JP4855206B2 - Method for removing adhering carbon from coking oven carbonization chamber - Google Patents

Method for removing adhering carbon from coking oven carbonization chamber Download PDF

Info

Publication number
JP4855206B2
JP4855206B2 JP2006280854A JP2006280854A JP4855206B2 JP 4855206 B2 JP4855206 B2 JP 4855206B2 JP 2006280854 A JP2006280854 A JP 2006280854A JP 2006280854 A JP2006280854 A JP 2006280854A JP 4855206 B2 JP4855206 B2 JP 4855206B2
Authority
JP
Japan
Prior art keywords
carbon
concentration
chamber
carbonization chamber
incineration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006280854A
Other languages
Japanese (ja)
Other versions
JP2008095030A (en
Inventor
康裕 深澤
正彦 古賀
武司 堤
嘉彦 榎並
香二 伊藤
清明 酒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2006280854A priority Critical patent/JP4855206B2/en
Publication of JP2008095030A publication Critical patent/JP2008095030A/en
Application granted granted Critical
Publication of JP4855206B2 publication Critical patent/JP4855206B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Coke Industry (AREA)

Description

本発明は、コークス炉の炭化室内に付着するカーボンを燃焼除去する方法に関するものである。   The present invention relates to a method for burning and removing carbon adhering to a carbonization chamber of a coke oven.

コークス炉の炭化室では、乾留生成ガスの熱分解によって生ずるカーボン、および石炭装入時に飛散する微粉炭が炉壁に付着、コークス化することにより付着カーボンが生ずる。この炉壁付着カーボンは、炉壁面上で成長するに従い炉壁の熱伝導率を下げ、炭化室の有効面積を低下させるために炉の生産性を低下させる。またこの炉壁付着カーボンは、コークス押し出しを不可能とするいわゆる押し詰まりの原因となるもので、定期的な除去作業が必要である。この炉壁付着カーボンの除去方法としては、以下の方法がよく知られている。
(a) 先端の尖った長さ4〜5mのヤリ状の冶具を用いて人力で突き落とす方法。
(b) コークス押出し用の炉蓋のうち一方もしくは双方及び上昇管を開放し、自然ドラフトにより炉蓋部から空気を炭化室内に導入して燃焼させる方法。
In the carbonization chamber of the coke oven, carbon generated by pyrolysis of the dry distillation product gas and pulverized coal scattered at the time of charging the coal adhere to the furnace wall and coke to form adhering carbon. This furnace wall-attached carbon lowers the furnace wall thermal conductivity as it grows on the furnace wall surface, and lowers the furnace productivity in order to reduce the effective area of the carbonization chamber. Further, the carbon adhering to the furnace wall causes so-called clogging that makes it impossible to extrude the coke, and periodic removal work is required. The following methods are well known as a method for removing the carbon adhering to the furnace wall.
(a) A method of pushing down manually using a spear-shaped jig having a length of 4 to 5 m.
(b) A method in which one or both of the furnace lids for coke extrusion and the riser are opened, and air is introduced into the carbonization chamber from the furnace lid portion by natural draft and burned.

しかしながら、(a)の機械的作用による除去方法では、カーボン層が炉壁から完全に剥離してしまうのでカーボンによる目地部のシール機能が損なわれるという欠点があるうえ、3〜4人の作業者が、高熱・粉塵等の悪条件下で15分以上の重労働を余儀なくされ、好ましくない。また、(b)の方法では、空気導入部近傍の炉壁が、初期にカーボンが焼却された後にも冷空気が通過することによって過大な冷却を受け、炉体レンガのスポーリングによる損傷や、目地開き等の悪影響を受ける。しかも燃焼に利用される酸素は炭化室に入るもののうち数分の1程度であって、大半の空気は燃焼に寄与することなく炉外に排出されるため、カーボンの燃焼量を大きくすることができない。このため、カーボン除去に長い時間を要し、生産の阻害を生じる。   However, in the removal method by mechanical action (a), the carbon layer is completely detached from the furnace wall, so that the sealing function of the joint portion by carbon is impaired, and 3 to 4 workers are used. However, it is not preferable because heavy labor of 15 minutes or more is required under adverse conditions such as high heat and dust. In the method (b), the furnace wall in the vicinity of the air introduction part receives excessive cooling by passing cold air even after carbon is incinerated in the initial stage, and damage caused by spalling of the furnace body bricks, Adverse effects such as joint opening. In addition, oxygen used for combustion is about a fraction of that entering the carbonization chamber, and most of the air is discharged outside the furnace without contributing to combustion, so the amount of carbon combustion can be increased. Can not. For this reason, it takes a long time to remove carbon, resulting in production inhibition.

