JP4484995B2 - Process for producing unsaturated nitriles - Google Patents

Process for producing unsaturated nitriles Download PDF

Info

Publication number
JP4484995B2
JP4484995B2 JP2000021035A JP2000021035A JP4484995B2 JP 4484995 B2 JP4484995 B2 JP 4484995B2 JP 2000021035 A JP2000021035 A JP 2000021035A JP 2000021035 A JP2000021035 A JP 2000021035A JP 4484995 B2 JP4484995 B2 JP 4484995B2
Authority
JP
Japan
Prior art keywords
tellurium
catalyst
compound
reaction
molybdenum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000021035A
Other languages
Japanese (ja)
Other versions
JP2001213855A (en
Inventor
一幸 浜田
英雄 緑川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Chemicals Corp
Original Assignee
Asahi Kasei Chemicals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Chemicals Corp filed Critical Asahi Kasei Chemicals Corp
Priority to JP2000021035A priority Critical patent/JP4484995B2/en
Publication of JP2001213855A publication Critical patent/JP2001213855A/en
Application granted granted Critical
Publication of JP4484995B2 publication Critical patent/JP4484995B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C253/00Preparation of carboxylic acid nitriles
    • C07C253/24Preparation of carboxylic acid nitriles by ammoxidation of hydrocarbons or substituted hydrocarbons
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、流動床反応器を用いて、担体に担時されたモリブデン、アンチモン、バナジウムおよびニオブを含有する触媒を用いて、プロパンまたはイソブタンを気相接触アンモ酸化反応を行って対応する不飽和ニトリルを製造する方法に関する。
【0002】
【従来の技術】
近年、プロピレンまたはイソブチレンに替わってプロパンまたはイソブタンを気相接触アンモ酸化して対応する不飽和ニトリルを製造するために用いる触媒が多数提案されて、特にモリブデンを含有する酸化物触媒が着目されている。
例えば、Mo-Te-V-Nb系酸化物触媒が、米国特許第5,049,692号公報、米国特許第5,422,328号公報、欧州特許第529853B1号公報、特開平7−232071号公報、特開平7−289907号公報、特開平7−315842号公報、特開平8−57319号公報、特開平8−141401号公報等に開示されている。
【0003】
同様にモリブデンを含有するMo-Sb-V系酸化物触媒が特開平10−330343などに開示されており、例えばMo-Sb-V-Nb系酸化物触媒が例示されている。
また、Mo-Te系酸化物触媒が特開平7−215926公報に、Mo-Te-Cr系酸化物触媒が米国特許第5,171,876号公報に、W-Te-V系酸化物触媒が特開平6−228073号公報に、そして、V-Sb-Te系酸化物触媒が米国特許第5,079,207号公報、欧州特許第337028A1号公報等に開示されている。
