JP4855795B2 - Seismic reinforcement structure for existing structures - Google Patents

Seismic reinforcement structure for existing structures Download PDF

Info

Publication number
JP4855795B2
JP4855795B2 JP2006032045A JP2006032045A JP4855795B2 JP 4855795 B2 JP4855795 B2 JP 4855795B2 JP 2006032045 A JP2006032045 A JP 2006032045A JP 2006032045 A JP2006032045 A JP 2006032045A JP 4855795 B2 JP4855795 B2 JP 4855795B2
Authority
JP
Japan
Prior art keywords
existing
seismic
earthquake
existing structure
foundation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006032045A
Other languages
Japanese (ja)
Other versions
JP2007211478A (en
Inventor
博志 畝
敏正 松川
斉 清水
昇 樋上
健一 吉田
修司 須田
晃 竹村
清 山下
毅 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takenaka Corp
Original Assignee
Takenaka Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takenaka Corp filed Critical Takenaka Corp
Priority to JP2006032045A priority Critical patent/JP4855795B2/en
Publication of JP2007211478A publication Critical patent/JP2007211478A/en
Application granted granted Critical
Publication of JP4855795B2 publication Critical patent/JP4855795B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Working Measures On Existing Buildindgs (AREA)

Description

本発明は、既存構造物の外部に設けられた耐震構造物により、既存構造物を耐震補強する耐震補強構造に関する。   The present invention relates to a seismic reinforcement structure that seismically reinforces an existing structure by a seismic structure provided outside the existing structure.

既存建物を耐震補強するために、既存建物内に鉄骨ブレースや耐力壁を設けたり、耐力壁厚や柱、梁の断面を増す方法等が一般に用いられている。   In order to seismically reinforce existing buildings, methods such as providing steel braces and bearing walls in existing buildings, increasing the thickness of the bearing walls, columns, and beams are generally used.

しかし、既存建物内の補強工事になるので、補強部材によって居住空間が狭くなり、また、居住者が建物内に居住したまま工事を遂行することは困難である。   However, since it is a reinforcement work in the existing building, the living space is narrowed by the reinforcing member, and it is difficult for the resident to carry out the work while living in the building.

また、図8に示すように、地盤200中に設けられた支持杭201、202、203を基礎とする既存建物204に、地震等による水平力Fが既存建物204の左側から右側へ向う方向に作用したとき、既存建物204全体が右側に傾く時計回りのモーメントを受けるので、既存建物204左側の端部の直下に位置する支持杭201には引抜き力Pが発生し、既存建物204右側の端部の直下に位置する支持杭203には押込み力Tが発生する。   In addition, as shown in FIG. 8, in the existing building 204 based on the support piles 201, 202, and 203 provided in the ground 200, a horizontal force F due to an earthquake or the like is directed in a direction from the left side to the right side of the existing building 204. When it acts, the entire existing building 204 receives a clockwise moment that tilts to the right, so that a pulling force P is generated in the support pile 201 located immediately below the left end of the existing building 204, and the right end of the existing building 204 is A pushing force T is generated in the support pile 203 located immediately below the part.

特に古い建物の支持杭では、この引抜き力Pを負担できないことが多く、既存建物204の基礎として多くの支持杭を新たに施工しなければならない。また、既存建物204内を耐震補強して既存建物204全体を強固な構造にすると、地震等による水平力Fを既存建物204が吸収しなくなるので、引抜き力Pがさらに大きくなってしまい、より多くの支持杭を新設しなければならない場合がある。   In particular, support piles of old buildings often cannot bear this pulling force P, and many support piles must be newly constructed as the foundation of the existing building 204. Further, if the existing building 204 is seismically reinforced and the entire existing building 204 is strengthened, the existing building 204 does not absorb the horizontal force F caused by an earthquake or the like. It may be necessary to install new support piles.

特許文献1の耐震補強構造では、図9に示すように、2棟の既存構造物206、208が隣接し、既存構造物206、208の隣り合う外柱同士が各階で連結部材210によって連結されている。   In the earthquake-proof reinforcement structure of Patent Document 1, as shown in FIG. 9, two existing structures 206 and 208 are adjacent to each other, and the adjacent outer pillars of the existing structures 206 and 208 are connected to each other by connecting members 210 on each floor. ing.

地震等による水平力Fが既存構造物206の左側から右側へ向う方向に作用したとき、図8と同様の原理で、既存構造物206、208左側の端部に位置する外柱の直下に設けられた杭212、214にはそれぞれ引抜き力P、Pが発生し、既存構造物206、208右側の端部に位置する外柱の直下に設けられた杭216、218にはそれぞれ押込み力T、Tが発生する。 When a horizontal force F due to an earthquake or the like acts in the direction from the left side to the right side of the existing structure 206, it is provided directly below the outer pillar located at the left end of the existing structures 206 and 208 on the same principle as in FIG. Pull-out forces P 1 and P 2 are generated in the piles 212 and 214, respectively, and the push-in forces are applied to the piles 216 and 218 provided immediately below the outer pillars located at the right ends of the existing structures 206 and 208, respectively. T 1 and T 2 are generated.

このとき押込み力Tと引抜き力Pは引去り合うので、これらの力が低減され、杭214の引き抜けを回避することができる。 At this time pushing force T 1 and the pull-out force P 2 is mutually subtraction can these forces is reduced, to avoid pulling out of the pile 214.