そこでこれらの課題を解決するために、特許文献1には、噴射ノズルを炭化室内に挿入して酸素を含む気体を噴射してカーボンを燃焼除去する方法が開示されている。この特許文献1の発明では、コークス押出し機の押出し電流値により付着カーボンの総量を把握し、該付着カーボン総量に基づいて噴射条件を決定している。この方法は、予め付着カーボン量と押出し電流値との関係を求めておき、押出し毎の電流値により気体吹き込み条件を決定する方法である。すなわち、押出し電流値が高いときにはカーボン付着が大であると判断し、焼却を強化して対応する。   Therefore, in order to solve these problems, Patent Document 1 discloses a method of burning and removing carbon by inserting an injection nozzle into a carbonization chamber and injecting a gas containing oxygen. In the invention of Patent Document 1, the total amount of attached carbon is grasped from the extrusion current value of the coke extruder, and the injection conditions are determined based on the total amount of attached carbon. In this method, the relationship between the amount of adhering carbon and the extrusion current value is obtained in advance, and the gas blowing conditions are determined based on the current value for each extrusion. That is, when the extrusion current value is high, it is determined that the carbon adhesion is large, and the incineration is strengthened to cope with it.

しかしながら、押出し電流値が必ずしもカーボン付着量を反映しない場合がある。例えば、炭化時間不足による未乾留部が存在するために押出し電流値が上昇する場合や、レンガ欠損等により大きな凹部のある炉壁ではカーボンが全く付着していない状態であっても押出し電流値が上昇することがあるため、「押出し電流値が高いときにはカーボン付着が大である」との図式が成り立たない。また、カーボン付着量と押出し電流値の関係は各炭化室の壁面状態によってそれぞれ異なるため、特許文献1の方法を実行するためには各炭化室毎にこの関係を求める必要があり、非常に多大なデータ蓄積を必要とするという問題もあった。
特開昭61−231085号公報
However, the extrusion current value may not necessarily reflect the carbon adhesion amount. For example, the extrusion current value increases even when the extrusion current value rises due to the presence of an undried carbonized portion due to insufficient carbonization time, or when no carbon is attached to the furnace wall having a large recess due to a brick defect or the like. Since it may rise, the scheme of “carbon adhesion is large when the extrusion current value is high” does not hold. Further, since the relationship between the carbon adhesion amount and the extrusion current value varies depending on the wall surface state of each carbonization chamber, it is necessary to obtain this relationship for each carbonization chamber in order to execute the method of Patent Document 1, which is very large. There is also a problem that it is necessary to accumulate data.
JP-A-61-231085

本発明は上記した従来の問題点を解決し、レンガ目地部のシール機能を損なうことなく、スポーリング等の損傷を生じさせず、また悪環境下での作業や生産性の阻害を生じることなく、レンガ欠損等のある炉壁においても多大なデータを蓄積する必要なく、押出し抵抗を低減させる程度の適度なカーボン焼却を可能とする方法を提供するためになされたものである。   The present invention solves the above-described conventional problems, does not impair the sealing function of the brick joints, does not cause damage such as spalling, and does not cause work or productivity hindrance in adverse environments. The present invention has been made in order to provide a method that enables an appropriate carbon incineration to reduce the extrusion resistance without having to accumulate a large amount of data even in a furnace wall having a brick defect or the like.

上記の課題を解決するためになされた請求項1の発明は、コークス炉の炭化室内に付着したカーボンを、該炭化室内に噴射ノズルを挿入して空気を噴射しつつ燃焼除去するコークス炉の炭化室の付着カーボン燃焼除去方法において、燃焼排ガスのO濃度と次押出し時の押出抵抗値との相関、および押出抵抗値が極小となるときのO濃度=X(%)を予め把握しておき、燃焼排ガスのO濃度がX(%)よりも高いときには次回以降のカーボン焼却時の空気吹込み時間を短縮し、X(%)よりも低いときには次回以降のカーボン焼却時の空気吹込み時間を延長することを特徴とするものである。 In order to solve the above-mentioned problems, the invention of claim 1 is directed to a carbonization of a coke oven in which carbon adhering to a carbonization chamber of a coke oven is burned and removed by inserting an injection nozzle into the carbonization chamber and injecting air. In the method for removing carbon adhering to the chamber, the correlation between the O 2 concentration of the combustion exhaust gas and the extrusion resistance value at the time of the next extrusion, and the O 2 concentration when the extrusion resistance value is minimized = X (%) are grasped in advance. When the O 2 concentration of the combustion exhaust gas is higher than X (%), the air blowing time at the next and subsequent carbon incineration is shortened, and when it is lower than X (%), the air blowing at the next and subsequent carbon incineration. It is characterized by extending the time.