【0004】
上記の公報に開示されたモリブデンを含有する酸化物触媒はアンモ酸化反応の経過と共に触媒が劣化して不飽和ニトリルの収率が低下することが認められている。
米国特許第4,709,070号公報、特開平1−41135号公報は有機化合物の酸化反応、アンモ酸化反応または酸化脱水素反応において、テルルを含有する酸化物触媒の存在下、テルル化合物またはテルル化合物とモリブデン化合物の組み合わせを添加して劣化した触媒を賦活する方法を開示している。
しかしながら、これらの公報はメタノールのアンモ酸化反応、プロピレンのアンモ酸化反応、トルエンのアンモ酸化反応およびブテンの酸化脱水素反応の実施例を記載するにとどまり、本願の発明プロセスに用いる、シリカに担持されたモリブデン、アンチモン、バナジウムおよびニオブを含有し、且つ、触媒調製時にテルルを含有しない酸化物触媒について具体的記載はなく、また実施例にもこの触媒を用いるプロパンまたはイソブタンのアンモ酸化反応を記載していない。
【0005】
米国特許第3,882,159号公報、独国特許第3,331,521号公報、WO9733863A1号公報等はモリブデンを含有する酸化物触媒の存在下、モリブデン化合物を賦活剤として添加しながら、不飽和ニトリルを製造する方法を開示しているが、プロピレンまたはイソブチレンの気相接触アンモ酸化反応に関するものである。
特開平10−137585号報、特開平11−285636号報、特開平11−285637号報ではモリブデン、バナジウム、アンチモンとニオブまたはタンタルからなる金属酸化物触媒によりプロパンの反応、プロパンよりアクリル酸を合成する開示があるが、これらの公報はプロパンの酸化反応の実施例を記載するに留まり、本願の発明プロセスに用いるプロパンもしくはイソブタンのアンモ酸化反応を記載していない。
【0006】
従来技術の中でプロパンまたはイソブタンを気相接触アンモ酸化して対応する不飽和ニトリルの収率低下を解決できる具体策な技術開示は本発明者らが開示した特開平11−124361がある。この中でテルルを必須成分として触媒調製時から当該元素を含有する触媒系にテルル化合物を添加し触媒の性能低下を抑制する技術を開示した。
ただこの技術は触媒調製時からテルルを必須成分として含有しない触媒に関しては何ら技術開示しておらず。且つ、テルル化合物を添加することにより劣化した触媒の性能を改善する技術開示はあるものの添加により初期の触媒性能を向上させる技術に関しては何ら技術開示はなかった
【0007】
このように従来技術では目的とする不飽和ニトリルの収率が不十分であり、更にプロパンまたはイソブタンを気相接触アンモ酸化して対応する不飽和ニトリルを製造する際に、モリブデン、バナジウム、アンチモンとニオブを含有し、且つ、触媒調製時にテルルを含まない触媒にテルル化合物もしくはモリブデン化合物とテルル化合物を添加する技術はもちろん、モリブデン、バナジウム、アンチモンとニオブを含有し、且つ、触媒調製時にテルルを含まない触媒の性能を添加技術により向上させる具体策は提案されていない。
【0008】
【発明が解決しようとする課題】
本発明は、モリブデン、バナジウム、アンチモン、ニオブを含有し、且つ、触媒調製段階にテルルを含有しない酸化物触媒の存在下、プロパンまたはイソブタンで気相接触アンモ酸化反応を行い、高収率で安定的に対応する不飽和ニトリルを製造する方法を提供することを目的とする。
【0009】
【課題を解決するための手段】
本発明者らは、前記課題を解決するため、モリブデン、バナジウム、アンチモン、ニオブを含有し、且つ、触媒調製時にテルルを含有しない酸化物触媒を用いてプロパンまたはイソブタンを気相接触アンモ酸化して対応する不飽和ニトリルを高収率かつ安定に製造する方法について鋭意研究した結果、テルル化合物、またはモリブデン化合物とテルル化合物を該反応時に反応器に添加することにより、特異的にニトリル選択率の向上を見い出し、本発明をなすに至った。
【0010】
すなわち本発明は(1)流動床反応器を用いて、担体に担持されたモリブデン、バナジウム、アンチモンおよびニオブを含有し、且つ、触媒調製段階でテルルを含有しない酸化物触媒の存在下、プロパンまたはイソブタンをアンモニアおよび分子状酸素と気相接触アンモ酸化反応を行って対応する不飽和ニトリルを製造するに当たり、該製造時、テルル化合物、またはテルル化合物とモリブデン化合物を該流動床反応器に添加する事を特徴とする不飽和ニトリルの製造方法。
