JP4855894B2 - Fabric and manufacturing method thereof - Google Patents

Fabric and manufacturing method thereof Download PDF

Info

Publication number
JP4855894B2
JP4855894B2 JP2006295380A JP2006295380A JP4855894B2 JP 4855894 B2 JP4855894 B2 JP 4855894B2 JP 2006295380 A JP2006295380 A JP 2006295380A JP 2006295380 A JP2006295380 A JP 2006295380A JP 4855894 B2 JP4855894 B2 JP 4855894B2
Authority
JP
Japan
Prior art keywords
fabric
fiber
liquid crystalline
crystalline polymer
nonwoven fabric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006295380A
Other languages
Japanese (ja)
Other versions
JP2008111210A (en
Inventor
英行 山本
幸治 菅埜
俊彦 木村
薫 巽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Du Pont Toray Co Ltd
Toray Industries Inc
Original Assignee
Du Pont Toray Co Ltd
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Du Pont Toray Co Ltd, Toray Industries Inc filed Critical Du Pont Toray Co Ltd
Priority to JP2006295380A priority Critical patent/JP4855894B2/en
Publication of JP2008111210A publication Critical patent/JP2008111210A/en
Application granted granted Critical
Publication of JP4855894B2 publication Critical patent/JP4855894B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

本発明は、引張特性や摩耗性などの機械的特性あるいは低通気性などに優れた布帛およびその製造方法関するものである。   The present invention relates to a fabric excellent in mechanical properties such as tensile properties and wear properties, or low air permeability, and a method for producing the same.

液晶性高分子繊維からなる布帛は、耐熱性や耐薬品性に優れていることから、例えば、フィルター、衣料用芯地、電池セパレーター、石綿に代わる耐熱材料、FRP用補強材等として広く用いられている。   Fabrics made of liquid crystalline polymer fibers are excellent in heat resistance and chemical resistance, and are widely used as, for example, filters, clothing interlinings, battery separators, heat resistant materials to replace asbestos, and FRP reinforcing materials. ing.

そして用途の高度化や多様化によって、引張強度や引裂強度などの機械的強度、耐摩耗性、低通気性等、さらに性能の優れたものが求められている。   Further, with advanced and diversified applications, there are demands for further superior performance such as mechanical strength such as tensile strength and tear strength, wear resistance, and low air permeability.

特許文献1には、フィブリル化した液晶ポリエステル系繊維を含み、三次元的に絡合している不織布が開示されている。当該技術により機械的強度や耐摩耗性の改善は認められるものの、低通気度については改善されていない。   Patent Document 1 discloses a nonwoven fabric containing fibrillated liquid crystal polyester fibers and entangled three-dimensionally. Although the mechanical strength and wear resistance are improved by this technique, the low air permeability is not improved.

特許文献2には、フィブリル化液晶高分子繊維が三次元的に絡合していない不織布が開示されている。これは、抄紙製造工程中に水流処理を施した不織布であって、抄紙の電気的性能は改善されるものの機械的強度や低通気性については改善されていない。   Patent Document 2 discloses a nonwoven fabric in which fibrillated liquid crystal polymer fibers are not entangled three-dimensionally. This is a non-woven fabric that has been subjected to water flow treatment during the papermaking process, and although the electrical performance of the papermaking is improved, the mechanical strength and low air permeability are not improved.

特許文献3にはタテ糸とヨコ糸のカバーファクターを特定した防護用布帛およびその製造方法が開示されている。これは、タテ糸とヨコ糸が緻密に並んだ織物表面のみがフィブリル化したものであるが、緻密構造による突き刺し抵抗値の向上は認められるものの、機械的強度については改善されていない。   Patent Document 3 discloses a protective fabric specifying a cover factor for warp and weft yarns and a method for manufacturing the same. This is a fibrillation only on the surface of the fabric in which the warp and weft yarns are densely arranged. However, although the puncture resistance value is improved by the dense structure, the mechanical strength is not improved.

特許文献4には耐熱性繊維と未延伸繊維のウエブを水流作用により絡合させた後、熱圧着した不織布が開示されている。しかし、フィブリル化までは至っていなく機械的強度や耐摩耗性あるいは低通気性については改善されていない。
特開平9−31817号公報(請求項1、4、段落0010、0017、0018,0025) 特開2003−268662号公報(請求項1、段落0017、0031、0045、0061) 特願2005−299898号公報(請求項1、2、3、段落0015、0016、0029、0052,0053) 特開昭63−28962号公報(請求項1、2)
Patent Document 4 discloses a nonwoven fabric in which a heat-resistant fiber and an unstretched fiber web are entangled by water flow and then thermocompression bonded. However, fibrillation has not been achieved and mechanical strength, wear resistance, or low air permeability has not been improved.
JP-A-9-31817 (Claims 1, 4, paragraphs 0010, 0017, 0018, 0025) JP 2003-268862 A (Claim 1, paragraphs 0017, 0031, 0045, 0061) Japanese Patent Application No. 2005-299898 (Claims 1, 2, 3, paragraphs 0015, 0016, 0029, 0052, 0053) JP-A-63-28962 (Claims 1, 2)

本発明は、かかる従来技術の問題点を解消し、引張強度や引裂き強度などの機械的強度、耐摩耗性および低通気性に優れた、高性能な布帛およびその製造方法を提供することにある。   An object of the present invention is to provide a high-performance fabric excellent in mechanical strength such as tensile strength and tear strength, abrasion resistance, and low air permeability, and a method for producing the same, by solving the problems of the prior art. .

すなわち本発明は、液晶性高分子繊維を含む布帛であって、前記液晶性高分子繊維の少なくとも一部がフィブリル化してその表層部に偏在し、フィブリル化前の繊維径の1/100以下にフィブリル化していることを特徴とする布帛である。 That is, the present invention is a fabric containing a liquid crystalline polymer fiber, wherein at least a part of the liquid crystalline polymer fiber is fibrillated and unevenly distributed in the surface layer portion thereof , and is 1/100 or less of the fiber diameter before fibrillation. A fabric characterized by being fibrillated.

液晶性高分子繊維を含む短繊維ウェブをニードルパンチ処理してフィブリル化前の布帛とし、その後、該布帛に高圧流体噴射加工を複数回繰り返し施すことを特徴とする布帛の製造方法である。 A method for producing a fabric, characterized in that a short fiber web containing liquid crystalline polymer fibers is subjected to needle punching to obtain a fabric before fibrillation, and then, the fabric is repeatedly subjected to high-pressure fluid injection processing a plurality of times.

