JP4854151B2 - Method to stably increase production of acetonitrile and hydrocyanic acid - Google Patents

Method to stably increase production of acetonitrile and hydrocyanic acid Download PDF

Info

Publication number
JP4854151B2
JP4854151B2 JP2001258920A JP2001258920A JP4854151B2 JP 4854151 B2 JP4854151 B2 JP 4854151B2 JP 2001258920 A JP2001258920 A JP 2001258920A JP 2001258920 A JP2001258920 A JP 2001258920A JP 4854151 B2 JP4854151 B2 JP 4854151B2
Authority
JP
Japan
Prior art keywords
yield
propylene
acetonitrile
reaction
catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001258920A
Other languages
Japanese (ja)
Other versions
JP2003064041A (en
Inventor
英雄 緑川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Chemicals Corp
Original Assignee
Asahi Kasei Chemicals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Chemicals Corp filed Critical Asahi Kasei Chemicals Corp
Priority to JP2001258920A priority Critical patent/JP4854151B2/en
Publication of JP2003064041A publication Critical patent/JP2003064041A/en
Application granted granted Critical
Publication of JP4854151B2 publication Critical patent/JP4854151B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Description

【0001】
【発明の属する技術分野】
本発明は、プロピレンとアンモニアと酸素をアンモ酸化反応させてアクリロニトリルを製造するに際して、アセトニトリル及び青酸を安定に増産する方法に関するものである。
更に詳しくは、プロピレンとアンモニアと酸素を流動層反応器において組成が特定された触媒の存在下にアンモ酸化反応させてアクリロニトリルを製造するに際して、酢酸メチル、アセトン及びメチルエチルエ−テルの中から選ばれる1種以上の化合物を反応器に供給することを特徴とするアセトニトリル及び青酸を安定に増産する方法に関するものである。
【0002】
【従来の技術】
アセトニトリル及び青酸は医薬、農薬、香料等の各種化学製品の合成原料として用いられる工業的価値が高い化合物であり、主としてプロピレンのアンモ酸化反応によってアクリロニトリルを製造する際の副生物として製造されている。
しかしながら、近年においては、プロピレンのアンモ酸化反応に用いる触媒の改良により副生物であるアセトニトリル及び青酸の収率は低下しているのが現状である。
【0003】
このような背景の中で、プロピレンのアンモ酸化反応によってアクリロニトリルを製造する際に、アセトニトリルと青酸を増産する方法について検討がなされている。例えば、アセトニトリルを増産する方法としては、反応系内にアセトン又はエタノ−ルを共存させることによる方法が特開平3−246269号公報に開示されている。また、メタノ−ルに加えてエタノ−ルとプロパノ−ルから選ばれた1種以上のアルコ−ルを反応系に供給してアセトニトリルと青酸を増産する方法が米国特許第6,204,407号明細書に開示されている。また、青酸を増産する方法としては反応系内にメタノ−ル又はホルムアルデヒドを共存させることによる方法が特公昭55−35377号公報に開示されている。また、プロピレンの接触時間に対して供給するメタノ−ルの接触時間を特定した方法が特公昭54−8655号公報に、蟻酸メチルを供給する方法が特開平1−261223号公報に開示されている。
【0004】
これらの方法では短期において目的生成物であるアセトニトリル及び/又は青酸を増産することが可能であるが、触媒の性能を維持し、長期間にわたって安定にアセトニトリル及び/又は青酸を増産する方法に関しては何ら開示が成されていない。
【0005】
【発明が解決しようとする課題】
本発明は、プロピレンのアンモ酸化反応によってアクリロニトリルを製造する際に、アセトニトリル及び青酸を安定に増産する方法を提供するものである。更に、触媒の性能を維持することにより、アクリロニトリルの収率の低下も抑制し、長期間にわたって安定に反応を継続する方法を提供するものである。
【0006】
【課題を解決するための手段】
本発明者は上記の課題を達成するための方法について鋭意検討した結果、使用する触媒、反応器に供給する原料とその比率及び反応器の出口ガス中の酸素濃度を規定することにより、プロピレンのアンモ酸化反応によってアクリロニトリルを製造する際に、アセトニトリル及び青酸を安定に増産することに加えて、触媒の性能を維持することにより、アクリロニトリルの収率の低下も抑制し、長期間にわたって安定に反応を継続する方法を見出した。
【0007】
即ち、本発明は、プロピレンとアンモニアと酸素を流動層反応器において触媒の存在下にアンモ酸化反応させてアクリロニトリルを製造するに際して、
触媒として、シリカに担持された酸化物組成が下記一般式(1)
Moy Bip Feq a b c d e ・・・・(1)
(上記一般式(1)中、Moはモリブデン、Biはビスマス、Feは鉄、Aはニッケル及びコバルトから選ばれる1種以上の元素、Bはカリウム、ルビジウム及びセシウムから選ばれる1種以上の元素、Cはマグネシウム及び亜鉛から選ばれる1種以上の元素、Dは希土類元素から選ばれる1種以上の元素、Oは酸素を表し、yはアンモ酸化反応中のモリブデンの原子比であり、y=1.02x〜1.12x、但し、xはx=1.5p+q+a+c+1.5dである。p 、q 、a 、b 、c 、d 及びe はそれぞれビスマス、鉄、A、B、C、D及び酸素の原子比を表し、p =0.01〜5.0、q =0.1〜5、a =4〜10、b =0.01〜2、c=0〜5、d=0〜5、e は存在する他の元素の原子価要求を満足させるために必要な酸素の原子数である。)
で表される触媒を用い、酢酸メチル、アセトン及びメチルエチルエ−テルの中から選ばれる1種以上の化合物をプロピレンに対して炭素ベ−スで0.005〜0.2の比率で反応器に供給し、且つ、反応器の出口ガス中の酸素濃度を0.1〜1.5容量%に制御することを特徴とするアセトニトリル及び青酸を安定に増産する方法である。
【0008】
【発明の実施の形態】
本発明について詳細に説明する。
本発明において使用する触媒は、シリカに担持された酸化物組成が下記一般式(1)
Moy Bip Feq a b c d e ・・・・(1)
(上記一般式(1)中、Moはモリブデン、Biはビスマス、Feは鉄、Aはニッケル及びコバルトから選ばれる1種以上の元素、Bはカリウム、ルビジウム及びセシウムから選ばれる1種以上の元素、Cはマグネシウム及び亜鉛から選ばれる1種以上の元素、Dは希土類元素から選ばれる1種以上の元素、Oは酸素を表し、yはアンモ酸化反応中のモリブデンの原子比であり、y=1.02x〜1.12x、但し、xはx=1.5p+q+a+c+1.5dである。p 、q 、a 、b 、c 、d 及びe はそれぞれビスマス、鉄、A、B、C、D及び酸素の原子比を表し、p =0.01〜5.0、q =0.1〜5、a =4〜10、b =0.01〜2、c=0〜5、d=0〜5、e は存在する他の元素の原子価要求を満足させるために必要な酸素の原子数である。)
で表される触媒を用いる。
【0009】
より好ましい酸化物組成としては、下記一般式(2):
Moy Bip Feq a b c d e ・・・・(2)
(上記一般式(2)中、Moはモリブデン、Biはビスマス、Feは鉄、Aはニッケル及びコバルトから選ばれる1種以上の元素、Bはカリウム、ルビジウム及びセシウムから選ばれる1種以上の元素、Cはマグネシウム及び亜鉛から選ばれる1種以上の元素、Dはイットリウム、ランタン、セリウム、プラセオジム、ネオジム及びサマリウムから選ばれる1種以上の元素、Oは酸素を表し、yはアンモ酸化反応中のモリブデンの原子比であり、y=1.02x〜1.12x、但し、xはx=1.5p+q+a+c+1.5dである。p 、q 、a 、b 、c 、d 及びe はそれぞれビスマス、鉄、A、B、C、D及び酸素の原子比を表し、p +d=0.5〜2.0、d/(p+d)=0.6〜0.8、q =0.1〜3、a =4〜10、b =0.01〜2、c=0〜3、e は存在する他の元素の原子価要求を満足させるために必要な酸素の原子数である。)
で表される。
【0010】
更に好ましい酸化物組成としては、下記一般式(3):
Moy Bip Feq a b c d e ・・・・(3)
(上記一般式(3)中、Moはモリブデン、Biはビスマス、Feは鉄、Aはニッケル、Bはカリウム、ルビジウム及びセシウムから選ばれる1種以上の元素、Cはマグネシウム、Dはセリウム、Oは酸素を表し、yはアンモ酸化反応中のモリブデンの原子比であり、y=1.02x〜1.12x、但し、xはx=1.5p+q+a+c+1.5dである。p 、q 、a 、b 、c 、d 及びe はそれぞれビスマス、鉄、A、B、C、D及び酸素の原子比を表し、p +d=0.5〜2.0、d/(p+d)=0.6〜0.8、q =0.1〜3、a =4〜10、b =0.01〜2、c=0〜3、e は存在する他の元素の原子価要求を満足させるために必要な酸素の原子数である。)
で表される。
【0011】
本発明の触媒の反応中における酸化物組成のモリブデンの原子比yは、y=1.02x〜1.12xの範囲に、好ましくはy=1.05x〜1.09xの範囲に制御することが好ましい。このモリブデンの原子比を制御する方法としては、本発明の反応条件下で酸化モリブデンに変換し得る、担体に担持されていないモリブデン化合物を賦活剤として反応器に添加する方法や、Y=0.9x〜1.2xの初期原子比Yで調製した酸化物組成の触媒を反応器に添加する方法により行うことができる。前者の賦活剤としてのモリブデン化合物としては、三酸化モリブデン(MoO3 )、モリブデン酸(H2 MoO4 、H2 MoO4 ・H2 O)、モリブデン酸アンモニウム((NH4 2 MoO4 )、パラモリブデン酸アンモニウム((NH4 6 Mo7 24・4H2 O)を用いることが好ましく、この中でパラモリブデン酸アンモニウムを用いることがより好ましい。この賦活剤の添加は、1回当たり0.006x以下に相当する量、好ましくは0.004x以下に相当する量で行うことが良い。添加する頻度は、1〜30日に1回以上、好ましくは1/2〜15日に1回以上、更に好ましくは1/3〜7日に1回以上であることが良い。
触媒の組成は、蛍光X線分析、原子吸光分析、誘導結合プラズマ発光分析(ICP)等の方法で分析することができる。
【0012】
本発明において、使用前の触媒の酸化物組成のモリブデンの原子比(初期原子比)Yについては、アンモ酸化反応に用いることによってモリブデンの原子比(反応中原子比)yが上記y=1.02x〜1.12xの関係を満たす限り、初期原子比Yの範囲には特に制限はない。Yの好ましい範囲はY=0.9x〜1.2xであり、より好ましくはY=1.02x〜1.12xである。
触媒の酸化物組成の構成元素及び該元素の原子比を上記の条件を満たすように選択することで、触媒に対して還元劣化に対する耐性を付与することができ、また、アクリロニトリルの収率を高い値に維持できることに加えて、プロセスにおける詰まりや精製系における青酸の損失の原因となるアクロレインの収率を低くおさえることができ、本発明に対して良好に用いることができる。
【0013】
本発明に用いる触媒は、モリブデン12原子に対して0.5原子以下の少量であれば、さらに、リン、アンチモン、タングステン、バナジウム、テルル、パラジウム、ニオブ、タンタル、レニウム、銀等の元素を含むこともできる。
本発明の触媒はシリカ担持触媒として使用する。シリカは流動層反応器で使用するために必要な流動性、耐磨耗性等の物性を触媒に付与する。シリカは上記酸化物とシリカの合計に対して30〜70重量%、好ましくは40〜60重量%の範囲で用いる。シリカが30重量%未満の場合は触媒の機械的強度が十分ではなく、また、シリカが70重量%を越える場合はアクリロニトリルの収率自体が低下する。
【0014】
本発明の触媒は、特開平7−48334号公報、特開平7−289901号公報、特開平7−303836号公報及び特開平7−328441号公報等に記載された公知の方法で調製することができる。例えば、触媒原料を調合して得られた調合液を噴霧乾燥し、該乾燥品を焼成することによって調製することができる。触媒原料の調合にあたっては、シリカの原料としてはシリカゾルが、モリブデンの原料としてはパラモリブデン酸アンモニウム塩が、他の成分の原料としては硝酸塩が好ましく用いられる。調製した調合液の噴霧乾燥において、噴霧化は遠心方式により行うことが好ましい。乾燥温度は100〜400℃、好ましくは150〜300℃である。乾燥品の焼成は、必要に応じて150〜500℃で前焼成をした後、500〜750℃、好ましくは550〜700℃の温度範囲で1〜20時間行う。
【0015】
本発明においてアセトニトリル及び青酸を増産するために反応器に供給する化合物(以下、単に「M」又は「化合物M」と言うことがある。)としては、酢酸メチル、アセトン及びメチルエチルエ−テルが挙げられる。これらの化合物の中で好ましい化合物としては酢酸メチル及びメチルエチルエ−テルが挙げられる。更に好ましい化合物としては、酢酸メチルが挙げられる。
これらの化合物のプロピレンに対する供給比率は、炭素ベ−スで0.005〜0.2であり、好ましくは0.01〜0.15であり、更に好ましくは0.015〜0.1である。例えば、酢酸メチルを0.1の比率で供給することは、プロピレン1モルに対して酢酸メチル0.1モルを供給することを意味する。反応器に供給するこれらの化合物の供給比率が0.005未満ではアセトニトリル及び青酸の増産が十分ではなく、また、この比率が0.2を越える場合は、プロピレンに対するこれらの化合物の反応活性が高いために触媒の還元劣化やプロピレンのアンモ酸化反応によるアクリロニトリルの生成に影響を与えるので好ましくない。
【0016】
本発明に用いるこれらの化合物は単独でも、また、2種以上の化合物の混合物でも供給することができる。また、これらの化合物の純度には特に制限がなく、水や他の有機化合物等の不純物を含んでいても差し支えなく、特に、水は高い濃度で含まれていても問題なく、原料の精製にかかる作業と費用を低減することができる。
本発明に用いるこれらの化合物の流動層反応器への供給には特に制限はないが、これらの化合物が十分に反応する位置に供給することが好ましい。具体的には、流動層反応器の濃厚層へ供給することが、より好ましくは濃厚層の下部へ供給することが良い。これらの化合物を供給するために新規に原料ガス分散管を設置することもできるが、プロピレン及びアンモニアを供給するための分散管を使用して供給することが好ましい。
【0017】
アセトニトリル及び青酸を製造する方法としては、アンモ酸化反応によってアセトニトリルを生成する化合物、例えば、エタノ−ル、ジエチルエ−テル、蟻酸エチル、酢酸、無水酢酸、酢酸エチル、エチレングリコ−ルジエチルエ−テル、エチレン、アセトアルデヒド及びクリコ−ル酸エチルの中から選ばれる1種以上の化合物と、アンモ酸化反応によって青酸を生成する化合物、例えば、メタノ−ル、ジメチルエ−テル、メチラ−ル、トリオキサン、ホルムアルデヒド及び蟻酸メチルの中から選ばれる1種以上の化合物を混合物として反応器に供給することにより行うこともできるが、本方法では、1種の化合物を供給することによってアセトニトリル及び青酸を同時に製造することができるため、タンク、供給設備等とこれらの制御計器の削減をすることができ、また、必要とする敷地が小さくて済むために、簡便で、且つ、経済的な方法である。
【0018】
本発明において反応器の出口ガス中の酸素濃度は0.1〜1.5容量%に、好ましくは0.15〜1.0容量%に、更に好ましくは0.2〜0.7容量%の範囲に制御することにより、アセトニトリル及び青酸を安定に増産することに加えて、アクリロニトリルの収率の低下を抑制し、また、触媒の性能劣化を抑制することにより、長期間にわたって安定に反応を継続することができる。反応器の出口ガス中の酸素濃度が0.1容量%未満の場合には、触媒の還元劣化や炭素質成分の付着などにより経時的に活性が低下する。そのために、触媒の賦活操作や反応器への触媒の追加や反応器へ供給するガス量を減少させて転化率を維持する等の煩雑な操作が必要となる。また、反応器の出口ガス中の酸素濃度が1.5容量%を越える場合には、アンモ酸化反応で生成するアクリロニトリルの二次分解が顕著になってアクリロニトリルの収率が低下するために好ましくない。
【0019】
反応器の出口ガス中の酸素濃度を本発明の範囲に制御する方法としては、反応器に供給する酸素供給源となるガス、例えば、空気の量を制御することや、反応温度を変える、圧力を変える、触媒量を変える、反応器に供給する全ガス量を変える、等の方法により行うことができるが、好ましくは、反応器に供給する酸素供給源となるガス、例えば、空気の量を制御することで行うことができる。
反応器の出口ガス中の酸素濃度を測定する方法としては、ガスクロマトグラフィ−による分析、磁気式酸素測定装置による分析、質量分析、等の方法を用いて行うことができる。
【0020】
本発明のアンモ酸化反応に用いるプロピレン、アンモニアは必ずしも高純度である必要はなく、工業グレ−ドのものを使用することができる。また、酸素源としては、空気を用いることが好ましいが、酸素を空気と混合するなどして酸素濃度を高めたガスを用いることもできる。
本発明において供給する原料ガスの組成は、アセトニトリル及び青酸を増産するために反応器に供給する化合物をMとして、プロピレン/M/アンモニア/空気=1/0.005〜0.2/0.9〜1.8/8.5〜15であり、好ましくはプロピレン/M/アンモニア/空気=1/0.01〜0.15/0.95〜1.6/8.6〜14であり、更に好ましくはプロピレン/M/アンモニア/空気=1/0.015〜0.10/1.0〜1.5/8.7〜13である。但し、Mのプロピレンに対する比率は前述した様に炭素ベ−スの比率であり、その他はプロピレンに対するモル比率である。
また、酸素濃度を高めたガスを用いる場合は、上記の空気中の酸素濃度との比で供給するガスの比を算出できる。
【0021】
反応温度は400〜470℃、好ましくは420〜460℃である。反応圧力は絶対圧として90〜400kPa、好ましくは100〜300kPaである。原料ガスと触媒との接触時間は0.5〜20sec・g/ml、好ましくは1〜10sec・g/mlである。但し、接触時間は次式で定義される。
接触時間(sec・g/ml)=(W/F)×273/(273+T)×P/101
ここで、Wは触媒量(g)、Fは供給するガス量(ml/sec:NTP換算)、Tは反応温度(℃)、Pは反応圧力(kPa:絶対圧)である。
【0022】
【実施例】
以下に内径83mmのSUS304製流動層反応装置を用いて行った実施例および比較例について詳細に説明するが、本発明はこれらの例により限定されるものではない。
尚、実施例及び比較例において反応成績を表すために用いたプロピレンの転化率(%)、化合物Mの転化率(%)、アクリロニトリルの収率(%)、アクロレインの収率(%)、アセトニトリルの収率(%)、青酸の収率(%)、アセトニトリルの収量増加率(%)、青酸の収量増加率(%))は次式で定義される。
【0023】
プロピレンの転化率(%)=(反応したプロピレンのモル数)/(供給したプロピレンのモル数)×100
化合物Mの転化率(%)=(反応した化合物Mのモル数)/(供給した化合物Mのモル数)×100
アクリロニトリルの収率(%)=(生成したアクリロニトリルのモル数)/ (供給したプロピレンのモル数)×100
アクロレインの収率(%)=(生成したアクロレインのモル数)/(供給したプロピロピレンのモル数)×100
アセトニトリルの収率(%)=2/3×(生成したアセトニトリルのモル数)/(供給したプロピレンのモル数)×100
青酸の収率(%)=1/3×(生成した青酸のモル数)/(供給したプロピレンのモル数)×100
アセトニトリルの収量増加率(%)=(A−B)/B×100
青酸の収量増加率(%)=(C−D)/D×100
但し、A、B、C及びDは下記で定義される。
A:化合物Mを供給した時のアセトニリトルの収率
B:化合物Mを供給しない時のアセトニトリルの収率
C:化合物Mを供給した時の青酸の収率
D:化合物Mを供給しない時の青酸の収率
反応後のガスはガスクロマトグラフィ−により分析を行った。但し、青酸は滴定法により分析した。
【0024】
(触媒調製例)
組成がMo11.8Bi0.45Ce0.90Fe1.8 Ni5.0 Mg2.0 0.09Rb0.05e で表される酸化物触媒を、50重量%のシリカに担持した触媒を次の様にして調製した。この触媒のxは10.8であり、モリブデンの原子比yは1.09xであった。
30重量%のSiO2 を含むシリカゾル3,333gをとり、水1641gに814.5gのパラモリブデン酸アンモニウム〔(NH4 6 Mo7 24・4H2 O〕を溶解させた液を加え、最後に、16.6重量%の硝酸811.0gに85.3gの硝酸ビスマス〔Bi(NO3 3 ・5H2 O〕、152.8gの硝酸セリウム〔Ce(NO3 3 ・6H2 O〕、284.3gの硝酸鉄〔Fe(NO3 3 ・9H2 O〕、568.5gの硝酸ニッケル〔Ni(NO3 2 ・6H2 O〕、200.4gの硝酸マグネシウム〔Mg(NO3 2 ・6H2 O〕、3.56gの硝酸カリウム〔KNO3 〕及び、2.88gの硝酸ルビジウム〔RbNO3 〕を溶解させた液を加えた。ここに得られた原料調合液を並流式の噴霧乾燥器に送り、約200℃で乾燥させた。該調合液の噴霧化は乾燥器上部中央に設置された皿型回転子を備えた噴霧化装置を用いて行った。得られた粉体は電気炉を用いて400℃で1時間の前焼成の後、610℃で2時間焼成して触媒を調製した。
【0025】
(参考例)
上記触媒調製例で得られた触媒1,200gを用い、反応温度430℃、反応圧力は絶対圧として150kPa、プロピレン/アンモニア/空気のモル比が1/1.15/9.0の原料ガスを供給し、接触時間5.7sec・g/mlでプロピレンのアンモ酸化反応を行った。反応開始から100時間後のプロピレンの転化率は99.1%、アクリロニトリルの収率は82.5%、アクロレインの収率は0.2%、アセトニトリルの収率は2.0%、青酸の収率は4.0%、出口酸素濃度は0.1容量%であった。
【0026】
【実施例1】
プロピレンに対する炭素ベ−スでのアセトンの供給比率を0.05とし、原料ガスの組成をプロピレン/アンモニア/空気のモル比を1/1.24/9.7の原料ガスを供給し、接触時間6.0sec・g/mlとした以外は参考例と同じ条件で反応を行った。反応開始から100時間後のプロピレンの転化率は99.1%、アセトンの転化率は100%、アクリロニトリルの収率は82.4%、アクロレインの収率は0.2%、アセトニトリルの収率は3.2%、青酸の収率は5.5%、出口酸素濃度は0.3容量%であり、アセトニトリルの増産率は60%、青酸の増産率は38%であった。更に、出口酸素濃度が0.3容量%になるように原料ガスの供給量を微調整しながら運転を継続したが、700時間後の反応成績はプロピレンの転化率は99.0%、アセトンの転化率は100%、アクリロニトリルの収率は82.3%、アクロレインの収率は0.3%、アセトニトリルの収率は3.2%、青酸の収率は5.7%、アセトニトリルの増産率は60%、青酸の増産率は43%であり、安定に運転を継続できた。
【0027】
【実施例2】
プロピレンに対する炭素ベ−スでの酢酸メチルの供給比率を0.1とし、原料ガスの組成をプロピレン/アンモニア/空気のモル比を1/1.33/10.4の原料ガスを供給し、接触時間6.3sec・g/mlとした以外は参考例と同じ条件で反応を行った。反応開始から100時間後のプロピレンの転化率は99.1%、酢酸メチルの転化率は100%、アクリロニトリルの収率は82.2%、アクロレインの収率は0.2%、アセトニトリルの収率は4.5%、青酸の収率は7.0%、出口酸素濃度は0.5容量%であり、アセトニトリルの増産率は125%、青酸の増産率は75%であった。更に、出口酸素濃度が0.5容量%になるように原料ガスの供給量を微調整しながら運転を継続したが、700時間後の反応成績はプロピレンの転化率は99.0%、酢酸メチルの転化率は100%、アクリロニトリルの収率は82.1%、アクロレインの収率は0.3%、アセトニトリルの収率は4.5%、青酸の収率は7.2%、アセトニトリルの増産率は125%、青酸の増産率は80%であり、安定に運転を継続できた。
【0028】
【実施例3】
プロピレンに対する炭素ベ−スでのメチルエチルエ−テルの供給比率を0.2とし、原料ガスの組成をプロピレン/アンモニア/空気のモル比を1/1.47/13.2の原料ガスを供給し、接触時間6.5sec・g/mlとした以外は参考例と同じ条件で反応を行った。反応開始から100時間後のプロピレンの転化率は99.0%、メチルエチルエ−テルの転化率は100%、アクリロニトリルの収率は81.3%、アクロレインの収率は0.2%、アセトニトリルの収率は7.0%、青酸の収率は10.0%、出口酸素濃度は1.3容量%であり、アセトニトリルの増産率は250%、青酸の増産率は150%であった。更に、出口酸素濃度が1.3容量%になるように原料ガスの供給量を微調整しながら運転を継続したが、700時間後の反応成績はプロピレンの転化率は99.0%、メチルエチルエ−テルの転化率は100%、アクリロニトリルの収率は81.2%、アクロレインの収率は0.3%、アセトニトリルの収率は7.0%、青酸の収率は10.3%、アセトニトリルの増産率は250%、青酸の増産率は158%であり、安定に運転を継続できた。
【0029】
【実施例4】
焼成温度を590℃とした以外は触媒調製例と同様にして、組成がMo11.9Bi0.20Ce0.40Fe2.0 Ni5.6 Mg2.2 0.07Cs0.04Oeで表される酸化物触媒を、50重量%のシリカに担持した触媒として調製した。この触媒のxは10.7であり、モリブデンの原子比yは1.11xであった。
得られた触媒1,200gを用い、反応温度430℃、反応圧力は絶対圧として150kPa、プロピレン/アンモニア/空気のモル比が1/1.15/9.1の原料ガスを供給し、接触時間4.8sec・g/mlでプロピレンのアンモ酸化反応を行った。反応開始から100時間後のプロピレンの転化率は99.3%、アクリロニトリルの収率は81.2%、アクロレインの収率は0.3%、アセトニトリルの収率は2.0%、青酸の収率は4.2%、出口酸素濃度は0.1容量%であった。
【0030】
次に、プロピレンに対する炭素ベ−スでのアセトンの供給比率を0.05とし、原料ガスの組成をプロピレン/アンモニア/空気のモル比を1/1.23/9.8の原料ガスを供給し、接触時間5.1sec・g/mlとして反応を行った。反応開始から100時間後のプロピレンの転化率は99.2%、アセトンの転化率は100%、アクリロニトリルの収率は81.1%、アクロレインの収率は0.3%、アセトニトリルの収率は3.2%、青酸の収率は5.7%、出口酸素濃度は0.3容量%であり、アセトニトリルの増産率は60%、青酸の増産率は36%であった。更に、出口酸素濃度が0.3容量%になるように原料ガスの供給量を微調整しながら運転を継続したが、700時間後の反応成績はプロピレンの転化率は99.1%、アセトンの転化率は100%、アクリロニトリルの収率は81.0%、アクロレインの収率は0.3%、アセトニトリルの収率は3.2%、青酸の収率は5.9%、アセトニトリルの増産率は60%、青酸の増産率は40%であり、安定に運転を継続できた。
【0031】
【実施例5】
焼成温度を590℃とした以外は触媒調製例と同様にして、組成がMo12.0Bi0.60Ce1.20Fe1.6 Ni4.8 Mg1.9 0.11Rb0.05Oeで表される酸化物触媒を、50重量%のシリカに担持した触媒として調製した。この触媒のxは11.0であり、モリブデンの原子比yは1.09xであった。
得られた触媒1,200gを用い、反応温度430℃、反応圧力は絶対圧として150kPa、プロピレン/アンモニア/空気のモル比が1/1.15/9.0の原料ガスを供給し、接触時間4.8sec・g/mlでプロピレンのアンモ酸化反応を行った。反応開始から100時間後のプロピレンの転化率は99.2%、アクリロニトリルの収率は82.0%、アクロレインの収率は0.2%、アセトニトリルの収率は2.1%、青酸の収率は4.0%、出口酸素濃度は0.1容量%であった。