【0011】
(2)該酸化物触媒が、10〜60重量%のシリカに担持された下記一般式で表わされる成分組成を有することを特徴とする上記(1)に記載の方法;
Mo1VaSbbNbcXdOn
(上式において、XはB、W、P、Sn、Cu、Cr、Re、Hf、Ta、Ti、Zr、Sb、Bi、Mn、Fe、Ru、Co、Rh、Ni、Pd、Pt、Zn、Al、Ga、In、Tlおよびアルカリ土類金属から選ばれる少なくとも1種類以上の元素であり、a、b、c、dおよびnはMo1原子当たりのV、Sb、Nb、X、Oの原子比を表し、aは0.01≦a≦1.0、bは0.01≦b≦1.0、cは0.01≦c≦1.0、dは0≦d≦1.0、そして、nは構成金属元素の酸化数によって決まる酸素の原子比である。)
【0012】
(3)該テルル化合物もしくは該テルル化合物と該モリブデン化合物の添加量が重量で該酸化物触媒1当たり0.1相当以下である上記(1)又は(2)に記載の不飽和ニトリルの製造方法。
(4)該テルル化合物がテルル酸であり、該モリブデン化合物がヘプタモリブデン酸アンモニウムである上記(1)乃至(3)のいずれかに記載の不飽和ニトリルの製造方法である。
【0013】
本発明について、以下具体的に説明する。
本発明の要点は触媒に添加剤を添加することにある。本発明の添加剤の添加を適用できる触媒は、担体に担持された、モリブデン、アンチモン、バナジウム、およびニオブを含有し、触媒調製時にテルルを含有しない酸化物であり、更に詳しくは、下記の一般組成式で表現される酸化物である。
Mo1VaSbbNbcXdOn
(上式において、XはB、W、P、Sn、Cu、Cr、Re、Hf、Ta、Ti、Zr、Sb、Bi、Mn、Fe、Ru、Co、Rh、Ni、Pd、Pt、Zn、Al、Ga、In、Tlおよびアルカリ土類金属から選ばれる少なくとも1種類以上の元素であり、a、b、c、dおよびnはMo1原子当たりの原子比を表し、aは0.01≦a≦1.0、bは0.01≦b≦1.0、cは0.01≦c≦1.0、dは0≦d≦1.0、好ましくはaは0.2≦a≦0.6、bは0.05≦b≦0.5、cは0.05≦c≦0.5、dは0.005≦d≦0.05、そして、nは構成金属元素の酸化数によって決まる酸素の原子比である。)
【0014】
本発明で添加剤として用いられるテルル化合物とモリブデン化合物はテルル酸(H6TeO6)、二酸化テルル(TeO2)、三酸化テルル(TeO3)、有機テルル、ヘプタモリブデン酸アンモニウム((NH3)6Mo7O24・4H2O)、モリブデン酸(H2MoO4)、二酸化モリブデン(MoO2)、三酸化モリブデン(MoO3)、などから選ぶことができ、テルル酸とヘプタモリブデン酸アンモニウムが好ましい。
【0015】
本発明の、プロパンまたはイソブタンのアンモ酸化反応によるアクリロニトリルまたはメタクリロニトリルの製造は流動床反応器を用いて行う。反応の経過と共に該ニトリルの収率が低下するが、本発明の添加剤を、反応時、流動床反応器に添加することにより収率を改善することができる。添加は、粉末状の添加剤を配管を通して空気、窒素等の気流と共に反応器内に圧送して行うことが出来る。添加剤を流動床反応器の濃厚層部に圧送することによって、触媒と添加剤の良好な混合接触を得ることが出来る。この添加は連続的にも、間欠的にもおこなうことができ、このように、添加剤の添加はアンモ酸化反応を停止することなく行うことが出来るので、反応停止によるニトリル生産の損失は生じない。
【0016】
本発明の添加剤の中で、テルル化合物を添加に用いるときに実質的に十分な触媒性能向上効果を得ることができる。モリブデン化合物は補助的添加剤として用いることができる。
本発明の添加剤のテルル化合物もしくはテルル化合物とモリブデン化合物の添加量は、重量で触媒1に対して0.1相当以下、好ましくは、0.02相当以下である。
【0017】
テルル化合物もしくはテルル化合物とモリブデン化合物の添加頻度は1〜30日に1回、好ましくは1〜7日に1回である。
テルル化合物の添加量と頻度は、簡便には、テルル化合物を少量づつ添加しながら、アンモ酸反応の成績を追跡して決定することができる。
アンモ酸化反応時、添加剤を添加した後の不飽和ニトリルの収率は、添加剤を添加しない場合に比べて向上する。
【0018】
本発明で言う触媒の収率向上は触媒中のテルル含量とアンモ酸化反応の成績との間に直接的な関係があるとはいいきれない。すなわち触媒にテルル化合物もしくはテルル化合物とモリブデン化合物を添加することにより収率向上が見られても、単に触媒調製段階に同じ量に相当するテルル化合物もしくはテルル化合物とモリブデン化合物を加えるだけでは収率の向上効果は見られない。
