrate surface, a ground electrode, an input transmission line for inputting an electric signal to the optical modulator, and a terminating resistor for the input electric signal. Is achieved by connecting a grounding electrode of the terminating resistor and a cathode electrode or an anode electrode of the optical modulator connected to the grounding electrode with a bonding wire. it can.

なお、光変調器のアノード電極と入力伝送路とのボンディングワイヤによる接続部と、光変調器部のカソード電極と接地電極とのボンディングワイヤによる接続部とは、光変調器集積レーザ素子を挟んで互いに反対側に配置されることが望ましい。   It should be noted that the connection portion by the bonding wire between the anode electrode of the optical modulator and the input transmission line and the connection portion by the bonding wire between the cathode electrode and the ground electrode of the optical modulator portion sandwich the optical modulator integrated laser element. It is desirable to arrange them on opposite sides.

さらに、該光変調器が前記接地電極もしくは入力伝送線路のパターン電極の上になるように配置されていることが望ましい。   Further, it is desirable that the optical modulator is disposed on the ground electrode or the pattern electrode of the input transmission line.

本発明によれば、単一電源駆動方式の光送信モジュールにおいて光変調器の出力波形を良好にするための小信号通過特性(S21)におけるピーキングの抑圧と小信号反射係数(S11)の低減とを両立できる構造を得ることができ、高速信号(例えば10Gbit/s)用光伝送トランシーバに最適な光送信モジュールを実現することができる。   According to the present invention, suppression of peaking in the small signal pass characteristic (S21) and reduction of the small signal reflection coefficient (S11) for improving the output waveform of the optical modulator in the single power source drive type optical transmission module can be achieved. Can be obtained, and an optical transmission module optimal for an optical transmission transceiver for high-speed signals (for example, 10 Gbit / s) can be realized.

以下、図面を用いて本発明を詳細に説明する。なお、ここでは高速変調信号として10Gbit/sの伝送レートを有する信号を用いて説明するが、後述するように、この速度の信号に限定されるものではない。   Hereinafter, the present invention will be described in detail with reference to the drawings. In addition, although it demonstrates using the signal which has a transmission rate of 10 Gbit / s as a high-speed modulation signal here, it is not limited to the signal of this speed so that it may mention later.

本発明の第1の実施例を図1〜図3および図9〜図13により説明する。
図1は本実施例における光送信モジュールの主要部分を示す構造図、図2は光送信モジュールの主要回路図、図3は光半導体素子を搭載するキャリア基板部分の詳細図、図9は周波数と光送信モジュールの電気-光小信号通過特性S21との関係を示す図、図10は光送信モジュールの光出力波形、図11〜図13はそれぞれ光変調器素子へ接続するボンディングワイヤのインダクタンスを変化させた時の過剰利得、3dB帯域、入力反射特性S11を示すグラフである。
A first embodiment of the present invention will be described with reference to FIGS. 1 to 3 and FIGS. 9 to 13.
1 is a structural diagram showing the main part of the optical transmission module in this embodiment, FIG. 2 is a main circuit diagram of the optical transmission module, FIG. 3 is a detailed view of a carrier substrate portion on which an optical semiconductor element is mounted, and FIG. FIG. 10 is a graph showing the relationship between the electrical transmission optical signal small signal transmission characteristics S21 of the optical transmission module, FIG. 10 shows the optical output waveform of the optical transmission module, and FIGS. 11 to 13 show the inductances of the bonding wires connected to the optical modulator elements, respectively. 6 is a graph showing excess gain, 3 dB bandwidth, and input reflection characteristic S11 when the power is applied.

まず図1を用いて光送信モジュールの構成を説明する。光送信モジュールは筐体としてCAN型(円筒の片側から端子が出た構造)のパッケージ筐体を用い、1がその金属ステム、2が主要部搭載用の金属台座である。金属ステム1には円筒状の貫通穴(貫通穴下部10および貫通穴上部12、貫通穴下部9および貫通穴上部11)を通して円柱状のリードピン3、4を設け、封止ガラス5により固定する。金属台座2上には、伝送線路8が設けられた中継基板7と、キャリア基板23とを搭載する。   First, the configuration of the optical transmission module will be described with reference to FIG. The optical transmission module uses a CAN-type package housing (structure with terminals protruding from one side of the cylinder) as the housing, 1 is the metal stem, and 2 is the metal base for mounting the main part. The metal stem 1 is provided with cylindrical lead pins 3 and 4 through cylindrical through holes (through hole lower part 10 and through hole upper part 12, through hole lower part 9 and through hole upper part 11), and is fixed by sealing glass 5. On the metal pedestal 2, the relay substrate 7 provided with the transmission line 8 and the carrier substrate 23 are mounted.

キャリア基板23の表面上には高周波信号の終端用の抵抗素子24、接地電極25、入力伝送線路27の各パターンを設け、接地電極25はビアホール26によりキャリア基板23の裏面電極に接続する。キャリア基板23には半導体チップ22およびバイパスコンデンサ28を搭載する。半導体チップ22は、半絶縁性半導体ウエハの表面に半導体レーザダイオード素子20と光変調器素子21とを形成した光変調器集積レーザチップである。   On the surface of the carrier substrate 23, there are provided a pattern of a resistive element 24 for terminating a high frequency signal, a ground electrode 25, and an input transmission line 27. The ground electrode 25 is connected to the back electrode of the carrier substrate 23 through a via hole 26. A semiconductor substrate 22 and a bypass capacitor 28 are mounted on the carrier substrate 23. The semiconductor chip 22 is an optical modulator integrated laser chip in which a semiconductor laser diode element 20 and an optical modulator element 21 are formed on the surface of a semi-insulating semiconductor wafer.

半導体レーザダイオード素子20から出力される連続レーザ光は、光変調器素子21を通過した後に結合レンズ(図中省略)を介して光ファイバーへ出射される。光変調器素子21は外部の駆動用ICからの概ね10Gbit/sのビットレートを持つ電気変調信号によって、連続的に発光するレーザ光を光変調信号に変調する。また金属ステム1上にはモニタ用フォトダイオード6を設け、半導体レーザダイオード素子20の後方出力光を受光できる位置に固定する。   The continuous laser light output from the semiconductor laser diode element 20 passes through the optical modulator element 21, and then is emitted to the optical fiber via a coupling lens (not shown). The optical modulator element 21 modulates continuously emitted laser light into an optical modulation signal by an electric modulation signal having a bit rate of approximately 10 Gbit / s from an external driving IC. A monitoring photodiode 6 is provided on the metal stem 1 and is fixed at a position where the output light from the semiconductor laser diode element 20 can be received.

第一のボンディングワイヤ31は入力伝送線路27のパターン電極と光変調器素子21のアノード電極とを接続し、第二のボンディングワイヤ32は光変調器素子21のアノード電極と抵抗素子24の一端とを接続する。第三のボンディングワイヤ33は抵抗素子24の他の一端と光変調器素子21のカソード電極とを接続し、第四のボンディングワイヤ34は光変調器素子21のカソード電極と接地電極25とを接続する。またキャリア基板23上の入力伝送線路27と中継基板7上の伝送線路8とは、複数のボンディングワイヤ(あるいはリボンワイヤ)38によって、より低いインダクタンスとなるように接続する。伝送線路8とリードピン3とはAuSn合金等により接合する。これらによりリードピン3から光変調器素子21への電気信号入力経路が構成される。   The first bonding wire 31 connects the pattern electrode of the input transmission line 27 and the anode electrode of the light modulator element 21, and the second bonding wire 32 connects the anode electrode of the light modulator element 21 and one end of the resistance element 24. Connect. The third bonding wire 33 connects the other end of the resistance element 24 and the cathode electrode of the light modulator element 21, and the fourth bonding wire 34 connects the cathode electrode of the light modulator element 21 and the ground electrode 25. To do. Further, the input transmission line 27 on the carrier substrate 23 and the transmission line 8 on the relay substrate 7 are connected by a plurality of bonding wires (or ribbon wires) 38 so as to have a lower inductance. The transmission line 8 and the lead pin 3 are joined by AuSn alloy or the like. Thus, an electric signal input path from the lead pin 3 to the optical modulator element 21 is formed.

半導体レーザダイオード素子20はアノード電極をボンディングワイヤ37を介して接地電極25に接続し、カソード電極をボンディングワイヤ35、36を介してリードピン4に接続する。リードピン4に外部負電源を接続することでレーザダイオード素子20に順方向直流電流が供給される。モニタ用フォトダイオード6の出力は、他のリードピン(図中省略)を通じて外部に出力する。   The semiconductor laser diode element 20 has an anode electrode connected to the ground electrode 25 via a bonding wire 37 and a cathode electrode connected to the lead pin 4 via bonding wires 35 and 36. A forward DC current is supplied to the laser diode element 20 by connecting an external negative power source to the lead pin 4. The output of the monitoring photodiode 6 is output to the outside through another lead pin (not shown).

CAN型のパッケージ筐体としては例えば直径5.6mmのTO-56型の筐体等を用いる。金属ステム1、金属台座2の材料としては安価な鉄を用いると低コスト化に好適である。中継基板7およびキャリア基板23はアルミナ、窒化アルミ等の誘電体材料で構成する。キャリア基板23を熱伝導率の高い窒化アルミとした場合、半導体チップ22から金属台座2に至る熱抵抗を低減し、素子温度上昇を抑えるのに好適である。   As the CAN type package case, for example, a TO-56 type case having a diameter of 5.6 mm is used. As the material of the metal stem 1 and the metal pedestal 2, inexpensive iron is suitable for cost reduction. The relay substrate 7 and the carrier substrate 23 are made of a dielectric material such as alumina or aluminum nitride. When the carrier substrate 23 is made of aluminum nitride having a high thermal conductivity, it is suitable for reducing the thermal resistance from the semiconductor chip 22 to the metal pedestal 2 and suppressing an increase in element temperature.

また、キャリア基板23は窒化アルミ等の誘電体基板と銅タングステンなどの金属板との貼り合わせ基板で構成しても良く、この構成では熱抵抗をさらに低減するのに好適である。抵抗素子24は窒化タンタル膜で構成し、レーザトリミングにより抵抗値を50オームとなるよう調整する。バイパスコンデンサ28としては単層の高誘電体基板で構成した平行平板型チップコンデンサを用いると、小型化に好適である。   The carrier substrate 23 may be formed of a bonded substrate of a dielectric substrate such as aluminum nitride and a metal plate such as copper tungsten, and this configuration is suitable for further reducing the thermal resistance. The resistance element 24 is composed of a tantalum nitride film, and the resistance value is adjusted to 50 ohms by laser trimming. As the bypass capacitor 28, use of a parallel plate type chip capacitor formed of a single-layer high-dielectric substrate is suitable for downsizing.