本発明の布帛によれば、引張強度や引裂強度などの機械的強度、耐摩耗性および低通気性に優れた布帛およびその製造方法を提供することが可能である。   According to the fabric of the present invention, it is possible to provide a fabric excellent in mechanical strength such as tensile strength and tear strength, abrasion resistance and low air permeability, and a method for producing the fabric.

本発明の布帛は、液晶性高分子繊維を含んでなる。液晶性高分子繊維は、いわゆる高機能繊維として前述のような様々な用途に利用することができる。   The fabric of the present invention comprises liquid crystalline polymer fibers. The liquid crystalline polymer fiber can be used for various applications as described above as a so-called high-performance fiber.

液晶性高分子繊維としては例えば、アラミド繊維、全芳香族ポリエステル繊維(例えば株式会社クラレ製、商標名「ベクトラン」)、ポリパラフェニレンベンゾビスオキザゾール繊維(例えば東洋紡株式会社製、商標名「ザイロン」)、超高分子量ポリエチレン繊維(例えば東洋紡株式会社製、商標名「ダイニーマ」)などが挙げられる。   Examples of liquid crystalline polymer fibers include aramid fibers, wholly aromatic polyester fibers (for example, Kuraray Co., Ltd., trade name “Vectran”), polyparaphenylene benzobisoxazole fibers (for example, Toyobo Co., Ltd., trade name “Zylon”). )), Ultra high molecular weight polyethylene fibers (for example, trade name “Dyneema” manufactured by Toyobo Co., Ltd.), and the like.

なかでも、本発明の狙いとするフィブリル化がし易い点から、アラミド繊維が好ましい。   Among these, an aramid fiber is preferable because it can be easily fibrillated as a target of the present invention.

アラミド繊維にはメタ系アラミド繊維とパラ系アラミド繊維とがある。メタ系アラミド繊維としては例えば、ポリメタフェニレンイソフタールアミド繊維(デュポン社製、商標名「ノーメックス」)などのメタ系全芳香族ポリアミド繊維が挙げられる。また、パラ系アラミド繊維としては例えば、ポリパラフェニレンテレフタールアミド繊維(東レ・デュポン株式会社製、商標名「ケブラー」)およびコポリパラフェニレン−3,4−ジフェニールエーテルテレフタールアミド繊維(帝人株式会社製、商標名「テクノーラ」)などのパラ系全芳香族ポリアミド繊維が挙げられる。   Aramid fibers include meta-aramid fibers and para-aramid fibers. Examples of the meta-aramid fiber include meta-type wholly aromatic polyamide fibers such as polymetaphenylene isophthalamide fiber (manufactured by DuPont, trade name “NOMEX”). Examples of para-aramid fibers include polyparaphenylene terephthalamide fibers (trade name “Kevlar” manufactured by Toray DuPont Co., Ltd.) and copolyparaphenylene-3,4-diphenyl ether terephthalamide fibers (Teijin Ltd.). Para-type wholly aromatic polyamide fibers manufactured by the company and trade name “Technola”).

なかでも、高強度および高弾性率であり、耐熱性、耐切創性に優れるとともに、本発明の狙いとするフィブリル化がし易い点から、ポリパラフェニレンテレフタールアミド繊維が特に好ましい。一方、特に耐熱性を要求される用途では、ポリメタフェニレンイソフタールアミド繊維を用いることも好ましい。用途によって、適宜使い分けることができる。   Among these, polyparaphenylene terephthalamide fiber is particularly preferable because it has high strength and high elastic modulus, is excellent in heat resistance and cut resistance, and can be easily fibrillated in the present invention. On the other hand, it is also preferable to use polymetaphenylene isophthalamide fiber for applications that require heat resistance. Depending on the application, it can be properly used.

また、液晶性高分子繊維の1種類を単独で用いてもよいし、2種以上を併用してもよい。   Moreover, one type of liquid crystalline polymer fiber may be used alone, or two or more types may be used in combination.

液晶性高分子繊維のフィブリル化前の太さとしては、0.5〜10dtexが好ましく、より好ましくは1.5〜7dtexである。0.5dtex以下では繊維の強力が弱すぎて布帛の形成が困難であり、一方10dtexを超えると製品が硬くなる。   The thickness of the liquid crystalline polymer fiber before fibrillation is preferably 0.5 to 10 dtex, more preferably 1.5 to 7 dtex. Below 0.5 dtex, the strength of the fiber is too weak to form a fabric, while when it exceeds 10 dtex, the product becomes hard.

また、本発明の不織布は、液晶性高分子繊維の他に、合成繊維、半合成繊維、天然繊維などを含んでいてもよく、用途や目的によって、適宜混用することができる。   Moreover, the nonwoven fabric of this invention may contain synthetic fiber, semi-synthetic fiber, natural fiber etc. other than liquid crystalline polymer fiber, and can be mixed suitably according to a use or the objective.

本発明の布帛は短繊維または長繊維から構成されるが、短繊維の方が薄く柔らかく緻密化な布帛を容易に製造できる点で好ましい。   The fabric of the present invention is composed of short fibers or long fibers. Short fibers are preferable in that a thin, soft and dense fabric can be easily produced.

短繊維の長さとしては20〜150mmが好ましく、より好ましくは20〜100mmである。例えば、短繊維ウエブをニードルパンチ処理などで予め形成する必要があるので、20mm以下では不織布の形成が困難であったり、不織布の引張強力が低くなったりするので好ましくなく、また、150mm以上では糸ヒケが目立つ。   The length of the short fiber is preferably 20 to 150 mm, more preferably 20 to 100 mm. For example, since it is necessary to form a short fiber web in advance by needle punching or the like, if it is 20 mm or less, it is difficult to form a nonwoven fabric, or the tensile strength of the nonwoven fabric is low. Sink marks stand out.