しかし、特許文献1は、隣接した既存構造物同士を連結する補強構造なので、隣接する既存構造物が存在しない既存構造物には適用できない。   However, since patent document 1 is a reinforcement structure which connects the adjacent existing structures, it cannot apply to the existing structure in which the adjacent existing structure does not exist.

特許文献2の耐震補強方法では、図10に示すように、地盤200上に建てられた既存建物220両側の外周面に平行になるように、耐震架構となる立体架構222が構築されている。そして、立体架構222は、既存建物220の各階又は任意の階で連結されている。   In the seismic reinforcement method of Patent Document 2, as shown in FIG. 10, a three-dimensional frame 222 serving as an earthquake-resistant frame is constructed so as to be parallel to the outer peripheral surfaces of both sides of an existing building 220 built on the ground 200. The three-dimensional frame 222 is connected to each floor of the existing building 220 or an arbitrary floor.

よって、地震等により既存建物220に作用する水平力を立体架構222も分担するため、既存建物220の架構に応力が集中することが回避されるので、既存建物220に対して耐震補強を施さなくてよい。   Therefore, since the three-dimensional frame 222 also shares the horizontal force acting on the existing building 220 due to an earthquake or the like, stress concentration on the frame of the existing building 220 is avoided, so that the existing building 220 is not subjected to seismic reinforcement. It's okay.

しかし、立体架構222を支持する地盤200が悪い場合には、立体架構222のための杭基礎を構築しなければならず、そのための施工費用がかかってしまう。
特開2002−13296号公報 特開平9−203220号公報
However, when the ground 200 that supports the three-dimensional frame 222 is bad, a pile foundation for the three-dimensional frame 222 must be constructed, and a construction cost for that is required.
JP 2002-13296 A JP-A-9-203220

本発明は係る事実を考慮し、既存構造物の外部に設けられた耐震構造物により、既存構造物内部の補強工事、及び既存構造物を支持する支持杭の新設を行なわず、さらに、悪い地盤においても、耐震構造物のための大きな断面の支持杭や多くの本数の支持杭を新設せずに既存構造物の耐震補強ができる耐震補強構造を提供することを課題とする。   In consideration of such facts, the present invention does not perform a reinforcement work inside the existing structure and a new support pile for supporting the existing structure by the earthquake-resistant structure provided outside the existing structure, and further, the bad ground However, it is an object of the present invention to provide a seismic reinforcement structure capable of seismic reinforcement of an existing structure without newly installing a large-sized support pile or a large number of support piles for the earthquake-resistant structure.

第1態様の発明は、既存構造物の両側に、前記既存構造物の基礎とは異なる基礎上に構築され、上層部よりも下層部が前記既存構造物から離れる方向へ張り出した一対の耐震構造物と、前記耐震構造物と前記既存構造物を連結する連結部と、を有することを特徴としている。 The invention of the first aspect is a pair of seismic structures that are constructed on both sides of an existing structure on a foundation different from the foundation of the existing structure, and the lower layer part protrudes away from the existing structure rather than the upper layer part And a connecting portion that connects the seismic structure and the existing structure.

第1態様の発明では、既存構造物の両側に一対の耐震構造物が構築されている。そして、この一対の耐震構造物は、既存構造物の基礎とは異なる基礎上に建てられている。また、耐震構造物と既存構造物とは連結部によって連結されている。 In the first aspect of the invention, a pair of earthquake-resistant structures are constructed on both sides of the existing structure. And this pair of earthquake-resistant structure is built on the foundation different from the foundation of the existing structure. Moreover, the seismic structure and the existing structure are connected by a connecting portion.

このため、一対の耐震構造物の一方(以下、耐震構造物Aと記載)から他方(以下、耐震構造物Bと記載)へ向う方向に、地震等による水平力が既存構造物に作用したとき、既存構造物全体が水平力の向う方向に傾く回転モーメントを受けるので、既存構造物の耐震構造物A側の端部には鉛直方向の引抜き力が発生し、既存構造物の耐震構造物B側の端部には鉛直方向の押込み力が発生する。   For this reason, when a horizontal force due to an earthquake or the like acts on an existing structure in a direction from one of the pair of earthquake resistant structures (hereinafter referred to as earthquake resistant structure A) to the other (hereinafter referred to as earthquake resistant structure B). Since the entire existing structure receives a rotational moment inclined in the direction of the horizontal force, a vertical pull-out force is generated at the end of the existing structure on the seismic structure A side, and the existing structure's seismic structure B A vertical pushing force is generated at the end on the side.

また、同様にして、耐震構造物Aの既存構造物側の端部、耐震構造物B下層の既存構造物と離れた側の端部には押込み力が、耐震構造物A下層の既存構造物と離れた側の端部、耐震構造物Bの既存構造物側の端部には引抜き力が発生する。   Similarly, the pushing force is applied to the end of the seismic structure A on the existing structure side and the end of the seismic structure B lower layer away from the existing structure on the lower side of the seismic structure B. A pulling force is generated at the end of the seismic structure B at the end of the seismic structure B.

このとき、耐震構造物と既存構造物とは連結部により連結されているので、既存構造物の耐震構造物A側の端部に発生する引抜き力と、耐震構造物Aの既存構造物側の端部に発生する押込み力とが連結部を介して伝わって引去り合うので、これらの力を低減することができる。   At this time, since the seismic structure and the existing structure are connected by the connecting portion, the pulling force generated at the end of the existing structure on the seismic structure A side and the seismic structure A on the existing structure side Since the pushing force generated at the end portion is transmitted through the connecting portion and pulled away, these forces can be reduced.