また同一の課題を解決するためになされた請求項2の発明は、コークス炉の炭化室内に付着したカーボンを、該炭化室内に噴射ノズルを挿入して空気を噴射しつつ燃焼除去するコークス炉の炭化室の付着カーボン燃焼除去方法において、燃焼排ガスのO濃度と次押出し時の押出抵抗値との相関、および押出抵抗値が極小となるときのO濃度=X(%)を予め把握しておき、燃焼排ガスのO濃度がX(%)よりも高いときには次回以降のカーボン焼却時の単位時間当たり空気吹込み量を減少し、X(%)よりも低いときには次回以降のカーボン焼却時の単位時間当たり空気吹込み量を増大することを特徴とするものである。 The invention of claim 2 made to solve the same problem is a coke oven in which carbon adhering to the carbonization chamber of the coke oven is burned and removed while inserting an injection nozzle into the carbonization chamber and injecting air. In the carbon combustion chamber removal method, the correlation between the O 2 concentration of the combustion exhaust gas and the extrusion resistance value during the next extrusion, and the O 2 concentration = X (%) when the extrusion resistance value is minimized are obtained in advance. When the O 2 concentration of the combustion exhaust gas is higher than X (%), the air blowing amount per unit time at the next and subsequent carbon incinerations is decreased, and when it is lower than X (%), the next and subsequent carbon incinerations are performed. The air blowing amount per unit time is increased.

何れの発明においても、燃焼排ガスのO濃度が0.9X〜1.1Xの範囲内となるように次回以降のカーボン焼却を調整し、炭化室内のカーボン付着量を制御して壁面を平滑に維持することが好ましい。また、押出抵抗値が極小となるO濃度がX(%)を、噴射ノズルからO濃度計までの距離を考慮して補正することが好ましい。 In any of the inventions, the next and subsequent carbon incinerations are adjusted so that the O 2 concentration of the combustion exhaust gas is within the range of 0.9X to 1.1X, and the carbon adhesion amount in the carbonization chamber is controlled to smooth the wall surface. It is preferable to maintain. Further, it is preferable that the O 2 concentration at which the extrusion resistance value is minimized is corrected for X (%) in consideration of the distance from the injection nozzle to the O 2 concentration meter.

これらの本願発明によれば、炉壁に付着したカーボンの平滑度を表わす指標として燃焼排ガスのO濃度に着目し、次回以降のカーボン焼却時の空気吹込み時間、または単位時間当たり空気吹込み量を調整する。これにより、コークス炉の炭化室内に付着成長するカーボンの焼却を適正に制御することができ、凹部の存在する炭化室壁面においても平滑化が可能となり、押出抵抗値の低減を可能ならしめるものである。この場合、レンガ目地部のシール性を損なうことがないので、発生ガスのリークや炭化室壁の脆弱化を回避しつつ、押出抵抗を低減させることができる。 According to these inventions of the present application, focusing on the O 2 concentration of the combustion exhaust gas as an index representing the smoothness of the carbon adhering to the furnace wall, the air blowing time at the next and subsequent carbon incineration, or the air blowing per unit time Adjust the amount. This makes it possible to properly control the incineration of carbon that adheres and grows in the carbonization chamber of the coke oven, and enables smoothing even on the wall surface of the carbonization chamber where there are recesses, thereby reducing the extrusion resistance value. is there. In this case, since the sealing performance of the brick joint portion is not impaired, the extrusion resistance can be reduced while avoiding the leakage of the generated gas and the weakening of the carbonization chamber wall.

コークス炉の炭化室内に付着成長するカーボンは、過大に成長してコブ状となれば押出抵抗を増大させるものであるし、逆に過度に焼却すればレンガ目地のシール機能を損なうだけでなく、壁面の凹凸が露出することによって押出抵抗を増大させることになりかねない。従って、カーボン付着量を適正に制御しつつ、適度に燃焼除去することが重要である。   Carbon that grows in the carbonization chamber of a coke oven grows excessively and forms a bump shape, which increases extrusion resistance.Conversely, if it is excessively incinerated, it will not only impair the sealing function of the brick joint, Extrusion resistance may be increased by exposing the unevenness of the wall surface. Therefore, it is important to appropriately remove the carbon while appropriately controlling the carbon adhesion amount.

コークス炉の炭化室内に付着したカーボンを、該炭化室内に噴射ノズルを挿入して空気を噴射しつつ燃焼除去する方法において、燃焼排ガスのO濃度は単にカーボン付着量の指標ではなく、炭化室炉壁に付着したカーボンの平滑度を表わす指標であると考えられる。すなわち、炉壁の凹みの著しい炭化室においては、凹み部のカーボンが優先して成長していく。これは、凹み部の炉壁は熱伝導度が高いために温度も高く、また押出し作業時にカーボンが剥離される可能性が低いためである。これら凹み部に成長したカーボンは噴射された空気によって燃焼される効率が低いため、多量に付着してもO濃度低下にあまり寄与しない。ところが、炉壁の平滑な部位に成長するいわゆるコブ状のカーボンは、少量であっても燃焼効率が高いためにO濃度を著しく低下させる。本発明は、燃焼排ガス中のO濃度を測定することによって、炭化室炉壁の平滑度を推定することができるとの上記着想に基づいて完成されたものである。 In a method of removing carbon adhering to a carbonization chamber of a coke oven by inserting an injection nozzle into the carbonization chamber and injecting air, the O 2 concentration of the combustion exhaust gas is not merely an indicator of the amount of carbon adhesion, but a carbonization chamber. This is considered to be an index representing the smoothness of carbon adhering to the furnace wall. That is, in the carbonization chamber where the recess of the furnace wall is remarkable, the carbon in the recess grows preferentially. This is because the temperature of the furnace wall in the recess is high because of high thermal conductivity, and the possibility of carbon peeling during extrusion is low. Since the carbon grown in these dents has a low efficiency of being burned by the injected air, even if a large amount adheres, it does not contribute much to the decrease in O 2 concentration. However, so-called bump-like carbon that grows on a smooth portion of the furnace wall has a high combustion efficiency even if it is a small amount, so that the O 2 concentration is significantly reduced. The present invention has been completed based on the above idea that the smoothness of the carbonization chamber furnace wall can be estimated by measuring the O 2 concentration in the combustion exhaust gas.