次に図2を用いて回路構成を説明する。駆動用IC61が出力した電気変調信号は、外部伝送線路60と、貫通穴下部10とリードピン3と封止ガラス5で構成される同軸線路T10と、貫通穴上部12とリードピン3と空気で構成される同軸線路T12と、中継基板7上の伝送線路8と、ボンディングワイヤ38が有するインダクタンスL38とから構成されるキャリア基板23への入力系統を通じてキャリア基板23の入力伝送線路27に入力される。駆動用IC61の出力インピーダンスは50オームとする。   Next, the circuit configuration will be described with reference to FIG. The electrical modulation signal output from the driving IC 61 is composed of the external transmission line 60, the coaxial line T10 composed of the lower through hole 10, the lead pin 3, and the sealing glass 5, the upper through hole 12, the lead pin 3, and the air. The input signal is input to the input transmission line 27 of the carrier substrate 23 through the input system to the carrier substrate 23 composed of the coaxial line T12, the transmission line 8 on the relay substrate 7, and the inductance L38 of the bonding wire 38. The output impedance of the driving IC 61 is 50 ohms.

外部伝送線路60は駆動用IC61を搭載するプリント基板上の伝送線路と該プリント基板とリードピン3を接続するフレキシブル基板上の伝送線路とで構成し、特性インピーダンスは50オームとする。同軸線路T10の特性インピーダンスは30オーム、同軸線路T12と伝送線路8および入力伝送線路27の特性インピーダンスは50オームとする。R24は抵抗素子24が有する抵抗、L31、L32、L33、L34はそれぞれ第一、第二、第三、第四のボンディングワイヤ31、32、33、34が有するインダクタンスである。電気変調信号はこれらの回路素子を介して光変調器素子21のアノード電極とカソード電極間に入力される。C21は光変調器素子21のカソード電極と裏面電極との間に生じる寄生容量を示す。   The external transmission line 60 is composed of a transmission line on a printed board on which the driving IC 61 is mounted and a transmission line on a flexible board that connects the printed board and the lead pin 3, and has a characteristic impedance of 50 ohms. The characteristic impedance of the coaxial line T10 is 30 ohms, and the characteristic impedances of the coaxial line T12, the transmission line 8, and the input transmission line 27 are 50 ohms. R24 is a resistance of the resistance element 24, and L31, L32, L33, and L34 are inductances of the first, second, third, and fourth bonding wires 31, 32, 33, and 34, respectively. The electric modulation signal is input between the anode electrode and the cathode electrode of the light modulator element 21 through these circuit elements. C21 represents a parasitic capacitance generated between the cathode electrode and the back electrode of the light modulator element 21.

一方半導体レーザダイオード素子20には外部の電流駆動回路62より順方向直流電流Ibiasを供給し、レーザ光を出力させる。ここでL35、L36、L37はボンディングワイヤ35、36、37が有するインダクタンス、C28はバイパスコンデンサ28の容量を示す。通常、光変調器素子21には逆方向バイアス電圧を印加して動作させるため、本実施例1では-5.2V等の単一負電源を駆動用IC61および電流駆動回路62に用いる。   On the other hand, the semiconductor laser diode element 20 is supplied with a forward direct current Ibias from an external current driving circuit 62 to output laser light. Here, L35, L36, and L37 indicate inductances of the bonding wires 35, 36, and 37, and C28 indicates the capacitance of the bypass capacitor 28. In general, in order to operate the optical modulator element 21 by applying a reverse bias voltage, a single negative power source of −5.2 V or the like is used for the driving IC 61 and the current driving circuit 62 in the first embodiment.

次に図3と図23とを用いてキャリア基板部分の構成を説明する。
半導体チップ22の素子構造の概略模式図を、図23に示す。半導体チップ22としては、Fe-dope型半絶縁性InP基板の表面に分布帰還型レーザダイオード(Distributed FeedBack - Laser Diode:DFB-LD)である半導体レーザダイオード素子20と電界吸収型変調器(Electro-Absorption Modulator:EAM)である光変調器素子21を集積したものを用いる。
Next, the configuration of the carrier substrate portion will be described with reference to FIGS.
A schematic diagram of the element structure of the semiconductor chip 22 is shown in FIG. The semiconductor chip 22 includes a semiconductor laser diode element 20 which is a distributed feedback laser diode (DFB-LD) on the surface of an Fe-dope type semi-insulating InP substrate and an electroabsorption modulator (Electro-). Absorption Modulator (EAM) integrated optical modulator element 21 is used.

半絶縁性InP基板300の上部の素子形成部は、導電性n型層301、各デバイスに必要な半導体層302、最上部にp型コンタクト層303を結晶成長し、各素子間の領域をイオンインプランテーション等の手法により高抵抗化し(高抵抗層304)、各素子を電気的に分離する。半導体チップ22の表面には半導体レーザダイオード素子20のアノード電極305とカソード電極306および光変調器素子21のアノード電極307とカソード電極308とを設ける。チップ裏面にはキャリア基板23への接合用の裏面電極309を設け、表面に設けた他の電極に対し電気的に分離する。   The element formation part on the upper part of the semi-insulating InP substrate 300 includes a conductive n-type layer 301, a semiconductor layer 302 necessary for each device, and a p-type contact layer 303 on the uppermost part. The resistance is increased by a technique such as implantation (high resistance layer 304), and each element is electrically isolated. On the surface of the semiconductor chip 22, an anode electrode 305 and a cathode electrode 306 of the semiconductor laser diode element 20, and an anode electrode 307 and a cathode electrode 308 of the optical modulator element 21 are provided. A back surface electrode 309 for bonding to the carrier substrate 23 is provided on the back surface of the chip and electrically separated from other electrodes provided on the front surface.

図3において、第一のボンディングワイヤ31と第四のボンディングワイヤ34は実装制約上の可能な範囲内で短くすることによって、各々のワイヤのインダクタンスL31、L34を低減することが可能となる。また、第一のボンディングワイヤ31と入力伝送線路27との接続部は第四のボンディングワイヤ34と接地電極25との接続部に対し半導体チップ22を挟んだ反対側に配置する。   In FIG. 3, it is possible to reduce the inductances L31 and L34 of each wire by shortening the first bonding wire 31 and the fourth bonding wire 34 within a possible range in terms of mounting restrictions. Further, the connecting portion between the first bonding wire 31 and the input transmission line 27 is disposed on the opposite side of the connecting portion between the fourth bonding wire 34 and the ground electrode 25 with the semiconductor chip 22 interposed therebetween.

これは、第一のボンディングワイヤ31と第四のボンディングワイヤ34を近接して平行に配置した場合、両者に流れる変調信号電流は互いに逆向きなので、各々のワイヤのインダクタンスL31、L34は相互インダクタンスの発生により増大してしまい、光送信モジュールの特性劣化を引き起こす。本実施例1では上記の配置とすることにより相互インダクタンスの発生を抑え、インダクタンスL31、L34を低減することができる。   This is because when the first bonding wire 31 and the fourth bonding wire 34 are arranged close to each other in parallel, the modulation signal currents flowing through them are opposite to each other, so that the inductances L31 and L34 of the respective wires It increases due to the occurrence and causes deterioration of the characteristics of the optical transmission module. In the first embodiment, the arrangement described above can suppress the generation of mutual inductance and reduce the inductances L31 and L34.

一方、後に説明するように第二のボンディングワイヤ32と第三のボンディングワイヤ33はある程度の長さにして各々のワイヤのインダクタンスL32、L33の総和を所望の値に近づけることが望ましい。我々の検討によるとその値(L32とL33の総和)は、実装形態や光変調器素子の電気的特性にもよるが、おおよそ0.6nHないし0.8nH程度の値が望ましい。   On the other hand, as will be described later, it is desirable that the second bonding wire 32 and the third bonding wire 33 have a certain length so that the sum of the inductances L32 and L33 of each wire approaches a desired value. According to our study, the value (the sum of L32 and L33) is preferably about 0.6 nH to 0.8 nH, although it depends on the mounting form and the electrical characteristics of the optical modulator element.

第二のボンディングワイヤ32と第三のボンディングワイヤ33とを隣接して平行に配置した場合、両者に流れる変調信号電流は互いに逆向きなので、各々のワイヤインダクタンスL32、L33は相互インダクタンスの発生により増加させることができる。この効果により第二のボンディングワイヤ32と第三のボンディングワイヤ33の長さを短縮しても所望のインダクタンス値を得ることが可能となり、キャリア基板23の小型化および光送信モジュールの小型化に好適である。   When the second bonding wire 32 and the third bonding wire 33 are arranged adjacent to each other in parallel, the modulation signal currents flowing through them are opposite to each other, so that the respective wire inductances L32 and L33 increase due to the generation of mutual inductance. Can be made. This effect makes it possible to obtain a desired inductance value even when the lengths of the second bonding wire 32 and the third bonding wire 33 are shortened, which is suitable for downsizing of the carrier substrate 23 and downsizing of the optical transmission module. It is.

また、図3に示すように光変調器素子21のアノード電極を中継点として、第一のボンディングワイヤ31と第二のボンディングワイヤ32を一本のワイヤにより直線的に形成した場合、光変調器素子21のアノード電極の面積を最小限に抑えることができ、光変調器素子21の素子容量を低減する上で好適である。   As shown in FIG. 3, when the first bonding wire 31 and the second bonding wire 32 are linearly formed by one wire with the anode electrode of the light modulator element 21 as a relay point, the light modulator The area of the anode electrode of the element 21 can be minimized, which is suitable for reducing the element capacity of the optical modulator element 21.

ところで、図23に示すように、光変調器素子21のカソード電極308は素子導電層の中で最下層に位置する導電性n型層301に接続している。そのため裏面電極309との間に生じる寄生容量を最小限に抑えた場合でも、カソード電極-裏面電極間容量C21はアノード電極307と裏面電極309との間の容量に比較して大きくなる。   By the way, as shown in FIG. 23, the cathode electrode 308 of the optical modulator element 21 is connected to the conductive n-type layer 301 located at the lowest layer in the element conductive layer. For this reason, even when the parasitic capacitance generated between the back electrode 309 and the back electrode 309 is minimized, the cathode-back electrode capacitance C21 is larger than the capacitance between the anode electrode 307 and the back electrode 309.

本実施例1では裏面電極309を接地電極25上に接合し、カソード電極308を第四のボンディングワイヤ34を介して接地電極25に接続することで、カソード電極308および-裏面電極間の容量C21による回路動作上の特性劣化を最小限に抑えることができ、良好な光送信モジュール特性を得るのに好適である。なお、ここでは変調器部の裏面電極がキャリア基板の接地電極上に位置するよう、接地電極のパターンが形成されているが、入力伝送路のパターン電極が変調器部の裏面電極下になるように入力伝送路の電極を形成してもよい。   In the first embodiment, the back electrode 309 is joined to the ground electrode 25, and the cathode electrode 308 is connected to the ground electrode 25 via the fourth bonding wire 34, whereby the capacitance C21 between the cathode electrode 308 and the back electrode is obtained. It is possible to minimize the deterioration of the circuit operation characteristics due to the above, and it is suitable for obtaining good optical transmission module characteristics. Here, the pattern of the ground electrode is formed so that the back electrode of the modulator unit is positioned on the ground electrode of the carrier substrate, but the pattern electrode of the input transmission path is under the back electrode of the modulator unit. Alternatively, an electrode of the input transmission line may be formed.