また、既存構造物の耐震構造物B側の端部に発生する押込み力と、耐震構造物Bの既存構造物側の端部に発生する引抜き力も同様に引去り合い、これらの力を低減することができる。   In addition, the pushing force generated at the end of the existing structure on the seismic structure B side and the pulling force generated at the end of the existing structure on the seismic structure B are also pulled away to reduce these forces. be able to.

よって、既存構造物内部の補強工事、及び既存構造物を支持する支持杭の新設を行なわずに、既存構造物の耐震補強ができる。   Therefore, the existing structure can be seismically reinforced without reinforcing work inside the existing structure and without newly installing a support pile for supporting the existing structure.

また、耐震構造物を支持する地盤が弱い場合においても、耐震構造物の既存構造物側の端部に発生する引抜き力又は押込み力は低減されるので、直接基礎とすることができ、耐震構造物の既存構造物側の端部の直下に支持杭の新設をしなくてよい。   In addition, even when the ground supporting the seismic structure is weak, the pulling or pushing force generated at the end of the existing structure side of the seismic structure is reduced, so it can be used directly as a foundation. There is no need to install a new support pile directly under the end of the existing structure.

耐震構造物の既存構造物側の端部の直下付近には、既存構造物の支持杭が既に構築されているので、この付近への耐震構造物の支持杭の新設は、施工位置の制限を受け、施工性も悪くなる。   A support pile for the existing structure has already been constructed near the end of the existing structure side of the earthquake-resistant structure. The workability is also poor.

よって、耐震構造物の既存構造物側の端部の直下に支持杭の新設をしなくて済むことにより、従来に比べて、工期短縮及びコスト低減を図ることができる。   Therefore, since it is not necessary to newly install a support pile immediately below the end of the seismic structure on the existing structure side, it is possible to shorten the work period and reduce costs compared to the conventional case.

また、一対の耐震構造物のそれぞれの下層は、上層よりも既存構造物から離れる方向に張り出している。   Moreover, each lower layer of a pair of earthquake-resistant structure has protruded in the direction away from an existing structure rather than an upper layer.

よって、耐震構造物下層の張り出す長さを大きくすることによって、耐震構造物下層の既存構造物と離れた側の端部に発生する引抜き力又は押込み力は小さくなる。よって、耐震構造物を支持する地盤が悪い場合においても、耐震構造物下層の既存構造物と離れた側の端部の直下に大きな断面の支持杭や多くの本数の支持杭を新設しなくてよい。   Therefore, the pulling-out force or pushing-in force generated at the end of the seismic structure lower layer away from the existing structure of the seismic structure lower layer is reduced by increasing the protruding length of the seismic structure lower layer. Therefore, even if the ground supporting the seismic structure is bad, there is no need to install a large support pile or a large number of support piles directly below the end of the seismic structure under the existing structure. Good.

第2態様の発明は、前記耐震構造物の少なくとも一方は、立体架構であることを特徴としている。 The invention of the second aspect is characterized in that at least one of the earthquake-resistant structures is a three-dimensional frame.

第2態様の発明では、耐震構造物の少なくとも一方が立体架構なので、構造的に十分な強度を有する耐震構造物を構築することができる。 In the invention of the second aspect , since at least one of the earthquake resistant structures is a three-dimensional frame, it is possible to construct an earthquake resistant structure having a structurally sufficient strength.

第3態様の発明は、前記耐震構造物の少なくとも一方には、床が設けられていることを特徴としている。 The invention of the third aspect is characterized in that at least one of the earthquake-resistant structures is provided with a floor.

第3態様の発明では、耐震構造物の少なくとも一方には床が設けられているので、この床上に、既存構造物の設備機器や設備配管等を設けることによって、既存構造物内の床高を低く抑えることができる。このため、既存構造物の室内部を天井の高い広い居住空間にすることができる。 In the invention of the third aspect , since the floor is provided on at least one of the earthquake-resistant structures, the floor height in the existing structure is increased by providing the equipment and equipment piping of the existing structure on the floor. It can be kept low. For this reason, the indoor part of the existing structure can be made into a wide living space with a high ceiling.

第4態様の発明は、前記耐震構造物は、前記既存構造物の各階において、前記連結部により連結されていることを特徴としている。 The invention of the fourth aspect is characterized in that the seismic structure is connected by the connecting portion on each floor of the existing structure.

第4態様の発明では、耐震構造物が既存構造物の各階において、連結部により連結されているので、耐震構造物及び既存構造物の隣り合う端部に発生する引抜き力又は押し込み力が、連結部を介してより確実に伝達される。 In the fourth aspect of the invention, since the seismic structure is connected to each floor of the existing structure by the connecting portion, the pulling-out force or the pushing force generated at the adjacent ends of the seismic structure and the existing structure is connected. It is more reliably transmitted via the part.

本発明は上記構成としたので、既存構造物内部の補強工事、及び既存構造物を支持する支持杭の新設を行なわず、さらに、悪い地盤においても、耐震構造物のための大きな断面の支持杭や多くの本数の支持杭を新設せずに既存構造物の耐震補強ができる。   Since the present invention has the above-described configuration, it does not reinforce the existing structure and does not newly install a support pile for supporting the existing structure, and also has a large cross-section support pile for an earthquake-resistant structure even in bad ground. And existing structures can be seismically strengthened without installing a large number of support piles.