【0032】
次に、プロピレンに対する炭素ベ−スでのアセトンの供給比率を0.05とし、原料ガスの組成をプロピレン/アンモニア/空気のモル比を1/1.23/9.7の原料ガスを供給し、接触時間5.1sec・g/mlとして反応を行った。反応開始から100時間後のプロピレンの転化率は99.0%、アセトンの転化率は100%、アクリロニトリルの収率は81.9%、アクロレインの収率は0.2%、アセトニトリルの収率は3.2%、青酸の収率は5.5%、出口酸素濃度は0.3容量%であり、アセトニトリルの増産率は52%、青酸の増産率は38%であった。更に、出口酸素濃度が0.3容量%になるように原料ガスの供給量を微調整しながら運転を継続したが、700時間後の反応成績はプロピレンの転化率は99.0%、アセトンの転化率は100%、アクリロニトリルの収率は81.9%、アクロレインの収率は0.3%、アセトニトリルの収率は3.3%、青酸の収率は5.7%、アセトニトリルの増産率は57%、青酸の増産率は43%であり、安定に運転を継続できた。
【0033】
【実施例6】
焼成温度を580℃とした以外は触媒調製例と同様にして、組成がMo12.0Bi0.300.60Fe2.0 Ni5.4 Mg2.1 0.09Rb0.05Oeで表される酸化物触媒を、50重量%のシリカに担持した触媒として調製した。この触媒のxは10.9であり、モリブデンの原子比yは1.11xであった。
得られた触媒1,200gを用い、反応温度430℃、反応圧力は絶対圧として150kPa、プロピレン/アンモニア/空気のモル比が1/1.15/9.1の原料ガスを供給し、接触時間5.4sec・g/mlでプロピレンのアンモ酸化反応を行った。反応開始から100時間後のプロピレンの転化率は99.1%、アクリロニトリルの収率は81.3%、アクロレインの収率は0.3%、アセトニトリルの収率は2.0%、青酸の収率は4.2%、出口酸素濃度は0.2容量%であった。
【0034】
次に、プロピレンに対する炭素ベ−スでのアセトンの供給比率を0.05とし、原料ガスの組成をプロピレン/アンモニア/空気のモル比を1/1.23/9.7の原料ガスを供給し、接触時間5.7sec・g/mlとして反応を行った。反応開始から100時間後のプロピレンの転化率は99.1%、アセトンの転化率は100%、アクリロニトリルの収率は81.2%、アクロレインの収率は0.3%、アセトニトリルの収率は3.2%、青酸の収率は5.7%、出口酸素濃度は0.2容量%であり、アセトニトリルの増産率は60%、青酸の増産率は36%であった。更に、出口酸素濃度が0.2容量%になるように原料ガスの供給量を微調整しながら運転を継続したが、700時間後の反応成績はプロピレンの転化率は99.0%、アセトンの転化率は100%、アクリロニトリルの収率は81.1%、アクロレインの収率は0.3%、アセトニトリルの収率は3.2%、青酸の収率は5.8%、アセトニトリルの増産率は60%、青酸の増産率は38%であり、安定に運転を継続できた。
【0035】
【実施例7】
焼成温度を590℃とした以外は触媒調製例と同様にして、組成がMo12.0Bi0.30La0.60Fe2.0 Ni5.4 Mg2.1 0.09Rb0.05Oeで表される酸化物触媒を、50重量%のシリカに担持した触媒として調製した。この触媒のxは10.9であり、モリブデンの原子比yは1.11xであった。
得られた触媒1,200gを用い、反応温度430℃、反応圧力は絶対圧として150kPa、プロピレン/アンモニア/空気のモル比が1/1.15/9.1の原料ガスを供給し、接触時間5.1sec・g/mlでプロピレンのアンモ酸化反応を行った。反応開始から100時間後のプロピレンの転化率は99.1%、アクリロニトリルの収率は81.0%、アクロレインの収率は0.2%、アセトニトリルの収率は2.1%、青酸の収率は4.1%、出口酸素濃度は0.1容量%であった。
【0036】
次に、プロピレンに対する炭素ベ−スでのアセトンの供給比率を0.05とし、原料ガスの組成をプロピレン/アンモニア/空気のモル比を1/1.24/9.8の原料ガスを供給し、接触時間5.4sec・g/mlとして反応を行った。反応開始から100時間後のプロピレンの転化率は99.0%、アセトンの転化率は100%、アクリロニトリルの収率は80.9%、アクロレインの収率は0.3%、アセトニトリルの収率は3.3%、青酸の収率は5.6%、出口酸素濃度は0.3容量%であり、アセトニトリルの増産率は57%、青酸の増産率は37%であった。更に、出口酸素濃度が0.3容量%になるように原料ガスの供給量を微調整しながら運転を継続したが、700時間後の反応成績はプロピレンの転化率は99.0%、アセトンの転化率は100%、アクリロニトリルの収率は80.9%、アクロレインの収率は0.3%、アセトニトリルの収率は3.3%、青酸の収率は5.8%、アセトニトリルの増産率は57%、青酸の増産率は41%であり、安定に運転を継続できた。
【0037】
【実施例8】
焼成温度を590℃とした以外は触媒調製例と同様にして、組成がMo12.0Bi0.30Pr0.13Nd0.47Fe2.0 Ni5.4 Mg2.1 0.09Rb0.05Oeで表される酸化物触媒を、50重量%のシリカに担持した触媒として調製した。この触媒のxは10.9であり、モリブデンの原子比yは1.11xであった。
得られた触媒1,200gを用い、反応温度430℃、反応圧力は絶対圧として150kPa、プロピレン/アンモニア/空気のモル比が1/1.15/9.0の原料ガスを供給し、接触時間5.6sec・g/mlでプロピレンのアンモ酸化反応を行った。反応開始から100時間後のプロピレンの転化率は99.2%、アクリロニトリルの収率は81.9%、アクロレインの収率は0.3%、アセトニトリルの収率は2.0%、青酸の収率は3.9%、出口酸素濃度は0.1容量%であった。
【0038】
次に、プロピレンに対する炭素ベ−スでのアセトンの供給比率を0.05とし、原料ガスの組成をプロピレン/アンモニア/空気のモル比を1/1.23/9.7の原料ガスを供給し、接触時間5.9sec・g/mlとして反応を行った。反応開始から100時間後のプロピレンの転化率は99.1%、アセトンの転化率は100%、アクリロニトリルの収率は81.9%、アクロレインの収率は0.3%、アセトニトリルの収率は3.2%、青酸の収率は5.4%、出口酸素濃度は0.3容量%であり、アセトニトリルの増産率は60%、青酸の増産率は39%であった。更に、出口酸素濃度が0.3容量%になるように原料ガスの供給量を微調整しながら運転を継続したが、700時間後の反応成績はプロピレンの転化率は99.0%、アセトンの転化率は100%、アクリロニトリルの収率は81.8%、アクロレインの収率は0.3%、アセトニトリルの収率は3.3%、青酸の収率は5.6%、アセトニトリルの増産率は65%、青酸の増産率は44%であり、安定に運転を継続できた。
【0039】
【実施例9】
焼成温度を610℃とした以外は触媒調製例と同様にして、組成がMo12.0Bi0.30Sm0.60Fe2.0 Ni5.4 Mg2.1 0.09Rb0.05Oeで表される酸化物触媒を、50重量%のシリカに担持した触媒として調製した。この触媒のxは10.9であり、モリブデンの原子比yは1.11xであった。
得られた触媒1,200gを用い、反応温度430℃、反応圧力は絶対圧として150kPa、プロピレン/アンモニア/空気のモル比が1/1.15/9.1の原料ガスを供給し、接触時間5.7sec・g/mlでプロピレンのアンモ酸化反応を行った。反応開始から100時間後のプロピレンの転化率は99.1%、アクリロニトリルの収率は81.5%、アクロレインの収率は0.3%、アセトニトリルの収率は1.9%、青酸の収率は4.0%、出口酸素濃度は0.2容量%であった。
【0040】
次に、プロピレンに対する炭素ベ−スでのアセトンの供給比率を0.05とし、原料ガスの組成をプロピレン/アンモニア/空気のモル比を1/1.23/9.8の原料ガスを供給し、接触時間6.0sec・g/mlとして反応を行った。反応開始から100時間後のプロピレンの転化率は99.1%、アセトンの転化率は100%、アクリロニトリルの収率は81.5%、アクロレインの収率は0.2%、アセトニトリルの収率は3.1%、青酸の収率は5.5%、出口酸素濃度は0.4容量%であり、アセトニトリルの増産率は63%、青酸の増産率は38%であった。更に、出口酸素濃度が0.4容量%になるように原料ガスの供給量を微調整しながら運転を継続したが、700時間後の反応成績はプロピレンの転化率は99.0%、アセトンの転化率は100%、アクリロニトリルの収率は81.4%、アクロレインの収率は0.3%、アセトニトリルの収率は3.1%、青酸の収率は5.6%、アセトニトリルの増産率は63%、青酸の増産率は40%であり、安定に運転を継続できた。
【0041】
【実施例10】
焼成温度を570℃とした以外は触媒調製例と同様にして、組成がMo12.0Bi0.45Ce0.90Fe1.8 Co7.0 Rb0.14Oeで表される酸化物触媒を、50重量%のシリカに担持した触媒として調製した。この触媒のxは10.8であり、モリブデンの原子比yは1.11xであった。
得られた触媒1,200gを用い、反応温度430℃、反応圧力は絶対圧として150kPa、プロピレン/アンモニア/空気のモル比が1/1.15/8.9の原料ガスを供給し、接触時間5.6sec・g/mlでプロピレンのアンモ酸化反応を行った。反応開始から100時間後のプロピレンの転化率は99.1%、アクリロニトリルの収率は82.4%、アクロレインの収率は0.2%、アセトニトリルの収率は2.1%、青酸の収率は3.8%、出口酸素濃度は0.1容量%であった。
【0042】
次に、プロピレンに対する炭素ベ−スでのアセトンの供給比率を0.05とし、原料ガスの組成をプロピレン/アンモニア/空気のモル比を1/1.22/9.6の原料ガスを供給し、接触時間5.9sec・g/mlとして反応を行った。反応開始から100時間後のプロピレンの転化率は99.1%、アセトンの転化率は100%、アクリロニトリルの収率は82.4%、アクロレインの収率は0.2%、アセトニトリルの収率は3.2%、青酸の収率は5.3%、出口酸素濃度は0.3容量%であり、アセトニトリルの増産率は52%、青酸の増産率は40%であった。更に、出口酸素濃度が0.3容量%になるように原料ガスの供給量を微調整しながら運転を継続したが、700時間後の反応成績はプロピレンの転化率は99.0%、アセトンの転化率は100%、アクリロニトリルの収率は82.3%、アクロレインの収率は0.3%、アセトニトリルの収率は3.3%、青酸の収率は5.5%、アセトニトリルの増産率は57%、青酸の増産率は45%であり、安定に運転を継続できた。
【0043】
【実施例11】
焼成温度を570℃とした以外は触媒調製例と同様にして、組成がMo12.0Bi0.54Ce0.81Fe1.8 Co5.0 Zn2.0 Cs0.10Oeで表される酸化物触媒を、50重量%のシリカに担持した触媒として調製した。この触媒のxは10.8であり、モリブデンの原子比yは1.11xであった。
得られた触媒1,200gを用い、反応温度430℃、反応圧力は絶対圧として150kPa、プロピレン/アンモニア/空気のモル比が1/1.14/9.0の原料ガスを供給し、接触時間5.8sec・g/mlでプロピレンのアンモ酸化反応を行った。反応開始から100時間後のプロピレンの転化率は99.1%、アクリロニトリルの収率は81.5%、アクロレインの収率は0.3%、アセトニトリルの収率は2.0%、青酸の収率は4.0%、出口酸素濃度は0.1容量%であった。
【0044】
次に、プロピレンに対する炭素ベ−スでのアセトンの供給比率を0.05とし、原料ガスの組成をプロピレン/アンモニア/空気のモル比を1/1.22/9.7の原料ガスを供給し、接触時間6.1sec・g/mlとして反応を行った。反応開始から100時間後のプロピレンの転化率は99.1%、アセトンの転化率は100%、アクリロニトリルの収率は81.4%、アクロレインの収率は0.3%、アセトニトリルの収率は3.2%、青酸の収率は5.5%、出口酸素濃度は0.3容量%であり、アセトニトリルの増産率は60%、青酸の増産率は38%であった。更に、出口酸素濃度が0.3容量%になるように原料ガスの供給量を微調整しながら運転を継続したが、700時間後の反応成績はプロピレンの転化率は99.0%、アセトンの転化率は100%、アクリロニトリルの収率は81.3%、アクロレインの収率は0.4%、アセトニトリルの収率は3.2%、青酸の収率は5.8%、アセトニトリルの増産率は60%、青酸の増産率は45%であり、安定に運転を継続できた。
【0045】
【実施例12】
焼成温度を600℃とした以外は触媒調製例と同様にして、組成がMo12.0Bi0.39Ce0.96Fe1.8 Co3.5 Ni3.5 0.09Rb0.05Oeで表される酸化物触媒を、50重量%のシリカに担持した触媒として調製した。この触媒のxは10.8であり、モリブデンの原子比yは1.11xであった。
得られた触媒1,200gを用い、反応温度430℃、反応圧力は絶対圧として150kPa、プロピレン/アンモニア/空気のモル比が1/1.14/9.0の原料ガスを供給し、接触時間5.7sec・g/mlでプロピレンのアンモ酸化反応を行った。反応開始から100時間後のプロピレンの転化率は99.2%、アクリロニトリルの収率は82.3%、アクロレインの収率は0.2%、アセトニトリルの収率は2.0%、青酸の収率は3.9%、出口酸素濃度は0.2容量%であった。
【0046】
次に、プロピレンに対する炭素ベ−スでのアセトンの供給比率を0.05とし、原料ガスの組成をプロピレン/アンモニア/空気のモル比を1/1.22/9.6の原料ガスを供給し、接触時間6.0sec・g/mlとして反応を行った。反応開始から100時間後のプロピレンの転化率は99.1%、アセトンの転化率は100%、アクリロニトリルの収率は82.2%、アクロレインの収率は0.2%、アセトニトリルの収率は3.2%、青酸の収率は5.4%、出口酸素濃度は0.3容量%であり、アセトニトリルの増産率は60%、青酸の増産率は39%であった。更に、出口酸素濃度が0.3容量%になるように原料ガスの供給量を微調整しながら運転を継続したが、700時間後の反応成績はプロピレンの転化率は99.0%、アセトンの転化率は100%、アクリロニトリルの収率は82.2%、アクロレインの収率は0.3%、アセトニトリルの収率は3.2%、青酸の収率は5.5%、アセトニトリルの増産率は60%、青酸の増産率は41%であり、安定に運転を継続できた。
【0047】
【実施例13】
焼成温度を670℃とした以外は触媒調製例と同様にして、組成がMo11.7Bi0.20Ce0.10Fe2.3 Ni5.5 Mg2.3 0.10Rb0.05Oeで表される酸化物触媒を、50重量%のシリカに担持した触媒として調製した。この触媒のxは10.6であり、モリブデンの原子比yは1.11xであった。
得られた触媒1,200gを用い、反応温度430℃、反応圧力は絶対圧として150kPa、プロピレン/アンモニア/空気のモル比が1/1.16/9.0の原料ガスを供給し、接触時間5.4sec・g/mlでプロピレンのアンモ酸化反応を行った。反応開始から100時間後のプロピレンの転化率は99.0%、アクリロニトリルの収率は82.7%、アクロレインの収率は0.2%、アセトニトリルの収率は1.9%、青酸の収率は3.8%、出口酸素濃度は0.2容量%であった。
【0048】
次に、プロピレンに対する炭素ベ−スでのアセトンの供給比率を0.05とし、原料ガスの組成をプロピレン/アンモニア/空気のモル比を1/1.24/9.6の原料ガスを供給し、接触時間5.7sec・g/mlとして反応を行った。反応開始から100時間後のプロピレンの転化率は99.1%、アセトンの転化率は100%、アクリロニトリルの収率は82.7%、アクロレインの収率は0.2%、アセトニトリルの収率は3.1%、青酸の収率は5.3%、出口酸素濃度は0.2容量%であり、アセトニトリルの増産率は63%、青酸の増産率は40%であった。更に、出口酸素濃度が0.2容量%になるように原料ガスの供給量を微調整しながら運転を継続したが、700時間後の反応成績はプロピレンの転化率は99.0%、アセトンの転化率は100%、アクリロニトリルの収率は82.6%、アクロレインの収率は0.2%、アセトニトリルの収率は3.2%、青酸の収率は5.5%、アセトニトリルの増産率は68%、青酸の増産率は45%であり、安定に運転を継続できた。
【0049】
【実施例14】
焼成温度を660℃とした以外は触媒調製例と同様にして、組成がMo11.9Bi0.3 Fe2.4 Ni6.7 Mg1.5 0.10Cs0.07Oeで表される酸化物触媒を、50重量%のシリカに担持した触媒として調製した。この触媒のxは11.1であり、モリブデンの原子比yは1.08xであった。
得られた触媒1,200gを用い、反応温度430℃、反応圧力は絶対圧として150kPa、プロピレン/アンモニア/空気のモル比が1/1.16/9.0の原料ガスを供給し、接触時間5.7sec・g/mlでプロピレンのアンモ酸化反応を行った。反応開始から100時間後のプロピレンの転化率は99.2%、アクリロニトリルの収率は82.7%、アクロレインの収率は0.3%、アセトニトリルの収率は1.9%、青酸の収率は3.8%、出口酸素濃度は0.2容量%であった。
【0050】
次に、プロピレンに対する炭素ベ−スでのアセトンの供給比率を0.05とし、原料ガスの組成をプロピレン/アンモニア/空気のモル比を1/1.24/9.7の原料ガスを供給し、接触時間6.0sec・g/mlとして反応を行った。反応開始から100時間後のプロピレンの転化率は99.1%、アセトンの転化率は100%、アクリロニトリルの収率は82.7%、アクロレインの収率は0.2%、アセトニトリルの収率は3.1%、青酸の収率は5.3%、出口酸素濃度は0.4容量%であり、アセトニトリルの増産率は63%、青酸の増産率は40%であった。更に、出口酸素濃度が0.4容量%になるように原料ガスの供給量を微調整しながら運転を継続したが、700時間後の反応成績はプロピレンの転化率は99.0%、アセトンの転化率は100%、アクリロニトリルの収率は82.6%、アクロレインの収率は0.2%、アセトニトリルの収率は3.1%、青酸の収率は5.4%、アセトニトリルの増産率は63%、青酸の増産率は42%であり、安定に運転を継続できた。
【0051】
【比較例1】
原料ガスの組成をプロピレン/アンモニア/空気のモル比を1/1.34/10.1(空気のモル比過少)とした以外は実施例2と同じ条件で反応を行った。反応開始から100時間後のプロピレンの転化率は98.7%、酢酸メチルの転化率は100%、アクリロニトリルの収率は82.8%、アクロレインの収率は0.7%、アセトニトリルの収率は4.8%、青酸の収率は6.8%、出口酸素濃度は0.06容量%であり、アセトニトリルの増産率は140%、青酸の増産率は70%であった。更に、出口酸素濃度が0.06容量%になるように原料ガスの供給量を微調整しながら運転を継続したが、プロピレンの転化率が経時的に低下するために400時間で反応を停止した。抜き出した触媒を分析した結果、6000ppmの炭素が付着していることが判った。
【0052】
【比較例2】
原料ガスの組成をプロピレン/アンモニア/空気のモル比を1/1.34/11.7(空気のモル比過大)とした以外は実施例2と同じ条件で反応を行った。
反応開始から100時間後のプロピレンの転化率は99.2%、酢酸メチルの転化率は100%、アクリロニトリルの収率は80.1%、アクロレインの収率は0.2%、アセトニトリルの収率は4.5%、青酸の収率は7.5%、出口酸素濃度は2.0容量%であり、アセトニトリルの増産率は125%、青酸の増産率は88%であったが、アクリロニトリルの収率が低いために反応を停止した。
【0053】
【比較例3】
プロピレンに対する炭素ベ−スでの酢酸メチルの供給比率を0.25(供給比率過大)とし、原料ガスの組成をプロピレン/アンモニア/空気のモル比を1/1.55/12.2の原料ガスを供給し、接触時間6.5sec・g/mlとした以外は参考例と同じ条件で反応を行った。反応開始から100時間後のプロピレンの転化率は99.2%、酢酸メチルの転化率は100%、アクリロニトリルの収率は79.6%、アクロレインの収率は0.3%、アセトニトリルの収率は8.2%、青酸の収率は12.0%、出口酸素濃度は0.3容量%であり、アセトニトリルの増産率は310%、青酸の増産率は200%であったが、アクリロニトリルの収率が低いために反応を停止した。
【0054】
【比較例4】
特公昭53−35232号公報の実施例7に記載されている、50重量%のシリカに担持された酸化物組成がMo12Bi5.76Fe6.24Na1.2 1.2 0.072 e で表される触媒を、特許記載内容を参考にして調製した。尚、焼成は400℃で1時間の前焼成を行った後、690℃で2時間焼成した。
得られた触媒1400gを用いて、反応温度460℃、反応圧力は絶対圧として150kPa、プロピレン/アンモニア/空気のモル比が1/1.10/8.9の原料ガスを供給し、接触時間6.0sec・g/mlでプロピレンのアンモ酸化反応を行った。反応開始から100時間後のプロピレンの転化率は99.4%、アクリロニトリルの収率は79.0%、アクロレインの収率は1.5%、アセトニトリルの収率は2.3%、青酸の収率は6.0%、出口酸素濃度は0.2容量%であった。
【0055】
次に、実施例2と同様にプロピレンに対する炭素ベ−スでの酢酸メチルの供給比率を0.1とし、原料ガスの組成をプロピレン/アンモニア/空気のモル比を1/1.22/10.2の原料ガスを供給して反応を行ったところ、プロピレンの転化率は99.2%、酢酸メチルの転化率は100%、アクリロニトリルの収率は76.4%、アクロレインの収率は2.2%、アセトニトリルの収率は4.8%、青酸の収率は9.3%、出口酸素濃度は0.2容量%であり、アセトニトリルの増産率は109%、青酸の増産率は55%であったが、アクリロニトリルの収率の低下とアクロレインの収率の増加が大きいために反応を停止した。
【0056】
【発明の効果】
プロピレンのアンモ酸化反応によってアクリロニトリルを製造する際に、使用する触媒、反応器に供給する原料とその比率及び反応器の出口ガス中の酸素濃度を規定することにより、アセトニトリル及び青酸を安定に増産することに加えて、アクリロニトリルの収率の低下も抑制し、長期間にわたって安定に反応を継続することができる。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for stably increasing the production of acetonitrile and hydrocyanic acid when producing acrylonitrile by ammoxidation reaction of propylene, ammonia and oxygen.
More specifically, when an acrylonitrile is produced by subjecting propylene, ammonia and oxygen to an ammoxidation reaction in the presence of a catalyst whose composition is specified in a fluidized bed reactor, it is selected from methyl acetate, acetone and methyl ethyl ether. The present invention relates to a method for stably increasing the production of acetonitrile and hydrocyanic acid, characterized by supplying more than one kind of compound to a reactor.
[0002]
[Prior art]
Acetonitrile and hydrocyanic acid are compounds with high industrial value used as raw materials for synthesizing various chemical products such as pharmaceuticals, agricultural chemicals, and fragrances, and are mainly produced as by-products when producing acrylonitrile by ammoxidation reaction of propylene.
However, in recent years, the yield of acetonitrile and hydrocyanic acid, which are by-products, has decreased due to improvements in the catalyst used for the ammoxidation reaction of propylene.
[0003]
In such a background, a method for increasing production of acetonitrile and hydrocyanic acid when acrylonitrile is produced by ammoxidation of propylene has been studied. For example, as a method for increasing the production of acetonitrile, JP-A-3-246269 discloses a method in which acetone or ethanol coexists in a reaction system. Also, a method for increasing production of acetonitrile and hydrocyanic acid by supplying one or more alcohols selected from ethanol and propanol to the reaction system in addition to methanol is disclosed in US Pat. No. 6,204,407. It is disclosed in the specification. Japanese Patent Publication No. 55-35377 discloses a method for increasing the production of hydrocyanic acid by coexisting methanol or formaldehyde in the reaction system. Further, a method for specifying the contact time of methanol to be supplied with respect to the contact time of propylene is disclosed in JP-B-54-8655, and a method for supplying methyl formate is disclosed in JP-A-1-261223. .
[0004]
In these methods, it is possible to increase the production of the target products acetonitrile and / or hydrocyanic acid in a short period of time, but there is nothing regarding a method for maintaining the performance of the catalyst and stably increasing the production of acetonitrile and / or hydrocyanic acid over a long period of time. Disclosure is not made.
[0005]
[Problems to be solved by the invention]
The present invention provides a method for stably increasing the production of acetonitrile and hydrocyanic acid when producing acrylonitrile by an ammoxidation reaction of propylene. Furthermore, by maintaining the performance of the catalyst, a decrease in the yield of acrylonitrile is suppressed, and a method of continuing the reaction stably over a long period of time is provided.
[0006]
[Means for Solving the Problems]