次に、本実施例の光送信モジュールの特性を図9、図10を用いて説明する。これらは回路シミュレータを用いて算出した特性である。本実施例において、例えば第一のボンディングワイヤによるインダクタンスL31を0.2nH、第二のボンディングワイヤ32と第三のボンディングワイヤ33のインダクタンスの総和Lterm(=L32+L33)を0.6nHとする。また、第四のボンディングワイヤ34により生じる光変調器素子21のカソード電極から接地電極までのインダクタンスをLgnd(=L34)と記述すると、Lgndを0.2nHとした場合には図9に示される小信号通過特性(S21)および図10に示される光出力波形特性が得られる。   Next, the characteristics of the optical transmission module of this embodiment will be described with reference to FIGS. These are characteristics calculated using a circuit simulator. In this embodiment, for example, the inductance L31 of the first bonding wire is 0.2 nH, and the total inductance Lterm (= L32 + L33) of the second bonding wire 32 and the third bonding wire 33 is 0.6 nH. Further, when the inductance from the cathode electrode to the ground electrode of the optical modulator element 21 generated by the fourth bonding wire 34 is described as Lgnd (= L34), the small signal shown in FIG. 9 is obtained when Lgnd is 0.2 nH. The pass characteristic (S21) and the optical output waveform characteristic shown in FIG. 10 are obtained.

図9が示すようにS21特性は帯域内で不要なピーキングを持たず、3dB帯域特性も12GHzと充分高く良好な特性が得られている。この特性により、図10の光出力波形が示すような良好な波形品質を得ることができる。   As shown in FIG. 9, the S21 characteristic does not have unnecessary peaking in the band, and the 3 dB band characteristic is sufficiently high at 12 GHz and a good characteristic is obtained. With this characteristic, it is possible to obtain good waveform quality as shown by the optical output waveform in FIG.

比較として、図14と図15に第三のボンディングワイヤを設けず、終端抵抗の一端を接地電極に接続する従来の回路方式の場合の小信号通過特性(S21)と光出力波形の算出結果を示す。インダクタンスLgnd(=0.2nH)により図14が示すようにS21特性において帯域内で2dB程度の大きさの不要なピーキング(過剰利得)が発生し、図15が示すように光出力波形においてオーバシュートを伴う重大な波形品質劣化が生じる。   For comparison, FIG. 14 and FIG. 15 show the calculation results of the small signal passing characteristic (S21) and the optical output waveform in the case of the conventional circuit system in which one end of the terminating resistor is connected to the ground electrode without providing the third bonding wire. Show. As shown in FIG. 14, the inductance Lgnd (= 0.2 nH) causes unnecessary peaking (excess gain) of about 2 dB in the band in the S21 characteristic, and overshoot occurs in the optical output waveform as shown in FIG. Accompanied by significant waveform quality degradation.

次に、本発明の効果を図11、図12および図13を用いて説明する。
図11には、小信号通過特性(S21)におけるピーキングによる過剰利得のボンディングワイヤインダクタンスLterm、Lgndによる依存性を示す。これによれば、本発明による回路構成によればLgndを0から0.3nHまで変化させても過剰利得に対する影響はほとんどなく、Ltermの値をだけで一義的にほぼ制御可能であることを示している。例えば過剰利得を完全に抑圧するにはLtermを0.6nH以下にすればよいことが判る。
Next, the effect of this invention is demonstrated using FIG.11, FIG12 and FIG.13.
FIG. 11 shows the dependency of the excessive gain due to peaking on the small signal passing characteristic (S21) depending on the bonding wire inductances Lterm and Lgnd. According to this, according to the circuit configuration of the present invention, even if Lgnd is changed from 0 to 0.3 nH, there is almost no influence on the excess gain, and it is possible to control almost uniquely by only the value of Lterm. Yes. For example, it can be seen that Lterm should be 0.6 nH or less in order to completely suppress the excess gain.

図12には、小信号通過特性(S21)における3dB帯域のボンディングワイヤインダクタンスLterm、Lgndによる依存性を示す。これによれば、3dB帯域向上にはLgndの低減とLtermの増加が有効であることが示されている。すなわち、過剰利得を抑圧した上で3dB帯域を最適にするには、Ltermを0.6nHとし、Lgndを実装可能な範囲で低減することが望ましい。例えばLtermを0.6nH、Lgndを0.3nHとした場合にでも3dB帯域として12GHzが得られ、10Gbit/sでの動作に対して十分な帯域特性を確保できる。   FIG. 12 shows the dependency of the 3 dB band bonding wire inductances Lterm and Lgnd on the small signal pass characteristic (S21). According to this, it is shown that the reduction of Lgnd and the increase of Lterm are effective for improving the 3 dB bandwidth. That is, in order to optimize the 3 dB band while suppressing the excess gain, it is desirable to set Lterm to 0.6 nH and reduce Lgnd in a range that can be mounted. For example, even when Lterm is set to 0.6 nH and Lgnd is set to 0.3 nH, 12 GHz is obtained as a 3 dB band, and sufficient band characteristics can be secured for operation at 10 Gbit / s.

図13には、周波数範囲0-8GHzにおける入力反射特性S11の最大値のボンディングワイヤインダクタンスLterm、Lgndによる依存性を示すが、反射特性を極小にする組合せが存在し、Lgndが0.1nH〜0.3nHの場合にLtermを0.6nH〜0.8nHの範囲の値を選ぶことが好適であることが示されている。例えばLtermを0.6nHの場合にはLgndを0.1nHとすることでS11を-20dB以下にすることができるが、Lgndを0.3nHまで増加場合にでも-15dB以下のS11得られ、10Gbit/sでの動作に対して良好な入力反射特性を確保できる。   FIG. 13 shows the dependency of the maximum value of the input reflection characteristic S11 in the frequency range 0-8 GHz on the bonding wire inductances Lterm and Lgnd. There are combinations that minimize the reflection characteristic, and Lgnd is 0.1 nH to 0.3 nH. In this case, it is shown that it is preferable to select a value in the range of 0.6 nH to 0.8 nH for Lterm. For example, when Lterm is 0.6 nH, S11 can be reduced to -20 dB or less by setting Lgnd to 0.1 nH, but even when Lgnd is increased to 0.3 nH, S11 of -15 dB or less is obtained, and at 10 Gbit / s It is possible to secure a good input reflection characteristic for the operation.

比較として、図16〜18に、それぞれ第三のボンディングワイヤを設けず終端抵抗の一端を接地電極に接続する従来の回路方式を採用した場合の過剰利得、3dB帯域、入力反射特性S11を示す。
まず、図16には小信号通過特性(S21)におけるピーキングによる過剰利得のボンディングワイヤインダクタンスLterm、Lgndによる依存性を示すが、Lgndを0から0.3nHまで変化するに従い過剰利得が急激に増大することが示される。Ltermの値を低減することで過剰利得はある程度減少することができるが、例えばLgndが0.2nHの場合、Ltermを0.2nHに低減しても0.4dBの過剰利得が生じることが判る。
For comparison, FIGS. 16 to 18 show excess gain, 3 dB bandwidth, and input reflection characteristics S11 when a conventional circuit system in which one end of a termination resistor is connected to the ground electrode without providing a third bonding wire is shown.
First, FIG. 16 shows the dependence of the excess gain due to peaking on the bonding wire inductances Lterm and Lgnd in the small signal passing characteristic (S21). The excess gain increases rapidly as Lgnd is changed from 0 to 0.3 nH. Is shown. Although the excess gain can be reduced to some extent by reducing the value of Lterm, for example, when Lgnd is 0.2 nH, it can be seen that an excess gain of 0.4 dB occurs even if Lterm is reduced to 0.2 nH.

図17には、小信号通過特性(S21)における3dB帯域のボンディングワイヤインダクタンスLterm、Lgndによる依存性を示すが、3dB帯域向上にはLgndの低減とLtermの増加が有効であることが示されている。   FIG. 17 shows the dependence of the bonding wire inductances Lterm and Lgnd in the 3 dB band on the small signal pass characteristic (S21). It is shown that the reduction of Lgnd and the increase of Lterm are effective for improving the 3 dB band. Yes.

一方、図18には周波数範囲0-8GHzにおける入力反射特性S11の最大値のボンディングワイヤインダクタンスLterm、Lgndによる依存性を示すが、Lgndを0から0.3nHまで変化するに従いS11が急激に増大(悪化)することが示されている。Ltermを減少した場合にはさらにS11が増加し、例えばLgndが0.2nHの場合に過剰利得を低く抑えるためにLtermを0.2nHまで低減すると、S11は-11dBまで増大する。
このように我々の検討によると、従来の回路方式ではLgndが増加した場合の特性劣化が激しく、他のインダクタンス値等による最適設計が困難である。
On the other hand, FIG. 18 shows the dependence of the maximum value of the input reflection characteristic S11 in the frequency range 0-8 GHz on the bonding wire inductances Lterm and Lgnd. As Lgnd changes from 0 to 0.3 nH, S11 increases rapidly ). When Lterm is decreased, S11 further increases. For example, when Lgnd is 0.2 nH, when Lterm is reduced to 0.2 nH in order to keep excess gain low, S11 increases to -11 dB.
As described above, according to our study, the conventional circuit system has a severe characteristic deterioration when Lgnd increases, and it is difficult to perform optimum design using other inductance values.

以上説明した通り、本発明の回路方式によればビットレートが概ね10Gbit/sの光トランシーバへの適用に対し、好適な光送信モジュールを実現することができる。ここで概ね10Gbit/sのビットレートとは、ビットレートが9.95Gbit/s、10.7Gbit/s、11.1Gbit/sのSONET仕様およびビットレートが10.3Gbit/s、11.3Gbit/sの10ギガビットイーサ仕様を含み、これらに限られない。   As described above, according to the circuit system of the present invention, an optical transmission module suitable for application to an optical transceiver having a bit rate of approximately 10 Gbit / s can be realized. Here, the bit rate of 10 Gbit / s is the SONET specification with bit rates of 9.95 Gbit / s, 10.7 Gbit / s, and 11.1 Gbit / s, and 10 Gigabit Ethernet specifications with bit rates of 10.3 Gbit / s and 11.3 Gbit / s. Including, but not limited to.

なお、本実施例において、貫通穴10とリードピン3と封止ガラス5で構成される同軸線路T10の特性インピーダンスを30オームとしたが、その部材形状および封止に適するガラス材の選択により同軸線路の特性インピーダンスをたとえば20〜50オームの範囲で変化しても良い。また抵抗素子24の抵抗値を50オームとしたが、実際のトランシーバに搭載される駆動ICとの相性によりこれを例えば40〜60オームの範囲で変更しても良い。   In this embodiment, the characteristic impedance of the coaxial line T10 composed of the through hole 10, the lead pin 3, and the sealing glass 5 is set to 30 ohms. However, the coaxial line can be selected depending on the shape of the member and the glass material suitable for sealing. The characteristic impedance may be changed, for example, in the range of 20 to 50 ohms. Further, although the resistance value of the resistance element 24 is 50 ohms, it may be changed within a range of 40 to 60 ohms, for example, depending on the compatibility with the driving IC mounted on the actual transceiver.