本発明の布帛は、前記液晶高分子繊維の少なくとも一部の繊維表側面径が、フィブリル化前の繊維径の1/100以下にフィブリル化していることが重要である。このようにフィブリル化していることにより、フィブリル同士が蜘蛛の巣状に互いに絡み合ったり繊維に巻きついたりして、布帛の表面を覆うので機械的強度、耐摩耗性、低通気性が向上する。フィブリル化の態様としては、繊維方向にフィブリルが順次枝分かれしたものでも良いし、繊維方向のある区間で同一繊維内部が一挙にフィブリル化したものでも良いし、繊維長さ方向にランダムな位置からフィブリル化したものでもよい。   In the fabric of the present invention, it is important that the surface diameter of at least a part of the liquid crystal polymer fiber is fibrillated to 1/100 or less of the fiber diameter before fibrillation. By being fibrillated in this manner, the fibrils are entangled with each other in the form of a spider web or wound around the fiber to cover the surface of the fabric, so that the mechanical strength, wear resistance, and low air permeability are improved. As a form of fibrillation, fibrils may be sequentially branched in the fiber direction, the inside of the same fiber may be fibrillated in a certain section in the fiber direction, or fibrils may be fibrillated from random positions in the fiber length direction. It may be converted.

また本発明の布帛は、フィブリル化前の繊維径×繊維径の平方視野範囲内に、末端を当該平方視野範囲内に有しない10本以上のフィブリルを有することが好ましい。フィブリルの本数が多いほど、機械的強度、耐摩耗性、低通気性が向上する。   Moreover, it is preferable that the fabric of this invention has 10 or more fibrils which do not have the terminal in the said square visual field range in the square visual field range of the fiber diameter x fiber diameter before fibrillation. The greater the number of fibrils, the better the mechanical strength, wear resistance, and low air permeability.

フィブリル化した液晶高分子繊維は、布帛の表層部に偏在していることが好ましい。そうすることで、布帛の内層部ではフィブリル化前の液晶高分子繊維が布帛の骨格として張り・腰を維持しつつ、表層部のフィブリルにより前述のような効果を奏することができる。   The fibrillated liquid crystal polymer fiber is preferably unevenly distributed in the surface layer of the fabric. By doing so, the above-mentioned effects can be achieved by the fibrils in the surface layer portion while maintaining the tension and waist of the liquid crystal polymer fiber before fibrillation as the skeleton of the fabric in the inner layer portion of the fabric.

布帛としては編織物および不織布があるが、不織布は製造コストが比較的低く形態が安定することから、衣料用や産業資材用として有効に利用できる。   The fabric includes a knitted fabric and a non-woven fabric, but the non-woven fabric can be effectively used for clothing and industrial materials because the manufacturing cost is relatively low and the form is stable.

次に、本発明の布帛を製造する方法について説明する。   Next, a method for producing the fabric of the present invention will be described.

本発明の布帛の前駆体である、フィブリル化前の布帛は、長繊維や短繊維からなる編織物やニードルパンチ加工、軽い熱プレス加工、樹脂加工、流体噴射加工等からなる不織布により得ることができる。なかでも、フィブリル化し易く、かつ後述するような強力な高圧流体噴射加工の繰り返しに耐え得る、不織布を得られる手段として、ニードルパンチ加工が好ましい。   The fabric before fibrillation, which is the precursor of the fabric of the present invention, can be obtained from a knitted fabric made of long fibers or short fibers, a needle punch process, a light heat press process, a resin process, a fluid injection process, or the like. it can. Among them, needle punching is preferable as a means for obtaining a nonwoven fabric that is easily fibrillated and can withstand repeated high-pressure fluid jet processing as described later.

例えば、不織布について製造方法を詳細に説明するならば、液晶高分子繊維をカード式によりウエブとし、積層したシートの上から幅方向および長さ方向に植えた例えば9バーブ型の針を、前記シートに向かって1分間に数百回打ち込みながら、前記シートを移動させることによって不織布を形成することができる。   For example, if a manufacturing method is demonstrated in detail about a nonwoven fabric, a liquid crystal polymer fiber is made into a card | curd type | formula web, for example, the 9 barb type needles planted in the width direction and the length direction from the top of the laminated sheet, the sheet A non-woven fabric can be formed by moving the sheet while driving it several hundred times per minute.

本発明の不織布の製造方法は、液晶高分子繊維をフィブリル化する手段として、ウオータージェットパンチ等の高圧流体噴射加工を採用する。高圧流体噴射加工によって、液晶高分子繊維を効率よく均一にフィブリル化させることができる。また、前述のように、フィブリルを不織布の表層部に偏在させることができる。また、不織布を厚さ方向に圧縮させ、緻密なものとすることができる。   The method for producing a nonwoven fabric of the present invention employs high-pressure fluid jet processing such as a water jet punch as means for fibrillating liquid crystal polymer fibers. The liquid crystal polymer fiber can be fibrillated efficiently and uniformly by high-pressure fluid jet processing. Further, as described above, fibrils can be unevenly distributed in the surface layer portion of the nonwoven fabric. In addition, the nonwoven fabric can be compressed in the thickness direction to be dense.

高圧流体噴射の圧力としては、5〜30MPaが好ましく、より好ましくは15〜20MPaである。5MPa未満ではフィブリル化の度合いが不十分であり、フィブリル同士の交絡も不十分となる。一方、30MPaを超えると、繊維あるいはフィブリルが飛び散って不織布の強度が逆に低下したり、噴射孔筋が生じたりする。   The pressure for high-pressure fluid injection is preferably 5 to 30 MPa, more preferably 15 to 20 MPa. If it is less than 5 MPa, the degree of fibrillation is insufficient, and entanglement between fibrils is also insufficient. On the other hand, if it exceeds 30 MPa, fibers or fibrils will scatter and the strength of the non-woven fabric will decrease, or injection hole streaks will occur.

高圧流体噴射ノズルの孔径としては、0.05〜2.0mmが好ましい。   The hole diameter of the high pressure fluid injection nozzle is preferably 0.05 to 2.0 mm.

高圧流体噴射ノズルの孔間隔としては、0.3〜10mmが好ましく、このような間隔で並べたものを一列あるいは複数列に配列した装置を用いるとよい。   The hole interval of the high-pressure fluid injection nozzle is preferably 0.3 to 10 mm, and an apparatus in which those arranged at such an interval are arranged in one or a plurality of rows may be used.

噴射孔と処理対象の不織布との間隔としては、1〜10cmが好ましい。   As a space | interval of an injection hole and the nonwoven fabric of a process target, 1-10 cm is preferable.