As a result of intensive studies on the method for achieving the above-mentioned problems, the present inventor has determined the propylene content by specifying the catalyst to be used, the raw material to be supplied to the reactor, the ratio thereof, and the oxygen concentration in the outlet gas of the reactor. When producing acrylonitrile by an ammoxidation reaction, in addition to stably increasing the production of acetonitrile and hydrocyanic acid, by maintaining the performance of the catalyst, the decrease in the yield of acrylonitrile is also suppressed and the reaction is stably performed over a long period of time. I found a way to continue.
[0007]
That is, in the present invention, propylene, ammonia and oxygen are subjected to an ammoxidation reaction in the presence of a catalyst in a fluidized bed reactor to produce acrylonitrile.
As a catalyst, an oxide composition supported on silica has the following general formula (1).
Mo y Bi p Fe q A a B b C c D d O e (1)
(In the general formula (1), Mo is molybdenum, Bi is bismuth, Fe is iron, A is one or more elements selected from nickel and cobalt, and B is one or more elements selected from potassium, rubidium and cesium. , C is one or more elements selected from magnesium and zinc, D is one or more elements selected from rare earth elements, O is oxygen, y is an atomic ratio of molybdenum in the ammoxidation reaction, y = 1.02x to 1.12x, where x is x = 1.5p + q + a + c + 1.5d, p, q, a, b, c, d and e are bismuth, iron, A, B, C, D and oxygen, respectively. P = 0.01-5.0, q = 0.1-5, a = 4-10, b = 0.01-2, c = 0-5, d = 0-5, e is the number of oxygen atoms necessary to satisfy the valence requirements of the other elements present. That.)
1 or more compounds selected from methyl acetate, acetone and methyl ethyl ether are supplied to the reactor at a carbon-based ratio of 0.005 to 0.2 with respect to propylene. In addition, the oxygen concentration in the outlet gas of the reactor is controlled to 0.1 to 1.5% by volume, and this is a method for stably increasing the production of acetonitrile and hydrocyanic acid.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
The present invention will be described in detail.
The catalyst used in the present invention has an oxide composition supported on silica having the following general formula (1)
Mo y Bi p Fe q A a B b C c D d O e (1)
(In the general formula (1), Mo is molybdenum, Bi is bismuth, Fe is iron, A is one or more elements selected from nickel and cobalt, and B is one or more elements selected from potassium, rubidium and cesium. , C is one or more elements selected from magnesium and zinc, D is one or more elements selected from rare earth elements, O is oxygen, y is an atomic ratio of molybdenum in the ammoxidation reaction, y = 1.02x to 1.12x, where x is x = 1.5p + q + a + c + 1.5d, p, q, a, b, c, d and e are bismuth, iron, A, B, C, D and oxygen, respectively. P = 0.01-5.0, q = 0.1-5, a = 4-10, b = 0.01-2, c = 0-5, d = 0-5, e is the number of oxygen atoms necessary to satisfy the valence requirements of the other elements present. That.)
The catalyst represented by these is used.
[0009]
As a more preferable oxide composition, the following general formula (2):
Mo y Bi p Fe q A a B b C c D d O e (2)
(In the general formula (2), Mo is molybdenum, Bi is bismuth, Fe is iron, A is one or more elements selected from nickel and cobalt, B is one or more elements selected from potassium, rubidium and cesium. C represents one or more elements selected from magnesium and zinc, D represents one or more elements selected from yttrium, lanthanum, cerium, praseodymium, neodymium and samarium, O represents oxygen, and y represents an ammoxidation reaction. The atomic ratio of molybdenum, y = 1.02x to 1.12x, where x is x = 1.5p + q + a + c + 1.5d, p, q, a, b, c, d and e are bismuth, iron, The atomic ratio of A, B, C, D and oxygen is represented, p + d = 0.5-2.0, d / (p + d) = 0.6-0.8, q = 0.1-3, a = 4-10, b = 0.01-2, c = 0-3, e is the number of oxygen atoms required to satisfy the valence requirements of the other elements present.)
It is represented by
[0010]
As a more preferable oxide composition, the following general formula (3):
Mo y Bi p Fe q A a B b C c D d O e .... (3)
(In the general formula (3), Mo is molybdenum, Bi is bismuth, Fe is iron, A is nickel, B is one or more elements selected from potassium, rubidium and cesium, C is magnesium, D is cerium, O Represents oxygen, y is the atomic ratio of molybdenum during the ammoxidation reaction, and y = 1.02x to 1.12x, where x is x = 1.5p + q + a + c + 1.5d, p, q, a, b , C, d and e represent atomic ratios of bismuth, iron, A, B, C, D and oxygen, respectively, p + d = 0.5 to 2.0, d / (p + d) = 0.6 to 0. 8, q = 0.1-3, a = 4-10, b = 0.01-2, c = 0-3, e is the oxygen required to satisfy the valence requirements of other elements present Number of atoms.)
It is represented by
[0011]
The atomic ratio y of molybdenum having an oxide composition during the reaction of the catalyst of the present invention is controlled in the range of y = 1.02x to 1.12x, preferably y = 1.05x to 1.09x. preferable. As a method of controlling the atomic ratio of molybdenum, a method of adding a molybdenum compound not supported on a carrier, which can be converted to molybdenum oxide under the reaction conditions of the present invention, as an activator, or Y = 0. This can be done by adding a catalyst having an oxide composition prepared at an initial atomic ratio Y of 9x to 1.2x to the reactor. The molybdenum compound as the former activator includes molybdenum trioxide (MoO). Three ), Molybdic acid (H 2 MoO Four , H 2 MoO Four ・ H 2 O), ammonium molybdate ((NH Four ) 2 MoO Four ), Ammonium paramolybdate ((NH Four ) 6 Mo 7 O twenty four ・ 4H 2 O) is preferably used, and among these, ammonium paramolybdate is more preferably used. The activator is added in an amount corresponding to 0.006x or less, preferably 0.004x or less per time. The frequency of addition is 1 to 30 days or more, preferably 1/2 to 15 days or more, more preferably 1 to 3 to 7 days or more.
The composition of the catalyst can be analyzed by methods such as fluorescent X-ray analysis, atomic absorption analysis, inductively coupled plasma emission analysis (ICP).
[0012]
In the present invention, the molybdenum atomic ratio (initial atomic ratio) Y of the oxide composition of the catalyst before use is used in the ammoxidation reaction so that the molybdenum atomic ratio (atomic ratio during reaction) y is y = 1. The range of the initial atomic ratio Y is not particularly limited as long as the relationship of 02x to 1.12x is satisfied. A preferable range of Y is Y = 0.9x to 1.2x, and more preferably Y = 1.02x to 1.12x.
By selecting the constituent elements of the oxide composition of the catalyst and the atomic ratio of the elements so as to satisfy the above conditions, the catalyst can be given resistance to reduction deterioration, and the yield of acrylonitrile is high. In addition to being able to maintain the value, the yield of acrolein, which causes clogging in the process and loss of hydrocyanic acid in the purification system, can be kept low and can be used well for the present invention.
[0013]
The catalyst used in the present invention contains an element such as phosphorus, antimony, tungsten, vanadium, tellurium, palladium, niobium, tantalum, rhenium, silver and the like as long as it is a small amount of 0.5 atom or less with respect to 12 atoms of molybdenum. You can also.
The catalyst of the present invention is used as a silica-supported catalyst. Silica imparts physical properties such as fluidity and abrasion resistance necessary for use in a fluidized bed reactor to the catalyst. Silica is used in the range of 30 to 70% by weight, preferably 40 to 60% by weight, based on the total of the above oxide and silica. When the silica content is less than 30% by weight, the mechanical strength of the catalyst is not sufficient, and when the silica content exceeds 70% by weight, the acrylonitrile yield itself decreases.
[0014]
The catalyst of the present invention can be prepared by a known method described in JP-A-7-48334, JP-A-7-289901, JP-A-7-303836, JP-A-7-328441, and the like. it can. For example, it can be prepared by spray-drying a prepared solution obtained by preparing a catalyst raw material and firing the dried product. In preparing the catalyst raw material, silica sol is preferably used as the raw material for silica, ammonium paramolybdate as the raw material for molybdenum, and nitrate as the raw material for the other components. In the spray drying of the prepared preparation liquid, it is preferable to perform atomization by a centrifugal method. The drying temperature is 100 to 400 ° C, preferably 150 to 300 ° C. The dried product is calcined at 150 to 500 ° C., if necessary, and then at 500 to 750 ° C., preferably 550 to 700 ° C. for 1 to 20 hours.
[0015]
In the present invention, examples of the compound (hereinafter sometimes simply referred to as “M” or “compound M”) supplied to the reactor to increase production of acetonitrile and hydrocyanic acid include methyl acetate, acetone, and methyl ethyl ether. . Among these compounds, preferred compounds include methyl acetate and methyl ethyl ether. A more preferred compound is methyl acetate.
The supply ratio of these compounds to propylene is 0.005-0.2 on a carbon basis, preferably 0.01-0.15, and more preferably 0.015-0.1. For example, supplying methyl acetate at a ratio of 0.1 means supplying 0.1 mol of methyl acetate to 1 mol of propylene. When the supply ratio of these compounds supplied to the reactor is less than 0.005, the production of acetonitrile and hydrocyanic acid is not sufficient, and when this ratio exceeds 0.2, the reaction activity of these compounds with respect to propylene is high. Therefore, it is not preferable because it affects the reduction degradation of the catalyst and the production of acrylonitrile by the ammoxidation reaction of propylene.
[0016]
These compounds used in the present invention can be supplied singly or as a mixture of two or more compounds. In addition, the purity of these compounds is not particularly limited, and may contain impurities such as water and other organic compounds. In particular, water may be contained at a high concentration, and there is no problem. Such work and cost can be reduced.
Although there is no restriction | limiting in particular in the supply to the fluidized bed reactor of these compounds used for this invention, It is preferable to supply to the position where these compounds fully react. Specifically, it is preferable to supply to the concentrated layer of the fluidized bed reactor, more preferably to the lower part of the concentrated layer. In order to supply these compounds, a raw material gas dispersion pipe can be newly installed, but it is preferable to use a dispersion pipe for supplying propylene and ammonia.
[0017]
As a method for producing acetonitrile and hydrocyanic acid, compounds that produce acetonitrile by an ammoxidation reaction, such as ethanol, diethyl ether, ethyl formate, acetic acid, acetic anhydride, ethyl acetate, ethylene glycol diethyl ether, ethylene, One or more compounds selected from among acetaldehyde and ethyl acrylate, and compounds that form hydrocyanic acid by an ammoxidation reaction, such as methanol, dimethyl ether, methylal, trioxane, formaldehyde, and methyl formate. One or more compounds selected from among them can also be supplied to the reactor as a mixture, but in this method, acetonitrile and hydrocyanic acid can be produced simultaneously by supplying one compound, Tanks, supply equipment, etc. and their control instruments It is possible to reduce, also, to be smaller is the site in need, simple, and is an economical method.
[0018]
In the present invention, the oxygen concentration in the outlet gas of the reactor is 0.1 to 1.5% by volume, preferably 0.15 to 1.0% by volume, more preferably 0.2 to 0.7% by volume. By controlling to the range, in addition to stably increasing the production of acetonitrile and hydrocyanic acid, the decrease in the yield of acrylonitrile is suppressed, and the deterioration of the catalyst performance is suppressed, and the reaction is stably continued over a long period of time. can do. When the oxygen concentration in the outlet gas of the reactor is less than 0.1% by volume, the activity decreases with time due to reduction of the catalyst or adhesion of carbonaceous components. Therefore, complicated operations such as activation of the catalyst, addition of the catalyst to the reactor, and reduction of the amount of gas supplied to the reactor to maintain the conversion rate are required. Further, when the oxygen concentration in the outlet gas of the reactor exceeds 1.5% by volume, the secondary decomposition of acrylonitrile produced by the ammoxidation reaction becomes remarkable and the yield of acrylonitrile is unfavorable. .