変形例として、本実施例の図2における回路構成において、全ての接地電位を例えば+5.0Vなどの一定電圧電位としても良い。その場合駆動用IC61および電流駆動回路62を+5.0Vなどで駆動することができ、単一の正電源のみを用いて動作する光送信モジュールを実現できる。また、駆動用IC61と光送信モジュールとの間にバイアスティーを挿入し、光変調器素子21の逆方向バイアス電圧を別の直流電圧源により印加ても良い。その場合駆動用IC61は電気変調信号の電圧振幅成分のみを駆動すれば良いため、より低電圧電源での動作が可能となり、トランシーバの低消費電力化に好適である。   As a modification, in the circuit configuration in FIG. 2 of the present embodiment, all the ground potentials may be a constant voltage potential such as + 5.0V. In that case, the driving IC 61 and the current driving circuit 62 can be driven at +5.0 V or the like, and an optical transmission module that operates using only a single positive power supply can be realized. Further, a bias tee may be inserted between the driving IC 61 and the optical transmission module, and the reverse bias voltage of the optical modulator element 21 may be applied by another DC voltage source. In that case, since the driving IC 61 only needs to drive the voltage amplitude component of the electrical modulation signal, it is possible to operate with a lower voltage power source, which is suitable for reducing the power consumption of the transceiver.

また他の変形例として、本実施例では光送信モジュールの筐体をCAN型の金属パッケージ筐体としたがこれに限られるものではなく、例えばセラミックと金属を用いた箱形のパッケージ筐体としてもよい。また、半導体レーザダイオード素子および光変調器素子の温度を精密に制御するため、キャリア基板の下部にペルチェ素子を配置してもよい。これらの変形例は後述する第2実施例および第3実施例においても共通である。   As another modification, in this embodiment, the housing of the optical transmission module is a CAN-type metal package housing, but is not limited to this. For example, as a box-shaped package housing using ceramic and metal Also good. Further, in order to precisely control the temperature of the semiconductor laser diode element and the optical modulator element, a Peltier element may be disposed below the carrier substrate. These modified examples are common to the second and third embodiments described later.

さらに他の変形例として、本実施例では半導体チップ22の素子形成部の結晶構造を半絶縁性半導体基板上に下から導電性n型層、各デバイスに必要な半導体層、そして最上部にp型コンタクト層の順としたが、半導体層の導電性を逆にして導電性p型層、各デバイスに必要な半導体層、最上部にn型コンタクト層の順としても良い。導電性を逆にすることに伴い、図2における半導体チップ22、光変調器素子21、駆動用IC61、電流駆動回路62の極性は各々逆となる。その場合駆動用IC61および電流駆動回路62を+5.0Vなどで駆動することができ、単一の正電源のみを用いて動作する光送信モジュールを実現できる。   As yet another modification, in this embodiment, the crystal structure of the element forming portion of the semiconductor chip 22 is formed on the semi-insulating semiconductor substrate from the bottom to the conductive n-type layer, the semiconductor layer necessary for each device, and the uppermost portion is p. However, the conductivity of the semiconductor layer may be reversed and the order of the conductive p-type layer, the semiconductor layer necessary for each device, and the n-type contact layer at the top. As the conductivity is reversed, the polarities of the semiconductor chip 22, the optical modulator element 21, the driving IC 61, and the current driving circuit 62 in FIG. 2 are reversed. In that case, the driving IC 61 and the current driving circuit 62 can be driven at +5.0 V or the like, and an optical transmission module that operates using only a single positive power supply can be realized.

本発明の第2実施例を図4〜6、図19〜22により説明する。
図4は本実施例における光送信モジュールの主要部分を示す構造図、図5は光送信モジュールの主要回路図、図6はのキャリア基板部分の詳細図、図19は本実施例の入力反射特性S11を示すグラフ、図20は小信号通過特性S21を示すグラフである。
A second embodiment of the present invention will be described with reference to FIGS.
FIG. 4 is a structural diagram showing the main part of the optical transmission module in the present embodiment, FIG. 5 is a main circuit diagram of the optical transmission module, FIG. 6 is a detailed view of the carrier substrate portion, and FIG. FIG. 20 is a graph showing the small signal pass characteristic S21.

図4および図6に示すように、実施例1との主要な違いは半導体チップ122の表面電極のアノードとカソードの配置を左右反転した点と、入力伝送線路127を光変調器素子21下部まで延長した点にある。半導体チップ122の裏面には光変調器素子121と半導体レーザダイオード素子120の各々の下部に独立した裏面電極を設ける。本実施例では、接地電極125は半導体レーザダイオード素子下部のみに配置し、光変調器素子121の下部には配置しない。   As shown in FIGS. 4 and 6, the main difference from the first embodiment is that the arrangement of the anode and cathode of the surface electrode of the semiconductor chip 122 is reversed left and right, and the input transmission line 127 is extended to the lower part of the optical modulator element 21. It is an extended point. On the back surface of the semiconductor chip 122, independent back electrodes are provided below the optical modulator element 121 and the semiconductor laser diode element 120, respectively. In the present embodiment, the ground electrode 125 is disposed only below the semiconductor laser diode element and not disposed below the optical modulator element 121.

第一のボンディングワイヤ131は入力伝送線路127のパターン電極と光変調器素子121のカソード電極とを接続し、第二のボンディングワイヤ132は光変調器素子121のカソード電極と抵抗素子24の一端とを接続する。第三のボンディングワイヤ133は抵抗素子24の他の一端と光変調器素子121のアノード電極とを接続し、第四のボンディングワイヤ134は光変調器素子121のアノード電極と接地電極125とを接続する。   The first bonding wire 131 connects the pattern electrode of the input transmission line 127 and the cathode electrode of the light modulator element 121, and the second bonding wire 132 connects the cathode electrode of the light modulator element 121 and one end of the resistance element 24. Connect. The third bonding wire 133 connects the other end of the resistance element 24 and the anode electrode of the light modulator element 121, and the fourth bonding wire 134 connects the anode electrode of the light modulator element 121 and the ground electrode 125. To do.

図5において、L131、L132、L133、L134はそれぞれ第一、第二、第三、第四のボンディングワイヤ131、132、133、134が有するインダクタンスである。C121は光変調器素子121のカソード電極と裏面電極との間に生じる寄生容量を示す。駆動用IC161および電流駆動回路162には+5.0V等の単一正電源を用いる。   In FIG. 5, L131, L132, L133, and L134 are inductances of the first, second, third, and fourth bonding wires 131, 132, 133, and 134, respectively. C121 indicates a parasitic capacitance generated between the cathode electrode and the back electrode of the light modulator element 121. A single positive power supply such as +5.0 V is used for the driving IC 161 and the current driving circuit 162.

光変調器素子121のカソード電極は素子導電層の中で最下層に位置する導電性n型層に接続している。そのため裏面電極との間に生じる寄生容量を最小限に抑えた場合でも、カソード電極-裏面電極間容量C121はアノード電極-裏面電極間に比較して大きくなる。本実施例2では光変調器素子121の裏面電極を入力伝送線路127上に接合しカソード電極を第一のボンディングワイヤ131を介して入力伝送線路127に接続することで、カソード電極-裏面電極間容量C121による回路動作上の特性劣化を最小限に抑えることができ、良好な光送信モジュール特性を得るのに好適である。なお、ここでは変調器部の裏面電極が入力伝送路のパターン電極上に位置するよう、電極のパターンが形成されているが、図3に示す第1の実施例のように接地電極が変調器部の裏面電極下になるように電極パターンを形成してもよい。   The cathode electrode of the light modulator element 121 is connected to the conductive n-type layer located at the lowest layer in the element conductive layer. Therefore, even when the parasitic capacitance generated between the back electrode and the back electrode is minimized, the cathode-back electrode capacitance C121 is larger than that between the anode electrode and the back electrode. In the second embodiment, the back electrode of the light modulator element 121 is bonded onto the input transmission line 127 and the cathode electrode is connected to the input transmission line 127 via the first bonding wire 131, so that the cathode electrode and the back electrode are connected. Degradation in circuit operation characteristics due to the capacitor C121 can be minimized, which is suitable for obtaining good optical transmission module characteristics. Here, the electrode pattern is formed so that the back electrode of the modulator portion is positioned on the pattern electrode of the input transmission path, but the ground electrode is the modulator as in the first embodiment shown in FIG. The electrode pattern may be formed so as to be under the back electrode of the part.

本実施例の効果を図14および図15用いてさらに説明する。
図14および図15は回路シミュレーションを用いて算出した反射特性S11および小信号通過特性S21であり、カソード電極-裏面電極間容量C121を一例として0.2pFと仮定し、そのS11およびS21に与える影響をシミュレーションにて解析したものである。
The effect of the present embodiment will be further described with reference to FIGS.
FIGS. 14 and 15 show the reflection characteristic S11 and the small signal transmission characteristic S21 calculated using circuit simulation. The capacitance C121 between the cathode electrode and the back electrode is assumed to be 0.2 pF as an example, and the effect on S11 and S21 is shown. It was analyzed by simulation.

本実施例では、容量C121は入力伝送線路127とカソード電極間に位置する。この場合図14に示されるようにS11の上昇、および図15に示されるように3dB帯域の低下が生じるものの、その程度は比較的小さい。比較として図21および図22に光変調器素子121の下部に接地電極125を配置した場合の容量C121(0.2pFと仮定する)が反射特性S11および小信号通過特性S21に与える影響を示した。この配置では容量C121は接地電極125とカソード電極間に位置する。その場合図21に示されるようにS11が5dB程度と大幅に増大し、図22に示されるように3dB帯域は1.2GHz程度低下する。これらの結果より、本実施例2の構成とすることにより容量C121が反射特性S11および小信号通過特性S21におよぼす劣化量を最小限に抑えられることが判る。   In this embodiment, the capacitor C121 is located between the input transmission line 127 and the cathode electrode. In this case, although S11 increases as shown in FIG. 14 and 3 dB band decreases as shown in FIG. 15, the extent is relatively small. For comparison, FIGS. 21 and 22 show the influence of the capacitance C121 (assumed to be 0.2 pF) on the reflection characteristic S11 and the small signal transmission characteristic S21 when the ground electrode 125 is disposed below the optical modulator element 121. FIG. In this arrangement, the capacitor C121 is located between the ground electrode 125 and the cathode electrode. In that case, as shown in FIG. 21, S11 increases significantly to about 5 dB, and as shown in FIG. 22, the 3 dB band decreases by about 1.2 GHz. From these results, it can be seen that the amount of deterioration of the capacitor C121 on the reflection characteristic S11 and the small signal transmission characteristic S21 can be minimized by adopting the configuration of the second embodiment.