図1は請求項1の発明の実施形態を示す図であり、1はコークス炉の炭化室であり、2は炭化室1からのコークス押出し完了毎に、炭化室1の内部に挿入される噴射ノズルである。各噴射ノズル2には焼却エア吹き込みブロア3から空気が供給され、カーボンを燃焼させる。噴射された空気は炭化室1内のカーボンを焼却し、上昇管4から排ガスとして排出される。   FIG. 1 is a view showing an embodiment of the invention of claim 1, 1 is a coking chamber of a coke oven, 2 is an injection inserted into the carbonizing chamber 1 every time coke extrusion from the coking chamber 1 is completed. Nozzle. Each injection nozzle 2 is supplied with air from an incineration air blowing blower 3 to burn carbon. The injected air incinerates the carbon in the carbonization chamber 1 and is discharged from the riser 4 as exhaust gas.

本発明では上昇管4の内部にO濃度測定用のサンプリング管を挿入して燃焼ガスをサンプリングし、前処理手段とO濃度計を備えたO濃度分析装置5によってカーボン焼却中のO濃度を測定する。カーボン焼却が行われた炭化室1には石炭が装入されるが、この石炭が乾留し押出しを行う際の押出抵抗値を駆動用モータの電流値として求め、演算制御装置6により、燃焼排ガスのO濃度と次押出し時の押出抵抗値との相関、および押出抵抗値が極小となるときのO濃度=X(%)を求めておく。なお、押出抵抗値が極小となるO濃度X(%)の値を、噴射ノズル2からO濃度計までの距離を考慮して補正することが好ましい。 In the present invention, a sampling tube for measuring the O 2 concentration is inserted into the riser 4 to sample the combustion gas, and the O 2 concentration analyzer 5 having pretreatment means and an O 2 concentration meter is used to inject the O 2 during carbon incineration. Two concentrations are measured. Coal is charged into the carbonization chamber 1 where carbon incineration has been performed. The extrusion resistance value when the coal is subjected to dry distillation and extrusion is obtained as a current value of the driving motor, and the combustion exhaust gas is obtained by the arithmetic and control unit 6. Correlation between the O 2 concentration and the extrusion resistance value at the time of the next extrusion, and the O 2 concentration = X (%) when the extrusion resistance value is minimized. It is preferable to correct the O 2 concentration X (%) value at which the extrusion resistance value is minimized in consideration of the distance from the injection nozzle 2 to the O 2 concentration meter.

燃焼排ガスのO濃度がX(%)よりも高いときには、カーボン付着量が過小であると判断でき、逆にX(%)よりも低いときには、カーボン付着量が過大であると判断できる。そこで請求項1の発明では、燃焼排ガスのO濃度がX(%)よりも高いときには次回以降のカーボン焼却時の空気吹込み時間を短縮し、X(%)よりも低いときには次回以降のカーボン焼却時の空気吹込み時間を延長する。このようにして常に最適なカーボン付着量を維持し、レンガ目地部のシール性を損なわない程度の最適なカーボン焼却が可能となる。 When the O 2 concentration of the combustion exhaust gas is higher than X (%), it can be determined that the carbon adhesion amount is excessively small, and conversely when it is lower than X (%), it can be determined that the carbon adhesion amount is excessive. Therefore, in the invention of claim 1, when the O 2 concentration of the combustion exhaust gas is higher than X (%), the air blowing time at the next and subsequent carbon incineration is shortened, and when it is lower than X (%), the next and subsequent carbons are reduced. Extend the air blowing time during incineration. In this way, it is possible to always maintain the optimum carbon deposition amount and to perform optimum carbon incineration to the extent that the sealing performance of the brick joints is not impaired.