処理対象の不織布を相対的に移動させる加工速度としては、0.1〜10m/minが好ましく、より好ましくは1〜3m/minである。加工速度が遅い方がフィブリル化の効果は大きくなるが、0.1m未満では高圧流体噴射が不織布上で集中しやすく、液晶高分子繊維あるいはフィブリルの脱落や噴射孔筋が生じやすく、10mを超えるとフィブリルが少なくなる。   The processing speed for relatively moving the nonwoven fabric to be treated is preferably 0.1 to 10 m / min, more preferably 1 to 3 m / min. The slower the processing speed, the greater the effect of fibrillation, but if it is less than 0.1 m, high-pressure fluid injection tends to concentrate on the nonwoven fabric, and liquid crystal polymer fibers or fibrils are likely to fall off and injection hole streaks exceed 10 m. And less fibrils.

本発明の不織布の製造方法は、液晶性高分子繊維を含む布帛に高圧流体噴射加工を複数回繰り返し施すことが重要である。そうすることで、十分なフィブリル化を達成することができる。   In the method for producing a nonwoven fabric of the present invention, it is important to repeatedly apply high-pressure fluid jet processing to a fabric containing liquid crystalline polymer fibers a plurality of times. By doing so, sufficient fibrillation can be achieved.

両面合わせて1回のみの高圧流体噴射加工では、仮に流体噴射圧を上げても、また布帛の加工速度を遅くしても、結局は前述のように繊維あるいはフィブリルの脱落や噴射孔筋が発生し、十分なフィブリル化は達成できない。   Even if the fluid injection pressure is increased or the fabric processing speed is reduced in the high-pressure fluid injection processing that is performed only once on both sides, the fibers or fibrils are dropped or the injection hole streaks occur as described above. However, sufficient fibrillation cannot be achieved.

また、複数回の高圧流体噴射加工の間または前後に、もみ加工や叩解加工を補助的に施してもよい。   In addition, fir processing and beating processing may be performed supplementarily during or before and after multiple times of high-pressure fluid injection processing.

[測定方法]
(1)フィブリル径・フィブリル径比・フィブリル本数
布帛表面のフィブリル化した繊維を、走査型電子顕微鏡(日立製作所製 S−3500N)にて1000倍に拡大して撮影した。尚、フィブリル径が本実施例のものと比べ極端に細いかまたは極端に太い場合には、300〜5000倍の範囲内の倍率にて撮影してもよい。
画像からフィブリル化した繊維を10本選定し、フィブリル径のd1(nm)の平均値を算出した。
また、フィブリル化する前の繊維径d0を測定し、フィブリル径比としてd1/d0を1/xで表した。
また、フィブリル本数として、撮影した写真からフィブリル化前の繊維径×繊維径の平方視野を無作為に20抽出し、当該平方視野範囲内に末端を有しないフィブリルの数を測定し、20の視野の平均値を算出した。図3に平方視野範囲内におけるフィブリルの数え方の例を示す。
[Measuring method]
(1) Fibril diameter, fibril diameter ratio, number of fibrils The fibrillated fibers on the fabric surface were photographed with a scanning electron microscope (S-3500N manufactured by Hitachi, Ltd.) at a magnification of 1000 times. In the case where the fibril diameter is extremely thin or extremely thick compared to that of the present embodiment, photographing may be performed at a magnification within a range of 300 to 5000 times.
Ten fibers fibrillated from the image were selected, and the average value of d1 (nm) of the fibril diameter was calculated.
Further, the fiber diameter d0 before fibrillation was measured, and d1 / d0 was expressed by 1 / x as the fibril diameter ratio.
In addition, as the number of fibrils, 20 square fields of fiber diameter before fiber formation × fiber diameter were randomly extracted from the photographed photographs, and the number of fibrils having no terminal in the square field range was measured. The average value of was calculated. FIG. 3 shows an example of how to count fibrils within the square field range.

(2)フィブリルによる覆度合い
走査型電子顕微鏡(日立製作所製 S−3500N)にて布帛表面を300倍に拡大した写真を撮り、画像全面にフィブリルが蜘蛛の巣状に覆っている度合いを、次の基準にて視覚判定した。
◎:ほぼ全面を覆っている(図2参照)。
○:50%程度を覆っている。
△:10%以下を覆っている。
×:ほとんど覆っていないもしくは全く覆っていない(図1参照)。
(2) Degree of coverage with fibrils Take a photo of the surface of the fabric magnified 300 times with a scanning electron microscope (S-3500N, manufactured by Hitachi, Ltd.). Visual judgment was made based on the above criteria.
A: The entire surface is covered (see FIG. 2).
○: Covers about 50%.
Δ: 10% or less is covered.
X: Almost not covered or not covered at all (see FIG. 1).

(3)目付(g/m
JIS L 1906:2000 5.2に基づき、20cm×25cmの試験片を、試料の幅1m当たり3枚採取し、標準状態におけるそれぞれの質量(g)を量り、その平均値を1m当たりの質量(g/m)で表した。
(3) Weight per unit (g / m 2 )
In accordance with JIS L 1906: 2000 5.2, three test pieces of 20 cm × 25 cm were taken per 1 m of the sample width, each mass (g) in the standard state was measured, and the average value was the mass per 1 m 2. Expressed in (g / m 2 ).

(4)厚さ(mm)
JIS L 1906:2000で準用するJIS L 1096:1999に準じて、試料の幅1m当たり10か所について、厚さ測定機を用いて、直径22mmの加圧子による2kPaの加圧下、厚さを落ち着かせるために10秒間待った後に厚さを測定し、平均値を算出した。
(4) Thickness (mm)
Consistent with JIS L 1906: 2000, applied to JIS L 1906: 2000, 10 thicknesses per 1 m width of the sample, using a thickness measuring machine, the thickness is reduced under a pressure of 2 kPa with a 22 mm diameter pressurizer. Then, after waiting for 10 seconds, the thickness was measured and the average value was calculated.

(5)見掛比重(g/cm
上記で測定した目付および厚さから、次式によって算出した。
=S/(1000×t)
ここに、A:見掛比重
:目付(g/m
t:厚さ(mm)。
(5) Apparent specific gravity (g / cm 3 )
From the basis weight and thickness measured above, calculation was performed according to the following formula.
A g = S m / (1000 × t)
Here, A g : apparent specific gravity S m : basis weight (g / m 2 )
t: thickness (mm).