本発明の第3実施例を図7および図8により説明する。
図7は本実施例における光送信モジュールの主要部分を示す構造図、図8は光送信モジュールの主要回路図である。前述した第2実施例との主な違いは光変調器素子21を差動の電気変調信号により駆動した点にある。
A third embodiment of the present invention will be described with reference to FIGS.
FIG. 7 is a structural diagram showing the main part of the optical transmission module in this embodiment, and FIG. 8 is a main circuit diagram of the optical transmission module. The main difference from the second embodiment described above is that the optical modulator element 21 is driven by a differential electric modulation signal.

まず、図7を用いて光送信モジュールの構成を説明する。光送信モジュールは筐体としてCAN型のパッケージ筐体を用い、1がその金属ステム、2が主要部搭載用の金属台座である。金属ステム1には円筒状の貫通穴209、210を通して円柱状のリードピン3、4を設け、封止ガラス5により固定する。金属台座2上には中継基板205、207とキャリア基板223を搭載する。中継基板205上には伝送線路206、中継基板207上には伝送線路208を各々設ける。   First, the configuration of the optical transmission module will be described with reference to FIG. The optical transmission module uses a CAN-type package casing as a casing, 1 is its metal stem, and 2 is a metal pedestal for mounting the main part. The metal stem 1 is provided with cylindrical lead pins 3 and 4 through cylindrical through holes 209 and 210 and fixed by the sealing glass 5. Relay substrates 205 and 207 and a carrier substrate 223 are mounted on the metal base 2. A transmission line 206 is provided on the relay substrate 205, and a transmission line 208 is provided on the relay substrate 207.

キャリア基板223の表面上には抵抗素子24、接地電極225、第一の入力伝送線路227、第二の入力伝送線路226を設け、接地電極225はビアホール26によりキャリア基板223の裏面電極に接続する。キャリア基板223には半導体チップ122およびバイパスコンデンサ28を搭載する。半導体チップ122は半絶縁性半導体ウエハの表面に半導体レーザダイオード素子120と光変調器素子121を形成した光変調器集積レーザチップである。   A resistance element 24, a ground electrode 225, a first input transmission line 227, and a second input transmission line 226 are provided on the surface of the carrier substrate 223, and the ground electrode 225 is connected to the back electrode of the carrier substrate 223 through the via hole 26. . A semiconductor substrate 122 and a bypass capacitor 28 are mounted on the carrier substrate 223. The semiconductor chip 122 is an optical modulator integrated laser chip in which a semiconductor laser diode element 120 and an optical modulator element 121 are formed on the surface of a semi-insulating semiconductor wafer.

半導体レーザダイオード素子120から出力される連続レーザ光は、光変調器素子121を通過した後に結合レンズ(図中省略)を介して光ファイバーへ出射される。光変調器素子121は外部の駆動用ICからの概ね10Gbit/sのビットレートを持つ電気変調信号により連続レーザ光を光変調信号に変調する。また金属ステム1上にはモニタ用フォトダイオード6を設け、半導体レーザダイオード素子120の後方出力光を受光できる位置に固定する。   The continuous laser light output from the semiconductor laser diode element 120 passes through the optical modulator element 121 and is then emitted to the optical fiber via a coupling lens (not shown). The optical modulator element 121 modulates continuous laser light into an optical modulation signal by an electric modulation signal having a bit rate of approximately 10 Gbit / s from an external driving IC. A monitoring photodiode 6 is provided on the metal stem 1 and is fixed at a position where the output light from the semiconductor laser diode element 120 can be received.

第一のボンディングワイヤ131は第一の入力伝送線路227のパターン電極と光変調器素子121のカソード電極とを接続し、第二のボンディングワイヤ132は光変調器素子121のカソード電極と抵抗素子24の一端とを接続する。第三のボンディングワイヤ133は抵抗素子24の他の一端と光変調器素子121のアノード電極とを接続し、第四のボンディングワイヤ134は光変調器素子121のアノード電極と第二の入力伝送線路226のパターン電極とを接続する。またキャリア基板223上の第一の入力伝送線路227と中継基板207上の伝送線路208とは複数のボンディングワイヤ(あるいはリボンワイヤ)38により、低いインダクタンスになるようにして接続する。   The first bonding wire 131 connects the pattern electrode of the first input transmission line 227 and the cathode electrode of the light modulator element 121, and the second bonding wire 132 connects the cathode electrode of the light modulator element 121 and the resistance element 24. Connect one end of the. The third bonding wire 133 connects the other end of the resistance element 24 and the anode electrode of the light modulator element 121, and the fourth bonding wire 134 is the anode electrode of the light modulator element 121 and the second input transmission line. 226 pattern electrodes are connected. The first input transmission line 227 on the carrier substrate 223 and the transmission line 208 on the relay substrate 207 are connected to each other by a plurality of bonding wires (or ribbon wires) 38 so as to have a low inductance.

同様に、キャリア基板223上の第二の入力伝送線路226と中継基板205上の伝送線路206とは複数のボンディングワイヤ(あるいはリボンワイヤ)238により、低いインダクタンスで接続する。伝送線路208とリードピン3、および伝送線路206とリードピン4とはAuSn合金等により接合する。これらによりリードピン3およびリードピン4から光変調器素子21への電気信号入力経路が構成される。   Similarly, the second input transmission line 226 on the carrier substrate 223 and the transmission line 206 on the relay substrate 205 are connected by a plurality of bonding wires (or ribbon wires) 238 with low inductance. The transmission line 208 and the lead pin 3, and the transmission line 206 and the lead pin 4 are joined by AuSn alloy or the like. Thus, an electrical signal input path from the lead pin 3 and the lead pin 4 to the optical modulator element 21 is configured.

半導体レーザダイオード素子120はカソード電極をボンディングワイヤ37を介して接地電極225に接続し、アノード電極をボンディングワイヤ35、36を介して他のリードピン(図中省略)に接続する。そのリードピンに外部正電源を接続することでレーザダイオード素子120に順方向直流電流が供給される。モニタ用フォトダイオード6の出力は、他のリードピン(図中省略)を通じて外部に出力する。   In the semiconductor laser diode element 120, the cathode electrode is connected to the ground electrode 225 via the bonding wire 37, and the anode electrode is connected to another lead pin (not shown) via the bonding wires 35 and 36. A forward DC current is supplied to the laser diode element 120 by connecting an external positive power source to the lead pin. The output of the monitoring photodiode 6 is output to the outside through another lead pin (not shown).

CAN型のパッケージ筐体としては例えば直径5.6mmのTO-56型の筐体等を用いる。金属ステム1、金属台座2の材料としては安価な鉄を用いると低コスト化に好適である。中継基板205、207およびキャリア基板223はアルミナ、窒化アルミ等の誘電体材料で構成する。キャリア基板223を熱伝導率の高い窒化アルミとした場合、半導体チップ122から金属台座2に至る熱抵抗を低減し、素子温度上昇を抑えるのに好適である。   As the CAN type package case, for example, a TO-56 type case having a diameter of 5.6 mm is used. As the material of the metal stem 1 and the metal pedestal 2, inexpensive iron is suitable for cost reduction. The relay substrates 205 and 207 and the carrier substrate 223 are made of a dielectric material such as alumina or aluminum nitride. When the carrier substrate 223 is made of aluminum nitride having a high thermal conductivity, it is suitable for reducing the thermal resistance from the semiconductor chip 122 to the metal pedestal 2 and suppressing an increase in element temperature.

また、キャリア基板223は窒化アルミ等の誘電体基板と銅タングステンなどの金属板との貼り合わせ基板で構成しても良く、この構成では熱抵抗をさらに低減するのに好適である。抵抗素子24は窒化タンタル膜で構成し、レーザトリミングにより抵抗値を50オームとなるよう調整する。バイパスコンデンサ28としては単層の高誘電体基板で構成した平行平板型チップコンデンサを用いると、小型化に好適である。   The carrier substrate 223 may be formed of a bonded substrate of a dielectric substrate such as aluminum nitride and a metal plate such as copper tungsten, and this configuration is suitable for further reducing the thermal resistance. The resistance element 24 is composed of a tantalum nitride film, and the resistance value is adjusted to 50 ohms by laser trimming. As the bypass capacitor 28, use of a parallel plate type chip capacitor formed of a single-layer high-dielectric substrate is suitable for downsizing.

次に図8を用いて回路構成を説明する。まず差動駆動用IC261が出力した差動の電気変調信号は、外部伝送線路259、260、貫通穴209とリードピン4と封止ガラス5で構成される同軸線路T209、貫通穴210とリードピン3と封止ガラス5で構成される同軸線路T210、中継基板205上の伝送線路206、中継基板207上の伝送線路208、ボンディングワイヤ238が有するインダクタンスL238、ボンディングワイヤ38が有するインダクタンスL38を通じてキャリア基板の第一の入力伝送線路227と第二の入力伝送線路226に入力される。差動駆動用IC261の出力の差動インピーダンスは50オームとする。   Next, the circuit configuration will be described with reference to FIG. First, the differential electrical modulation signal output by the differential drive IC 261 includes the external transmission lines 259 and 260, the coaxial line T209 including the through hole 209, the lead pin 4, and the sealing glass 5, the through hole 210 and the lead pin 3. The carrier substrate first through the coaxial line T210 composed of the sealing glass 5, the transmission line 206 on the relay substrate 205, the transmission line 208 on the relay substrate 207, the inductance L238 that the bonding wire 238 has, and the inductance L38 that the bonding wire 38 has. The signals are input to one input transmission line 227 and the second input transmission line 226. The differential impedance of the output of the differential drive IC 261 is 50 ohms.

伝送線路259、260は差動駆動用IC261を搭載するプリント基板上の伝送線路とプリント基板とリードピン3、4を接続するフレキシブル基板上の伝送線路とで構成し、特性インピーダンスは25オームとする。同軸線路T209および210の特性インピーダンスは20オーム、伝送線路206、208および第一、第二の入力伝送線路227、226の特性インピーダンスは25オームとする。R24は抵抗素子24が有する抵抗、L131、L132、L133、L134はそれぞれ第一、第二、第三、第四のボンディングワイヤ131、132、133、134が有するインダクタンスである。電気変調信号はこれらの回路素子を介して光変調器素子121のカソード電極とアノード電極間に入力される。C121は光変調器素子121のカソード電極と裏面電極との間に生じる寄生容量を示す。   The transmission lines 259 and 260 are composed of a transmission line on a printed board on which the differential drive IC 261 is mounted and a transmission line on a flexible board to which the printed board and the lead pins 3 and 4 are connected, and the characteristic impedance is 25 ohms. The characteristic impedance of the coaxial lines T209 and 210 is 20 ohms, and the characteristic impedance of the transmission lines 206 and 208 and the first and second input transmission lines 227 and 226 is 25 ohms. R24 is a resistance of the resistance element 24, and L131, L132, L133, and L134 are inductances of the first, second, third, and fourth bonding wires 131, 132, 133, and 134, respectively. The electric modulation signal is input between the cathode electrode and the anode electrode of the light modulator element 121 through these circuit elements. C121 indicates a parasitic capacitance generated between the cathode electrode and the back electrode of the light modulator element 121.

