JP2024016577A - Deposit carbon removal method in coke oven carbonization chamber - Google Patents

Deposit carbon removal method in coke oven carbonization chamber Download PDF

Info

Publication number
JP2024016577A
JP2024016577A JP2022118812A JP2022118812A JP2024016577A JP 2024016577 A JP2024016577 A JP 2024016577A JP 2022118812 A JP2022118812 A JP 2022118812A JP 2022118812 A JP2022118812 A JP 2022118812A JP 2024016577 A JP2024016577 A JP 2024016577A
Authority
JP
Japan
Prior art keywords
carbonization chamber
concentration
carbon
carbonization
chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022118812A
Other languages
Japanese (ja)
Inventor
勇輔 吉森
Yusuke Yoshimori
健一 八ケ代
Kenichi Yatsugayo
惣一 竹尾
Soichi Takeo
慎太郎 池本
Shintaro Ikemoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2022118812A priority Critical patent/JP2024016577A/en
Publication of JP2024016577A publication Critical patent/JP2024016577A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Coke Industry (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a deposit carbon removal method in a coke oven carbonization chamber which can realize both push clogging generation inhibition and black smoke generation inhibition.
SOLUTION: There is provided a method for inserting a lance into a carbonization chamber for blowing an oxygen-containing gas thereinto to thereby perform oxidation removal of deposit carbon. The method includes: when coal carbonization operation after execution of deposit carbon removal operation in the carbonization chamber is performed, measuring a CO concentration of exhaust combustion gas which passes through a combustion chamber adjacent to the carbonization chamber with the deposit carbon being removed therefrom; comparing a preset upper limit or lower limit management criterion value of the CO concentration of the exhaust combustion gas in the combustion chamber to an actual measured value of the CO concentration of the exhaust combustion gas; and, when deposit carbon removal operation after the coal carbonization operation is performed, 1) if the actual measured value exceeds the CO concentration upper limit management criterion value, shortening a blowing-into time of the oxygen-containing gas and/or decreasing a blowing-into amount per unit time and 2) if the actual measured value is less than the CO concentration lower limit management criterion value, extending the blowing-into time of the oxygen-containing gas and/or increasing the blowing-into amount per unit time.
SELECTED DRAWING: Figure 3
COPYRIGHT: (C)2024,JPO&INPIT

Description

本発明は、コークス炉炭化室内に付着するカーボンの酸化除去方法に関する。 The present invention relates to a method for oxidizing and removing carbon deposited in a coke oven carbonization chamber.

コークス炉の炭化室では、乾留生成ガスの熱分解によって生ずるカーボン、及び、石炭装入時に飛散する微粉炭が、炉壁に固着してコークス化することにより、付着カーボンが生ずる。
この炉壁の付着カーボンは、炉壁面上で成長するに従い、炉壁の熱伝導率を下げ、炭化室の有効容積を減少させるため、炉の生産性を低下させ、更にはコークス押出しを不可能とならしめる、いわゆる押詰りの原因となるもので、定期的な除去作業が必要である。
この課題を解決するために、噴射ノズル(ランス)を炭化室に挿入し、例えば空気のような酸素を含む気体を噴射しつつカーボンを燃焼除去する方法が、従来から種々提案されている。
In the carbonization chamber of a coke oven, carbon produced by thermal decomposition of carbonized gas and pulverized coal scattered during coal charging adhere to the oven wall and turn into coke, resulting in deposited carbon.
As this carbon adhering to the furnace wall grows, it lowers the thermal conductivity of the furnace wall and reduces the effective volume of the carbonization chamber, reducing furnace productivity and making it impossible to extrude coke. This causes so-called clogging, which requires periodic removal work.
In order to solve this problem, various methods have been proposed in the past in which an injection nozzle (lance) is inserted into a carbonization chamber and carbon is burned and removed while injecting a gas containing oxygen, such as air.

例えば、特許文献1は、酸素含有ガスを炭化室内に供給し付着カーボンの酸化によって生成する排ガスを、炭化室内より排気する際に、CO濃度を測定することで、その濃度変化から付着カーボンの燃焼完了時期が判定できると記載している。これは、付着カーボン量と排ガス中のCO濃度等との間に強い相関を見出したことを根拠としている。
また、特許文献1は、上記した排ガス中のCO濃度の測定に加え、炭化室内より排気される排ガス温度を測定することにより、付着カーボンの燃焼完了判断の一助とすることができることも記載している。
特許文献2は、酸素を含む気体(酸素含有ガス)を炭化室に供給し付着カーボンの酸化によって生成する排ガスを、炭化室内より排気する際に、O濃度を測定することで、その濃度変化から炭化室の炉壁の平滑度を推定できると記載している。これは、排ガス中のO濃度と、炉壁に付着したカーボンの平滑度との間に強い相関を見出したことを根拠としている。
For example, Patent Document 1 discloses that by measuring the CO 2 concentration when exhaust gas generated by supplying oxygen-containing gas into the carbonization chamber and oxidizing the deposited carbon from the carbonization chamber, the CO 2 concentration can be measured based on the concentration change. It states that the combustion completion time can be determined. This is based on the finding of a strong correlation between the amount of attached carbon and the concentration of CO2 in exhaust gas.
Patent Document 1 also describes that in addition to measuring the CO 2 concentration in the exhaust gas mentioned above, measuring the temperature of the exhaust gas exhausted from the carbonization chamber can help determine the completion of combustion of attached carbon. ing.
Patent Document 2 discloses that a gas containing oxygen (oxygen-containing gas) is supplied to a carbonization chamber, and when exhaust gas generated by oxidation of attached carbon is exhausted from the carbonization chamber, the O 2 concentration is measured, and the concentration change is measured. It is stated that the smoothness of the furnace wall of the carbonization chamber can be estimated from This is based on the finding of a strong correlation between the O 2 concentration in the exhaust gas and the smoothness of carbon attached to the furnace wall.

特開2006-124559号公報Japanese Patent Application Publication No. 2006-124559 特開2008-201925号公報Japanese Patent Application Publication No. 2008-201925

本願発明者らは、コークス炉操業を行うに際し、付着カーボンに関して以下のことを知見した。
付着カーボンは、炭化室煉瓦(レンガ)の本体部や目地部のいずれの部分にも付着していた。また、乾留する石炭の配合種類、操業中の燃焼室や炭化室の温度変化、に応じて、石炭乾留操業(以下、単に乾留操業とも記載)中に付着カーボンが除去される場合や付着カーボンの堆積が進行する場合のいずれもがありえた。
The inventors of the present application discovered the following regarding deposited carbon when operating a coke oven.
Adhesive carbon was found on both the main body and joints of the carbonization chamber bricks. In addition, depending on the blend type of coal to be carbonized and the temperature changes in the combustion chamber and carbonization chamber during operation, adhering carbon may be removed during coal carbonization operation (hereinafter also simply referred to as carbonization operation) or adhering carbon may be removed. Any of the cases where the deposition progressed was possible.