(6)引張強さ(MPa)
JIS K 6550:1994に準拠して測定した。
90mm×20mmの試験片をたて方向及びよこ方向にそれぞれ2枚採取した。
試験片を引張試験機に、つかみ間の距離50mmで取り付け、引張速度100mm/minで引っ張り、切断時までの最大荷重を読み取り、次式によって引張強さを求め、2方向×2枚の平均値を算出した。
T=W/S
ここに、T:引張強さ(MPa)
W:切断時までの最大荷重(N)
S:試験片の断面積(厚さ×幅)(mm)。
(6) Tensile strength (MPa)
It measured based on JIS K 6550: 1994.
Two test pieces of 90 mm × 20 mm were collected in the vertical direction and the horizontal direction.
Attach the test piece to the tensile tester at a distance of 50 mm, pull at a pulling speed of 100 mm / min, read the maximum load until cutting, and obtain the tensile strength by the following formula. Was calculated.
T = W / S
Where T: Tensile strength (MPa)
W: Maximum load until cutting (N)
S: Cross-sectional area of the test piece (thickness × width) (mm 2 ).

(7)伸び率(%)
上記(6)の引張強さ試験において、切断時の長さを読み、次式に伸び率を求め、2方向×2枚の平均値を算出した。
E=[(L−L)/L]×100
ここに、E:切断時の伸び(%)
:標線距離(50mm)
L:切断時の標線間の長さ。
(7) Growth rate (%)
In the tensile strength test of (6) above, the length at the time of cutting was read, the elongation was calculated by the following formula, and the average value of 2 directions × 2 sheets was calculated.
E = [(L−L 0 ) / L 0 ] × 100
Where E: Elongation at cutting (%)
L 0 : Marking distance (50 mm)
L: Length between marked lines at the time of cutting.

(7)引裂強さ(N/mm)
JIS K 6550:1994に準拠して測定した。
25mm×100mmの試験片をたて方向及びよこ方向にそれぞれ2枚採取し、短辺の中央に辺と直角に70mmの切れ目をいれた。
試験片の各舌片を引張試験機に、つかみ間の距離50mmで取り付け、引裂速度100mm/minで引き裂いて、切断時までの最大荷重を読み、次式によって引裂強さを求め、2方向×2枚の平均値を算出した。
=F/t
ここに、T:引裂強さ(N/mm)
F:切断時までの最大荷重(N)
t:試験片の厚さ(mm)。
(7) Tear strength (N / mm)
It measured based on JIS K 6550: 1994.
Two test pieces of 25 mm × 100 mm were sampled in the vertical direction and the horizontal direction, and a 70 mm cut was made at the center of the short side at right angles to the side.
Attach each tongue of the test piece to a tensile tester at a distance of 50 mm between the grips, tear it at a tearing speed of 100 mm / min, read the maximum load until cutting, and obtain the tear strength by the following formula. The average value of two sheets was calculated.
T 1 = F / t
Here, T 1 : tear strength (N / mm)
F: Maximum load until cutting (N)
t: thickness of the test piece (mm).

(8)摩耗強さ(級)
JIS L 1906:2000 5.6で準用するJIS L 1096:1999 8.17.3 C法(テーバ形法)式摩耗試験に準じて、外観変化の判定を行った。
標準状態に調整した試料から、直径13cmの円形試験片を5枚採取し、各試験片の中心に直径約6mmの孔を開け、テーバ形摩耗試験機を用い、試験片の表面を上にして試料ホルダのゴムマット上に取り付けた。
次に、摩耗輪(No.CS−10、荷重500g)を試験片の上に載せて70回/minで100回、回転摩擦した。外観変化の等級を判定した。
(8) Wear strength (class)
Appearance change was determined according to JIS L 1096: 1999 8.17.3 C method (Taber type method) wear test applied mutatis mutandis in JIS L 1906: 2000 5.6.
Five circular specimens with a diameter of 13 cm were collected from the sample adjusted to the standard state, a hole with a diameter of about 6 mm was made in the center of each specimen, and the surface of the specimen was turned up using a Taber type abrasion tester. The sample holder was mounted on a rubber mat.
Next, a wear wheel (No. CS-10, load 500 g) was placed on the test piece and subjected to rotational friction 100 times at 70 times / min. The grade of appearance change was judged.

(9)切創抵抗値(N)
ISO 13997法に準拠し測定した。
本測定値は、緩やかに切り裂くような静的切創性を評価することが出来る。
(9) Cut resistance value (N)
Measurement was performed in accordance with ISO 13997 method.
This measurement value can evaluate the static cutability that gently cuts.

(10)衝撃吸収エネルギー(×10−2 ジュール)
剃刀(フェザー安全剃刀株式会社製、刃物(品名:No99483))を振り子棒の先に取り付け、質量w、長さLの振り子棒を垂直位置から引き上げて垂直位置に対し角度を30°(θ)の位置に固定させた。振り子棒が角度30°から振り抜け通過する最下部の位置に編地サンプルを固定した。振り子を30°の位置から解放し、刃先がサンプルを切断・通過させた。切断・通過後に振り子棒が振り上がった最大角度θを読みとり、下記式にて衝撃吸収エネルギーJを算出した。衝撃吸収エネルギーは大きいほど耐切創性に優れる。
本測定値は、瞬間的に切り裂くような動的切創性を評価することが出来る。
J(×10−2 ジュール )=WgL(COSθ−COSθ
ここで、W=526g、
L=12.9cm
g:重力加速度(9.80665m/s)。
(10) Shock absorption energy (× 10 −2 Joule)
A razor (manufactured by Feather Safety Razor Co., Ltd., blade (product name: No99483)) is attached to the tip of the pendulum bar, and the pendulum bar having a mass w and a length L is pulled up from the vertical position to make an angle of 30 ° (θ 2 ). The knitted fabric sample was fixed at the lowest position where the pendulum bar swings off from an angle of 30 °. The pendulum was released from the 30 ° position, and the cutting edge cut and passed the sample. And reading the maximum angle theta 1 which the pendulum rod is raised swing after cutting-pass, it was calculated impact absorption energy J by the following equation. The greater the shock absorption energy, the better the cut resistance.
This measurement value can evaluate the dynamic cutability that is instantaneously cut.
J (× 10 -2 Joules) ) = WgL (COSθ 1 −COSθ 2 )
Where W = 526 g,
L = 12.9cm
g: Gravitational acceleration (9.80665 m / s 2 ).