本願発明の添加剤の添加効果発現の機構も十分には明らかでない。流動床アンモ酸化反応時、添加した粉末状テルル化合物もしくは粉末状モリブデン化合物が、反応器内で触媒粒子表面に接触して、触媒粒子を構成する複合酸化物の活性点との物理的もしくは化学的反応に関与することが考えられる。
【0019】
本発明の酸化物触媒は、担体に担持された担持触媒であるが、好ましくはシリカ担持触媒である。またこの担体に含有されるアルカリ化合物の濃度は5000ppm以下であること、好ましくは1000ppmであることが好ましい。本発明の酸化物触媒がシリカ担持触媒の場合、高い機械的強度を有するので、流動床反応器を用いたアンモ酸化反応に好適である。シリカ担体の含有量は、触媒構成元素の酸化物とシリカ担体から成るシリカ担持酸化物触媒の全重量に対して、SiO2換算で10〜60重量%であることが好ましく、より好ましくは20〜55重量%である。
【0020】
本発明の酸化物触媒を製造するための成分金属の原料は特に限定されないが、例えば、下記の化合物を用いることができる。
MoとVの原料は、それぞれ、ヘプタモリブデン酸アンモニウム[(NH4)6Mo7O24・4H2O]とメタバナジン酸アンモニウム[NH4VO3]を好適に用いることができる。
ニオブは、ニオブの有機酸塩として用いる事が好ましく、有機酸としては、ジカルボン酸、好ましくはシュウ酸が用いられる。
【0021】
Nbの原料としてはニオブ酸、ニオブの無機酸塩およびニオブの有機酸塩を用いることができる。特にニオブ酸がよい。
ニオブ酸はNb2O5・nH2Oで表され、ニオブ水酸化物または酸化ニオブ水和物とも称される。更に有機酸/ニオブのモル比が2〜4のNb原料液として用いることが好ましい。
Sbの原料としてはSb2O3、Sb2O5、金属アンチモン等が挙げられるが三酸化二アンチモン〔Sb2O3〕を用いる事が好ましい。
【0022】
本発明の酸化物触媒の製造方法は、一般的な方法で調製することができる。例えば、(1)原料混合液の調合工程、(2)工程(1)で得られた原料混合液を乾燥し、触媒前駆体を得る工程、(3)工程(2)で得られた触媒前駆体を焼成する工程の3つの工程を経て製造することができる。
本発明の触媒調整段階とは、上記(1)乃至(3)工程のことを言い、流動床反応器内でアンモ酸化反応が開始された後の段階は含まない。
【0023】
以下に、工程(1)〜(3)からなる本発明の酸化物触媒の好ましい調製例を説明する。尚、本発明で言う触媒調製段階でテルルを含有しないとはこの調製例の中の原料調合工程でテルルを含有しない触媒を指す。
【0024】
(工程1:原料調合工程)
ヘプタモリブデン酸アンモニウム、メタバナジン酸アンモニウムおよび
三酸化二アンチモン粉末を分散したスラリーをリフラックス条件下に加熱して混合液(A)を調製する。
ニオブ酸とシュウ酸を水中で加熱撹拌して混合液(B)を調製する。
必要に応じて酸化物触媒の成分X(B、W、P、Sn、Cu、Cr、Re、Hf 、Ta、Ti、Zr、Sb、Bi、Mn、Fe、Ru、Co、Rh、Ni、Pd、Pt、Zn、Al、Ga、In、Tlおよびアルカリ土類金属)の原料化合物を含む混合液(C)を調製する。
目的とする組成に合わせて、混合液(A)、混合液(B)、混合液(C)を好適に混合して、原料調合液を得る。
【0025】
本発明のアンモ酸化用触媒がシリカ担持触媒の場合、シリカゾルを含むように原料調合液が調製される。シリカゾルは適宜添加することができる。
更に、混合液(A)、または、調合途中の混合液(A)の成分を含む液に、過酸化水素を添加することが好ましい。この時、H2O2/Sb(モル比)は0.1〜2、特に1〜1.5が好ましい。また、この時、30℃〜70℃で、30分〜2時間撹拌を続けることが好ましい。
この様にして得られる原料調合液は均一な溶液の場合もあるが、大抵はスラリーである。
【0026】
(工程2:乾燥工程)
原料調合工程で得られた原料調合液を噴霧乾燥法によって乾燥させ、乾燥粉体を得る。噴霧乾燥法における噴霧化は遠心方式、二流体ノズル方式または高圧ノズル方式を採用することができる。乾燥熱源は、スチーム、電気ヒーターなどによって加熱された空気を用いることができる。熱風の乾燥機入口温度は150〜300℃が好ましい。
【0027】
(工程3:焼成工程)