このため、特許文献1記載の技術によって、乾留操業停止時に仮に適切に付着カーボンを除去したとしても、乾留操業中に、煉瓦目地に付着しているカーボンが除去され、煉瓦目地を通じてコークス炉ガス(以下、COGとも記載)が炭化室から燃焼室に供給され、燃焼室で燃焼不良が発生して、燃焼排ガスが黒煙を呈するおそれがある。
また、炭化室と燃焼室を隔てる煉瓦(炉壁煉瓦)は、長期の使用に伴い、目地部の溶射材等が剥離し落下して無くなっている場合があり、当該部分を付着カーボンが閉塞している場合がある。この場合、炭化室で発生したCOGが燃焼室に供給されて燃焼室の燃焼不良が発生するのを防止するため、目地を閉塞していたカーボンは燃焼室の燃焼不良防止に有効である。
上記より、特許文献1記載の技術には、押詰り発生抑制と黒煙発生抑制の両立が困難となる場合がある、という課題がある。
Therefore, even if the adhering carbon is properly removed when the carbonization operation is stopped using the technology described in Patent Document 1, the carbon adhering to the brick joints will be removed during the carbonization operation, and the coke oven gas will pass through the brick joints. (hereinafter also referred to as COG) is supplied from the carbonization chamber to the combustion chamber, and there is a risk that combustion failure will occur in the combustion chamber and the combustion exhaust gas will exhibit black smoke.
In addition, due to long-term use of the bricks that separate the carbonization chamber and the combustion chamber (furnace wall bricks), the thermal sprayed material in the joints may peel off and fall off, and these areas may be blocked by adhering carbon. There may be cases where In this case, in order to prevent COG generated in the carbonization chamber from being supplied to the combustion chamber and causing poor combustion in the combustion chamber, the carbon that has blocked the joints is effective in preventing poor combustion in the combustion chamber.
As described above, the technique described in Patent Document 1 has a problem in that it may be difficult to simultaneously suppress the occurrence of clogging and suppress the generation of black smoke.

また、特許文献2記載の技術でも、上記した特許文献1と同様に、乾留操業停止時に仮に適切に付着カーボンを除去しても、乾留操業中に、煉瓦目地に付着しているカーボンが除去され、煉瓦目地を通じてCOGが炭化室から燃焼室に供給され、燃焼室に燃焼不良が発生し、燃焼排ガスが黒煙を呈するおそれがある。
上記より、特許文献2記載の技術には、押詰り発生抑制と黒煙発生抑制の両立が困難となる場合がある、という課題がある。
In addition, even with the technology described in Patent Document 2, as in Patent Document 1 mentioned above, even if the adhering carbon is properly removed when the carbonization operation is stopped, the carbon adhering to the brick joints will not be removed during the carbonization operation. , COG is supplied from the carbonization chamber to the combustion chamber through the brick joints, which may cause combustion failure in the combustion chamber and cause the combustion exhaust gas to exhibit black smoke.
From the above, the technique described in Patent Document 2 has a problem in that it may be difficult to simultaneously suppress the occurrence of clogging and suppress the generation of black smoke.

本発明はかかる事情に鑑みてなされたもので、押詰り発生抑制と黒煙発生抑制の両立が図れるコークス炉炭化室の付着カーボン除去方法を提供することを目的とする。 The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a method for removing adhering carbon from a coke oven carbonization chamber, which can both suppress the occurrence of clogging and suppress the generation of black smoke.

本発明者らは、コークス炉操業を行うに際し、押詰り発生抑制と黒煙発生抑制の両立を図るには、付着カーボンを適切な量残して炭化室の炉壁から除去することが重要であることに想到した。
本発明の要旨は以下の通りである。
The present inventors have discovered that when operating a coke oven, in order to suppress both clogging and black smoke generation, it is important to remove adhering carbon from the furnace wall of the carbonization chamber while leaving an appropriate amount. I came up with this idea.
The gist of the invention is as follows.

前記目的に沿う第1の発明に係るコークス炉炭化室の付着カーボン除去方法は、炭化室にランスを挿入して酸素含有ガスを吹き込み、前記炭化室の保有熱で該炭化室の付着カーボンを酸化させて除去するコークス炉炭化室の付着カーボン除去方法において、
前記炭化室の付着カーボン除去操作を実行した後の石炭乾留操業の際に、付着カーボンを除去した前記炭化室に隣接する燃焼室を通過する燃焼排ガスのCO濃度を測定し、
予め設定した前記燃焼室の燃焼排ガスのCO濃度の管理基準値と、測定した燃焼排ガスのCO濃度の実測値とを比較し、
前記実測値が前記管理基準値を超えることを条件として、前記石炭乾留操業後に行う前記炭化室の付着カーボン除去操作時の前記酸素含有ガスの吹き込み時間を短縮、及び/又は、前記酸素含有ガスの単位時間当たりの吹き込み量を減少、させる。
A method for removing carbon deposited in a coke oven carbonization chamber according to the first invention that meets the above object includes inserting a lance into the carbonization chamber, blowing oxygen-containing gas, and oxidizing deposited carbon in the carbonization chamber with the heat retained in the carbonization chamber. In a method for removing carbon deposited in a coke oven carbonization chamber,
During a coal carbonization operation after carrying out an operation for removing adhering carbon in the carbonization chamber, measuring the CO concentration of the combustion exhaust gas passing through a combustion chamber adjacent to the carbonization chamber from which adhering carbon has been removed,
Comparing a preset control standard value of the CO concentration of the combustion exhaust gas in the combustion chamber with the measured value of the CO concentration of the combustion exhaust gas,
On the condition that the actual measured value exceeds the control standard value, the blowing time of the oxygen-containing gas during the carbon removal operation in the carbonization chamber performed after the coal carbonization operation is shortened, and/or the oxygen-containing gas is Reduce the amount of blowing per unit time.

燃焼排ガスのCO濃度は、通常は環境上の基準値である上限値を持ち、コークス炉においては環境上の基準値よりも低い値を上限値(即ち、第1の発明の管理基準値)として、管理の目安としている。つまり、燃焼排ガスのCO濃度が管理基準値を超える場合、目地を通じてCOGが炭化室から燃焼室へ漏れていると見做すことができる。
なお、管理基準値は、例えば、炭化室ごとに異なる燃焼調整状況に応じて、数値自体が異なる(例えば、燃焼室Pでは10ppm、燃焼室Qでは15ppm、等)ため、一定期間の操業実績(測定実績)に応じて、予め決定しておくと良い。具体的には、正常とされるCO濃度の数値範囲の上限値を、管理基準値に用いる等が考えられる。
The CO concentration of combustion exhaust gas usually has an upper limit value that is an environmental standard value, and in a coke oven, a value lower than the environmental standard value is set as the upper limit value (i.e., the control standard value of the first invention). , which is used as a guideline for management. In other words, when the CO concentration of the combustion exhaust gas exceeds the management standard value, it can be assumed that COG is leaking from the carbonization chamber to the combustion chamber through the joint.
Note that the management standard value itself varies depending on the combustion adjustment status that differs depending on the coking chamber (for example, 10 ppm for combustion chamber P, 15 ppm for combustion chamber Q, etc.), so it is based on the operating results for a certain period ( It is advisable to decide this in advance according to the measurement results). Specifically, it is conceivable to use the upper limit of the numerical range of CO concentration that is considered normal as the control reference value.