[0019]
The method for controlling the oxygen concentration in the outlet gas of the reactor within the range of the present invention includes controlling the amount of gas, for example, air, which is an oxygen supply source to be supplied to the reactor, and changing the reaction temperature. , Changing the amount of catalyst, changing the total amount of gas supplied to the reactor, etc., but preferably the amount of gas, for example, air, serving as the oxygen supply source supplied to the reactor. It can be done by controlling.
As a method for measuring the oxygen concentration in the outlet gas of the reactor, it is possible to use a method such as analysis by gas chromatography, analysis by a magnetic oxygen measuring device, mass spectrometry, or the like.
[0020]
The propylene and ammonia used in the ammoxidation reaction of the present invention are not necessarily highly pure, and those of industrial grade can be used. In addition, although air is preferably used as the oxygen source, a gas whose oxygen concentration is increased by mixing oxygen with air can also be used.
The composition of the raw material gas supplied in the present invention is such that propylene / M / ammonia / air = 1 / 0.005-0.2 / 0.9, where M is the compound supplied to the reactor to increase production of acetonitrile and hydrocyanic acid. -1.8 / 8.5-15, preferably propylene / M / ammonia / air = 1 / 0.01-0.15 / 0.95-1.6 / 8.6-14, Preferably, propylene / M / ammonia / air = 1 / 0.015 to 0.10 / 1.0 to 1.5 / 8.7 to 13. However, the ratio of M to propylene is the ratio of carbon base as described above, and the other is the molar ratio to propylene.
In addition, when using a gas with an increased oxygen concentration, the ratio of the gas to be supplied can be calculated by the ratio with the oxygen concentration in the air.
[0021]
The reaction temperature is 400 to 470 ° C, preferably 420 to 460 ° C. The reaction pressure is 90 to 400 kPa, preferably 100 to 300 kPa as an absolute pressure. The contact time between the raw material gas and the catalyst is 0.5 to 20 sec · g / ml, preferably 1 to 10 sec · g / ml. However, the contact time is defined by the following equation.
Contact time (sec · g / ml) = (W / F) × 273 / (273 + T) × P / 101
Here, W is the amount of catalyst (g), F is the amount of gas to be supplied (ml / sec: NTP conversion), T is the reaction temperature (° C.), and P is the reaction pressure (kPa: absolute pressure).
[0022]
【Example】
Hereinafter, examples and comparative examples performed using a SUS304 fluidized bed reactor having an inner diameter of 83 mm will be described in detail, but the present invention is not limited to these examples.
The propylene conversion rate (%), the conversion rate of compound M (%), the acrylonitrile yield (%), the acrolein yield (%), acetonitrile, which were used to express the reaction results in the examples and comparative examples. The yield (%), the yield (%) of hydrocyanic acid, the yield increase rate (%) of acetonitrile, and the yield increase rate (%) of hydrocyanic acid are defined by the following equations.
[0023]
Propylene conversion rate (%) = (Mole number of propylene reacted) / (Mole number of propylene fed) × 100
Conversion rate of compound M (%) = (number of moles of reacted compound M) / (number of moles of supplied compound M) × 100
Acrylonitrile yield (%) = (Mole number of acrylonitrile produced) / (Mole number of supplied propylene) × 100
Yield of acrolein (%) = (number of moles of acrolein produced) / (number of moles of propylopyrene supplied) × 100
Acetonitrile yield (%) = 2/3 × (number of moles of acetonitrile formed) / (number of moles of propylene supplied) × 100
Yield of hydrocyanic acid (%) = 1/3 × (number of moles of hydrocyanic acid produced) / (number of moles of supplied propylene) × 100
Rate of increase in yield of acetonitrile (%) = (A−B) / B × 100
Cyanic acid yield increase rate (%) = (C−D) / D × 100
However, A, B, C and D are defined below.
A: Yield of acetonitrile with feed of compound M
B: Acetonitrile yield when compound M is not supplied
C: Yield of hydrocyanic acid when compound M is supplied
D: Yield of hydrocyanic acid when no compound M is supplied
The gas after the reaction was analyzed by gas chromatography. However, hydrocyanic acid was analyzed by a titration method.
[0024]
(Catalyst preparation example)
Composition is Mo 11.8 Bi 0.45 Ce 0.90 Fe 1.8 Ni 5.0 Mg 2.0 K 0.09 Rb 0.05 O e A catalyst in which 50% by weight of a silica-supported oxide catalyst was supported was prepared as follows. In this catalyst, x was 10.8, and the atomic ratio y of molybdenum was 1.09x.
30 wt% SiO 2 Of silica sol containing 3,333 g of water, and 164.5 g of water, 814.5 g of ammonium paramolybdate [(NH Four ) 6 Mo 7 O twenty four ・ 4H 2 O] is added, and finally, 81.0 g of bismuth nitrate [Bi (NO Three ) Three ・ 5H 2 O], 152.8 g of cerium nitrate [Ce (NO Three ) Three ・ 6H 2 O] 284.3 g of iron nitrate [Fe (NO Three ) Three ・ 9H 2 O], 568.5 g of nickel nitrate [Ni (NO Three ) 2 ・ 6H 2 O], 200.4 g of magnesium nitrate [Mg (NO Three ) 2 ・ 6H 2 O], 3.56 g potassium nitrate [KNO Three And 2.88 g of rubidium nitrate [RbNO Three ] Was dissolved. The raw material mixture obtained here was sent to a co-current spray dryer and dried at about 200 ° C. Nebulization of the prepared liquid was performed using an atomization apparatus equipped with a dish-shaped rotor installed in the upper center of the dryer. The obtained powder was calcined at 400 ° C. for 1 hour using an electric furnace and then calcined at 610 ° C. for 2 hours to prepare a catalyst.
[0025]
(Reference example)
Using 1,200 g of the catalyst obtained in the above catalyst preparation example, a reaction gas of 430 ° C., a reaction pressure of 150 kPa as an absolute pressure, and a propylene / ammonia / air molar ratio of 1 / 1.15 / 9.0 was used. Then, ammoxidation reaction of propylene was performed at a contact time of 5.7 sec · g / ml. After 100 hours from the start of the reaction, the conversion of propylene was 99.1%, the yield of acrylonitrile was 82.5%, the yield of acrolein was 0.2%, the yield of acetonitrile was 2.0%, the yield of hydrocyanic acid. The rate was 4.0% and the outlet oxygen concentration was 0.1% by volume.
[0026]
[Example 1]
The feed ratio of acetone on a carbon base to propylene is 0.05, the feed gas is supplied at a molar ratio of propylene / ammonia / air of 1 / 1.24 / 9.7, and the contact time The reaction was performed under the same conditions as in the Reference Example except that 6.0 sec · g / ml. After 100 hours from the start of the reaction, the conversion of propylene was 99.1%, the conversion of acetone was 100%, the yield of acrylonitrile was 82.4%, the yield of acrolein was 0.2%, and the yield of acetonitrile was 3.2%, the yield of hydrocyanic acid was 5.5%, the outlet oxygen concentration was 0.3% by volume, the production rate of acetonitrile was 60%, and the production rate of hydrocyanic acid was 38%. Furthermore, although the operation was continued while finely adjusting the supply amount of the raw material gas so that the outlet oxygen concentration was 0.3% by volume, the reaction results after 700 hours showed that the conversion of propylene was 99.0%, Conversion rate is 100%, acrylonitrile yield is 82.3%, acrolein yield is 0.3%, acetonitrile yield is 3.2%, hydrocyanic acid yield is 5.7%, acetonitrile production increase The production rate of cyanide was 43%, and the operation could be continued stably.
[0027]
[Example 2]
The supply ratio of methyl acetate on a carbon base to propylene is 0.1, and the raw material gas is supplied in a molar ratio of propylene / ammonia / air of 1 / 1.33 / 10.4. The reaction was performed under the same conditions as in the Reference Example except that the time was 6.3 sec · g / ml. After 100 hours from the start of the reaction, the conversion of propylene was 99.1%, the conversion of methyl acetate was 100%, the yield of acrylonitrile was 82.2%, the yield of acrolein was 0.2%, the yield of acetonitrile Was 4.5%, the yield of hydrocyanic acid was 7.0%, the outlet oxygen concentration was 0.5% by volume, the production rate of acetonitrile was 125%, and the production rate of hydrocyanic acid was 75%. Further, the operation was continued while finely adjusting the supply amount of the raw material gas so that the outlet oxygen concentration was 0.5% by volume, but the reaction results after 700 hours showed that the conversion rate of propylene was 99.0%, methyl acetate Conversion rate of 100%, acrylonitrile yield 82.1%, acrolein yield 0.3%, acetonitrile yield 4.5%, hydrocyanic acid yield 7.2%, acetonitrile production increase The rate was 125% and the production rate of hydrocyanic acid was 80%, and the operation could be continued stably.
[0028]
[Example 3]
The carbon-based methylethyl ether supply ratio to propylene is 0.2, and the raw material gas composition is a raw material gas having a propylene / ammonia / air molar ratio of 1 / 1.47 / 13.2. The reaction was performed under the same conditions as in the Reference Example except that the contact time was 6.5 sec · g / ml. After 100 hours from the start of the reaction, the conversion rate of propylene was 99.0%, the conversion rate of methyl ethyl ether was 100%, the yield of acrylonitrile was 81.3%, the yield of acrolein was 0.2%, the yield of acetonitrile was The rate was 7.0%, the yield of hydrocyanic acid was 10.0%, the outlet oxygen concentration was 1.3% by volume, the production rate of acetonitrile was 250%, and the production rate of hydrocyanic acid was 150%. Further, the operation was continued while finely adjusting the supply amount of the raw material gas so that the outlet oxygen concentration was 1.3% by volume. The reaction results after 700 hours showed that the conversion rate of propylene was 99.0%, methyl ethyl ether The conversion rate of tellurium is 100%, the yield of acrylonitrile is 81.2%, the yield of acrolein is 0.3%, the yield of acetonitrile is 7.0%, the yield of hydrocyanic acid is 10.3%, The rate of increase in production was 250%, and the rate of increase in hydrocyanic acid was 158%.
[0029]
[Example 4]
The composition is Mo in the same manner as in the catalyst preparation example except that the firing temperature is 590 ° C. 11.9 Bi 0.20 Ce 0.40 Fe 2.0 Ni 5.6 Mg 2.2 K 0.07 Cs 0.04 An oxide catalyst represented by Oe was prepared as a catalyst supported on 50% by weight of silica. In this catalyst, x was 10.7, and the atomic ratio y of molybdenum was 1.11x.
1,200 g of the obtained catalyst was used, a reaction temperature of 430 ° C., a reaction pressure of 150 kPa as an absolute pressure, and a raw material gas having a propylene / ammonia / air molar ratio of 1 / 1.15 / 9.1 was supplied, and the contact time Propylene ammoxidation was carried out at 4.8 sec · g / ml. After 100 hours from the start of the reaction, the propylene conversion was 99.3%, the acrylonitrile yield was 81.2%, the acrolein yield was 0.3%, the acetonitrile yield was 2.0%, and the cyanide yield was The rate was 4.2% and the outlet oxygen concentration was 0.1% by volume.
[0030]
Next, a carbon-based supply ratio of acetone to propylene was set to 0.05, and a raw material gas having a raw material gas composition of propylene / ammonia / air molar ratio of 1 / 1.23 / 9.8 was supplied. The reaction was conducted with a contact time of 5.1 sec · g / ml. After 100 hours from the start of the reaction, the conversion of propylene was 99.2%, the conversion of acetone was 100%, the yield of acrylonitrile was 81.1%, the yield of acrolein was 0.3%, and the yield of acetonitrile was The yield of 3.2%, the yield of hydrocyanic acid was 5.7%, the outlet oxygen concentration was 0.3% by volume, the production rate of acetonitrile was 60%, and the production rate of hydrocyanic acid was 36%. Furthermore, the operation was continued while finely adjusting the supply amount of the raw material gas so that the outlet oxygen concentration became 0.3% by volume, but the reaction results after 700 hours showed that the conversion rate of propylene was 99.1%, acetone Conversion rate is 100%, acrylonitrile yield is 81.0%, acrolein yield is 0.3%, acetonitrile yield is 3.2%, hydrocyanic acid yield is 5.9%, acetonitrile production increase rate Was 60%, and the production rate of cyanide was 40%.
[0031]
[Example 5]
The composition is Mo in the same manner as in the catalyst preparation example except that the firing temperature is 590 ° C. 12.0 Bi 0.60 Ce 1.20 Fe 1.6 Ni 4.8 Mg 1.9 K 0.11 Rb 0.05 An oxide catalyst represented by Oe was prepared as a catalyst supported on 50% by weight of silica. X of this catalyst was 11.0, and the atomic ratio y of molybdenum was 1.09x.