なお、カーボン燃焼量に直接影響されるのは燃焼ガス中のCO量であるが、実験の結果、カーボン燃焼中にはCOの発生はほとんどなく、CO濃度+O濃度=21%の関係が成立することが確認できたので、O濃度によってカーボン燃焼量を正確に把握することができる。またO濃度計としては例えばジルコニアセンサを使用することができ、このセンサは自動車に搭載されているように振動に強く、剥き出しのまま使用できるので目視点検も容易であり、メンテナンス負荷も小さい利点がある。これらの点で本発明の実用的価値は大きい。 Note that the amount of CO 2 in the combustion gas is directly influenced by the amount of carbon combustion. However, as a result of experiments, there is almost no CO generation during carbon combustion, and the relationship CO 2 concentration + O 2 concentration = 21%. Therefore, it is possible to accurately grasp the amount of carbon combustion based on the O 2 concentration. As the O 2 concentration meter, for example, a zirconia sensor can be used. This sensor is strong against vibration as mounted on an automobile and can be used as it is exposed, so that visual inspection is easy and the maintenance load is small. There is. In these respects, the practical value of the present invention is great.

上記した請求項1の発明では燃焼排ガスのO濃度によって次回以降のカーボン焼却時の空気吹込み時間を変化させたが、請求項2の発明では、燃焼排ガスのO濃度がX(%)よりも高いときには次回以降のカーボン焼却時の単位時間当たり空気吹込み量を減少し、X(%)よりも低いときには次回以降のカーボン焼却時の単位時間当たり空気吹込み量を増大する。この請求項2の方法によってもカーボン燃焼量を調整することができる。何れの発明においても、各炭化室毎に押出抵抗値が極小となるときのO濃度=X(%)を求める必要はなく、同一の気体噴射装置、同一に気体(空気)を用いてカーボン焼却を行う以上、常に一定の目標O濃度をもって調整を行えばよい。 In the invention of claim 1 described above but changing the air blowing time for subsequent carbon incineration next by the O 2 concentration of the flue gas, in the invention of claim 2, the O 2 concentration in the flue gas X (%) When the temperature is higher than that, the air blowing amount per unit time at the next and subsequent carbon incineration is decreased, and when it is lower than X (%), the air blowing amount at the next and subsequent carbon incineration is increased. The amount of carbon combustion can also be adjusted by the method of claim 2. In any of the inventions, it is not necessary to obtain the O 2 concentration = X (%) when the extrusion resistance value is minimized for each carbonization chamber, and the same gas injection device and the same gas (air) are used for carbon. As long as the incineration is performed, adjustment should always be made with a constant target O 2 concentration.

上記したように、カーボン焼却量を調整するための手段としては、空気吹込み時間を変化させる請求項1の方法と、単位時間当たり空気吹込み量を変化させる請求項2の方法があり、何れの方法を用いても問題はない。しかし請求項2の方法を用いた場合には必然的に排ガス中のO濃度が変わってしまうため、カーボン焼却時のO濃度測定データが無効となってしまうおそれがある。この点で、請求項1の方法がより好ましい。 As described above, the means for adjusting the carbon incineration amount includes the method of claim 1 for changing the air blowing time and the method of claim 2 for changing the air blowing amount per unit time. There is no problem even if this method is used. However, when the method of claim 2 is used, the O 2 concentration in the exhaust gas is inevitably changed, so that the O 2 concentration measurement data at the time of carbon incineration may become invalid. In this respect, the method of claim 1 is more preferable.

請求項1、2の発明を実施する場合においては、請求項3、4に記載したように、燃焼排ガスのO濃度が0.9X〜1.1Xの範囲内となるように次回以降のカーボン焼却時の空気吹込み時間を調整し、炭化室内のカーボン付着量を制御して壁面を平滑に維持することが好ましい。排ガス中のO濃度は非常に繊細な指標であり、目標値X(%)ちょうどに調整することは非常に困難である。そこである程度の幅をもって目標値とすることとなるが、目標値をX±0.1X(%)超としたのでは幅が大きすぎ、押出抵抗値の極小値に近付けることができないばかりか、次押出しまでに燃焼装置異常等の操業トラブルが発生した場合、付着成長したカーボンが剥離するなどして炭化室壁面の状況に変化を来たし、最悪の場合には押し詰まりを発生させる危険もある。従って目標値をX±0.1X(%)の範囲内とすることが好ましい。 In the case of carrying out the inventions of claims 1 and 2, as described in claims 3 and 4, the next and subsequent carbons are set so that the O 2 concentration of the combustion exhaust gas falls within the range of 0.9X to 1.1X. It is preferable to keep the wall surface smooth by adjusting the air blowing time during incineration and controlling the amount of carbon adhering in the carbonization chamber. The O 2 concentration in the exhaust gas is a very delicate index, and it is very difficult to adjust it to the target value X (%). Therefore, the target value is set with a certain range. However, if the target value is set to exceed X ± 0.1X (%), the width is too large to approach the minimum value of the extrusion resistance value. When an operation trouble such as an abnormality in the combustion apparatus occurs before extrusion, the state of the carbonization chamber wall surface changes due to separation of the adhered and grown carbon, and in the worst case, there is a risk of clogging. Therefore, it is preferable to set the target value within the range of X ± 0.1X (%).