前記目的に沿う第2の発明に係るコークス炉炭化室の付着カーボン除去方法は、炭化室にランスを挿入して酸素含有ガスを吹き込み、前記炭化室の保有熱で該炭化室の付着カーボンを酸化させて除去するコークス炉炭化室の付着カーボン除去方法において、
前記炭化室の付着カーボン除去操作を実行した後の石炭乾留操業の際に、付着カーボンを除去した前記炭化室に隣接する燃焼室を通過する燃焼排ガスのCO濃度を測定し、
予め設定した前記燃焼室の燃焼排ガスのCO濃度の管理基準値と、測定した燃焼排ガスのCO濃度の実測値とを比較し、
前記実測値が前記管理基準値未満であることを条件として、前記石炭乾留操業後に行う前記炭化室の付着カーボン除去操作時の前記酸素含有ガスの吹き込み時間を延長、及び/又は、前記酸素含有ガスの単位時間当たりの吹き込み量を増加、させる。
A method for removing carbon deposited in a coke oven carbonization chamber according to a second aspect of the invention that meets the above-mentioned object includes inserting a lance into the carbonization chamber, blowing oxygen-containing gas into the carbonization chamber, and oxidizing the deposited carbon in the carbonization chamber with the heat retained in the carbonization chamber. In a method for removing carbon deposited in a coke oven carbonization chamber,
During a coal carbonization operation after carrying out an operation for removing adhering carbon in the carbonization chamber, measuring the CO concentration of the combustion exhaust gas passing through a combustion chamber adjacent to the carbonization chamber from which adhering carbon has been removed,
Comparing a preset control standard value of the CO concentration of the combustion exhaust gas in the combustion chamber with the measured value of the CO concentration of the combustion exhaust gas,
On the condition that the actual measured value is less than the control standard value, extending the blowing time of the oxygen-containing gas during the carbon removal operation in the carbonization chamber performed after the coal carbonization operation, and/or extending the blowing time of the oxygen-containing gas Increase the amount of blowing per unit time.

燃焼排ガスのCO濃度が、第2の発明の管理基準値未満の場合、付着カーボンが炉壁に過剰に付着していると見做すことができる。
このため、管理基準値は、一定期間の操業実績(測定実績)に応じて、予め決定しておくと良い。具体的には、正常とされるCO濃度の数値範囲の下限値を、管理基準値に用いる等が考えられる。
When the CO concentration of the combustion exhaust gas is less than the control standard value of the second invention, it can be considered that deposited carbon is excessively deposited on the furnace wall.
For this reason, the management reference value is preferably determined in advance according to the operational performance (measurement performance) over a certain period of time. Specifically, it is conceivable to use the lower limit of the numerical range of CO concentration that is considered normal as the control reference value.

ここで、第1、第2の発明においては管理基準値という同じ用語を用いているが、通常は、第1の発明に記載の管理基準値(実質的にはCO濃度の上限値)の数値が、第2の発明に記載の管理基準値(実質的にはCO濃度の下限値)の数値よりも、高い値となる(異なる数値となる)。 Here, the same term "control standard value" is used in the first and second inventions, but usually the numerical value of the control standard value (substantially the upper limit value of CO concentration) described in the first invention is However, the value is higher (different value) than the control reference value (substantially the lower limit value of CO concentration) described in the second invention.

本発明に係るコークス炉炭化室の付着カーボン除去方法は、炭化室の付着カーボン除去操作を実行した後の石炭乾留操業の際に、この炭化室に隣接する燃焼室を通過する燃焼排ガスのCO濃度を測定し、予め設定した燃焼室の燃焼排ガスのCO濃度の管理基準値と、測定した燃焼排ガスのCO濃度の実測値とを比較して、石炭乾留操業後に行う付着カーボン除去操作時のカーボン除去の程度を決定する。
具体的には、実測値が管理基準値超の場合、付着カーボンを除去し過ぎている(炭化室から燃焼室へ流れ込むCOG量が過剰である)ことから、石炭乾留操業後に行う付着カーボン除去操作時の酸素含有ガスの吹き込み時間を短縮、及び/又は、単位時間当たりの吹き込み量を減少させて、カーボン除去の程度を緩和する。
また、実測値が管理基準値未満の場合、付着カーボンの除去が不足している(コークスの押詰りが発生し易くなる)ことから、石炭乾留操業後に行う付着カーボン除去操作時の酸素含有ガスの吹き込み時間を延長、及び/又は、単位時間当たりの吹き込み量を増加させて、カーボン除去の程度を強化する。
これにより、付着カーボンを適切な量(炭化室の煉瓦目地を閉塞する量)残して炭化室の炉壁から除去することができるため、押詰り発生抑制と黒煙発生抑制の両立が図れる。
The method for removing carbon deposits in a coke oven carbonization chamber according to the present invention provides a method for removing carbon deposits in a coke oven carbonization chamber, during a coal carbonization operation after performing an operation for removing carbon deposits in a coke oven, the CO concentration of combustion exhaust gas passing through a combustion chamber adjacent to the carbonization chamber. The CO concentration of the combustion exhaust gas in the combustion chamber is measured and compared with the control standard value of the CO concentration of the combustion exhaust gas in the combustion chamber set in advance, and the actual value of the CO concentration of the combustion exhaust gas is compared. Determine the degree of
Specifically, if the actual measured value exceeds the control standard value, it means that too much adhered carbon has been removed (the amount of COG flowing from the carbonization chamber to the combustion chamber is excessive), so the adhering carbon removal operation should be carried out after the coal carbonization operation. The degree of carbon removal is alleviated by shortening the time for blowing oxygen-containing gas and/or reducing the blowing amount per unit time.
In addition, if the actual measured value is less than the control standard value, the removal of adhering carbon is insufficient (coke clogging is likely to occur). The degree of carbon removal is enhanced by extending the blowing time and/or increasing the blowing amount per unit time.
As a result, it is possible to remove adhering carbon from the furnace wall of the carbonization chamber while leaving behind an appropriate amount (an amount that blocks the brick joints in the carbonization chamber), thereby achieving both suppression of clogging and suppression of black smoke generation.

(A)は本発明の一実施の形態に係るコークス炉炭化室の付着カーボン除去方法の処理工程の順番を示す説明図、(B)~(D)はそれぞれ石炭装入工程の模式図、コークス押出工程の模式図、カーボン除去工程の模式図、である。(A) is an explanatory diagram showing the order of treatment steps in a method for removing carbon deposited in a coke oven carbonization chamber according to an embodiment of the present invention, and (B) to (D) are schematic diagrams of the coal charging process and coke They are a schematic diagram of an extrusion process and a schematic diagram of a carbon removal process. (A)~(C)はそれぞれカーボンによるコークス押出性への影響を示す炭化室の横断面図、コークス押出方向に沿って切断した縦断面図、コークス押出方向と直交する方向に切断した縦断面図である。(A) to (C) are a cross-sectional view of the carbonization chamber, a vertical cross-sectional view taken along the coke extrusion direction, and a vertical cross-section taken in a direction perpendicular to the coke extrusion direction, respectively, showing the influence of carbon on coke extrudability. It is a diagram. (A)~(C)は燃焼室の燃焼排ガスのCO濃度の挙動を示す説明図である。(A) to (C) are explanatory diagrams showing the behavior of CO concentration of combustion exhaust gas in a combustion chamber.