1,200 g of the obtained catalyst was used, a reaction temperature of 430 ° C., a reaction pressure of 150 kPa as an absolute pressure, and a raw material gas having a propylene / ammonia / air molar ratio of 1 / 1.15 / 9.0 was supplied, and the contact time Propylene ammoxidation was carried out at 4.8 sec · g / ml. After 100 hours from the start of the reaction, the conversion of propylene was 99.2%, the yield of acrylonitrile was 82.0%, the yield of acrolein was 0.2%, the yield of acetonitrile was 2.1%, the yield of hydrocyanic acid. The rate was 4.0% and the outlet oxygen concentration was 0.1% by volume.
[0032]
Next, a carbon-based acetone supply ratio with respect to propylene was set to 0.05, and a raw material gas having a propylene / ammonia / air molar ratio of 1 / 1.23 / 9.7 was supplied. The reaction was conducted with a contact time of 5.1 sec · g / ml. After 100 hours from the start of the reaction, the propylene conversion was 99.0%, the acetone conversion was 100%, the acrylonitrile yield was 81.9%, the acrolein yield was 0.2%, and the acetonitrile yield was The yield was 3.2%, the yield of hydrocyanic acid was 5.5%, the outlet oxygen concentration was 0.3% by volume, the production rate of acetonitrile was 52%, and the production rate of hydrocyanic acid was 38%. Furthermore, although the operation was continued while finely adjusting the supply amount of the raw material gas so that the outlet oxygen concentration was 0.3% by volume, the reaction results after 700 hours showed that the conversion of propylene was 99.0%, Conversion rate is 100%, acrylonitrile yield is 81.9%, acrolein yield is 0.3%, acetonitrile yield is 3.3%, hydrocyanic acid yield is 5.7%, acetonitrile production increase Was 57%, and the production rate of hydrocyanic acid was 43%.
[0033]
[Example 6]
The composition is Mo in the same manner as in the catalyst preparation example except that the calcination temperature was 580 ° C. 12.0 Bi 0.30 Y 0.60 Fe 2.0 Ni 5.4 Mg 2.1 K 0.09 Rb 0.05 An oxide catalyst represented by Oe was prepared as a catalyst supported on 50% by weight of silica. In this catalyst, x was 10.9, and the atomic ratio y of molybdenum was 1.11x.
1,200 g of the obtained catalyst was used, a reaction temperature of 430 ° C., a reaction pressure of 150 kPa as an absolute pressure, and a raw material gas having a propylene / ammonia / air molar ratio of 1 / 1.15 / 9.1 was supplied, and the contact time The ammoxidation reaction of propylene was performed at 5.4 sec · g / ml. After 100 hours from the start of the reaction, the conversion of propylene was 99.1%, the yield of acrylonitrile was 81.3%, the yield of acrolein was 0.3%, the yield of acetonitrile was 2.0%, the yield of hydrocyanic acid. The rate was 4.2% and the outlet oxygen concentration was 0.2% by volume.
[0034]
Next, a carbon-based acetone supply ratio with respect to propylene was set to 0.05, and a raw material gas having a propylene / ammonia / air molar ratio of 1 / 1.23 / 9.7 was supplied. The reaction was conducted with a contact time of 5.7 sec · g / ml. After 100 hours from the start of the reaction, the conversion of propylene was 99.1%, the conversion of acetone was 100%, the yield of acrylonitrile was 81.2%, the yield of acrolein was 0.3%, and the yield of acetonitrile was The yield was 3.2%, the yield of hydrocyanic acid was 5.7%, the outlet oxygen concentration was 0.2% by volume, the production rate of acetonitrile was 60%, and the production rate of hydrocyanic acid was 36%. Furthermore, the operation was continued while finely adjusting the supply amount of the raw material gas so that the outlet oxygen concentration was 0.2% by volume, but the reaction results after 700 hours showed that the conversion of propylene was 99.0%, Conversion rate is 100%, acrylonitrile yield is 81.1%, acrolein yield is 0.3%, acetonitrile yield is 3.2%, hydrocyanic acid yield is 5.8%, acetonitrile production increase rate The production rate of cyanide was 38%, and the operation was stable.
[0035]
[Example 7]
The composition is Mo in the same manner as in the catalyst preparation example except that the firing temperature is 590 ° C. 12.0 Bi 0.30 La 0.60 Fe 2.0 Ni 5.4 Mg 2.1 K 0.09 Rb 0.05 An oxide catalyst represented by Oe was prepared as a catalyst supported on 50% by weight of silica. In this catalyst, x was 10.9, and the atomic ratio y of molybdenum was 1.11x.
1,200 g of the obtained catalyst was used, a reaction temperature of 430 ° C., a reaction pressure of 150 kPa as an absolute pressure, and a raw material gas having a propylene / ammonia / air molar ratio of 1 / 1.15 / 9.1 was supplied, and the contact time The ammoxidation reaction of propylene was performed at 5.1 sec · g / ml. After 100 hours from the start of the reaction, the propylene conversion was 99.1%, the acrylonitrile yield was 81.0%, the acrolein yield was 0.2%, the acetonitrile yield was 2.1%, and the cyanide yield was The rate was 4.1% and the outlet oxygen concentration was 0.1% by volume.
[0036]
Next, a carbon-based acetone supply ratio to propylene is set to 0.05, and a raw material gas having a propylene / ammonia / air molar ratio of 1 / 1.24 / 9.8 is supplied. The reaction was carried out at a contact time of 5.4 sec · g / ml. After 100 hours from the start of the reaction, the propylene conversion was 99.0%, the acetone conversion was 100%, the acrylonitrile yield was 80.9%, the acrolein yield was 0.3%, and the acetonitrile yield was 3.3%, the yield of hydrocyanic acid was 5.6%, the outlet oxygen concentration was 0.3% by volume, the production rate of acetonitrile was 57%, and the production rate of hydrocyanic acid was 37%. Furthermore, although the operation was continued while finely adjusting the supply amount of the raw material gas so that the outlet oxygen concentration was 0.3% by volume, the reaction results after 700 hours showed that the conversion of propylene was 99.0%, Conversion rate is 100%, acrylonitrile yield is 80.9%, acrolein yield is 0.3%, acetonitrile yield is 3.3%, hydrocyanic acid yield is 5.8%, acetonitrile production increase rate Was 57%, and the increase rate of cyanic acid was 41%.
[0037]
[Example 8]
The composition is Mo in the same manner as in the catalyst preparation example except that the firing temperature is 590 ° C. 12.0 Bi 0.30 Pr 0.13 Nd 0.47 Fe 2.0 Ni 5.4 Mg 2.1 K 0.09 Rb 0.05 An oxide catalyst represented by Oe was prepared as a catalyst supported on 50% by weight of silica. In this catalyst, x was 10.9, and the atomic ratio y of molybdenum was 1.11x.
1,200 g of the obtained catalyst was used, a reaction temperature of 430 ° C., a reaction pressure of 150 kPa as an absolute pressure, and a raw material gas having a propylene / ammonia / air molar ratio of 1 / 1.15 / 9.0 was supplied, and the contact time The ammoxidation reaction of propylene was performed at 5.6 sec · g / ml. After 100 hours from the start of the reaction, the conversion of propylene was 99.2%, the yield of acrylonitrile was 81.9%, the yield of acrolein was 0.3%, the yield of acetonitrile was 2.0%, the yield of hydrocyanic acid. The rate was 3.9% and the outlet oxygen concentration was 0.1% by volume.
[0038]
Next, a carbon-based acetone supply ratio with respect to propylene was set to 0.05, and a raw material gas having a propylene / ammonia / air molar ratio of 1 / 1.23 / 9.7 was supplied. The reaction was carried out at a contact time of 5.9 sec · g / ml. After 100 hours from the start of the reaction, the conversion of propylene was 99.1%, the conversion of acetone was 100%, the yield of acrylonitrile was 81.9%, the yield of acrolein was 0.3%, and the yield of acetonitrile was The yield of hydrocyanic acid was 3.2%, the yield of hydrocyanic acid was 5.4%, the outlet oxygen concentration was 0.3% by volume, the production rate of acetonitrile was 60%, and the production rate of hydrocyanic acid was 39%. Furthermore, although the operation was continued while finely adjusting the supply amount of the raw material gas so that the outlet oxygen concentration was 0.3% by volume, the reaction results after 700 hours showed that the conversion of propylene was 99.0%, Conversion rate is 100%, acrylonitrile yield is 81.8%, acrolein yield is 0.3%, acetonitrile yield is 3.3%, hydrocyanic acid yield is 5.6%, acetonitrile production increase rate Was 65%, and the production rate of hydrocyanic acid was 44%.
[0039]
[Example 9]
The composition is Mo in the same manner as in the catalyst preparation example except that the firing temperature is 610 ° C. 12.0 Bi 0.30 Sm 0.60 Fe 2.0 Ni 5.4 Mg 2.1 K 0.09 Rb 0.05 An oxide catalyst represented by Oe was prepared as a catalyst supported on 50% by weight of silica. In this catalyst, x was 10.9, and the atomic ratio y of molybdenum was 1.11x.
1,200 g of the obtained catalyst was used, a reaction temperature of 430 ° C., a reaction pressure of 150 kPa as an absolute pressure, and a raw material gas having a propylene / ammonia / air molar ratio of 1 / 1.15 / 9.1 was supplied, and the contact time The ammoxidation reaction of propylene was performed at 5.7 sec · g / ml. After 100 hours from the start of the reaction, the propylene conversion was 99.1%, the acrylonitrile yield was 81.5%, the acrolein yield was 0.3%, the acetonitrile yield was 1.9%, and the cyanide yield. The rate was 4.0% and the outlet oxygen concentration was 0.2% by volume.
[0040]
Next, a carbon-based supply ratio of acetone to propylene was set to 0.05, and a raw material gas having a raw material gas composition of propylene / ammonia / air molar ratio of 1 / 1.23 / 9.8 was supplied. The reaction was carried out at a contact time of 6.0 sec · g / ml. After 100 hours from the start of the reaction, the conversion of propylene was 99.1%, the conversion of acetone was 100%, the yield of acrylonitrile was 81.5%, the yield of acrolein was 0.2%, and the yield of acetonitrile was 3.1%, the yield of hydrocyanic acid was 5.5%, the outlet oxygen concentration was 0.4% by volume, the production rate of acetonitrile was 63%, and the production rate of hydrocyanic acid was 38%. Further, the operation was continued while finely adjusting the supply amount of the raw material gas so that the outlet oxygen concentration was 0.4% by volume, but the reaction results after 700 hours showed that the conversion of propylene was 99.0%, Conversion rate is 100%, acrylonitrile yield is 81.4%, acrolein yield is 0.3%, acetonitrile yield is 3.1%, hydrocyanic acid yield is 5.6%, acetonitrile production increase rate Was 63%, and the rate of increase in the production of hydrocyanic acid was 40%.
[0041]
[Example 10]
The composition is Mo in the same manner as in the catalyst preparation example except that the calcination temperature is 570 ° C. 12.0 Bi 0.45 Ce 0.90 Fe 1.8 Co 7.0 Rb 0.14 An oxide catalyst represented by Oe was prepared as a catalyst supported on 50% by weight of silica. In this catalyst, x was 10.8, and the atomic ratio y of molybdenum was 1.11x.
1,200 g of the obtained catalyst was used, a reaction temperature of 430 ° C., a reaction pressure of 150 kPa as an absolute pressure, and a raw material gas having a molar ratio of propylene / ammonia / air of 1 / 1.15 / 8.9 was supplied, and the contact time The ammoxidation reaction of propylene was performed at 5.6 sec · g / ml. After 100 hours from the start of the reaction, the propylene conversion was 99.1%, the acrylonitrile yield was 82.4%, the acrolein yield was 0.2%, the acetonitrile yield was 2.1%, and the cyanide acid yield. The rate was 3.8% and the outlet oxygen concentration was 0.1% by volume.
[0042]
Next, a carbon-based acetone supply ratio with respect to propylene is set to 0.05, and a raw material gas having a propylene / ammonia / air molar ratio of 1 / 1.22 / 9.6 is supplied. The reaction was carried out at a contact time of 5.9 sec · g / ml. After 100 hours from the start of the reaction, the conversion of propylene was 99.1%, the conversion of acetone was 100%, the yield of acrylonitrile was 82.4%, the yield of acrolein was 0.2%, and the yield of acetonitrile was The yield was 3.2%, the yield of hydrocyanic acid was 5.3%, the outlet oxygen concentration was 0.3% by volume, the production rate of acetonitrile was 52%, and the production rate of hydrocyanic acid was 40%. Furthermore, although the operation was continued while finely adjusting the supply amount of the raw material gas so that the outlet oxygen concentration was 0.3% by volume, the reaction results after 700 hours showed that the conversion of propylene was 99.0%, Conversion rate is 100%, acrylonitrile yield is 82.3%, acrolein yield is 0.3%, acetonitrile yield is 3.3%, hydrocyanic acid yield is 5.5%, acetonitrile production increase rate Was 57% and the increase rate of cyanic acid was 45%.
[0043]
Example 11
The composition is Mo in the same manner as in the catalyst preparation example except that the calcination temperature is 570 ° C. 12.0 Bi 0.54 Ce 0.81 Fe 1.8 Co 5.0 Zn 2.0 Cs 0.10 An oxide catalyst represented by Oe was prepared as a catalyst supported on 50% by weight of silica. In this catalyst, x was 10.8, and the atomic ratio y of molybdenum was 1.11x.