図面を参照しながら、本発明の実施形態に係る既存構造物の耐震補強構造を説明する。なお、本実施形態では、RC造の集合住宅の例を説明するが、あらゆる建物への適用が可能である。図1、2には、本実施形態の既存構造物の耐震補強構造10が示されている。   The earthquake-proof reinforcement structure of the existing structure which concerns on embodiment of this invention is demonstrated referring drawings. In this embodiment, an example of an RC apartment house will be described, but it can be applied to any building. 1 and 2 show a seismic reinforcement structure 10 for an existing structure of the present embodiment.

地盤12中に設けられたPHC杭14、16、18に支持されて既存構造物としてのRC造の集合住宅20が建てられている。   An RC apartment house 20 is built as an existing structure supported by PHC piles 14, 16, 18 provided in the ground 12.

この集合住宅20の左右両側には、集合住宅20の基礎とは異なる基礎部30、36上に建てられた耐震構造物としての立体架構22、24が隣接している。立体架構22、24は、柱、梁、及び補強部材としてのブレースから構成されている。   On both the left and right sides of the apartment house 20, three-dimensional frames 22 and 24 are installed as seismic structures built on foundation parts 30 and 36 different from the foundation of the apartment house 20. The three-dimensional frames 22, 24 are composed of columns, beams, and braces as reinforcing members.

立体架構22下層の集合住宅20から離れた側の端部に位置する柱26の直下にはPHC杭28が設けられ、立体架構22を支持するが、このPHC杭28が設けられていない基礎部30は直接基礎となっている。   A PHC pile 28 is provided directly below the column 26 located at the end of the lower level of the multi-story frame 22 away from the housing complex 20 and supports the three-dimensional frame 22, but the base part on which the PHC pile 28 is not provided. 30 is directly the basis.

また、立体架構24下層の集合住宅20から離れた側の端部に位置する柱32の直下にはPHC杭34が設けられ、立体架構24を支持するが、このPHC杭34が設けられていない基礎部36は直接基礎となっている。立体架構22、24は共に、その上層部よりも下層部の方が集合住宅20から離れる方向の外側に張り出している。   In addition, a PHC pile 34 is provided directly below the column 32 located at the end of the three-dimensional frame 24 on the side away from the apartment house 20, and supports the three-dimensional frame 24, but this PHC pile 34 is not provided. The foundation part 36 is directly the foundation. In both of the three-dimensional frames 22 and 24, the lower layer portion projects outside the upper layer portion in the direction away from the apartment house 20.

また、立体架構22、24は、集合住宅20の4階〜7階、及び屋上で、連結部材38により連結されている。   In addition, the three-dimensional frames 22 and 24 are connected by a connecting member 38 on the fourth to seventh floors and the roof of the apartment house 20.

ここで、立体架構22の集合住宅20側の端部に位置する外柱40と、集合住宅20の立体架構22側の端部に位置する外柱42とを連結する連結部材38について説明する。図3の平面図、図4の側面図に示すように、鉄板をT字状に接合してリブ45で補強された、平面視にて四角形状の支圧板44の側面44Aが外柱42に固定され、支圧板44が外柱40側に片持状に張り出している。   Here, the connecting member 38 that connects the outer column 40 located at the end of the three-dimensional frame 22 on the apartment 20 side and the outer column 42 positioned at the end of the three-dimensional frame 22 of the apartment 20 will be described. As shown in the plan view of FIG. 3 and the side view of FIG. The bearing plate 44 is fixed and projects in a cantilevered manner on the outer column 40 side.

集合住宅20の躯体壁46と、躯体壁46に対向する支圧板44の側面44Aには、ネジ切り通しアンカー48が貫通する固定孔50、52が形成されており、ネジ切り通しアンカー48の両端に形成された雄ネジにナット54を螺合することによって、支圧板44を外柱42に固定している。   Fixing holes 50 and 52 through which the threaded through anchor 48 passes are formed in the housing wall 46 of the apartment house 20 and the side surface 44A of the bearing plate 44 facing the housing wall 46, and are formed at both ends of the threaded through anchor 48. The bearing plate 44 is fixed to the outer column 42 by screwing the nut 54 into the male screw.

また、ネジ切り通しアンカー48と直交するように、接着系アンカー56が外柱42内に挿入及び接着されている。そして、ネジ切り通しアンカー48と接着系アンカー56が接触した状態で、これらのアンカーを覆うように、躯体壁46、外柱42、及び支圧板44の側面44Aによりコの字状に囲まれた隙間がグラウトモルタル58で充填されている。   Further, an adhesive anchor 56 is inserted and bonded into the outer column 42 so as to be orthogonal to the threading anchor 48. Then, in a state where the threaded anchor 48 and the adhesive anchor 56 are in contact with each other, a gap surrounded by a U-shape by the housing wall 46, the outer column 42, and the side surface 44A of the bearing plate 44 so as to cover these anchors. Is filled with grout mortar 58.

また、平面視にて略台形状の鉄板からなり、リブ61で補強された支圧板60が外柱40に固定されて、外柱42側に片持状に張り出している。   Further, a support plate 60 made of a substantially trapezoidal iron plate in plan view and reinforced by ribs 61 is fixed to the outer column 40 and projects out in a cantilever manner on the outer column 42 side.