続いて、添付した図面を参照しつつ、本発明を具体化した実施の形態につき説明し、本発明の理解に供する。
図1(A)~(D)、図2(A)~(C)に示すように、本発明の一実施の形態に係るコークス炉炭化室の付着カーボン除去方法は、炭化室10にカーボン焼却ランス(ランス)11を挿入して酸素含有ガスを吹き込み、炭化室10の保有熱で炭化室10の付着カーボンを酸化させて除去する方法であり、押詰り発生抑制と黒煙発生抑制を両立する方法である。
以下、詳しく説明する。
Next, embodiments embodying the present invention will be described with reference to the attached drawings to provide an understanding of the present invention.
As shown in FIGS. 1(A) to (D) and FIGS. 2(A) to (C), the method for removing adhering carbon in a coke oven carbonization chamber according to an embodiment of the present invention involves incinerating carbon in a carbonization chamber 10. This is a method in which a lance 11 is inserted and oxygen-containing gas is blown into the carbonization chamber 10 to oxidize and remove the adhering carbon in the carbonization chamber 10 using the heat retained in the carbonization chamber 10. This method achieves both prevention of clogging and black smoke generation. It's a method.
This will be explained in detail below.

まず、コークス製造プロセスについて、図1を参照しながら説明する。
図1(A)に処理する工程の順番を示した通り、多数の炭化室10を有する炉団内の各炭化室10に石炭12を、装入口13を介して装入し(石炭装入工程)、一定時間加熱乾留をする(炭化工程)ことにより、コークスを生成させる。その後、押出し機のラムビーム14により各炭化室10のコークスケーキ15を押出(コークス押出工程)後、カーボン焼却ランス11を、装入口13を介して各炭化室10に挿入して酸素含有ガスを吹き込み(カーボン除去工程)、再度石炭を装入する(石炭装入工程)サイクルを繰り返す。なお、図1中の符号16は、炭化室10内で発生したガスを排出するための上昇管である。図1(B)は石炭装入工程、図1(C)はコークス押出工程、図1(D)はカーボン除去工程の模式図である。
First, the coke manufacturing process will be explained with reference to FIG.
As shown in the order of processing steps in FIG. ), coke is produced by heating and carbonizing for a certain period of time (carbonization process). After that, the coke cake 15 in each carbonization chamber 10 is extruded by the ram beam 14 of the extruder (coke extrusion process), and then the carbon incineration lance 11 is inserted into each carbonization chamber 10 through the charging port 13 and oxygen-containing gas is blown into the carbonization chamber 10. (Carbon removal step) and coal is charged again (Coal charging step) The cycle is repeated. In addition, the code|symbol 16 in FIG. 1 is a rising pipe for exhausting the gas generated in the carbonization chamber 10. FIG. 1(B) is a schematic diagram of the coal charging process, FIG. 1(C) is a schematic diagram of the coke extrusion process, and FIG. 1(D) is a schematic diagram of the carbon removal process.

次に、カーボンの付着堆積状況と押詰り、並びに、カーボン除去による目地開放によるCOGの流出と黒煙発生について、図2(A)~(C)を参照しながら説明する。
コークス乾留中に発生するガスには炭化水素系ガスが含まれており、このガスが高温の炭化室10内で熱分解を起こすことで、コークス表面と炉壁表面、炉頂空間へ、カーボンを生成する。
生成したカーボンは、炉壁煉瓦の目地部に付着し保護カーボンとなるが、付着量が過大である場合は、突起物としてコークス押出時の抵抗となり、押詰りや押止めといった押出トラブルを誘発する要因となる。
一方で、カーボンの付着量が過少である場合は、炉壁目地をシールする保護カーボン層がないことから、炭化室10で発生したCOGが目地を通して隣接する燃焼室17へ漏れ込み、燃焼室17で燃焼不良が発生して黒煙が発生する。
上記したように、付着カーボン除去が過度である場合には、燃焼室17で黒煙発生を起こし、カーボン除去が過少である場合には、コークス押出し時の押詰りを起こす。
Next, the state of adhesion and clogging of carbon, as well as outflow of COG and generation of black smoke due to opening of joints due to carbon removal, will be explained with reference to FIGS. 2(A) to 2(C).
The gas generated during coke carbonization contains hydrocarbon gas, and as this gas undergoes thermal decomposition in the high-temperature carbonization chamber 10, carbon is transferred to the coke surface, furnace wall surface, and furnace top space. generate.
The generated carbon adheres to the joints of the furnace wall bricks and becomes protective carbon, but if the amount of adhesion is excessive, it becomes a protrusion that becomes a resistance during coke extrusion, causing extrusion problems such as clogging and holding back. It becomes a factor.
On the other hand, if the amount of carbon deposited is too small, there is no protective carbon layer that seals the furnace wall joints, so COG generated in the carbonization chamber 10 leaks into the adjacent combustion chamber 17 through the joints, and the combustion chamber 17 Poor combustion occurs and black smoke is generated.
As described above, if the removal of adhering carbon is excessive, black smoke will be generated in the combustion chamber 17, and if the removal of carbon is insufficient, clogging will occur during coke extrusion.

燃焼室17を通過する燃焼排ガスのCO濃度は、炭化室10と燃焼室17の間に配置されている耐火物(煉瓦)の目地の通気状況(穴あき状況や付着カーボンの除去状況)の目安となる。即ち、炭化室10で石炭を乾留している間は、炭化室10ではCOGが発生し、目地の破損部を通ってCOGが燃焼室17に供給され、燃焼室17の燃焼排ガスのCO濃度増加の原因となり、このCOG供給量が増加すると黒煙発生につながる。
そこで、本願発明者らは、燃焼室の燃焼排ガスのCO濃度の傾向管理により、目地の破損部を通過して燃焼室に供給されるCOGの量を定量的に評価することに注目した。具体的には、目地の破損部を通って燃焼室に供給されるCOGの量を定量的に評価するため、炭化室の付着カーボン除去操作を実行した後の石炭乾留操業の際に、付着カーボンを除去した炭化室に隣接する燃焼室の燃焼排ガスのCO濃度を測定することに想到した。
The CO concentration of the combustion exhaust gas passing through the combustion chamber 17 is a guideline for the ventilation status (perforation status and removal status of attached carbon) of the joints of the refractory (bricks) placed between the carbonization chamber 10 and the combustion chamber 17. becomes. That is, while coal is being carbonized in the carbonization chamber 10, COG is generated in the carbonization chamber 10, and the COG is supplied to the combustion chamber 17 through the damaged part of the joint, increasing the CO concentration of the combustion exhaust gas in the combustion chamber 17. If this COG supply amount increases, it will lead to the generation of black smoke.
Therefore, the inventors of the present application focused on quantitatively evaluating the amount of COG that passes through the damaged part of the joint and is supplied to the combustion chamber by managing the trend of the CO concentration of the combustion exhaust gas in the combustion chamber. Specifically, in order to quantitatively evaluate the amount of COG that is supplied to the combustion chamber through the damaged part of the joint, we conducted a study to quantitatively evaluate the amount of COG that is supplied to the combustion chamber through the damaged part of the joint. The idea was to measure the CO concentration of the combustion exhaust gas in the combustion chamber adjacent to the carbonization chamber from which CO was removed.