(11)曲げ反発性(mN)
JIS L1096:1999 曲げ反発性 A法(ガーレ法)に準拠し測定した。
長さ89mm、幅25mmの試験片をタテ方向に5枚採取した。
ガーレ試験機を用い、試験片をチャックに取り付け、可動アーム上の目盛89/25.4に合わせてチャックを固定した。
次に、振子の支点から下部のおもりから取付孔a,b,cにおもりW(=50g),W(=25g),W(=5g)を取り付けて可動アームを2回/minの速度で定速回転させ、試験片が振子から離れるときの目盛RGを読み、下の式によって曲げ反撥性として剛軟度を求めた。試験片の表裏を測り、2面×5枚の平均値を算出した。
=RG×(aW+bW+cW)×[(L―12.7)/d]×3.375×10−5
ここに、B:剛軟度(mN)
RG:試験片が振子から離れるときの目盛
a,b,c:荷重取付孔と支点間の距離(mm)
,W,W:荷重取付孔に取り付けたおもりの質量(g)
L:試験片の長さ(mm)
d:試験片の幅(mm)。
(11) Bending resilience (mN)
JIS L1096: 1999 Bending resilience Measured according to the A method (Gurley method).
Five test pieces having a length of 89 mm and a width of 25 mm were collected in the vertical direction.
Using a Gurley tester, the test piece was attached to the chuck, and the chuck was fixed in accordance with the scale 89 / 25.4 on the movable arm.
Next, weights W a (= 50 g), W b (= 25 g), W c (= 5 g) are attached from the weight of the pendulum to the mounting holes a, b, c from the lower weight, and the movable arm is moved twice / min. Was rotated at a constant speed, the scale RG when the test piece was separated from the pendulum was read, and the bending resistance was determined as the bending repulsion by the following equation. The front and back of the test piece were measured, and the average value of 2 × 5 sheets was calculated.
B r = RG × (aW a + bW b + cW c ) × [(L-12.7) 2 /d]×3.375×10 −5
Here, B r : bending resistance (mN)
RG: Scale when the test piece leaves the pendulum a, b, c: Distance between load mounting hole and fulcrum (mm)
W a , W b , W c : Weight of weight attached to load attachment hole (g)
L: Length of test piece (mm)
d: Width of test piece (mm).

(12)針貫通抵抗値(g)
オートグラフSD−100(島津製作所製)装置を用いて、針が不織布を貫通するときの抵抗値(g)を測定した。針を不織布に垂直の角度で突き刺さるようにセットし、針先を100mm/分にて押し付け、針が突き刺さった時の最大抵抗値を測定した。n=5の平均値で示した。針の規格は家庭用ミシン針(オルガン社製の#11)を使用した。
(12) Needle penetration resistance value (g)
Using an Autograph SD-100 (manufactured by Shimadzu Corporation) device, the resistance value (g) when the needle penetrates the nonwoven fabric was measured. The needle was set to pierce the nonwoven fabric at a vertical angle, the tip of the needle was pressed at 100 mm / min, and the maximum resistance value when the needle pierced was measured. It showed by the average value of n = 5. The needle standard was a household sewing needle (# 11 manufactured by Organ).

(13)通気量(cm/cm・sec)
JIS L 1096:1999 8.27.1 A法(フラジール形法)に準じて測定した。試料の異なる5か所から約20cm×20cmの試験片を採取し、フラジール形試験機を用い、円筒の一端(吸気側)に試験片を取り付けた。試験片の取り付けに際し、円筒の内径と同一の内径を有する平面状ゴム製リングパッキン(厚さ1mm)を円筒の試験片取り付け側に設置し、その上に試験片を置き、試験片上から吸気部分を塞がないように均等に約98N(10kgf)の荷重を加え試験片の取り付け部におけるエアーの漏れを防止した。試験片を取り付けた後、加減抵抗器によって傾斜形気圧計が125Paの圧力を示すように吸込みファンを調整し、そのときの垂直形気圧計の示す圧力と、使用した空気孔の種類とから、試験機に付属の表によって試験片を通過する空気量を求め、5枚の試験片についての平均値を算出した。
(13) Aeration rate (cm 3 / cm 2 · sec)
Measured according to JIS L 1096: 1999 8.27.1 A method (Fragile form method). Test pieces of about 20 cm × 20 cm were collected from five different locations of the samples, and the test pieces were attached to one end (intake side) of the cylinder using a Frazier type tester. When mounting the test piece, a flat rubber ring packing (thickness 1 mm) having the same inner diameter as the inner diameter of the cylinder is placed on the cylindrical test piece mounting side, the test piece is placed on it, and the air intake part from above the test piece A load of about 98 N (10 kgf) was evenly applied so as not to block the air, and leakage of air at the test piece mounting portion was prevented. After attaching the test piece, the suction fan was adjusted so that the inclination type barometer showed a pressure of 125 Pa by an adjusting resistor, and from the pressure indicated by the vertical type barometer and the type of air hole used, The amount of air passing through the test piece was obtained from a table attached to the test machine, and the average value for the five test pieces was calculated.

[実施例1]
(液晶性高分子繊維不織布)
液晶性高分子繊維として、平均繊維長51mm、繊度2.0dtex(断面直径13.3μm)のポリパラフェニレンテレフタールアミド(東レ・デユポン株式会社製“ケブラー”)短繊維を用いた。
[Example 1]
(Liquid crystalline polymer fiber nonwoven fabric)
As the liquid crystalline polymer fibers, polyparaphenylene terephthalamide (“Kevlar” manufactured by Toray Deyupon Co., Ltd.) short fibers having an average fiber length of 51 mm and a fineness of 2.0 dtex (cross-sectional diameter of 13.3 μm) were used.

この液晶性高分子繊維をカード機にかけてウエブを作成し、さらに積層したシートとした。   A web was prepared by applying the liquid crystalline polymer fiber to a card machine, and a laminated sheet was obtained.