乾燥工程で得られた乾燥粉体を焼成することによって酸化物触媒を得る。焼成は窒素ガス、アルゴンガス、ヘリウムガスなどの実質的に酸素を含まない不活性ガス雰囲気下、好ましくは、不活性ガスを流通させながら、500〜800℃、好ましくは550〜700℃で実施する。焼成時間は0.5〜20時間、好ましくは1〜8時間である。
【0028】
焼成は、回転炉、トンネル炉、管状炉、流動焼成炉等を用いて行うことができる。焼成は反復することができる。
焼成工程の前に、乾燥粉体を大気雰囲気下または空気流通下で200〜400℃、1〜5時間で前焼成することも好ましい。
このようにして製造された酸化物触媒の存在下、プロパンまたはイソブタンをアンモニアおよび酸素と気相接触アンモ酸化反応させて、アクリロニトリルまたはメタクリロニトリルを製造する。
【0029】
プロパンまたはイソブタンとアンモニアの供給原料は必ずしも高純度である必要はなく、工業グレードのガスを使用できる。
供給酸素源として空気、酸素を富化した空気または純酸素を用いることができる。更に、希釈ガスとしてヘリウム、アルゴン、炭酸ガス、水蒸気、窒素などを供給してもよい。
反応に供給するアンモニアのプロパンまたはイソブタンに対するモル比は0.3〜1.5、好ましくは0.8〜1.0である。
【0030】
反応に供給する酸素のプロパンまたはイソブタンに対するモル比は0.1〜6、好ましくは0.5〜4である。
反応温度は350℃〜500℃、好ましくは380℃〜470℃である。
反応圧力は1*104〜5*105Pa、好ましくは5*104〜3*105Paである。
【0031】
接触時間は0.1〜10(sec・g/cc)、好ましくは0.5〜5(sec・g/cc)である。本発明において、接触時間は次式で決定される。
接触時間(sec・g/cc)=(W/F)×273/(273+T)×(P+1.013*105)/P
ここで
W=充填触媒量(g)
F=標準状態(0℃、1.013*105Pa)での原料混合ガス流量(Ncc/sec)
T=反応温度(℃)
P=反応圧力(Pa)
である。
【0032】
反応方式は、流動床、移動床など従来の方式を採用できるが、反応熱の除去が容易な流動床反応器が好ましい。
また、本発明の反応は、単流式であってもリサイクル式であってもよい。
【0033】
【発明の実施の形態】
以下に本発明の酸化物触媒について、触媒の調製実施例およびプロパンの気相接触アンモ酸化反応によるアクリロニトリルの製造実施例を用いて説明するが、本発明はその要旨を越えない限りこれら実施例に限定されるものではない。
プロパン転化率(%)=(反応したプロパンのモル数)/(供給したプロパンのモル数)×100
アクリロニトリル選択率(%)=(生成したアクリロニトリルのモル数)/(反応したプロパンのモル数)×100
【0034】
【実施例1】
(触媒の調製)
仕込み組成式がMo1V0.33Sb0.22Nb0.07/50wt%−SiO2で示される酸化物触媒を次のようにして調製した。
水2200gにヘプタモリブデン酸アンモニウム〔(NH4)6Mo7O24・4H2O〕を412.87g、メタバナジン酸アンモニウム〔NH4VO3〕を90.55g、三酸化二アンチモン〔Sb2O3〕を74.47g加え、攪拌しながら3時間30分間加熱還流した後、約70℃まで冷却して混合液A−1を得た。
【0035】
水275gにNb2O5として76.6重量%を含有するニオブ酸を38.53g、シュウ酸二水和物〔H2C2O4・2H2O〕を69.98g加え、攪拌しながら約60℃に加熱し溶解させたのち、約30℃まで冷却した混合液B−1を得た。
得られた混合液A−1にSiO2として30wt%を含有するシリカゾル1666.7gを添加した。液温は約50℃に低下した。更に、H2O2として15wt%を含有する過酸化水素水115.8gを添加し、50℃で1時間撹拌を続けた。その間、液の色は濃紺から赤茶色に変化した。次に混合液B−1を添加して原料調合液を得た。
【0036】
得られた原料調合液を、遠心式噴霧乾燥器に供給して乾燥し、微小球状の乾燥粉体を得た。乾燥機の入口温度は210℃、そして出口温度は120℃であった。
得られた乾燥粉体を100gを直径1インチのガラス管に充填し、600Ncc/minの窒素ガス流通下、640℃で2時間焼成して触媒を得た。
【0037】
(プロパンのアンモ酸化反応)
内径25mmのバイコールガラス流動床型反応管に調製して得られた触媒を45g充填し、反応温度440℃、反応圧力1.507*105 Pa下にプロパン:アンモニア:酸素:ヘリウム=1:0.85:1.8:5.0のモル比の混合ガスを接触時間3.0(sec・g/cc)で通過させ、性能の経時変化を追った。