石炭乾留操業中の燃焼排ガスのCO濃度の実測値が、図3(A)に示すように、予め設定しておいた管理基準値(例えば正常とされるCO濃度の数値範囲の上限値:基準線)Aを超えた場合、COGが煉瓦目地を通って燃焼室に供給される量が増加していることを表す。
ここで、図3(A)に示す状況は、押詰り発生抑制の状況にはあるものの、燃焼室へのCOG供給量が増えて黒煙発生の予兆と捉えることができるから、石炭乾留操業後に行う炭化室の付着カーボン除去操作時の操作条件を弱める。なお、操作条件とは、酸素含有ガスの吹き込み時間と酸素含有ガスの単位時間当たりの吹き込み量を意味し(以下、同じ)、通常、石炭乾留操業前に行った炭化室の付着カーボン除去操作時の操作条件と同じであり、次に行う石炭乾留操業中の燃焼排ガスのCO濃度の実測値が管理基準値A以下となるように、酸素含有ガスの吹き込み時間を短縮、及び/又は、酸素含有ガスの吹き込み量を減少、させる。この酸素含有ガスの吹き込み時間と吹き込み量は、例えば、過去の操業実績に基づいて調整できる。
As shown in Figure 3 (A), the actual measured value of CO concentration of combustion exhaust gas during coal carbonization operation is determined by a preset management standard value (for example, the upper limit of the numerical range of CO concentration that is considered normal: the standard). Line) If it exceeds A, it means that the amount of COG supplied to the combustion chamber through the brick joints is increasing.
Here, although the situation shown in Figure 3 (A) is in a situation where the occurrence of clogging is suppressed, the amount of COG supplied to the combustion chamber increases and can be interpreted as a sign of black smoke generation. Weaken the operating conditions during the carbonization removal operation in the carbonization chamber. Note that the operating conditions refer to the blowing time of the oxygen-containing gas and the blowing amount of the oxygen-containing gas per unit time (the same applies hereinafter), and are usually applied during the carbon removal operation in the carbonization chamber performed before the coal carbonization operation. The operating conditions are the same as the operating conditions of Reduce the amount of gas blown. The blowing time and the blowing amount of this oxygen-containing gas can be adjusted based on past operational results, for example.

これにより、目地に付着したカーボンの除去量が減るため、この付着カーボン除去操作後に行う石炭乾留初期にて、目地を通って燃焼室に供給されるCOGが減少し、燃焼室の燃焼排ガス中のCO濃度が減少して、黒煙発生を未然に予防できる。
例えば、図3(B)に示す実線は、前記した付着カーボン除去操作時の操作条件を弱めた結果である。縦軸のCO濃度は、乾留操業中の目地のカーボン付着量変化に影響される場合があり、例えば、付着カーボンの除去の程度が緩和されることで、燃焼室に流れ込むCOG量が減少してCO濃度が管理基準値Aよりも低下し、更に、石炭の装入直後に発生した揮発物により目地にカーボン成分が付着することで、燃焼室に流れ込むCOG量が更に減少してCO濃度が下がっていく。
As a result, the amount of carbon adhering to the joints to be removed is reduced, so at the initial stage of coal carbonization, which is performed after this carbon removal operation, the amount of COG supplied to the combustion chamber through the joints is reduced, and the amount of COG in the combustion exhaust gas in the combustion chamber is reduced. The CO concentration is reduced and black smoke can be prevented from occurring.
For example, the solid line shown in FIG. 3(B) is the result of weakening the operating conditions during the above-described carbon removal operation. The CO concentration on the vertical axis may be affected by changes in the amount of carbon adhesion at the joints during carbonization operation. For example, by relaxing the degree of removal of adhering carbon, the amount of COG flowing into the combustion chamber may be reduced. The CO concentration falls below the control standard value A, and furthermore, carbon components adhere to the joints due to volatile matter generated immediately after charging the coal, which further reduces the amount of COG flowing into the combustion chamber and lowers the CO concentration. To go.

なお、図3(B)に示す破線は、前記した付着カーボン除去操作時の操作条件を結果として弱めていない場合(付着カーボン除去が過剰な場合)の結果であり、煉瓦目地を通ってCOGが燃焼室に供給される量が減っておらず、CO濃度が管理基準値Aよりも高くなっている。
具体的には、煉瓦目地に一旦孔が開き、乾留操業中にCOGが孔を介して燃焼室へ流入し続けると、その流速が上昇してカーボンが孔に留まりにくい状況となり、また、その部分で燃焼不良が生じて炉壁の温度が低下し孔部でのカーボン形成が阻害されるため、孔が開いていく傾向となり、寧ろ通過するCOG量が増加することになる。
Note that the broken line shown in Figure 3(B) is the result when the operating conditions during the adhering carbon removal operation described above are not weakened (when the adhering carbon removal is excessive), and COG passes through the brick joints. The amount supplied to the combustion chamber has not decreased, and the CO concentration has become higher than the control standard value A.
Specifically, once a hole is opened in a brick joint and COG continues to flow into the combustion chamber through the hole during carbonization operation, the flow rate increases and it becomes difficult for carbon to remain in the hole. This causes poor combustion and lowers the temperature of the furnace wall, inhibiting carbon formation in the pores, which tends to open the pores and rather increases the amount of COG passing through.

また、石炭乾留操業中の燃焼排ガスのCO濃度の実測値が、図3(C)の実線に示すように、予め設定しておいた管理基準値(例えば正常とされるCO濃度の数値範囲の下限値:基準線)Bを下回る場合、カーボンが過剰に付着していることを表す。
ここで、図3(C)に示す状況は、燃焼室へのCOG供給量がなく、カーボンによる押詰り発生の予兆と捉えることができるから、石炭乾留操業後に行う炭化室の付着カーボン除去操作時の操作条件を強める。なお、この操作条件は、通常、石炭乾留操業前に行った炭化室の付着カーボン除去操作時の操作条件と同じであり、次に行う石炭乾留操業中の燃焼排ガスのCO濃度の実測値が管理基準値B以上となるように、操作条件の酸素含有ガスの吹き込み時間を延長、及び/又は、酸素含有ガスの単位時間当たりの吹き込み量を増加、させる。この酸素含有ガスの吹き込み時間と吹き込み量は、例えば、過去の操業実績に基づいて調整できる。
これにより、目地及び炉壁に付着したカーボンの除去量が増えるため、図3(C)の破線に示すように、燃焼室の燃焼排ガス中のCO濃度が上昇し、押詰り発生を未然に予防できる。
In addition, as shown in the solid line in Figure 3 (C), the actual value of the CO concentration in the combustion exhaust gas during coal carbonization operation is determined by a preset control standard value (for example, within the numerical range of CO concentration that is considered normal). Lower limit value: Reference line) If it is below B, it means that carbon is attached excessively.
Here, the situation shown in Fig. 3(C) can be interpreted as a sign that there is no COG supplied to the combustion chamber and clogging with carbon occurs. strengthen operating conditions. Note that these operating conditions are normally the same as those for removing carbon deposited in the carbonization chamber before the coal carbonization operation, and the actual measured value of the CO concentration in the combustion exhaust gas during the next coal carbonization operation is controlled. In order to achieve the reference value B or more, the operating condition for blowing the oxygen-containing gas is extended, and/or the amount of oxygen-containing gas blowing per unit time is increased. The blowing time and the blowing amount of this oxygen-containing gas can be adjusted based on past operational results, for example.
This increases the amount of carbon adhering to the joints and furnace walls that is removed, which increases the CO concentration in the flue gas in the combustion chamber, as shown by the broken line in Figure 3 (C), and prevents clogging. can.