一方、半導体レーザダイオード素子120には外部の電流駆動回路162より順方向直流電流Ibiasを供給し、レーザ光を出力させる。ここでL35、L36、L37はボンディングワイヤ35、36、37の有するインダクタンス、C28はバイパスコンデンサ28の容量を示す。通常光変調器素子121には逆方向バイアス電圧を印加して動作させるため、本実施例では+5.0V等の単一正電源を差動駆動用IC261および電流駆動回路162に用いる。   On the other hand, the semiconductor laser diode element 120 is supplied with a forward DC current Ibias from an external current driving circuit 162 to output laser light. Here, L35, L36, and L37 indicate inductances of the bonding wires 35, 36, and 37, and C28 indicates the capacitance of the bypass capacitor 28. In order to operate the normal optical modulator element 121 by applying a reverse bias voltage, in this embodiment, a single positive power source such as +5.0 V is used for the differential drive IC 261 and the current drive circuit 162.

光変調器素子121のカソード電極は素子導電層の中で最下層に位置する導電性n型層に接続している。そのため裏面電極との間に生じる寄生容量を最小限に抑えた場合でも、カソード電極-裏面電極間容量C121はアノード電極-裏面電極間に比較して大きくなる。本実施例では光変調器素子121の裏面電極を第一の入力伝送線路227上に接合しカソード電極を第一のボンディングワイヤ131を介して第一の入力伝送線路227に接続することで、カソード電極-裏面電極間容量C121による回路動作上の特性劣化を最小限に抑えることができ、良好な光送信モジュール特性を得るのに好適である。   The cathode electrode of the light modulator element 121 is connected to the conductive n-type layer located at the lowest layer in the element conductive layer. Therefore, even when the parasitic capacitance generated between the back electrode and the back electrode is minimized, the cathode-back electrode capacitance C121 is larger than that between the anode electrode and the back electrode. In the present embodiment, the back electrode of the light modulator element 121 is bonded onto the first input transmission line 227, and the cathode electrode is connected to the first input transmission line 227 via the first bonding wire 131, whereby the cathode It is possible to minimize deterioration in circuit operation characteristics due to the electrode-back electrode capacitance C121, which is suitable for obtaining good optical transmission module characteristics.

また、本実施例では差動駆動用IC261から光送信モジュールまでの信号線路を差動伝送線路とすることにより、光トランシーバ内部における送信部から受信部へのクロストークや光トランシーバ外部への電磁妨害(EMI:Electro Magnetic Interference)を低減するのに好適である。加えて、駆動用ICの一方の出力のみを用いて光変調器素子を駆動(シングルエンデッド駆動)した場合に比べ、光変調器素子を駆動できる電圧振幅をほぼ2倍に増加することができ、光出力信号の消光比を向上するに効果的である。   Also, in this embodiment, the signal line from the differential drive IC 261 to the optical transmission module is a differential transmission line, so that crosstalk from the transmission unit to the reception unit inside the optical transceiver and electromagnetic interference to the outside of the optical transceiver. It is suitable for reducing (EMI: Electro Magnetic Interference). In addition, the voltage amplitude that can drive the optical modulator element can be increased almost twice compared to the case where the optical modulator element is driven using only one output of the driving IC (single-ended driving). This is effective in improving the extinction ratio of the optical output signal.

変形例として、差動駆動用IC261と光送信モジュールとの間の差動線路の各々にバイアスティーを挿入し、別の直流電圧源にを用いて光変調器素子121の逆方向バイアス電圧を印加させても良い。その場合差動駆動用IC261は電気変調信号の電圧振幅成分のみを駆動すれば良いため、より低電圧電源での動作が可能となり、トランシーバの低消費電力化に好適である。   As a modification, a bias tee is inserted into each differential line between the differential driving IC 261 and the optical transmission module, and a reverse bias voltage of the optical modulator element 121 is applied to another DC voltage source. You may let them. In that case, since the differential drive IC 261 only needs to drive the voltage amplitude component of the electrical modulation signal, it is possible to operate with a lower voltage power source, which is suitable for reducing the power consumption of the transceiver.

本実施例においては伝送線路259と260の特性インピーダンスを各々25オームとしたが、これら2つの線路で1対の差動伝送線路を形成し、その差動インピーダンスを50オームとしてもよい。また、同軸線路T209およびT210の特性インピーダンスを20オームとしたが、その部材形状および封止に適するガラス材の選択により同軸線路の特性インピーダンスを、たとえば20〜30オームの範囲で変化しても良い。さらに、抵抗素子24の抵抗値を50オームとしたが、実際のトランシーバに搭載される差動駆動用ICとの相性により、これを、例えば40〜60オームの範囲で変更しても良い。   In this embodiment, the characteristic impedances of the transmission lines 259 and 260 are each 25 ohms, but a pair of differential transmission lines may be formed by these two lines, and the differential impedance may be 50 ohms. Further, although the characteristic impedance of the coaxial lines T209 and T210 is 20 ohms, the characteristic impedance of the coaxial line may be changed in a range of, for example, 20 to 30 ohms by selecting a member material and a glass material suitable for sealing. . Furthermore, although the resistance value of the resistance element 24 is 50 ohms, this may be changed within a range of 40 to 60 ohms, for example, depending on the compatibility with the differential drive IC mounted on the actual transceiver.

本発明による実施例1の光送信モジュールの主要部分を示す構造図である。1 is a structural diagram showing the main part of an optical transmission module according to a first embodiment of the present invention. 本発明による実施例1の光送信モジュールの主要回路図である。1 is a main circuit diagram of an optical transmission module according to a first embodiment of the present invention. FIG. 本発明による実施例1のキャリア基板部分の詳細図である。It is detail drawing of the carrier substrate part of Example 1 by this invention. 本発明による実施例2の光送信モジュールの主要部分を示す構造図である。It is a structural diagram which shows the principal part of the optical transmission module of Example 2 by this invention. 本発明による実施例2の光送信モジュールの主要回路図である。It is a main circuit diagram of the optical transmission module of Example 2 by the present invention. 本発明による実施例2のキャリア基板部分の詳細図である。It is detail drawing of the carrier substrate part of Example 2 by this invention. 本発明による実施例3の光送信モジュールの主要部分を示す構造図である。It is a structural diagram which shows the principal part of the optical transmission module of Example 3 by this invention. 本発明による実施例3の光送信モジュールの主要回路図である。It is a main circuit diagram of the optical transmission module of Example 3 according to the present invention. 本発明の効果を説明する周波数と光送信モジュールの電気-光小信号通過特性S21との関係を示す図である。It is a figure which shows the relationship between the frequency explaining the effect of this invention, and the electrical-optical small signal passage characteristic S21 of an optical transmission module. 本発明の効果を説明する光送信モジュールの光出力波形を示す図である。It is a figure which shows the optical output waveform of the optical transmission module explaining the effect of this invention. 本発明の効果を説明する光送信モジュールの過剰利得特性のワイヤインダクタンス依存性を示す図である。It is a figure which shows the wire inductance dependence of the excess gain characteristic of the optical transmission module explaining the effect of this invention. 本発明の効果を説明する光送信モジュールの3dB帯域特性のワイヤインダクタンス依存性を示す図である。It is a figure which shows the wire inductance dependence of the 3dB band characteristic of the optical transmission module explaining the effect of this invention. 本発明の効果を説明する光送信モジュールの入力反射特性のワイヤインダクタンス依存性を示す図である。It is a figure which shows the wire inductance dependence of the input reflection characteristic of the optical transmission module explaining the effect of this invention. 従来の回路形式を用いた場合の特性を示す図である。It is a figure which shows the characteristic at the time of using the conventional circuit format. 従来の回路形式を用いた場合の特性を示す図である。It is a figure which shows the characteristic at the time of using the conventional circuit format. 従来の回路方式を用いた場合の光送信モジュールの過剰利得特性のワイヤインダクタンス依存性を示す図である。It is a figure which shows the wire inductance dependence of the excess gain characteristic of the optical transmission module at the time of using the conventional circuit system. 従来の回路方式を用いた場合の光送信モジュールの3dB帯域特性のワイヤインダクタンス依存性を示す図である。It is a figure which shows the wire inductance dependence of the 3dB band characteristic of the optical transmission module at the time of using the conventional circuit system. 従来の回路方式を用いた場合の光送信モジュールの入力反射特性のワイヤインダクタンス依存性を示す図である。It is a figure which shows the wire inductance dependence of the input reflection characteristic of the optical transmission module at the time of using the conventional circuit system. 本発明による実施例2の効果を説明する光送信モジュールの入力反射特性S11を示すグラフである。It is a graph which shows the input reflection characteristic S11 of the optical transmission module explaining the effect of Example 2 by this invention. 本発明による実施例2の効果を説明する光送信モジュールの小信号通過特性S21を示すグラフである。It is a graph which shows the small signal passage characteristic S21 of the optical transmission module explaining the effect of Example 2 by this invention. 実施例2の構造を適用しなかった場合の光送信モジュールの入力反射特性S11を示すグラフである。It is a graph which shows the input reflection characteristic S11 of the optical transmission module at the time of not applying the structure of Example 2. FIG. 実施例2の構造を適用しなかった場合の光送信モジュールの小信号通過特性S21を示すグラフである。It is a graph which shows the small signal passage characteristic S21 of the optical transmission module at the time of not applying the structure of Example 2. FIG. 本発明の実施例1における光変調器集積レーザチップの構造を示す模式図である。It is a schematic diagram which shows the structure of the optical modulator integrated laser chip in Example 1 of this invention.