このような方法を用いてカーボン付着量の制御を行う場合、炭化室1内のカーボン付着量が過小である場合には、カーボン焼却開始直後であってもO濃度がX(%)を下回らないことがある。このようなときのために、例えば「カーボン焼却開始後、所定秒数経過後にO濃度>X(%)のときは、その時点でカーボン焼却を停止する」ように、予めプログラムしておくことが好ましい。カーボン焼却を継続するか停止するかを判断する時間は、カーボン焼却装置の特性により個別に設定することとなる。 When the carbon adhesion amount is controlled using such a method, if the carbon adhesion amount in the carbonization chamber 1 is too small, the O 2 concentration is less than X (%) even immediately after the start of carbon incineration. There may not be. For such a case, for example, “If the O 2 concentration> X (%) after a lapse of a predetermined number of seconds after the start of the carbon incineration, the carbon incineration is stopped at that time” to be programmed in advance. Is preferred. The time for determining whether to continue or stop the carbon incineration is set individually depending on the characteristics of the carbon incinerator.

また同様に、炭化室1内に花弁状カーボンや凸状カーボンが過大に成長している場合などでは、カーボン焼却を相当時間行ってもO濃度がX(%)まで上昇せず、結果として生産を阻害するほどの長時間にわたってカーボン焼却を継続させるケースも考えられる。このようなときのために、例えば「カーボン焼却開始後、所定秒数経過後にO濃度<X(%)のときは、その時点でカーボン焼却を停止する」ように、予めプログラムしておくことが好ましい。カーボン焼却を継続するか停止するかを判断する時間は、カーボン焼却装置の特性により個別に設定することとなる。 Similarly, when petal-like carbon or convex carbon is excessively grown in the carbonization chamber 1, the O 2 concentration does not rise to X (%) even if carbon incineration is performed for a considerable time, and as a result In some cases, carbon incineration may be continued for a long time that would impede production. For such a case, for example, “if the O 2 concentration is less than X (%) after a lapse of a predetermined number of seconds after the start of the carbon incineration, the carbon incineration is stopped at that time” to be programmed in advance. Is preferred. The time for determining whether to continue or stop the carbon incineration is set individually depending on the characteristics of the carbon incinerator.

図1に示した装置を用いて、カーボン焼却を行った。押出電流値と燃焼排ガスのO濃度との関係は図2のグラフのようになり、押出抵抗値が極小となるときのO濃度は14.0%であった。そこで14.0±1.4%=12.6〜15.4%を目標として、焼却条件を調節した。具体的には、目標値下限である12.6%を下回った炭化室においてはカーボン焼却時間を10秒延長し、目標値上限である15.4%を上回った炭化室においてはカーボン焼却時間を10秒短縮することによって、カーボン焼却量の適正化を図った。 Carbon incineration was performed using the apparatus shown in FIG. The relationship between the extrusion current value and the O 2 concentration of the combustion exhaust gas is as shown in the graph of FIG. 2, and the O 2 concentration when the extrusion resistance value is minimized was 14.0%. Therefore, the incineration conditions were adjusted with a target of 14.0 ± 1.4% = 12.6 to 15.4%. Specifically, the carbon incineration time is extended by 10 seconds in the carbonization chamber below the target value lower limit of 12.6%, and the carbon incineration time is increased in the carbonization chamber higher than the target upper limit of 15.4%. By shortening by 10 seconds, the carbon incineration amount was optimized.

上記の方法を一ヶ月継続させたときの押出電流値の推移を図3に示す。カーボン焼却毎に燃焼排ガス中のO濃度を測定し、それを次回カーボン焼却時のカーボン焼却時間に反映させることにより、押出電流値は低下を始め、一ヶ月程度で従来に比べて押出電流値を15%低減させることが可能となった。なお、従来の炭化室内状況はカーボンの付着が全く無く、炭化室壁の凹みが露わになっていたのに対して、本発明方法を一ヶ月適用した後には壁一面に平滑なカーボンが付着しており、炭化室壁の凹みを覆い隠した状態であった。即ち、図3において押出電流値を低下せしめた理由は、カーボン焼却を強化したことではなく、炭化室壁面の凹み部にはカーボンを成長させつつ、平滑部位のコブ状カーボンを焼却することによって、炭化室壁を平滑化したことによるものである。 The transition of the extrusion current value when the above method is continued for one month is shown in FIG. By measuring the O 2 concentration in the combustion exhaust gas at each carbon incineration and reflecting it in the carbon incineration time at the next carbon incineration, the extrusion current value starts to decrease, and the extrusion current value in about one month compared to the conventional one Can be reduced by 15%. In the conventional carbonization chamber, there was no carbon adhesion, and the dent of the carbonization chamber wall was exposed. On the other hand, after applying the method of the present invention for one month, smooth carbon adhered to the entire wall surface. It was in a state of covering the dent of the carbonization chamber wall. That is, the reason for lowering the extrusion current value in FIG. 3 is not to strengthen the carbon incineration, but by incinerating the bumpy carbon in the smooth part while growing the carbon in the recess of the carbonization chamber wall surface, This is because the carbonization chamber wall is smoothed.