上記した燃焼室の燃焼排ガスのCO濃度は、例えば、燃焼室から燃焼排ガスとして排出される過程で、燃焼排ガスを配管により引抜いて測定することにより得られるが、どの燃焼室から排出される燃焼排ガスであるかが特定できれば、その測定方法は特に限定されるものではない。
また、石炭乾留操業中の燃焼排ガスのCO濃度の実測値には、例えば、数十時間に及ぶ1回の石炭乾留操業時のCO濃度の平均値を用い、この平均値と上記した管理基準値A、Bとを比較するのがよいが、この平均値には、例えば、1回の石炭乾留操業の特定期間(例えば、乾留操業後半)のCO濃度の平均値を用いることもできる。また、実測値にCO濃度の測定値そのものを使用し、この測定値が1回又は2回以上の複数回、管理基準値A超であるか否か、又は、管理基準値B未満であるか否かで、実測値と管理基準値A、Bとの比較を行ってもよい。
The CO concentration of the flue gas in the combustion chamber described above can be obtained, for example, by pulling out the flue gas through piping and measuring it in the process of being discharged from the combustion chamber as flue gas. As long as it can be determined, the measuring method is not particularly limited.
In addition, for the actual measured value of CO concentration of combustion exhaust gas during coal carbonization operation, for example, the average value of CO concentration during one coal carbonization operation over several tens of hours is used, and this average value and the above-mentioned control standard value are used. Although it is preferable to compare A and B, the average value of the CO concentration during a specific period of one coal carbonization operation (for example, the second half of the carbonization operation) can also be used as the average value. In addition, the measured value of the CO concentration itself is used as the actual value, and whether this measured value exceeds the control standard value A or is less than the control standard value B once or twice or more. If not, the actual measured value and the management reference values A and B may be compared.

管理基準値は、炭化室に隣接する2つの燃焼室a、bに対して、例えば、以下のように設定できる。なお、一方の燃焼室aの管理基準値(CO濃度上限)をCT1、管理基準値(CO濃度下限)をCB1とし、他方の燃焼室bの管理基準値(CO濃度上限)をCT2、管理基準値(CO濃度下限)をCB2とする(CT1>CB1、CT2>CB2)。
1)4つの管理基準値CT1、CT2、CB1、CB2が異なる(即ち、CT1≠CT2、かつ、CB1≠CB2)。
2)2つの管理基準値CT1、CT2が同じ、かつ、2つの管理基準値CB1、CB2が同じ(即ち、CT1=CT2、かつ、CB1=CB2)。
3)2つの管理基準値CT1、CT2が同じ、又は、2つの管理基準値CB1、CB2が同じ(即ち、CT1=CT2、又は、CB1=CB2)。
The management reference value can be set, for example, as follows for the two combustion chambers a and b adjacent to the carbonization chamber. The management standard value (CO concentration upper limit) of one combustion chamber a is CT1, the management standard value (CO concentration lower limit) is CB1, and the management standard value (CO concentration upper limit) of the other combustion chamber b is CT2, management standard. The value (lower limit of CO concentration) is set as CB2 (CT1>CB1, CT2>CB2).
1) The four management reference values CT1, CT2, CB1, and CB2 are different (that is, CT1≠CT2 and CB1≠CB2).
2) The two management reference values CT1 and CT2 are the same, and the two management reference values CB1 and CB2 are the same (ie, CT1=CT2 and CB1=CB2).
3) Two management reference values CT1 and CT2 are the same, or two management reference values CB1 and CB2 are the same (ie, CT1=CT2 or CB1=CB2).

上記した1)の管理基準値の設定では、炭化室の両隣で、石炭乾留操業中の燃焼排ガスのCO濃度の実測値と管理基準値との比較の判断基準が異なるが、一方の燃焼室の管理基準値の条件を満たした場合に、酸素含有ガスの吹き込み時間の短縮や延長、また、酸素含有ガスの単位時間当たりの吹き込み量の減少や増加の判断を行えばよい(上記した3)の管理基準値の設定についても同様)。
なお、管理基準値の設定の際に、一方の燃焼室aの管理基準値CT1が、他方の燃焼室bの管理基準値CB2以下となる場合(CT1≦CB2)も考えられるが、本発明者らは経験していない。仮にこのような状況が発生した場合は、作業者の手作業により付着コークスを除去するのがよい。
酸素含有ガスの吹き込み時間の短縮や延長、また、酸素含有ガスの単位時間当たりの吹き込み量の減少や増加は、例えば、過去の操業実績に基づいて調整できる。
In setting the control standard value in 1) above, the criteria for comparing the actual measured value of CO concentration of combustion exhaust gas during coal carbonization operation with the control standard value are different on both sides of the carbonization chamber, but in the case of one combustion chamber. When the conditions of the control standard value are met, it is sufficient to decide whether to shorten or extend the time of blowing oxygen-containing gas, or to reduce or increase the amount of blowing oxygen-containing gas per unit time (see 3 above). The same applies to setting management standard values).
In addition, when setting the control reference value, there may be a case where the control reference value CT1 of one combustion chamber a becomes equal to or less than the control reference value CB2 of the other combustion chamber b (CT1≦CB2). They have not experienced it. If such a situation occurs, it is best to remove the adhering coke manually by an operator.
Shortening or extending the blowing time of the oxygen-containing gas, or decreasing or increasing the blowing amount of the oxygen-containing gas per unit time can be adjusted based on past operational results, for example.

上記した実測値と管理基準値との比較や、酸素含有ガスの吹き込み時間や吹き込み量の調整は、例えば、コークス炉設備の制御部(コンピュータ)により自動で実施することができる。
具体的には、炭化室の付着カーボン除去操作を実行した後の石炭乾留操業の際に測定した燃焼排ガスのCO濃度を、リアルタイム(逐次)に連続的又は断続的に制御部へ送信する。制御部では、この送信されたCO濃度の測定値に対して予め設定した処理がなされ、前記した燃焼排ガスのCO濃度の実測値を算出し、燃焼排ガスのCO濃度の管理基準値と、燃焼排ガスのCO濃度の実測値とを比較する。そして、制御部は、石炭乾留操業後に行う炭化室の付着カーボン除去操作時の酸素含有ガスの吹き込み時間、及び/又は、吹き込み量の調整を行う。なお、酸素含有ガスの吹き込み時間と吹き込み量は、例えば、過去の操業実績に基づいて得られた、燃焼排ガスのCO濃度の管理基準値と、燃焼排ガスのCO濃度の実測値との乖離幅に応じて調整できる。
なお、上記した操作は、作業者が手動により行うこともできる。
The comparison of the above-mentioned measured value with the control reference value and the adjustment of the blowing time and blowing amount of the oxygen-containing gas can be automatically performed by, for example, a control unit (computer) of the coke oven equipment.
Specifically, the CO concentration of the combustion exhaust gas measured during the coal carbonization operation after performing the carbonization removal operation of the carbonization chamber is continuously or intermittently transmitted to the control unit in real time (sequentially). The control unit performs preset processing on the transmitted CO concentration measurement value, calculates the above-mentioned actual measurement value of the CO concentration of the combustion exhaust gas, and calculates the CO concentration management standard value of the combustion exhaust gas and the combustion exhaust gas. and the actual measured value of CO concentration. The control unit then adjusts the blowing time and/or the blowing amount of the oxygen-containing gas during the carbon removal operation in the carbonization chamber performed after the coal carbonization operation. The time and amount of oxygen-containing gas to be blown are determined based on, for example, the difference between the control standard value of the CO concentration of the flue gas and the actual value of the CO concentration of the flue gas, which was obtained based on past operational results. It can be adjusted accordingly.
Note that the above operations can also be performed manually by the operator.