そして、支圧板44の張り出した端部の上面44Bに、支圧板60の張り出した端部の下面60Aを重ねた状態で、6個のボルト62、ナット64で連結されている。また、立体架構24の集合住宅20側の端部に位置する外柱66と、集合住宅20の立体架構24側の端部に位置する外柱68についても、同様の方法で連結されている。   Then, six bolts 62 and nuts 64 are connected in a state where the bottom surface 60A of the end portion of the bearing plate 60 is superimposed on the upper surface 44B of the end portion of the bearing plate 44 that projects. Further, the outer pillar 66 located at the end of the three-dimensional frame 24 on the apartment house 20 side and the outer pillar 68 located at the end of the apartment house 20 on the three-dimensional frame 24 side are also connected in the same manner.

よって、外柱40に発生した引抜き力や押込み力は、外柱40、支圧板60、支圧板44、ネジ切り通しアンカー48、接着系アンカー56、外柱42の順に伝わり、外柱42に発生した引抜き力や押込み力は、この逆の順に伝わる。   Accordingly, the pulling force and pushing force generated in the outer column 40 are transmitted to the outer column 42 in the order of the outer column 40, the bearing plate 60, the bearing plate 44, the threading anchor 48, the adhesive anchor 56, and the outer column 42. The pulling force and pushing force are transmitted in the reverse order.

また、立体架構22、24の1〜3階の一部には床部70が形成されており、この上に、集合住宅20の設備機器72、設備配管74や太陽光発電システムのソーラーパネル76が設けられている。   In addition, a floor 70 is formed on a part of the first to third floors of the three-dimensional frames 22 and 24, and on this, equipment equipment 72, equipment piping 74 of the apartment house 20, and a solar panel 76 of the solar power generation system. Is provided.

次に、本発明の実施形態に係る既存構造物の耐震補強構造の作用及び効果について説明する。   Next, the operation and effect of the seismic reinforcement structure for an existing structure according to the embodiment of the present invention will be described.

図1に示すように、立体架構22から立体架構24へ向う方向に、地震等による水平力Fが集合住宅20に作用したとき、集合住宅20全体が立体架構24側に傾く回転モーメントを受けるので、集合住宅20の立体架構22側の端部に位置する外柱42には鉛直方向の引抜き力Pが発生し、集合住宅20の立体架構24側の端部に位置する外柱68には鉛直方向の押込み力Tが発生する。 As shown in FIG. 1, when a horizontal force F due to an earthquake or the like acts on the apartment house 20 in the direction from the three-dimensional frame 22 to the three-dimensional frame 24, the entire apartment house 20 receives a rotational moment that tilts toward the three-dimensional frame 24 side. , the outer column 68 is vertical pulling force P 3 generated in the outer columns 42, located at the end of the three-dimensional Frames 24 side of the apartment house 20 located at the end of the three-dimensional Frames 22 side of the apartment 20 the vertical pushing force T 3 occurs.

また、同様にして、立体架構22の集合住宅20側の端部の外柱40、立体架構24下層の集合住宅20と離れた側の端部の外柱32には押込み力T、Tが、立体架構24の集合住宅20側の端部の外柱66、立体架構22下層の集合住宅20と離れた側の端部の外柱26には引抜き力P、Pが発生する。 Similarly, the pressing force T 4 , T 5 is applied to the outer column 40 at the end of the three-dimensional frame 22 on the side of the apartment house 20 and the outer column 32 at the end of the three-dimensional frame 24 on the side far from the apartment house 20. However, pulling forces P 5 and P 4 are generated in the outer column 66 at the end of the three-dimensional frame 24 on the side of the apartment 20 and the outer column 26 at the end of the three-dimensional frame 22 on the side far from the apartment 20.

このとき立体架構22、24と集合住宅20とは連結部材38により連結されているので、集合住宅20の外柱42に発生する引抜き力Pと、立体架構22の外柱40に発生する押込み力Tとが連結部材38を介して伝わって引去り合うので、これらの力を低減することができる。 Since this time the solid Frames 22 and 24 Housing 20 are connected by the connecting member 38, the pulling force P 3 generated outside column 42 collective housing 20, pushing that occurs outside pillars 40 of the three-dimensional Frames 22 since the force T 4 mutually subtraction and transmitted via the connecting member 38, it is possible to reduce these forces.

また、集合住宅20の外柱68に発生する押込み力Tと、立体架構24の外柱66に発生する引抜き力Pも同様に引去り合い、これらの力を低減することができる。 Further, the pushing force T 3 generated in the outer column 68 of the apartment 20 and the pulling force P 5 generated in the outer column 66 of the three-dimensional frame 24 are similarly pulled away, and these forces can be reduced.

よって、集合住宅20内部の補強工事、及び集合住宅20を支持する支持杭の新設を行なわずに、集合住宅20の耐震補強ができる。   Therefore, the seismic reinforcement of the apartment house 20 can be performed without performing the reinforcement work inside the apartment house 20 and the new installation of a support pile for supporting the apartment house 20.

また、立体架構22、24を支持する地盤が弱い場合においても、立体架構22、24の外柱40、66に発生する押込み力又は引抜き力は低減されるので、直接基礎とすることができ、立体架構22、24の外柱40、66の直下に支持杭の新設をしなくてよい。   Further, even when the ground supporting the three-dimensional frames 22, 24 is weak, the pushing force or the pulling force generated in the outer pillars 40, 66 of the three-dimensional frames 22, 24 is reduced, so that it can be directly used as a foundation. It is not necessary to newly install a support pile immediately below the outer columns 40 and 66 of the three-dimensional frames 22 and 24.