本発明の実施形態を示す断面図である。It is sectional drawing which shows embodiment of this invention. 実施例におけるO濃度と押出電流値との相関を示すグラフである。It is a graph showing the correlation between the O 2 concentration and extruding the current value in the embodiment. 実施例における押出電流値の推移を示すグラフである。It is a graph which shows transition of the extrusion current value in an Example.

符号の説明Explanation of symbols

1 炭化室
2 噴射ノズル
3 焼却エア吹き込みブロア
4 上昇管
5 O濃度分析装置
6 演算制御装置
1 blowing carbonization chamber 2 injection nozzle 3 incineration air blower 4 riser 5 O 2 concentration analyzer 6 calculation control unit

Claims (5)

コークス炉の炭化室内に付着したカーボンを、該炭化室内に噴射ノズルを挿入して空気を噴射しつつ燃焼除去するコークス炉の炭化室の付着カーボン燃焼除去方法において、燃焼排ガスのO濃度と次押出し時の押出抵抗値との相関、および押出抵抗値が極小となるときのO濃度=X(%)を予め把握しておき、燃焼排ガスのO濃度がX(%)よりも高いときには次回以降のカーボン焼却時の空気吹込み時間を短縮し、X(%)よりも低いときには次回以降のカーボン焼却時の空気吹込み時間を延長することを特徴とするコークス炉の炭化室の付着カーボン燃焼除去方法。 The carbon attached to carbonization chamber of coke oven, the deposited carbon burnoff method of the coking chamber of the insert the injection nozzle to the carbon reduction chamber coke oven burning off while injecting air, following the O 2 concentration in the combustion exhaust gas When the correlation with the extrusion resistance value during extrusion and the O 2 concentration = X (%) when the extrusion resistance value is minimized are grasped in advance, and the O 2 concentration of the combustion exhaust gas is higher than X (%) Adhesive carbon in the coking oven carbonization chamber characterized by shortening the air blowing time at the next and subsequent carbon incineration, and extending the air blowing time at the next and subsequent carbon incineration when lower than X (%) Combustion removal method. コークス炉の炭化室内に付着したカーボンを、該炭化室内に噴射ノズルを挿入して空気を噴射しつつ燃焼除去するコークス炉の炭化室の付着カーボン燃焼除去方法において、燃焼排ガスのO濃度と次押出し時の押出抵抗値との相関、および押出抵抗値が極小となるときのO濃度=X(%)を予め把握しておき、燃焼排ガスのO濃度がX(%)よりも高いときには次回以降のカーボン焼却時の単位時間当たり空気吹込み量を減少し、X(%)よりも低いときには次回以降のカーボン焼却時の単位時間当たり空気吹込み量を増大することを特徴とするコークス炉の炭化室の付着カーボン燃焼除去方法。 The carbon attached to carbonization chamber of coke oven, the deposited carbon burnoff method of the coking chamber of the insert the injection nozzle to the carbon reduction chamber coke oven burning off while injecting air, following the O 2 concentration in the combustion exhaust gas When the correlation with the extrusion resistance value during extrusion and the O 2 concentration = X (%) when the extrusion resistance value is minimized are grasped in advance, and the O 2 concentration of the combustion exhaust gas is higher than X (%) The coke oven is characterized in that the amount of air blown per unit time at the next and subsequent carbon incinerations is reduced, and when it is lower than X (%), the amount of air blown per unit time at the next and subsequent carbon incinerations is increased. Carbon combustion chamber removal method. 燃焼排ガスのO濃度が0.9X〜1.1Xの範囲内となるように次回以降のカーボン焼却時の空気吹込み時間を調整し、炭化室内のカーボン付着量を制御して壁面を平滑に維持することを特徴とする請求項1記載のコークス炉の炭化室の付着カーボン燃焼除去方法。 Adjust the air blowing time at the next and subsequent carbon incineration so that the O 2 concentration of the combustion exhaust gas is in the range of 0.9X to 1.1X, and control the carbon adhesion amount in the carbonization chamber to smooth the wall surface The method for removing carbon from adhering carbon in a carbonizing chamber of a coke oven according to claim 1, wherein the method is maintained. 燃焼排ガスのO濃度が0.9X〜1.1Xの範囲内となるように次回以降のカーボン焼却時の単位時間当たり空気吹込み量を調整し、炭化室内のカーボン付着量を制御して壁面を平滑に維持することを特徴とする請求項2記載のコークス炉の炭化室の付着カーボン燃焼除去方法。 Adjust the air blowing amount per unit time at the next and subsequent carbon incineration so that the O 2 concentration of the combustion exhaust gas is in the range of 0.9X to 1.1X, and control the carbon adhesion amount in the carbonization chamber 3. A method for burning and removing adhering carbon in a carbonizing chamber of a coke oven according to claim 2, wherein the carbon is kept smooth. 押出抵抗値が極小となるO濃度X(%)を、噴射ノズルからO濃度計までの距離を考慮して補正することを特徴とする請求項1〜請求項4の何れかに記載のコークス炉の炭化室の付着カーボン燃焼除去方法。 5. The O 2 concentration X (%) at which the extrusion resistance value is minimized is corrected in consideration of the distance from the injection nozzle to the O 2 concentration meter. 6. A method for removing carbon adhering to a coking oven carbonization chamber.
JP2006280854A 2006-10-16 2006-10-16 Method for removing adhering carbon from coking oven carbonization chamber Active JP4855206B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006280854A JP4855206B2 (en) 2006-10-16 2006-10-16 Method for removing adhering carbon from coking oven carbonization chamber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006280854A JP4855206B2 (en) 2006-10-16 2006-10-16 Method for removing adhering carbon from coking oven carbonization chamber