ウエブを積層したシートに対して下記条件にてニードルパンチ加工を施し、目付290g/m、密度0.14g/cmの不織布を得た。
装置 :有限会社大和機工製 上針間欠型装置
ニードル種類 :9バーブニードル(オルガン社製 FPD−1)
ニードル間隔 :10mm間隔1列に幅方向80針、長さ方向に40列
パンチング回数:200回/分
シート移動速度:1.2m/分。
Needle punching was performed on the web-laminated sheet under the following conditions to obtain a nonwoven fabric having a basis weight of 290 g / m 2 and a density of 0.14 g / cm 3 .
Apparatus: Upper needle intermittent type apparatus needle manufactured by Yamato Kiko Co., Ltd. Type: 9 barb needle (FPD-1 manufactured by Organ)
Needle interval: 80 rows in the width direction in a row of 10 mm intervals, 40 rows in the length direction Punching frequency: 200 times / min Sheet moving speed: 1.2 m / min.

(高圧流体噴射加工工程)
上記液晶性高分子繊維不織布に対して、下記条件にて高圧流体噴射加工としてウオータージェットパンチ処理を施した。
装置:PERFOJET社製 “JETLACE”(登録商標)
ノズル孔径 :0.1mm
ノズル列 :1列
ノズルピッチ:0.6mm
ノズル噴射孔と不織布との距離:1.5cm
不織布移動速度:1m/分
最大水圧 :20MPa
処理回数 :表面1回、裏面1回。
(High-pressure fluid jet machining process)
The liquid crystalline polymer fiber nonwoven fabric was subjected to water jet punching as high-pressure fluid jetting under the following conditions.
Apparatus: “JET LACE” (registered trademark) manufactured by PERFOJET
Nozzle hole diameter: 0.1 mm
Nozzle row: 1 row Nozzle pitch: 0.6mm
Distance between nozzle injection hole and nonwoven fabric: 1.5cm
Nonwoven fabric moving speed: 1 m / min Maximum water pressure: 20 MPa
Number of treatments: once on the front side and once on the back side.

[実施例2]
(液晶性高分子繊維不織布)
実施例1と同様にして、液晶性高分子繊維不織布を得た。
[Example 2]
(Liquid crystalline polymer fiber nonwoven fabric)
In the same manner as in Example 1, a liquid crystalline polymer fiber nonwoven fabric was obtained.

(高圧流体噴射加工工程)
上記液晶性高分子繊維不織布に対して、処理回数を交互に表面3回、裏面3回とした以外は実施例1と同様にして、高圧流体噴射加工としてウオータージェットパンチ処理を施した。
(High-pressure fluid jet machining process)
The liquid crystalline polymer fiber nonwoven fabric was subjected to water jet punching as high-pressure fluid jetting in the same manner as in Example 1 except that the number of treatments was alternately 3 times on the front side and 3 times on the back side.

[実施例3]
(液晶性高分子繊維不織布)
実施例1と同様にして、液晶性高分子繊維不織布を得た。
[Example 3]
(Liquid crystalline polymer fiber nonwoven fabric)
In the same manner as in Example 1, a liquid crystalline polymer fiber nonwoven fabric was obtained.

(高圧流体噴射加工工程)
上記液晶性高分子繊維不織布に対して、最大水圧を表面に対しては8MPa、裏面に対しては5MPaとした以外は実施例1と同様にして、高圧流体噴射加工としてウオータージェットパンチ処理を施した。
(High-pressure fluid jet machining process)
The liquid crystalline polymer fiber nonwoven fabric was subjected to water jet punching as high-pressure fluid jetting in the same manner as in Example 1 except that the maximum water pressure was 8 MPa for the front surface and 5 MPa for the back surface. did.

[比較例1]
(液晶性高分子繊維不織布)
実施例1と同様にして、液晶性高分子繊維不織布を得た。
[Comparative Example 1]
(Liquid crystalline polymer fiber nonwoven fabric)
In the same manner as in Example 1, a liquid crystalline polymer fiber nonwoven fabric was obtained.

(高圧流体噴射加工工程)
高圧流体噴射加工は施さなかった。
(High-pressure fluid jet machining process)
High-pressure fluid injection processing was not performed.

[比較例2]
(液晶性高分子繊維不織布)
実施例1と同様にして、液晶性高分子繊維不織布を得た。
[Comparative Example 2]
(Liquid crystalline polymer fiber nonwoven fabric)
In the same manner as in Example 1, a liquid crystalline polymer fiber nonwoven fabric was obtained.

(高圧流体噴射加工工程)
上記液晶性高分子繊維不織布に対して、最大水圧を片面にのみ8MPa、不織布移動速度:5m/分とした以外は実施例1と同様にして、高圧流体噴射加工としてウオータージェットパンチ処理を施した。
(High-pressure fluid jet machining process)
The liquid crystalline polymer fiber nonwoven fabric was subjected to water jet punching as high-pressure fluid jetting in the same manner as in Example 1 except that the maximum water pressure was 8 MPa only on one side and the nonwoven fabric moving speed was 5 m / min. .

各実施例・比較例のなかでも、実施例2は、フィブリル化度合いが最も大きく、引張強度、引裂強度などの機械的強度、動的耐切創性、針貫通抵抗値、低通気度のいずれにも優れた特性を有している。これは、不織布の表面がフィブリル化糸で緻密に覆われ、内層部も高圧流体噴射加工により高密度化するので、効果が最も大きくあらわれたものと考える。   Among the examples / comparative examples, Example 2 has the largest degree of fibrillation and can be any of mechanical strength such as tensile strength and tear strength, dynamic cut resistance, needle penetration resistance, and low air permeability. Also have excellent properties. This is because the surface of the nonwoven fabric is densely covered with fibrillated yarns, and the inner layer portion is also densified by high-pressure fluid injection processing.

本発明の布帛は、耐熱性、耐薬品性、低通気性に優れていることから、フィルター、電池セパレーター、クリーニング基材等に適している。また、耐切創性、耐針貫通性に優れていることから、防護用品、芯地、フェルト等に適している。また、耐熱性に優れていることから、アスベストの代替品に適している。また、機械的特性に優れていることから、FRP用補強材に適している。また、耐摩耗性に優れていることから、ワイパー、印刷機器、自動車用耐摩擦材、自動車内装材に適している。また、低通気性に優れていることから、マスクに適している。   The fabric of the present invention is suitable for filters, battery separators, cleaning substrates, and the like because it is excellent in heat resistance, chemical resistance, and low air permeability. In addition, since it is excellent in cut resistance and needle penetration resistance, it is suitable for protective articles, interlinings, felts and the like. In addition, because of its excellent heat resistance, it is suitable as a substitute for asbestos. Moreover, since it is excellent in mechanical characteristics, it is suitable for a reinforcing material for FRP. Moreover, since it is excellent in abrasion resistance, it is suitable for wipers, printing equipment, automobile friction-resistant materials, and automobile interior materials. Moreover, since it is excellent in low air permeability, it is suitable for a mask.