【0038】
(経時変化と添加効果)
反応開始24時間後の反応成績は転化率が50.0%、選択率が54.7%であった。反応開始から48時間後に反応時、添加剤として粉末状のテルル酸0.5g〔H6TeO6〕を、窒素気流と共に配管を通して反応器に圧入した。
【0039】
添加直後から反応成績が回復し始め、5時間後には、転化率が50.0%、選択率が56.6%であった。100時間後の反応成績は転化率が49.7%、選択率が56.3%であった。反応開始から24時間後と53時間後と100時間後の反応成績を表1に示す。
以後、反応を継続して、反応開始から200時間、300時間、400時間、500時間に同様にテルル酸を0.1gづつ添加した。510時間後の反応成績は、転化率が50.0%、選択率が56.4%となり高い選択率を維持することができた。
得られた結果を表1に示す。
【0040】
【実施例2】
(触媒の調製)
仕込み組成式がMo1V0.3Sb0.20Nb0.07/50wt%−SiO2で示される酸化物触媒を実施例1と同様にして調製した。
(プロパンのアンモ酸化反応)
得られた触媒を用いて、実施例1と同様な方法でアンモ酸化反応を行った。
(経時変化と添加効果)
反応開始から48時間後に反応時、添加剤として粉末状のテルル酸0.1g〔H6TeO6〕とヘプタモリブデン酸アンモニウム[(NH4)6Mo7O24・4H2O]0.1gを、窒素気流と共に配管を通して反応器に圧入した。反応開始24時間後と反応開始後53時間後の反応成績を表1に示す。
【0041】
【比較例1】
(触媒の調製)
仕込み組成式がMo1V0.33Sb0.22Nb0.07/50wt%−SiO2で示される酸化物触媒を実施例1と同様にして調製した。
(プロパンのアンモ酸化反応)
得られた触媒を用いて、実施例1と同様な方法でアンモ酸化反応を行った。
(経時変化と添加効果)
テルル酸を添加しないで反応直後と反応開始24時間後と53時間後の反応評価を行った。得られた結果を表1に示す。
【0042】
【発明の効果】
本発明は、モリブデン、バナジウム、アンチモン、ニオブを含有し、且つ、触媒調製時にテルルを含有しない酸化物触媒の存在下、プロパンまたはイソブタンで気相接触アンモ酸化反応を行い、高収率で安定的に対応する不飽和ニトリルを製造する方法を提供することを目的とする。
[0001]
BACKGROUND OF THE INVENTION
The present invention uses a fluidized bed reactor to carry out a gas phase catalytic ammoxidation reaction of propane or isobutane using a catalyst containing molybdenum, antimony, vanadium and niobium supported on a support and corresponding unsaturation. The present invention relates to a method for producing a nitrile.
[0002]
[Prior art]
In recent years, many catalysts have been proposed for producing a corresponding unsaturated nitrile by vapor-phase catalytic ammoxidation of propane or isobutane instead of propylene or isobutylene, and in particular, an oxide catalyst containing molybdenum has attracted attention. .
For example, Mo-Te-V-Nb-based oxide catalysts are disclosed in U.S. Pat. No. 5,049,692, U.S. Pat. No. 5,422,328, European Patent No. 529853B1, and JP-A-7-232011. JP-A-7-289907, JP-A-7-315842, JP-A-8-57319, JP-A-8-141401, and the like.