次に、本発明の作用効果を確認するために行った実施例について説明する。
<押詰り防止効果の確認>
あるコークス炉について、以下の押詰り発生率を算出した。
比較として、従来技術(炭化室の付着カーボンの除去を実施せず、押詰りが発生したら人力で付着カーボンを除去する方法、以下同じ)の1年間のカーボン起因の押詰り発生率を回数割合で算出した。
前記した特許文献2記載の方法(炭化室に酸素含有ガスを吹き込み、炭化室から排出される排ガスの酸素濃度が所定の値となった時点で酸素含有ガス吹き込みを停止、以下同じ)を数年実施し、最も押詰り発生が抑制できた最後の1年間のカーボン起因の押詰り発生率を回数割合で算出し、上記した従来技術の発生率を100として発生率を指数化した。
その結果、指数化した発生率は約60であった。
本発明の方法(燃焼室のCO濃度管理、以下同じ)を2年実施し、後半1年間のカーボン起因の押詰り発生率を回数割合で算出し、上記した従来技術の発生率を100として発生率を指数化した。
その結果、指数化した発生率は約40であった。
Next, examples performed to confirm the effects of the present invention will be described.
<Confirmation of clogging prevention effect>
The following clogging occurrence rate was calculated for a certain coke oven.
For comparison, we calculated the clogging occurrence rate due to carbon over a one-year period using conventional technology (a method in which carbon adhering to the carbonization chamber is not removed, and adhering carbon is removed manually when clogging occurs; the same applies hereinafter). Calculated.
The method described in Patent Document 2 described above (injecting oxygen-containing gas into the carbonization chamber, and stopping the injection of oxygen-containing gas when the oxygen concentration of the exhaust gas discharged from the carbonization chamber reaches a predetermined value, the same applies hereinafter) was carried out for several years. The carbon-induced clogging occurrence rate during the last year when the clogging was most suppressed was calculated as a percentage of the number of times, and the occurrence rate was expressed as an index with the above-mentioned conventional technology occurrence rate set as 100.
As a result, the indexed incidence was approximately 60.
The method of the present invention (combustion chamber CO concentration management, the same applies hereinafter) was implemented for two years, and the occurrence rate of carbon-induced clogging in the latter half of the year was calculated as a percentage of the number of times, and the occurrence rate of the conventional technology described above was set as 100. The rate was expressed as an index.
As a result, the indexed incidence was approximately 40.

<黒煙発生未然防止効果の確認>
あるコークス炉について、黒煙発生状況について調査した。実際には黒煙の発生がなかったため、黒煙発生可能性リスク(排ガス中のCO濃度であって黒煙が発生する濃度を100として、60以上にCO濃度が上昇すること)について比較した。
比較として、従来技術の1年間の黒煙発生可能性リスクが生じた回数の回数割合を算出した。
前記した特許文献2記載の方法であって押詰り発生状況を確認した期間の黒煙発生可能性リスクが生じた回数割合を算出し、従来技術の回数割合を100として回数割合を指数化した。
その結果、指数化した回数割合は約50であった。
本発明の方法であって押詰り発生状況を確認した期間の黒煙発生可能性リスクが生じた回数割合を算出し、従来技術の回数割合を100として回数割合を指数化した。
その結果、指数化した回数割合は約35であった。
<Confirmation of effectiveness in preventing black smoke generation>
We investigated the black smoke generation situation in a certain coke oven. In reality, no black smoke was generated, so a comparison was made regarding the risk of black smoke generation (CO concentration in exhaust gas, where the concentration at which black smoke occurs is defined as 100, and the CO concentration rises to 60 or higher).
For comparison, the ratio of the number of times that the risk of black smoke generation occurred in one year using the conventional technology was calculated.
Using the method described in Patent Document 2 described above, the ratio of the number of times a risk of black smoke generation occurred during the period in which the clogging situation was confirmed was calculated, and the number ratio of the conventional technology was set as 100, and the number ratio was converted into an index.
As a result, the number of times indexed was approximately 50.
Using the method of the present invention, the number of times a risk of black smoke generation occurred during the period in which the clogging situation was confirmed was calculated, and the number of times the number of times the risk of black smoke generation occurred was calculated, and the number of times was expressed as an index, with the number of times of the prior art being set as 100.
As a result, the number of times indexed was approximately 35.

以上より、本発明に従えば、炭化室内であって特に炭化室煉瓦の目地にCOGの流通を止める程度の付着カーボンを残し、かつ炭化室から乾留コークスを押し出す際の押詰りを防止できる程度に付着カーボンを除去することが可能となり、押詰り発生割合と黒煙発生(発生可能性リスク)割合の双方を低減する効果が同時に得られることがわかった。 From the above, according to the present invention, adhering carbon can be left in the carbonization chamber, especially at the joints of the carbonization chamber bricks, to the extent that the flow of COG is stopped, and at the same time, clogging can be prevented when carbonization coke is pushed out from the carbonization chamber. It has become possible to remove adhering carbon, and it has been found that the effect of reducing both the clogging rate and the black smoke generation rate (possible risk of occurrence) can be obtained at the same time.

以上、本発明を、実施の形態を参照して説明してきたが、本発明は何ら上記した実施の形態に記載の構成に限定されるものではなく、特許請求の範囲に記載されている事項の範囲内で考えられるその他の実施の形態や変形例も含むものである。例えば、前記したそれぞれの実施の形態や変形例の一部又は全部を組合せて本発明のコークス炉炭化室の付着カーボン除去方法を構成する場合も本発明の権利範囲に含まれる。
前記実施の形態においては、炭化室の両隣の燃焼室に対して、CO濃度上限とCO濃度下限となる一組の管理基準値をそれぞれ設定し、少なくとも一方の燃焼室のCO濃度上限の管理基準値を超えた場合、又は、CO濃度下限の管理基準値を下回った場合に、付着カーボン除去操作時の酸素含有ガスの吹き込み時間や吹き込み量の調整を行った場合について説明した。
しかし、例えば、炭化室やこの炭化室に隣接する燃焼室の状況に応じて、1)一方の燃焼室のみにCO濃度上限とCO濃度下限となる一組の管理基準値を設定し、また、2)両隣の燃焼室又は一方の燃焼室に対して、CO濃度上限及びCO濃度下限のいずれか一方の管理基準値のみを設定し、この管理基準値に応じて、付着カーボン除去操作時の酸素含有ガスの吹き込み時間や吹き込み量の調整を行うこともできる。
Although the present invention has been described above with reference to the embodiments, the present invention is not limited to the configuration described in the embodiments described above, and the matters described in the claims are as follows. It also includes other embodiments and modifications that may be considered within the scope. For example, it is also within the scope of the present invention to configure a method for removing deposited carbon in a coke oven carbonization chamber of the present invention by combining some or all of the above-described embodiments and modifications.
In the embodiment described above, a set of control reference values serving as an upper limit of CO concentration and a lower limit of CO concentration is set for the combustion chambers on both sides of the carbonization chamber, respectively, and a control standard for the upper limit of CO concentration of at least one combustion chamber is set. A case has been described in which the blowing time and blowing amount of oxygen-containing gas during the adhesion carbon removal operation are adjusted when the CO concentration exceeds the lower limit of the control standard value or when the CO concentration falls below the lower limit control standard value.
However, for example, depending on the situation of the carbonization chamber and the combustion chamber adjacent to the carbonization chamber, 1) a set of control reference values as an upper limit and a lower limit of CO concentration may be set for only one combustion chamber; 2) Set only one of the CO concentration upper limit and CO concentration lower limit management standard values for the adjacent combustion chambers or one combustion chamber, and adjust the oxygen concentration during the carbon removal operation according to this management standard value. It is also possible to adjust the blowing time and amount of the contained gas.