立体架構22、24の外柱40、66の直下付近には、集合住宅20の支持杭が既に構築されているので、この付近への立体架構22、24の支持杭の新設は、施工位置の制限を受け、施工性も悪くなる。   Since the supporting piles of the housing complex 20 have already been constructed near the outer columns 40 and 66 of the three-dimensional frames 22 and 24, the new installation of the supporting piles of the three-dimensional frames 22 and 24 in this vicinity is It is restricted and the workability is also deteriorated.

よって、立体架構22、24の外柱40、66の直下に支持杭を新設しなくて済むことにより、従来に比べて、工期短縮及びコスト低減を図ることができる。   Therefore, since it is not necessary to newly install a support pile directly under the outer pillars 40 and 66 of the three-dimensional frames 22 and 24, it is possible to shorten the work period and reduce costs compared to the conventional case.

また、立体架構22の1階部分、及び立体架構24の1、2階部分は、他の階よりも集合住宅20から離れる方向に張り出している。   In addition, the first floor portion of the three-dimensional frame 22 and the first and second floor portions of the three-dimensional frame 24 protrude in a direction away from the apartment house 20 than the other floors.

よって、これらの張り出す長さを大きくすることによって、立体架構22、24の外柱26、32に発生する引抜き力又は押込み力は小さくなる。よって、立体架構22、24を支持する地盤が悪い場合においても、立体架構22、24の外柱26、32の直下に大きな断面の支持杭や多くの本数の支持杭を新設しなくてよい。   Therefore, by increasing the protruding length, the pulling force or pushing force generated in the outer columns 26 and 32 of the three-dimensional frames 22 and 24 is reduced. Therefore, even when the ground supporting the three-dimensional frames 22 and 24 is bad, it is not necessary to newly install a large-sized support pile or a large number of support piles immediately below the outer columns 26 and 32 of the three-dimensional frames 22 and 24.

また、立体架構22、24は、柱、梁、及びブレースから構成されているので、構造的に十分な強度を有する耐震構造物を構築できると共に、集合住宅20への太陽光Sの採光を妨げずに、立体架構22、24を建てることができる。   In addition, since the three-dimensional frames 22 and 24 are composed of columns, beams, and braces, it is possible to construct an earthquake-resistant structure having sufficient structural strength, and to prevent sunlight S from being collected into the apartment house 20. The three-dimensional frames 22 and 24 can be built.

また、立体架構22、24に設けられた床部70上に、集合住宅20の設備機器72、設備配管74を設けることによって、集合住宅20内の床高を低く抑えることができる。このため、集合住宅20の室内部を天井の高い広い居住空間にすることができる。また、ソーラーパネル76を設けることによって、設備機器72等の省エネルギー化を図ることができる。   Moreover, the floor height in the collective housing 20 can be kept low by providing the equipment 72 and equipment piping 74 of the collective housing 20 on the floor 70 provided in the three-dimensional frame 22, 24. For this reason, the indoor part of the apartment house 20 can be made into a wide living space with a high ceiling. Further, by providing the solar panel 76, it is possible to save energy for the equipment 72 and the like.

図5〜7は、本実施形態の図1、2の変形例を示したものである。   5 to 7 show modifications of the present embodiment shown in FIGS.

図5の耐震補強構造78は、集合住宅20の平面視において長辺方向の略中央部に一対の立体架構80、82が構築された例である。   The seismic reinforcement structure 78 of FIG. 5 is an example in which a pair of three-dimensional frames 80 and 82 are constructed at a substantially central portion in the long side direction in a plan view of the apartment house 20.

図6の耐震補強構造84は、集合住宅20の平面視において四隅付近に立体架構86、88、90、92が構築された例である。   6 is an example in which three-dimensional frames 86, 88, 90, and 92 are constructed in the vicinity of the four corners of the apartment house 20 in a plan view.

図7の耐震補強構造94は、集合住宅20よりも高さの低い一対の立体架構96、98が構築された例である。   7 is an example in which a pair of three-dimensional frames 96 and 98 having a height lower than that of the apartment house 20 are constructed.

図5〜7共に、図1、2と同様の作用及び効果を得ることができる。   5-7 can obtain the same operation and effect as in FIGS.

本実施形態では、支持杭14、16、18、28、34をPHC杭としたが、構造物を支持できる杭であればよく、場所打ちコンクリート杭、既成コンクリート杭、鋼管杭等を用いることができる。   In this embodiment, the support piles 14, 16, 18, 28, 34 are PHC piles, but any pile that can support a structure may be used, such as a cast-in-place concrete pile, a precast concrete pile, a steel pipe pile, or the like. it can.

また、耐震構造物を柱、梁、及びブレースから構成された立体架構としたが、耐震可能な強度を有する構造であればよく、壁を有するようにしてもよいし、人が居住する通常の建築建物としてもよい。   Moreover, although the earthquake-resistant structure is a three-dimensional frame composed of columns, beams, and braces, it may be a structure having an earthquake-resistant strength, may have a wall, and is a normal one where people live. It may be an architectural building.

また、床部70を立体架構22、24の1〜3階の一部に設けたが、必要に応じて適宜設ければよいし、床部70がなくてもよい。   Moreover, although the floor part 70 was provided in a part of 1-3 floors of the three-dimensional frame 22, 24, it should just be provided suitably as needed and the floor part 70 does not need to be.