1,200 g of the obtained catalyst was used, a reaction temperature of 430 ° C., a reaction pressure of 150 kPa as an absolute pressure, and a raw material gas having a propylene / ammonia / air molar ratio of 1 / 1.14 / 9.0 was supplied, and the contact time The ammoxidation reaction of propylene was performed at 5.8 sec · g / ml. After 100 hours from the start of the reaction, the propylene conversion was 99.1%, the acrylonitrile yield was 81.5%, the acrolein yield was 0.3%, the acetonitrile yield was 2.0%, and the cyanide yield was The rate was 4.0% and the outlet oxygen concentration was 0.1% by volume.
[0044]
Next, a carbon-based acetone supply ratio to propylene is set to 0.05, and a raw material gas having a propylene / ammonia / air molar ratio of 1 / 1.22 / 9.7 is supplied. The reaction was conducted with a contact time of 6.1 sec · g / ml. After 100 hours from the start of the reaction, the propylene conversion was 99.1%, acetone conversion was 100%, acrylonitrile yield was 81.4%, acrolein yield was 0.3%, acetonitrile yield was 3.2%, the yield of hydrocyanic acid was 5.5%, the outlet oxygen concentration was 0.3% by volume, the production rate of acetonitrile was 60%, and the production rate of hydrocyanic acid was 38%. Furthermore, although the operation was continued while finely adjusting the supply amount of the raw material gas so that the outlet oxygen concentration was 0.3% by volume, the reaction results after 700 hours showed that the conversion of propylene was 99.0%, Conversion rate is 100%, acrylonitrile yield is 81.3%, acrolein yield is 0.4%, acetonitrile yield is 3.2%, hydrocyanic acid yield is 5.8%, acetonitrile production increase The production rate of cyanide was 45%, and the operation rate was stable.
[0045]
Example 12
The composition is Mo in the same manner as in the catalyst preparation example except that the calcination temperature is 600 ° C. 12.0 Bi 0.39 Ce 0.96 Fe 1.8 Co 3.5 Ni 3.5 K 0.09 Rb 0.05 An oxide catalyst represented by Oe was prepared as a catalyst supported on 50% by weight of silica. In this catalyst, x was 10.8, and the atomic ratio y of molybdenum was 1.11x.
1,200 g of the obtained catalyst was used, a reaction temperature of 430 ° C., a reaction pressure of 150 kPa as an absolute pressure, and a raw material gas having a propylene / ammonia / air molar ratio of 1 / 1.14 / 9.0 was supplied, and the contact time The ammoxidation reaction of propylene was performed at 5.7 sec · g / ml. After 100 hours from the start of the reaction, the conversion of propylene was 99.2%, the yield of acrylonitrile was 82.3%, the yield of acrolein was 0.2%, the yield of acetonitrile was 2.0%, the yield of hydrocyanic acid. The rate was 3.9% and the outlet oxygen concentration was 0.2% by volume.
[0046]
Next, a carbon-based acetone supply ratio with respect to propylene is set to 0.05, and a raw material gas having a propylene / ammonia / air molar ratio of 1 / 1.22 / 9.6 is supplied. The reaction was carried out at a contact time of 6.0 sec · g / ml. After 100 hours from the start of the reaction, the conversion of propylene was 99.1%, the conversion of acetone was 100%, the yield of acrylonitrile was 82.2%, the yield of acrolein was 0.2%, and the yield of acetonitrile was The yield of hydrocyanic acid was 3.2%, the yield of hydrocyanic acid was 5.4%, the outlet oxygen concentration was 0.3% by volume, the production rate of acetonitrile was 60%, and the production rate of hydrocyanic acid was 39%. Furthermore, although the operation was continued while finely adjusting the supply amount of the raw material gas so that the outlet oxygen concentration was 0.3% by volume, the reaction results after 700 hours showed that the conversion of propylene was 99.0%, Conversion rate is 100%, acrylonitrile yield is 82.2%, acrolein yield is 0.3%, acetonitrile yield is 3.2%, hydrocyanic acid yield is 5.5%, acetonitrile production increase rate Was 60%, and the rate of increase in cyanide was 41%.
[0047]
Example 13
The composition is Mo in the same manner as in the catalyst preparation example except that the calcination temperature is 670 ° C. 11.7 Bi 0.20 Ce 0.10 Fe 2.3 Ni 5.5 Mg 2.3 K 0.10 Rb 0.05 An oxide catalyst represented by Oe was prepared as a catalyst supported on 50% by weight of silica. X of this catalyst was 10.6, and the atomic ratio y of molybdenum was 1.11x.
1,200 g of the obtained catalyst was used, a reaction temperature of 430 ° C., a reaction pressure of 150 kPa as an absolute pressure, a raw material gas having a propylene / ammonia / air molar ratio of 1 / 1.16 / 9.0 was supplied, and the contact time The ammoxidation reaction of propylene was performed at 5.4 sec · g / ml. After 100 hours from the start of the reaction, the conversion of propylene was 99.0%, the yield of acrylonitrile was 82.7%, the yield of acrolein was 0.2%, the yield of acetonitrile was 1.9%, the yield of hydrocyanic acid. The rate was 3.8% and the outlet oxygen concentration was 0.2% by volume.
[0048]
Next, the supply ratio of acetone based on carbon to propylene is set to 0.05, and the raw material gas is supplied at a molar ratio of propylene / ammonia / air of 1 / 1.24 / 9.6. The reaction was conducted with a contact time of 5.7 sec · g / ml. After 100 hours from the start of the reaction, the conversion of propylene was 99.1%, the conversion of acetone was 100%, the yield of acrylonitrile was 82.7%, the yield of acrolein was 0.2%, and the yield of acetonitrile was 3.1%, the yield of hydrocyanic acid was 5.3%, the outlet oxygen concentration was 0.2% by volume, the production rate of acetonitrile was 63%, and the production rate of hydrocyanic acid was 40%. Furthermore, the operation was continued while finely adjusting the supply amount of the raw material gas so that the outlet oxygen concentration was 0.2% by volume, but the reaction results after 700 hours showed that the conversion of propylene was 99.0%, Conversion rate is 100%, acrylonitrile yield is 82.6%, acrolein yield is 0.2%, acetonitrile yield is 3.2%, hydrocyanic acid yield is 5.5%, acetonitrile production increase rate Was 68%, and the rate of increase in the production of hydrocyanic acid was 45%.
[0049]
Example 14
The composition is Mo in the same manner as in the catalyst preparation example except that the firing temperature is 660 ° C. 11.9 Bi 0.3 Fe 2.4 Ni 6.7 Mg 1.5 K 0.10 Cs 0.07 An oxide catalyst represented by Oe was prepared as a catalyst supported on 50% by weight of silica. In this catalyst, x was 11.1 and the atomic ratio y of molybdenum was 1.08x.
1,200 g of the obtained catalyst was used, a reaction temperature of 430 ° C., a reaction pressure of 150 kPa as an absolute pressure, a raw material gas having a propylene / ammonia / air molar ratio of 1 / 1.16 / 9.0 was supplied, and the contact time The ammoxidation reaction of propylene was performed at 5.7 sec · g / ml. After 100 hours from the start of the reaction, the conversion of propylene was 99.2%, the yield of acrylonitrile was 82.7%, the yield of acrolein was 0.3%, the yield of acetonitrile was 1.9%, the yield of hydrocyanic acid. The rate was 3.8% and the outlet oxygen concentration was 0.2% by volume.
[0050]
Next, a carbon-based acetone supply ratio to propylene is set to 0.05, and a raw material gas having a propylene / ammonia / air molar ratio of 1 / 1.24 / 9.7 is supplied. The reaction was carried out at a contact time of 6.0 sec · g / ml. After 100 hours from the start of the reaction, the conversion of propylene was 99.1%, the conversion of acetone was 100%, the yield of acrylonitrile was 82.7%, the yield of acrolein was 0.2%, and the yield of acetonitrile was 3.1%, the yield of hydrocyanic acid was 5.3%, the outlet oxygen concentration was 0.4% by volume, the production rate of acetonitrile was 63%, and the production rate of hydrocyanic acid was 40%. Further, the operation was continued while finely adjusting the supply amount of the raw material gas so that the outlet oxygen concentration was 0.4% by volume, but the reaction results after 700 hours showed that the conversion of propylene was 99.0%, Conversion rate is 100%, acrylonitrile yield is 82.6%, acrolein yield is 0.2%, acetonitrile yield is 3.1%, hydrocyanic acid yield is 5.4%, acetonitrile production increase Was 63%, and the production rate of cyanic acid was 42%.
[0051]
[Comparative Example 1]
The reaction was performed under the same conditions as in Example 2 except that the composition of the raw material gas was changed to a propylene / ammonia / air molar ratio of 1 / 1.34 / 10.1 (low molar ratio of air). After 100 hours from the start of the reaction, the propylene conversion was 98.7%, methyl acetate conversion was 100%, acrylonitrile yield was 82.8%, acrolein yield was 0.7%, acetonitrile yield Was 4.8%, the yield of hydrocyanic acid was 6.8%, the outlet oxygen concentration was 0.06% by volume, the production rate of acetonitrile was 140%, and the production rate of hydrocyanic acid was 70%. Furthermore, the operation was continued while finely adjusting the supply amount of the raw material gas so that the outlet oxygen concentration was 0.06% by volume, but the reaction was stopped in 400 hours because the conversion rate of propylene decreased with time. . As a result of analyzing the extracted catalyst, it was found that 6000 ppm of carbon was adhered.
[0052]
[Comparative Example 2]
The reaction was performed under the same conditions as in Example 2 except that the composition of the raw material gas was changed to a propylene / ammonia / air molar ratio of 1 / 1.34 / 11.7 (excess air molar ratio).
After 100 hours from the start of the reaction, the propylene conversion was 99.2%, the methyl acetate conversion was 100%, the acrylonitrile yield was 80.1%, the acrolein yield was 0.2%, and the acetonitrile yield. Was 4.5%, the yield of hydrocyanic acid was 7.5%, the outlet oxygen concentration was 2.0% by volume, the acetonitrile production rate was 125%, and the hydrocyanic acid production rate was 88%. The reaction was stopped due to the low yield.
[0053]
[Comparative Example 3]
A feed gas having a carbon-based supply ratio of propylene / ammonia / air of a propylene / ammonia / air molar ratio of 1/15/12. And the reaction was conducted under the same conditions as in the Reference Example except that the contact time was 6.5 sec · g / ml. After 100 hours from the start of the reaction, the propylene conversion was 99.2%, the methyl acetate conversion was 100%, the acrylonitrile yield was 79.6%, the acrolein yield was 0.3%, and the acetonitrile yield. Was 8.2%, the yield of hydrocyanic acid was 12.0%, the outlet oxygen concentration was 0.3% by volume, the production rate of acetonitrile was 310%, and the production rate of hydrocyanic acid was 200%. The reaction was stopped due to the low yield.
[0054]
[Comparative Example 4]
The oxide composition supported on 50% by weight of silica described in Example 7 of JP-B-53-35232 is Mo. 12 Bi 5.76 Fe 6.24 Na 1.2 P 1.2 K 0.072 O e Was prepared with reference to the content of the patent. In addition, after baking for 1 hour at 400 degreeC, baking was performed for 2 hours at 690 degreeC.
1400 g of the obtained catalyst was used to supply a raw material gas having a reaction temperature of 460 ° C., an absolute pressure of 150 kPa, and a molar ratio of propylene / ammonia / air of 1 / 1.10 / 8.9, and a contact time of 6 The ammoxidation reaction of propylene was performed at 0.0 sec · g / ml. After 100 hours from the start of the reaction, the propylene conversion was 99.4%, the acrylonitrile yield was 79.0%, the acrolein yield was 1.5%, the acetonitrile yield was 2.3%, and the cyanide yield. The rate was 6.0% and the outlet oxygen concentration was 0.2% by volume.
[0055]
Next, in the same manner as in Example 2, the carbon-based supply ratio of methyl acetate to propylene was 0.1, and the raw material gas composition was propylene / ammonia / air molar ratio 1 / 1.22 / 10. As a result, the conversion rate of propylene was 99.2%, the conversion rate of methyl acetate was 100%, the yield of acrylonitrile was 76.4%, and the yield of acrolein was 2. 2%, yield of acetonitrile is 4.8%, yield of hydrocyanic acid is 9.3%, outlet oxygen concentration is 0.2% by volume, production rate of acetonitrile is 109%, production rate of hydrocyanic acid is 55% However, the reaction was stopped because of a large decrease in the yield of acrylonitrile and a large increase in the yield of acrolein.
[0056]
【The invention's effect】
When producing acrylonitrile by propylene ammoxidation reaction, the production of acetonitrile and hydrocyanic acid can be stably increased by defining the catalyst used, the raw materials to be supplied to the reactor, the ratio thereof and the oxygen concentration in the outlet gas of the reactor. In addition, a decrease in the yield of acrylonitrile can be suppressed and the reaction can be continued stably over a long period of time.