10:炭化室、11:カーボン焼却ランス、12:石炭、13:装入口、14:ラムビーム、15:コークスケーキ、16:上昇管、17:燃焼室 10: Carbonization chamber, 11: Carbon incineration lance, 12: Coal, 13: Charging port, 14: Ram beam, 15: Coke cake, 16: Riser pipe, 17: Combustion chamber

Claims (2)

炭化室にランスを挿入して酸素含有ガスを吹き込み、前記炭化室の保有熱で該炭化室の付着カーボンを酸化させて除去するコークス炉炭化室の付着カーボン除去方法において、
前記炭化室の付着カーボン除去操作を実行した後の石炭乾留操業の際に、付着カーボンを除去した前記炭化室に隣接する燃焼室を通過する燃焼排ガスのCO濃度を測定し、
予め設定した前記燃焼室の燃焼排ガスのCO濃度の管理基準値と、測定した燃焼排ガスのCO濃度の実測値とを比較し、
前記実測値が前記管理基準値を超えることを条件として、前記石炭乾留操業後に行う前記炭化室の付着カーボン除去操作時の前記酸素含有ガスの吹き込み時間を短縮、及び/又は、前記酸素含有ガスの単位時間当たりの吹き込み量を減少、させることを特徴とするコークス炉炭化室の付着カーボン除去方法。
A method for removing adhered carbon in a coke oven carbonization chamber, in which a lance is inserted into the carbonization chamber and oxygen-containing gas is blown into the carbonization chamber to oxidize and remove the adhered carbon in the carbonization chamber using the heat retained in the carbonization chamber.
During a coal carbonization operation after carrying out an operation for removing adhering carbon in the carbonization chamber, measuring the CO concentration of the combustion exhaust gas passing through a combustion chamber adjacent to the carbonization chamber from which adhering carbon has been removed,
Comparing a preset control standard value of the CO concentration of the combustion exhaust gas in the combustion chamber with the measured value of the CO concentration of the combustion exhaust gas,
On the condition that the actual measured value exceeds the control standard value, the blowing time of the oxygen-containing gas during the carbon removal operation in the carbonization chamber performed after the coal carbonization operation is shortened, and/or the oxygen-containing gas is A method for removing carbon deposited in a coke oven carbonization chamber, which is characterized by reducing the amount of blowing per unit time.
炭化室にランスを挿入して酸素含有ガスを吹き込み、前記炭化室の保有熱で該炭化室の付着カーボンを酸化させて除去するコークス炉炭化室の付着カーボン除去方法において、
前記炭化室の付着カーボン除去操作を実行した後の石炭乾留操業の際に、付着カーボンを除去した前記炭化室に隣接する燃焼室を通過する燃焼排ガスのCO濃度を測定し、
予め設定した前記燃焼室の燃焼排ガスのCO濃度の管理基準値と、測定した燃焼排ガスのCO濃度の実測値とを比較し、
前記実測値が前記管理基準値未満であることを条件として、前記石炭乾留操業後に行う前記炭化室の付着カーボン除去操作時の前記酸素含有ガスの吹き込み時間を延長、及び/又は、前記酸素含有ガスの単位時間当たりの吹き込み量を増加、させることを特徴とするコークス炉炭化室の付着カーボン除去方法。
A method for removing adhered carbon in a coke oven carbonization chamber, in which a lance is inserted into the carbonization chamber and oxygen-containing gas is blown into the carbonization chamber to oxidize and remove the adhered carbon in the carbonization chamber using the heat retained in the carbonization chamber.
During a coal carbonization operation after carrying out an operation for removing adhering carbon in the carbonization chamber, measuring the CO concentration of the combustion exhaust gas passing through a combustion chamber adjacent to the carbonization chamber from which adhering carbon has been removed,
Comparing a preset control standard value of the CO concentration of the combustion exhaust gas in the combustion chamber with the measured value of the CO concentration of the combustion exhaust gas,
On the condition that the actual measured value is less than the control standard value, extending the blowing time of the oxygen-containing gas during the carbon removal operation in the carbonization chamber performed after the coal carbonization operation, and/or extending the blowing time of the oxygen-containing gas A method for removing deposited carbon in a coke oven carbonization chamber, which is characterized by increasing the blowing amount per unit time.
JP2022118812A 2022-07-26 2022-07-26 Deposit carbon removal method in coke oven carbonization chamber Pending JP2024016577A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022118812A JP2024016577A (en) 2022-07-26 2022-07-26 Deposit carbon removal method in coke oven carbonization chamber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022118812A JP2024016577A (en) 2022-07-26 2022-07-26 Deposit carbon removal method in coke oven carbonization chamber

Publications (1)

Publication Number Publication Date
JP2024016577A true JP2024016577A (en) 2024-02-07

Family

ID=89806291

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022118812A Pending JP2024016577A (en) 2022-07-26 2022-07-26 Deposit carbon removal method in coke oven carbonization chamber

Country Status (1)

Country Link
JP (1) JP2024016577A (en)

Similar Documents

Publication Publication Date Title
JP2024016577A (en) Deposit carbon removal method in coke oven carbonization chamber
TWI276755B (en) Method for treating waste
JP2007070527A (en) Combustion process for removal of deposit carbon in coke oven carbonization chamber
JP6278185B2 (en) Combustion carbon removal method in carbonization chamber of coke oven.
JP2007169533A (en) Method for incinerating carbon attached to coke oven carbonization chamber
JP2557030B2 (en) Method for thermal decoking of a cracking furnace and a downstream cracking gas cooler
JP7135755B2 (en) How to operate a coke oven
CN108754095B (en) Method for preventing threaded hole from being oxidized during heat treatment
JP6769225B2 (en) Carbonization chamber wall adhering carbon removal method in coke oven operation
JP2008095030A (en) Method for burning removal of attached carbon in carbonization chamber of coke oven
JP2009298844A (en) Method for raising temperature of coke dry quencher
JP7188007B2 (en) coke production method
JP5365039B2 (en) Coke oven operation method
JPS6121187A (en) Method of removing attached carbon in coking chamber of coke oven
JP4714617B2 (en) Coke oven carbonization chamber repair method
JPH0791542B2 (en) Method for removing adhered carbon in coke oven carbonization chamber
JP3241587B2 (en) Method of preventing carbon adhesion at the base of coke oven riser
WO2023233957A1 (en) Blast-furnace operation method and blast furnace
JPS61231085A (en) Method of automatically burning and removing adhered carbon in carbonizing chamber of coke oven
JP5919774B2 (en) Coke oven operation method and operation management device
JPH11116964A (en) Removal of carbon deposit in carbonizing chamber of coke oven
JP2821985B2 (en) Combustible gas combustion control method for coke dry fire extinguishing equipment
JP4222233B2 (en) Coke oven discharge by-product processing method
JP2007003035A (en) Thermal decomposition gasification melting equipment capable of preventing blocking by deposit of high-temperature gas duct of high temperature thermal decomposition gasification melting equipment, and blocking prevention method for high temperature gas duct in the same
JP2000073067A (en) Operation of coke oven

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20230703