また、集合住宅20の4階〜7階、及び屋上で、立体架構22、24が連結部材38で連結された例を示したが、連結する階は、必要に応じて適宜決めればよい。全ての階で連結すれば、集合住宅20及び立体架構22、24の隣り合った外柱に発生する引抜き力又は押し込み力が、連結部材38を介してより確実に伝達することができる。また、連結方法は連結部材38の方法に限らず、外柱の軸力を伝達できるものであればよい。   Moreover, although the example in which the three-dimensional frames 22 and 24 are connected by the connecting member 38 on the fourth floor to the seventh floor of the apartment house 20 and the roof has been shown, the connecting floor may be appropriately determined as necessary. If all the floors are connected, the pulling-out force or pushing-in force generated in the adjacent outer pillars of the housing complex 20 and the three-dimensional frames 22 and 24 can be more reliably transmitted via the connecting member 38. Further, the connection method is not limited to the method of the connection member 38, and any method can be used as long as it can transmit the axial force of the outer column.

また、立体架構22の1階と、立体架構24の1、2階が外側に張り出した例を示したが、1階部分が張り出していればよく、任意の階までを張り出すようにすることができる。また、張り出す長さは、立体架構22、24の立地条件に合わせて適宜決めればよい。より長く張り出させた方が、PHC杭28、34の本数をより少なく、また、杭断面をより小さくすることができる。   In addition, the example in which the first floor of the three-dimensional frame 22 and the first and second floors of the three-dimensional frame 24 are projected outwards is shown. Can do. Further, the overhanging length may be appropriately determined according to the location conditions of the three-dimensional frames 22 and 24. The longer the projecting, the fewer the number of PHC piles 28 and 34, and the smaller the cross section of the pile.

なお、集合住宅20のPHC杭14、18に発生する押込み力に対しては、集合住宅20の杭基礎をパイルドラフト基礎として考えることができるので、本実施形態を適用することによって、より安全な杭基礎となる。   In addition, with respect to the pushing force generated in the PHC piles 14 and 18 of the apartment house 20, the pile foundation of the apartment house 20 can be considered as a piled raft foundation, so that it is safer by applying this embodiment. It becomes a pile foundation.

本発明の実施形態に係る既存構造物の耐震補強構造を示す説明図である。It is explanatory drawing which shows the earthquake-proof reinforcement structure of the existing structure which concerns on embodiment of this invention. 本発明の実施形態に係る既存構造物の耐震補強構造を示す斜視図である。It is a perspective view which shows the seismic reinforcement structure of the existing structure which concerns on embodiment of this invention. 本発明の実施形態に係る連結部を示す平面図である。It is a top view which shows the connection part which concerns on embodiment of this invention. 本発明の実施形態に係る連結部を示す側面図である。It is a side view which shows the connection part which concerns on embodiment of this invention. 本発明の実施形態に係る既存構造物の耐震補強構造の変形例を示す斜視図である。It is a perspective view which shows the modification of the seismic reinforcement structure of the existing structure which concerns on embodiment of this invention. 本発明の実施形態に係る既存構造物の耐震補強構造の変形例を示す斜視図である。It is a perspective view which shows the modification of the seismic reinforcement structure of the existing structure which concerns on embodiment of this invention. 本発明の実施形態に係る既存構造物の耐震補強構造の変形例を示す斜視図である。It is a perspective view which shows the modification of the seismic reinforcement structure of the existing structure which concerns on embodiment of this invention. 従来の既存構造物に作用する力を示す説明図である。It is explanatory drawing which shows the force which acts on the conventional existing structure. 従来の既存構造物の耐震補強構造を示す概略図である。It is the schematic which shows the seismic reinforcement structure of the conventional existing structure. 従来の既存建物の耐震補強方法を示す概略図である。It is the schematic which shows the seismic reinforcement method of the conventional existing building.

符号の説明Explanation of symbols

10 耐震補強構造
20 集合住宅(既存構造物)
22 立体架構(耐震構造物)
24 立体架構(耐震構造物)
38 連結部材(連結部)
70 床部(床)
78 耐震補強構造
80 立体架構(耐震構造物)
82 立体架構(耐震構造物)
84 耐震補強構造
86 立体架構(耐震構造物)
88 立体架構(耐震構造物)
90 立体架構(耐震構造物)
92 立体架構(耐震構造物)
94 耐震補強構造
96 立体架構(耐震構造物)
98 立体架構(耐震構造物)
10 Seismic reinforcement structure 20 Apartment house (existing structure)
22 Three-dimensional frame (seismic structure)
24 Three-dimensional frame (seismic structure)
38 Connecting member (connecting part)
70 Floor (floor)
78 Seismic reinforcement structure 80 Three-dimensional frame (seismic structure)
82 Three-dimensional frame (seismic structure)
84 Seismic reinforcement structure 86 Three-dimensional frame (seismic structure)
88 Three-dimensional frame (seismic structure)
90 Three-dimensional frame (seismic structure)
92 Three-dimensional frame (seismic structure)
94 Seismic reinforcement structure 96 Three-dimensional frame (seismic structure)
98 Three-dimensional frame (seismic structure)

Claims (4)