Claims (2)

プロピレンとアンモニアと酸素を流動層反応器において触媒の存在下にアンモ酸化反応させてアクリロニトリルを製造するに際して、
触媒として、シリカに担持された酸化物組成が下記一般式(1)
Moy Bip Feq a b c d e ・・・・(1)
(上記一般式(1)中、Moはモリブデン、Biはビスマス、Feは鉄、Aはニッケル及びコバルトから選ばれる1種以上の元素、Bはカリウム、ルビジウム及びセシウムから選ばれる1種以上の元素、Cはマグネシウム及び亜鉛から選ばれる1種以上の元素、Dは希土類元素から選ばれる1種以上の元素、Oは酸素を表し、yはアンモ酸化反応中のモリブデンの原子比であり、y=1.02x〜1.12x、但し、xはx=1.5p+q+a+c+1.5dである。p 、q 、a 、b 、c 、d 及びe はそれぞれビスマス、鉄、A、B、C、D及び酸素の原子比を表し、p =0.01〜5.0、q =0.1〜5、a =4〜10、b =0.01〜2、c=0〜5、d=0〜5、e は存在する他の元素の原子価要求を満足させるために必要な酸素の原子数である。)
で表される触媒を用い、酢酸メチル、アセトン及びメチルエチルエ−テルの中から選ばれる1種以上の化合物をプロピレンに対して炭素ベ−スで0.005〜0.2の比率で反応器に供給し、且つ、反応器の出口ガス中の酸素濃度を0.1〜1.5容量%に制御することを特徴とするアセトニトリル及び青酸の増産方法。
Propylene, ammonia and oxygen are subjected to an ammoxidation reaction in the presence of a catalyst in a fluidized bed reactor to produce acrylonitrile.
As a catalyst, an oxide composition supported on silica has the following general formula (1).
Mo y Bi p Fe q A a B b C c D d O e (1)
(In the general formula (1), Mo is molybdenum, Bi is bismuth, Fe is iron, A is one or more elements selected from nickel and cobalt, and B is one or more elements selected from potassium, rubidium and cesium. , C is one or more elements selected from magnesium and zinc, D is one or more elements selected from rare earth elements, O is oxygen, y is an atomic ratio of molybdenum in the ammoxidation reaction, y = 1.02x to 1.12x, where x is x = 1.5p + q + a + c + 1.5d, p, q, a, b, c, d and e are bismuth, iron, A, B, C, D and oxygen, respectively. P = 0.01-5.0, q = 0.1-5, a = 4-10, b = 0.01-2, c = 0-5, d = 0-5, e is the number of oxygen atoms necessary to satisfy the valence requirements of the other elements present. That.)
1 or more compounds selected from methyl acetate, acetone and methyl ethyl ether are supplied to the reactor at a carbon-based ratio of 0.005 to 0.2 with respect to propylene. And increasing the oxygen concentration in the outlet gas of the reactor to 0.1 to 1.5% by volume, and increasing the production of acetonitrile and hydrocyanic acid.
反応器に供給する化合物が、酢酸メチルであることを特徴とする請求項1記載の方法。2. A process according to claim 1, wherein the compound fed to the reactor is methyl acetate.
JP2001258920A 2001-08-29 2001-08-29 Method to stably increase production of acetonitrile and hydrocyanic acid Expired - Lifetime JP4854151B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001258920A JP4854151B2 (en) 2001-08-29 2001-08-29 Method to stably increase production of acetonitrile and hydrocyanic acid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001258920A JP4854151B2 (en) 2001-08-29 2001-08-29 Method to stably increase production of acetonitrile and hydrocyanic acid