高圧流体噴射加工前の不織布表面拡大写真である。フィブリル化糸はほとんど認められない。It is a nonwoven fabric surface enlarged photograph before a high-pressure fluid injection process. There is almost no fibrillated yarn. 高圧流体噴射加工後の不織布表面拡大写真である。フィブリル化糸は短繊維を緻密に覆っている。It is a nonwoven fabric surface enlarged photograph after a high-pressure fluid injection process. The fibrillated yarn densely covers the short fiber. フィブリル本数測定において、平方視野範囲内にフィブリル末端が有る場合と無い場合と区別して数える数え方を例示した図である。In the measurement of the number of fibrils, it is a diagram exemplifying a counting method that distinguishes between the case where there is a fibril end in the square field range and the case where there is no fibril end.

Claims (5)

液晶性高分子繊維を含む布帛であって、前記液晶性高分子繊維の少なくとも一部の繊維がフィブリル化してその表層部に偏在し、フィブリル化前の繊維径の1/100以下にフィブリル化していることを特徴とする布帛。 A fabric comprising liquid crystalline polymer fibers, wherein at least some of the liquid crystalline polymer fibers are fibrillated and unevenly distributed in the surface layer portion, and are fibrillated to 1/100 or less of the fiber diameter before fibrillation. The fabric characterized by having. フィブリル化前の繊維径×繊維径の平方視野範囲内に、末端を当該平方視野範囲内に有しない10本以上のフィブリルを有する、請求項1記載の布帛。 The fabric according to claim 1, wherein the fabric has 10 or more fibrils having no end in the square field range of fiber diameter x fiber diameter before fibrillation. 前記液晶性高分子繊維がアラミド繊維である、請求項1または2記載の布帛。 The fabric according to claim 1 or 2, wherein the liquid crystalline polymer fiber is an aramid fiber. 布帛が不織布である請求項1〜3いずれかに記載の布帛。 The fabric according to any one of claims 1 to 3 , wherein the fabric is a non-woven fabric. 液晶性高分子繊維を含む短繊維ウェブをニードルパンチ処理してフィブリル化前の布帛とし、その後、該布帛に高圧流体噴射加工を複数回繰り返し施すことを特徴とする布帛の製造方法。 A method for producing a fabric, characterized in that a short fiber web containing liquid crystalline polymer fibers is subjected to needle punching to obtain a fabric before fibrillation, and then the fabric is repeatedly subjected to high-pressure fluid injection processing a plurality of times.
JP2006295380A 2006-10-31 2006-10-31 Fabric and manufacturing method thereof Active JP4855894B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006295380A JP4855894B2 (en) 2006-10-31 2006-10-31 Fabric and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006295380A JP4855894B2 (en) 2006-10-31 2006-10-31 Fabric and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2008111210A JP2008111210A (en) 2008-05-15
JP4855894B2 true JP4855894B2 (en) 2012-01-18

Family

ID=39443877

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006295380A Active JP4855894B2 (en) 2006-10-31 2006-10-31 Fabric and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4855894B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5254720B2 (en) * 2008-09-24 2013-08-07 株式会社クラレ Method for producing fibrillated molten liquid crystal polymer fiber
JP5596295B2 (en) * 2009-03-13 2014-09-24 東レ・デュポン株式会社 Nanofiber fiber structures and textile products
JP2013159887A (en) * 2012-02-09 2013-08-19 Kuraray Co Ltd High performance wiping material with excellent durability
CA2972214C (en) * 2014-12-29 2023-03-21 Kuraray Kuraflex Co., Ltd. Fiber assembly and liquid absorbent sheet-like article including the same and method of manufacturing fiber assembly

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0931817A (en) * 1995-05-10 1997-02-04 Japan Vilene Co Ltd Nonwoven fabric
JP2000008268A (en) * 1998-06-19 2000-01-11 Toray Ind Inc Aramid-based fiber fabric and its production
JP3798326B2 (en) * 2002-03-07 2006-07-19 三菱製紙株式会社 Nonwoven fabric and method for producing the same
JP4799119B2 (en) * 2005-10-14 2011-10-26 東レ・デュポン株式会社 Protective fabric and method for producing the same

Also Published As

Publication number Publication date
JP2008111210A (en) 2008-05-15

Similar Documents

Publication Publication Date Title
KR100449944B1 (en) Multi-layered felt, member formed of same, and method of manufacturing same
JP6801643B2 (en) Laminated non-woven fabric
USRE31601E (en) Composite fabric combining entangled fabric of microfibers and knitted or woven fabric and process for producing same
JP5041398B2 (en) Protective clothing
JP4855894B2 (en) Fabric and manufacturing method thereof
JP6809224B2 (en) Cloth
JP7468505B2 (en) Nonwoven fabric for sound absorption, sound absorbing material, and method for manufacturing nonwoven fabric for sound absorbing
JP5502673B2 (en) Flame retardant laminated fiber structure
JP6950525B2 (en) Laminate
CN112423978A (en) Conformable polyethylene fabric and articles made therefrom
US10507142B2 (en) Fiber assembly and liquid absorbent sheet-like article including the same and method of manufacturing fiber assembly
JP4799119B2 (en) Protective fabric and method for producing the same
CN110225787B (en) Filter cloth for bag filter and manufacturing method thereof
JP2016129992A (en) Protective material
JP2009241365A (en) Protective fabric and its manufacturing method
JP2009035826A (en) Fabric and method for producing the same
JPH10298869A (en) Moisture-permeable and waterproof cloth
CN108883319B (en) Flame and particle resistant knit fabric articles
JP4286411B2 (en) Fluororesin-based fiber, sheet-like material, and production method thereof
JP4165241B2 (en) Bug filter
JP2010047857A (en) Nonwoven fabric and method for producing the same
JP2019073292A (en) Coating material
KR940010902B1 (en) Composite non-woven fabrics
JP2017043867A (en) Sheet-like material and method for producing the same
JP3198198U (en) Thermal insulation sheet and textile products

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090902

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20100303

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20100303

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110725

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110802

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111003

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20111003

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20111003

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111025

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111027

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141104

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4855894

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250