符号の説明Explanation of symbols

1…金属ステム、2…金属台座、3、4…リードピン、5…封止ガラス、6…モニタ用フォトダイオード、7…中継基板、8…伝送線路、9、10、11、12…貫通穴、20…半導体レーザダイオード素子、21…光変調器素子、22…半導体チップ、23…キャリア基板、24…抵抗素子、25…接地電極、26…ビアホール、27…入力伝送線路、28…バイパスコンデンサ、31…第一のボンディングワイヤ、32…第二のボンディングワイヤ、33…第三のボンディングワイヤ、34…第四のボンディングワイヤ、35、36、37…ボンディングワイヤ、38…ボンディングワイヤ、60…伝送線路、61…駆動用IC、62…電流駆動回路、120…半導体レーザダイオード素子、121…光変調器素子、122…半導体チップ、125…接地電極、127…入力伝送線路、131…第一のボンディングワイヤ、132…第二のボンディングワイヤ、133…第三のボンディングワイヤ、134…第四のボンディングワイヤ、161…駆動用IC、162…電流駆動回路、205…中継基板、206…伝送線路、207…中継基板、206、208…伝送線路、209、210…貫通穴、223…キャリア基板、225…接地電極、226…第二の入力伝送線路、227…第一の入力伝送線路、259、260…伝送線路、261…差動駆動用IC
DESCRIPTION OF SYMBOLS 1 ... Metal stem, 2 ... Metal base, 3, 4 ... Lead pin, 5 ... Sealing glass, 6 ... Monitor photodiode, 7 ... Relay board, 8 ... Transmission line, 9, 10, 11, 12 ... Through-hole, DESCRIPTION OF SYMBOLS 20 ... Semiconductor laser diode element, 21 ... Optical modulator element, 22 ... Semiconductor chip, 23 ... Carrier substrate, 24 ... Resistance element, 25 ... Ground electrode, 26 ... Via hole, 27 ... Input transmission line, 28 ... Bypass capacitor, 31 ... 1st bonding wire, 32 ... 2nd bonding wire, 33 ... 3rd bonding wire, 34 ... 4th bonding wire, 35, 36, 37 ... Bonding wire, 38 ... Bonding wire, 60 ... Transmission line, 61 ... Drive IC, 62 ... Current drive circuit, 120 ... Semiconductor laser diode element, 121 ... Optical modulator element, 122 ... Semiconductor chip 125 ... ground electrode, 127 ... input transmission line, 131 ... first bonding wire, 132 ... second bonding wire, 133 ... third bonding wire, 134 ... fourth bonding wire, 161 ... driving IC, 162 DESCRIPTION OF SYMBOLS ... Current drive circuit, 205 ... Relay board, 206 ... Transmission line, 207 ... Relay board, 206, 208 ... Transmission line, 209, 210 ... Through hole, 223 ... Carrier board, 225 ... Ground electrode, 226 ... Second input Transmission line, 227, first input transmission line, 259, 260, transmission line, 261, differential drive IC

Claims (10)

変調器と半導体レーザとを有する半導体チップが搭載され、接地電極と前記光変調器へ電気信号を入力する入力伝送線路のパターン電極と入力された電気信号に対する終端抵抗とが基板表面上に形成されたキャリア基板を用いた光送信モジュールであって、
前記光変調器のアノード電極およびカソード電極が前記半導体チップの表面に形成され、
前記終端抵抗の第1および第2の電極と、前記入力伝送線路のパターン電極および前記接地電極と、がそれぞれ分離されており、
前記入力伝送線路のパターン電極と前記半導体チップの表面に形成される前記アノード電極とを接続する第1のボンディングワイヤと、
前記半導体チップの表面に形成される前記アノード電極と前記終端抵抗第1の電極とを接続する第2のボンディングワイヤと、
前記半導体チップの表面に形成される前記カソード電極と前記終端抵抗第2の電極とを接続する第3のボンディングワイヤと、
前記半導体チップの表面に形成される前記カソード電極と前記接地電極とを接続する第4のボンディングワイヤと、を有し、
直列に接続される前記第3および前記第4のボンディングワイヤを介してのみ、前記終端抵抗の第2の電極と前記接地電極とが接続される、
ことを特徴とする光送信モジュール。
A semiconductor chip having an optical modulator and a semiconductor laser is mounted, and a ground electrode, a pattern electrode of an input transmission line for inputting an electric signal to the optical modulator, and a termination resistor for the input electric signal are formed on the substrate surface An optical transmission module using a carrier substrate,
An anode electrode and a cathode electrode of the light modulator are formed on the surface of the semiconductor chip;
The first and second electrodes of the termination resistor are separated from the pattern electrode of the input transmission line and the ground electrode, respectively.
A first bonding wire connecting the pattern electrode of the input transmission line and the anode electrode formed on the surface of the semiconductor chip ;
A second bonding wire connecting the anode electrode formed on the surface of the semiconductor chip and the first electrode of the termination resistor;
A third bonding wire connecting the cathode electrode formed on the surface of the semiconductor chip and the second electrode of the termination resistor;
Have a, a fourth bonding wire connecting the cathode electrode and the ground electrode formed on the surface of the semiconductor chip,
The second electrode of the termination resistor and the ground electrode are connected only through the third and fourth bonding wires connected in series.
An optical transmitter module.
変調器と半導体レーザとを有する半導体チップが搭載され、接地電極と前記光変調器へ電気信号を入力する入力伝送線路のパターン電極と入力された電気信号に対する終端抵抗とが基板表面上に形成されたキャリア基板を用いた光送信モジュールであって、
前記光変調器のアノード電極およびカソード電極が前記半導体チップの表面に形成され、
前記終端抵抗の第1および第2の電極と、前記入力伝送線路のパターン電極および前記接地電極と、がそれぞれ分離されており、
前記入力伝送線路のパターン電極と前記半導体チップの表面に形成される前記カソード電極とを接続する第1のボンディングワイヤと、
前記半導体チップの表面に形成される前記カソード電極と前記終端抵抗第1の電極とを接続する第2のボンディングワイヤと、
前記半導体チップの表面に形成される前記アノード電極と前記終端抵抗第2の電極とを接続する第3のボンディングワイヤと、
前記半導体チップの表面に形成される前記アノード電極と前記接地電極とを接続する第4のボンディングワイヤと、を有し、
直列に接続される前記第3および前記第4のボンディングワイヤを介してのみ、前記終端抵抗の第2の電極と前記接地電極とが接続される、
ことを特徴とする光送信モジュール。
A semiconductor chip having an optical modulator and a semiconductor laser is mounted, and a ground electrode, a pattern electrode of an input transmission line for inputting an electric signal to the optical modulator, and a termination resistor for the input electric signal are formed on the substrate surface An optical transmission module using a carrier substrate,
An anode electrode and a cathode electrode of the light modulator are formed on the surface of the semiconductor chip;
The first and second electrodes of the termination resistor are separated from the pattern electrode of the input transmission line and the ground electrode, respectively.
A first bonding wire connecting the pattern electrode of the input transmission line and the cathode electrode formed on the surface of the semiconductor chip ;
A second bonding wire connecting the cathode electrode formed on the surface of the semiconductor chip and the first electrode of the termination resistor;
A third bonding wire connecting the anode electrode formed on the surface of the semiconductor chip and the second electrode of the termination resistor;
Have a, a fourth bonding wire connecting the anode electrode and the ground electrode formed on the surface of the semiconductor chip,
The second electrode of the termination resistor and the ground electrode are connected only through the third and fourth bonding wires connected in series.
An optical transmitter module.
請求項のいずれかに記載の光送信モジュールであって、
前記第1のボンディングワイヤと前記入力伝送線路のパターン電極との接合部と、前記第4のボンディングワイヤと前記接地電極との接合部とは、前記半導体チップを挟んだ両側に位置することを特徴とする光送信モジュール。
An optical transmission module according to any one of claims 1-2,
The junction between the first bonding wire and the pattern electrode of the input transmission line and the junction between the fourth bonding wire and the ground electrode are located on both sides of the semiconductor chip. An optical transmission module.
請求項のいずれかに記載の光送信モジュールであって、
前記光変調器が前記接地電極上、もしくは前記入力伝送線路のパターン電極上に配置することを特徴とする光送信モジュール。
The optical transmission module according to any one of claims 1 to 3 ,
The optical transmitter module, wherein the optical modulator is disposed on the ground electrode or on a pattern electrode of the input transmission line.
変調器と半導体レーザとを有する半導体チップが搭載され、接地電極と前記光変調器へ差動電気信号を入力する第1入力伝送線路のパターン電極および第2伝送線路のパターン電極と該第1伝送線路および第2伝送線路に入力された電気信号に対する終端抵抗とが基板表面上に形成されたキャリア基板を用いた光送信モジュールであって、
前記光変調器のアノード電極およびカソード電極が前記半導体チップの表面に形成され、
前記終端抵抗の第1および第2の電極と、前記第2伝送線路のパターン電極および前記第1伝送線路のパターン電極と、がそれぞれ分離されており、
前記第1入力伝送線路のパターン電極と前記半導体チップの表面に形成される前記カソード電極とを接続する第1のボンディングワイヤと、
前記半導体チップの表面に形成される前記カソード電極と前記終端抵抗の第1の電極とを接続する第2のボンディングワイヤと、
前記半導体チップの表面に形成される前記アノード電極と前記終端抵抗の第2の電極とを接続する第3のボンディングワイヤと、
前記半導体チップの表面に形成される前記アノード電極と前記第2入力伝送線路パターン電極とを接続する第4のボンディングワイヤと、を有し、
直列に接続される前記第3および前記第4のボンディングワイヤを介してのみ、前記終端抵抗の第2の電極と前記第2入力伝送線路のパターン電極とが接続される、
ことを特徴とする光送信モジュール。
A semiconductor chip having an optical modulator and a semiconductor laser is mounted, and a pattern electrode of a first input transmission line and a pattern electrode of a second transmission line for inputting a differential electric signal to the ground electrode and the optical modulator, and the first electrode An optical transmission module using a carrier substrate in which a termination resistor for an electrical signal input to the transmission line and the second transmission line is formed on the substrate surface,
An anode electrode and a cathode electrode of the light modulator are formed on the surface of the semiconductor chip;
The first and second electrodes of the termination resistor are separated from the pattern electrode of the second transmission line and the pattern electrode of the first transmission line, respectively.
A first bonding wire connecting the pattern electrode of the first input transmission line and the cathode electrode formed on the surface of the semiconductor chip ;
A second bonding wire connecting the cathode electrode formed on the surface of the semiconductor chip and the first electrode of the termination resistor;
A third bonding wire connecting the anode electrode formed on the surface of the semiconductor chip and the second electrode of the termination resistor;
A fourth bonding wire that connects the anode electrode formed on the surface of the semiconductor chip and the pattern electrode of the second input transmission line;
The second electrode of the termination resistor and the pattern electrode of the second input transmission line are connected only through the third and fourth bonding wires connected in series.
An optical transmitter module.
請求項に記載の光送信モジュールであって、
前記第1のボンディングワイヤと前記第1入力伝送線路のパターン電極との接合部と、前記第4のボンディングワイヤと前記第2の入力伝送線路のパターン電極との接合部とは、前記半導体チップを挟んだ両側に位置することを特徴とする光送信モジュール。
The optical transmission module according to claim 5 , wherein
The junction between the first bonding wire and the pattern electrode of the first input transmission line, and the junction between the fourth bonding wire and the pattern electrode of the second input transmission line include the semiconductor chip . An optical transmission module, characterized by being located on both sides of the sandwich.
請求項のいずれかに記載の光送信モジュールであって、
前記光変調器が前記第1入力伝送線路のパターン電極上または前記第2入力伝送線路のパターン電極上に配置されていることを特徴とする光送信モジュール。
The optical transmission module according to any one of claims 5 to 6 ,
The optical transmission module, wherein the optical modulator is disposed on a pattern electrode of the first input transmission line or a pattern electrode of the second input transmission line.
請求項のいずれかに記載の光送信モジュールであって、
前記第2のボンディングワイヤと前記第3のボンディングワイヤとが隣接してほぼ平行に配置したことを特徴とする光送信モジュール。
The optical transmission module according to any one of claims 1 to 7 ,
An optical transmission module, wherein the second bonding wire and the third bonding wire are arranged adjacent to each other and substantially parallel to each other.
請求項のいずれかに記載の光送信モジュールであって、
前記電気信号のビットレートが9.95Gbit/s以上、かつ11.3Gbit/s以下であることを特徴とする光送信モジュール。
The optical transmission module according to any one of claims 1 to 8 ,
The optical transmission module, wherein the bit rate of the electrical signal is 9.95 Gbit / s or more and 11.3 Gbit / s or less.
請求項のいずれかに記載の光送信モジュールであって、
単一極性の電源により前記半導体チップの半導体レーザと光変調器素子とを駆動することを特徴とする光送信モジュール。
An optical transmission module according to any one of claims 1-9,
An optical transmission module, wherein a semiconductor laser and an optical modulator element of the semiconductor chip are driven by a single polarity power source.
JP2006115147A 2006-04-19 2006-04-19 Optical semiconductor element mounting substrate and optical transmission module Active JP4856465B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2006115147A JP4856465B2 (en) 2006-04-19 2006-04-19 Optical semiconductor element mounting substrate and optical transmission module
EP08004913A EP2009751B1 (en) 2006-04-19 2007-01-09 Optimized wire bonding of an integrated modulator and laser diode on a mount
DE602007010752T DE602007010752D1 (en) 2006-04-19 2007-01-09 Optimized wiring of a laser diode and an integrated modulator on a carrier
DE602007000701T DE602007000701D1 (en) 2006-04-19 2007-01-09 Optimized wiring of a laser diode integrated modulator on a mounting plate
EP07000378A EP1848075B1 (en) 2006-04-19 2007-01-09 Optimized wire bonding of an integrated modulator and laser diode on a mount
US11/622,511 US7400791B2 (en) 2006-04-19 2007-01-12 Semiconductor element mounting board and optical transmission module
CNB2007100063265A CN100499115C (en) 2006-04-19 2007-02-02 Semiconductor element mounting substrate and opitcal transmitters