既存構造物の両側に、前記既存構造物の基礎とは異なる基礎上に構築され、上層部よりも下層部が前記既存構造物から離れる方向へ張り出した一対の耐震構造物と、
前記耐震構造物と前記既存構造物を連結する連結部と、
を有し、
前記耐震構造物が構築される基礎における前記既存構造物から離れた側の端部は杭により支持され、前記耐震構造物が構築される基礎における該端部以外は直接基礎であることを特徴とする既存構造物の耐震補強構造。
A pair of seismic structures that are constructed on both sides of the existing structure on a foundation different from the foundation of the existing structure, and in which the lower layer part protrudes away from the existing structure rather than the upper layer part,
A connecting portion connecting the seismic structure and the existing structure;
Have
The end of the foundation away from the existing structure in the foundation on which the seismic structure is constructed is supported by a pile, and other than the end in the foundation on which the earthquake resistant structure is constructed is a direct foundation. Seismic reinforcement structure for existing structures.
前記耐震構造物の少なくとも一方は、立体架構であることを特徴する請求項1に記載の既存構造物の耐震補強構造。   The seismic reinforcement structure for an existing structure according to claim 1, wherein at least one of the seismic structures is a three-dimensional frame. 前記耐震構造物の少なくとも一方には、床が設けられていることを特徴する請求項1又は請求項2に記載の既存構造物の耐震補強構造。   The floor structure is provided in at least one of the said earthquake-resistant structure, The earthquake-proof reinforcement structure of the existing structure of Claim 1 or Claim 2 characterized by the above-mentioned. 前記耐震構造物は、前記既存構造物の各階において、前記連結部により連結されていることを特徴とする請求項1〜請求項3の何れか1項に記載の既存構造物の耐震補強構造。   The said earthquake-resistant structure is connected with the said connection part in each floor of the said existing structure, The earthquake-proof reinforcement structure of the existing structure of any one of Claims 1-3 characterized by the above-mentioned.
JP2006032045A 2006-02-09 2006-02-09 Seismic reinforcement structure for existing structures Active JP4855795B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006032045A JP4855795B2 (en) 2006-02-09 2006-02-09 Seismic reinforcement structure for existing structures

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006032045A JP4855795B2 (en) 2006-02-09 2006-02-09 Seismic reinforcement structure for existing structures

Publications (2)

Publication Number Publication Date
JP2007211478A JP2007211478A (en) 2007-08-23
JP4855795B2 true JP4855795B2 (en) 2012-01-18

Family

ID=38490161

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006032045A Active JP4855795B2 (en) 2006-02-09 2006-02-09 Seismic reinforcement structure for existing structures

Country Status (1)

Country Link
JP (1) JP4855795B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5374677B2 (en) * 2008-02-29 2013-12-25 株式会社安藤・間 Reinforcing method and structure of existing building using pin device
JP5164231B1 (en) * 2011-12-27 2013-03-21 株式会社みらい Extension method and structure of existing building
JP6342743B2 (en) * 2014-08-01 2018-06-13 株式会社竹中工務店 Existing building reinforcement structure
JP2020070701A (en) * 2018-11-03 2020-05-07 大成建設株式会社 Underground structure, building and method for constructing underground structure

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3477598B2 (en) * 1996-03-04 2003-12-10 清水建設株式会社 Seismic retrofit structure of existing building
JPH1181703A (en) * 1997-09-01 1999-03-26 Shiiku Kenkyusho:Kk Earthquake resistant reinforcing method for outside of building in consideration of disaster
JP2002013296A (en) * 2000-06-30 2002-01-18 Kajima Corp Earthquake resistant reinforced structure for existing construction and earthquake resistant reinforced construction
JP2005155138A (en) * 2003-11-25 2005-06-16 Oriental Construction Co Ltd Seismic reinforced external frame construction method of existing building

Also Published As

Publication number Publication date
JP2007211478A (en) 2007-08-23

Similar Documents

Publication Publication Date Title
KR100991851B1 (en) Earthquake retrofit structure for brick wall and construction method thereof
US8720154B1 (en) Cold-formed steel structural wall and floor framing system
JP6166560B2 (en) Extension structure of seismic isolation building
JP4855795B2 (en) Seismic reinforcement structure for existing structures
JP2009144494A (en) Base-isolating work method for existing buildings
JP2001311314A (en) Method for realizing base isolation structure of existing building
JP6122740B2 (en) Seismic reinforcement structure
JP4873981B2 (en) Seismic reinforcement structure for existing buildings
KR20110003019A (en) Remodeling structure and construction method thereof
JP2006052543A (en) Structure of extension of existing reinforced concrete building
JP5594863B2 (en) Reinforcement method of building in traditional construction method
JP2010215251A (en) Method and structure for improving earthquake-proof performance of existing pc tank
JP2009121051A (en) Method of re-constructing building
KR102084132B1 (en) Load turnover apparatus for decreasing vertical load acting on a foundation of existing remodeling building, and remodeling method using the same
JP2006002428A (en) Reinforcing method of existing floor and base isolation method of existing building
JP2001262586A (en) Foundation structure of dwelling house
JP4354381B2 (en) Extension method
JP2006241892A (en) Aseismatic structure of house and its construction method
KR101115015B1 (en) Construction method for building remodeling by using precast panel, and connecting structure for remodeling precast panel
JP2007309077A (en) Seismic isolation method for existing wooden house
JP2003206634A (en) Steel frame earthquake resistant reinforcement of wooden house
KR102084142B1 (en) Load turnover apparatus for decreasing vertical load acting on a foundation of existing remodeling building, and remodeling method using the same
JP4432581B2 (en) Building structure that can change floor height
CN213143405U (en) Connecting box for prefabricated building and upper and lower prefabricated part connecting structure
JP5658455B2 (en) Unit building

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081225

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110208

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110328

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110426

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110616

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111025

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111027

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141104

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4855795

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150