Publications (2)

Publication Number Publication Date
JP2008095030A JP2008095030A (en) 2008-04-24
JP4855206B2 true JP4855206B2 (en) 2012-01-18

Family

ID=39378219

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006280854A Active JP4855206B2 (en) 2006-10-16 2006-10-16 Method for removing adhering carbon from coking oven carbonization chamber

Country Status (1)

Country Link
JP (1) JP4855206B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101533774B1 (en) * 2013-10-18 2015-07-06 주식회사 포스코 Device for gas injection into coke oven

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61231086A (en) * 1985-04-04 1986-10-15 Nippon Steel Corp Method of automatically burning and removing adhered carbon in carbonizing chamber of coke oven
JPH0791542B2 (en) * 1985-04-04 1995-10-04 新日本製鐵株式会社 Method for removing adhered carbon in coke oven carbonization chamber
JPS61231085A (en) * 1985-04-04 1986-10-15 Nippon Steel Corp Method of automatically burning and removing adhered carbon in carbonizing chamber of coke oven
JP4736400B2 (en) * 2004-10-29 2011-07-27 Jfeスチール株式会社 Method for removing carbon adhering to coke oven carbonization chamber
JP4676844B2 (en) * 2005-09-08 2011-04-27 新日本製鐵株式会社 Combustion removal method for carbon adhering to coke oven carbonization chamber
JP4676875B2 (en) * 2005-12-26 2011-04-27 新日本製鐵株式会社 Coke oven carbonization chamber incineration method

Also Published As

Publication number Publication date
JP2008095030A (en) 2008-04-24

Similar Documents

Publication Publication Date Title
JPH06299156A (en) Method for removing deposited carbon of carbonization chamber of coke oven
JPH11131074A (en) Operation of coke oven
JP4676844B2 (en) Combustion removal method for carbon adhering to coke oven carbonization chamber
JP4676875B2 (en) Coke oven carbonization chamber incineration method
JP4855206B2 (en) Method for removing adhering carbon from coking oven carbonization chamber
JP4916912B2 (en) Coke oven carbonization chamber incineration method
JP6278185B2 (en) Combustion carbon removal method in carbonization chamber of coke oven.
JP7135755B2 (en) How to operate a coke oven
JP4736400B2 (en) Method for removing carbon adhering to coke oven carbonization chamber
JP3948346B2 (en) Coke oven gas combustion method
JP4760388B2 (en) Coke oven carbonization chamber carbon combustion removal lance
JP3902454B2 (en) Combustion control method and waste treatment apparatus
JPH0791542B2 (en) Method for removing adhered carbon in coke oven carbonization chamber
JP3132703B2 (en) Furnace pressure control method for coke oven
JPH06299155A (en) Method for removing deposited carbon of carbonization chamber of coke oven
JP2024016577A (en) Deposit carbon removal method in coke oven carbonization chamber
JP4714617B2 (en) Coke oven carbonization chamber repair method
JP3562547B2 (en) Detection method of carbon adhesion in coke oven carbonization chamber
JP2526000B2 (en) Measuring method of airtightness of coke oven coke chamber group and coke chamber repair method
JP2884979B2 (en) Prevention method of black smoke generation in coke oven chimney
JP6658411B2 (en) Diagnosis method of coke oven condition
JP4930961B2 (en) Method and apparatus for preventing gas leakage in coke oven duct
JP6769225B2 (en) Carbonization chamber wall adhering carbon removal method in coke oven operation
JPH11116964A (en) Removal of carbon deposit in carbonizing chamber of coke oven
JP2000204374A (en) Control of emission of black smoke from chimney of coke oven

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090216

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111014

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111018

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111026

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141104

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4855206

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141104

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141104

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141104

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350