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006115147A JP4856465B2 (en) 2006-04-19 2006-04-19 Optical semiconductor element mounting substrate and optical transmission module

Publications (2)

Publication Number Publication Date
JP2007286454A JP2007286454A (en) 2007-11-01
JP4856465B2 true JP4856465B2 (en) 2012-01-18

Family

ID=38198229

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006115147A Active JP4856465B2 (en) 2006-04-19 2006-04-19 Optical semiconductor element mounting substrate and optical transmission module

Country Status (5)

Country Link
US (1) US7400791B2 (en)
EP (2) EP2009751B1 (en)
JP (1) JP4856465B2 (en)
CN (1) CN100499115C (en)
DE (2) DE602007010752D1 (en)

Families Citing this family (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8447153B2 (en) * 2006-04-27 2013-05-21 Finisar Corporation Low inductance optical transmitter submount assembly
JP5003464B2 (en) * 2007-12-21 2012-08-15 三菱電機株式会社 Optical transmission module
JP5313730B2 (en) * 2009-03-16 2013-10-09 日本オクラロ株式会社 Optical transmitter and optical transmission module
JP2010287668A (en) * 2009-06-10 2010-12-24 Nippon Telegr & Teleph Corp <Ntt> Semiconductor optical modulator differential type semiconductor device
JP5431799B2 (en) * 2009-06-10 2014-03-05 日本電信電話株式会社 Semiconductor laser and semiconductor optical modulator differential type semiconductor device
JP2010287669A (en) * 2009-06-10 2010-12-24 Nippon Telegr & Teleph Corp <Ntt> Semiconductor laser modulator differential type semiconductor device
JP2011003627A (en) * 2009-06-17 2011-01-06 Nippon Telegr & Teleph Corp <Ntt> Differential signal driving laser array
JP5428978B2 (en) * 2010-03-19 2014-02-26 三菱電機株式会社 Semiconductor light modulator
JP2012108238A (en) * 2010-11-16 2012-06-07 Mitsubishi Electric Corp Optical modulation device
JP2013066033A (en) * 2011-09-16 2013-04-11 Mitsubishi Electric Corp Optical transmission module
JP6136363B2 (en) * 2013-02-27 2017-05-31 住友電気工業株式会社 Light modulation module
US9625671B2 (en) 2013-10-23 2017-04-18 Lasermax, Inc. Laser module and system
US9859680B2 (en) 2013-12-17 2018-01-02 Lasermax, Inc. Shock resistant laser module
JP6299301B2 (en) * 2014-03-14 2018-03-28 三菱電機株式会社 Semiconductor light modulator
JP6614811B2 (en) * 2015-05-29 2019-12-04 新光電気工業株式会社 Semiconductor device stem and semiconductor device
JP6502797B2 (en) * 2015-08-31 2019-04-17 日本オクラロ株式会社 Optical module
JP6708306B2 (en) * 2017-05-17 2020-06-10 三菱電機株式会社 Semiconductor package
JP2019033116A (en) * 2017-08-04 2019-02-28 日本電信電話株式会社 Semiconductor optical integrated element
JP7078313B2 (en) * 2018-03-07 2022-05-31 住友電工デバイス・イノベーション株式会社 Semiconductor device
JP7263697B2 (en) * 2018-04-13 2023-04-25 住友電気工業株式会社 Photodetector
CN108649423B (en) * 2018-05-15 2022-03-22 Oppo广东移动通信有限公司 Laser projection module, depth camera and electronic device
WO2020008594A1 (en) * 2018-07-05 2020-01-09 三菱電機株式会社 Optical transmission module
JP7059865B2 (en) * 2018-08-10 2022-04-26 富士通株式会社 Optical transmitter
WO2020043728A1 (en) * 2018-08-30 2020-03-05 Finisar Sweden Ab Laser carrier-on-chip device
EP3845915B1 (en) * 2018-09-20 2022-11-02 Huawei Technologies Co., Ltd. Photoelectron component and manufacturing method therefor
CN112997407A (en) 2018-10-30 2021-06-18 埃赛力达加拿大有限公司 Low inductance laser driver package with lead frame and thin dielectric layer mask pad definition
US10547158B1 (en) * 2018-10-31 2020-01-28 Avago Technologies International Sales Pte. Limited Optical communication device and system
EP3874566A1 (en) 2018-11-01 2021-09-08 Excelitas Canada Inc. Quad flat no-leads package for side emitting laser diode
CN112997371A (en) * 2018-11-21 2021-06-18 三菱电机株式会社 Optical module
JP7295634B2 (en) * 2018-12-17 2023-06-21 日本ルメンタム株式会社 Optical subassemblies and optical modules
JP7124741B2 (en) * 2019-02-06 2022-08-24 日本電信電話株式会社 optical transmitter
CN110190504B (en) * 2019-05-24 2020-12-15 宁波东立创芯光电科技有限公司 Semiconductor laser array packaging structure
JP6729987B1 (en) * 2019-06-07 2020-07-29 三菱電機株式会社 Optical communication device and transmission module
US20220352690A1 (en) * 2019-10-25 2022-11-03 Mitsubishi Electric Corporation Optical semiconductor device
JP7350646B2 (en) * 2019-12-17 2023-09-26 CIG Photonics Japan株式会社 optical module
CN114982078B (en) * 2020-01-13 2023-04-28 新唐科技日本株式会社 Semiconductor device with a semiconductor device having a plurality of semiconductor chips
JP7369047B2 (en) * 2020-01-30 2023-10-25 CIG Photonics Japan株式会社 Optical modules and optical transmission equipment
JP2021180296A (en) * 2020-05-15 2021-11-18 住友電気工業株式会社 Optical semiconductor device, optical transmitter module and optical transceiver
JP2021180293A (en) * 2020-05-15 2021-11-18 CIG Photonics Japan株式会社 Optical module
US11927839B2 (en) 2020-09-14 2024-03-12 Ii-Vi Delaware, Inc. Broadband electro-absorption optical modulator using on-chip RF input signal termination
JP7437278B2 (en) 2020-09-25 2024-02-22 CIG Photonics Japan株式会社 optical module
CN114792928A (en) * 2021-01-25 2022-07-26 华为技术有限公司 Laser carrier and manufacturing method thereof
JP7226668B1 (en) * 2022-06-10 2023-02-21 三菱電機株式会社 Semiconductor optical integrated device

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1051069A (en) * 1996-07-29 1998-02-20 Mitsubishi Electric Corp Optical semiconductor device
JP4199901B2 (en) 2000-03-10 2008-12-24 日本オプネクスト株式会社 Optical transmission module
JP3367606B2 (en) 2000-03-13 2003-01-14 尚志 鞍石 Card user identification system and card reader
JP4290314B2 (en) 2000-04-26 2009-07-01 Necエレクトロニクス株式会社 High-frequency circuit, module mounted with the same, and communication device
JP2005338678A (en) * 2004-05-31 2005-12-08 Opnext Japan Inc Optical modulator module
JP4934271B2 (en) 2004-06-11 2012-05-16 日本オプネクスト株式会社 Single power supply optical integrated device
JP4578164B2 (en) * 2004-07-12 2010-11-10 日本オプネクスト株式会社 Optical module
JP2007201213A (en) * 2006-01-27 2007-08-09 Opnext Japan Inc Optical receiving module

Also Published As

Publication number Publication date
EP1848075B1 (en) 2009-03-18
US20070248363A1 (en) 2007-10-25
CN101071808A (en) 2007-11-14
EP1848075A1 (en) 2007-10-24
DE602007000701D1 (en) 2009-04-30
CN100499115C (en) 2009-06-10
EP2009751A3 (en) 2009-05-06
EP2009751B1 (en) 2010-11-24
JP2007286454A (en) 2007-11-01
DE602007010752D1 (en) 2011-01-05
US7400791B2 (en) 2008-07-15
EP2009751A2 (en) 2008-12-31

Similar Documents

Publication Publication Date Title
JP4856465B2 (en) Optical semiconductor element mounting substrate and optical transmission module
US7130100B2 (en) Optical module
JP5313730B2 (en) Optical transmitter and optical transmission module
CN107430293B (en) Optical circuit
EP1655630B1 (en) Optical module
JP4815814B2 (en) Optical module
US7011458B2 (en) Optical module
JP5180176B2 (en) TO-CAN type TOSA module
US7010179B2 (en) Differential drive semiconductor optical modulator
US11336072B2 (en) Semiconductor optical device
JP2001257412A (en) Optical transmission module
JP6228560B2 (en) High frequency transmission line and optical circuit
JP2007266493A (en) Laser module
US20210359488A1 (en) Optical module
JP2009026835A (en) Semiconductor laser module and semiconductor laser module device equipped with the same
JP2019033380A (en) Termination circuit and wiring board constituting termination circuit
JP2016181539A (en) Optical circuit

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090114

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090114

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110118

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20110118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110125

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20110204

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111004

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111028

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141104

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4856465

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250