Publications (2)

Publication Number Publication Date
JP2003064041A JP2003064041A (en) 2003-03-05
JP4854151B2 true JP4854151B2 (en) 2012-01-18

Family

ID=19086361

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001258920A Expired - Lifetime JP4854151B2 (en) 2001-08-29 2001-08-29 Method to stably increase production of acetonitrile and hydrocyanic acid

Country Status (1)

Country Link
JP (1) JP4854151B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008002258A1 (en) * 2008-06-06 2009-12-10 Evonik Röhm Gmbh Process for the preparation of hydrogen cyanide on a cyclically guided as a transport fluidized bed particulate heat exchanger
MX2012010925A (en) * 2010-03-23 2012-12-17 Ineos Usa Llc High efficiency ammoxidation process and mixed metal oxide catalysts.
US9433929B2 (en) * 2011-09-21 2016-09-06 Ineos Europe Ag Mixed metal oxide catalysts
CN107252663A (en) * 2014-06-27 2017-10-17 英尼奥斯欧洲股份公司 The control that ammonia for ammonia oxidation reactor is fed
CN107708858A (en) * 2016-01-25 2018-02-16 旭化成株式会社 The manufacture method of fluid bed ammoxidation reaction catalyst and acrylonitrile
US11827585B2 (en) 2018-03-28 2023-11-28 Asahi Kasei Kabushiki Kaisha Method for producing acrylonitrile
CN110498749A (en) * 2019-09-25 2019-11-26 中国天辰工程有限公司 A method of improving propylene or propane ammoxidation by-product acetonitrile and hydrogen cyanide

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03246269A (en) * 1990-02-21 1991-11-01 Asahi Chem Ind Co Ltd Method for increasing yield of acetonitrile
JP3214984B2 (en) * 1993-08-10 2001-10-02 旭化成株式会社 Catalyst composition used for ammoxidation and method for producing acrylonitrile or methacrylonitrile using the same
JP3214975B2 (en) * 1994-04-25 2001-10-02 旭化成株式会社 Ammoxidation catalyst composition and production method
JP3497558B2 (en) * 1994-05-12 2004-02-16 旭化成ケミカルズ株式会社 Ammoxidation catalyst composition and method for producing acrylonitrile or methacrylonitrile using the same
US6204407B1 (en) * 1998-12-09 2001-03-20 The Standard Oil Company Ammoxidation of a mixture of alcohols to a mixture of nitriles to acetonitrile and HCN
JP2000344724A (en) * 1999-03-26 2000-12-12 Mitsubishi Rayon Co Ltd Production of unsaturated nitrile
US6413485B2 (en) * 1999-05-27 2002-07-02 The Standard Oil Company Ammoxidation of a mixture of ketones to acetonitrile and HCN

Also Published As

Publication number Publication date
JP2003064041A (en) 2003-03-05

Similar Documents

Publication Publication Date Title
KR100691300B1 (en) Method for producing acrylonitrile, catalyst for use therein and the method for preparing the same
EP1937617A1 (en) Process for preparing partial oxidation products of lower alcohols by direct oxidation of a lower alcohol and catalysts for use in that process
JP4691359B2 (en) Method for producing a catalyst for methacrylic acid production
JP3497558B2 (en) Ammoxidation catalyst composition and method for producing acrylonitrile or methacrylonitrile using the same
US6084119A (en) Process for producing unsaturated nitrile
JP4854150B2 (en) How to increase production of cyanide stably
JP4854151B2 (en) Method to stably increase production of acetonitrile and hydrocyanic acid
JPH0813332B2 (en) Preparation of catalysts for the production of methacrolein and methacrylic acid
US10626082B2 (en) Ammoxidation catalyst with selective co-product HCN production
JP4854149B2 (en) A method to stably increase the production of acetonitrile
US6930201B2 (en) Process for producing methacrylic acid
US7217836B2 (en) Process for producing (meth)acrolein and/or (meth)acrylic acid
JP3838705B2 (en) Ammoxidation catalyst composition
JP3875011B2 (en) Acrylonitrile manufacturing process
JPH11124361A (en) Production of unsaturated nitrile
JP3751043B2 (en) Ammoxidation catalyst composition and method for producing nitrile compound using the same
JP4484995B2 (en) Process for producing unsaturated nitriles
JP2001187771A (en) Method for producing acrylonitrile
JP4454009B2 (en) Method for improving selectivity of ammoxidation reaction and method for producing unsaturated nitrile using the same
JP2003002870A (en) Method for coproducing prussic acid in production of unsaturated nitrile
JP2002097017A (en) Method for producing hydrogen cyanide
JP3490133B2 (en) Method for producing hydrogen cyanide
JP3505547B2 (en) Method for producing acrylonitrile
JP4447374B2 (en) Propylene ammoxidation process
JPH0723213B2 (en) Method for producing hydrocyanic acid

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20031204

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040218

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040219

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080709

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110613

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110621

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111025

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111025

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141104

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4854151

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term