[0003]
Similarly, Mo-Sb-V-based oxide catalysts containing molybdenum are disclosed in Japanese Patent Laid-Open No. 10-330343, and examples thereof include Mo-Sb-V-Nb-based oxide catalysts.
Mo-Te oxide catalysts are disclosed in JP-A-7-215926, Mo-Te-Cr oxide catalysts are disclosed in US Pat. No. 5,171,876, and W-Te-V oxide catalysts are disclosed. Japanese Patent Application Laid-Open No. 6-228073 discloses V-Sb-Te oxide catalysts in US Pat. No. 5,079,207, European Patent No. 337028A1, and the like.
[0004]
It has been recognized that the molybdenum-containing oxide catalyst disclosed in the above publication deteriorates with the progress of the ammoxidation reaction, and the yield of unsaturated nitrile decreases.
U.S. Pat. No. 4,709,070 and JP-A-1-41135 disclose a tellurium compound or tellurium in the presence of an oxide catalyst containing tellurium in an oxidation reaction, ammoxidation reaction or oxidative dehydrogenation reaction of an organic compound. A method for activating a deteriorated catalyst by adding a combination of a compound and a molybdenum compound is disclosed.
However, these publications only describe examples of methanol ammoxidation reaction, propylene ammoxidation reaction, toluene ammoxidation reaction and butene oxidative dehydrogenation reaction, and are supported on silica used in the present invention process. There is no specific description of oxide catalysts containing molybdenum, antimony, vanadium and niobium, and no tellurium at the time of catalyst preparation, and the examples also describe the ammoxidation reaction of propane or isobutane using this catalyst. Not.
[0005]
U.S. Pat.No. 3,882,159, German Patent No. 3,331,521, WO97338863A1, etc. are not effective while adding a molybdenum compound as an activator in the presence of an oxide catalyst containing molybdenum. A method for producing a saturated nitrile is disclosed, but relates to a gas phase catalytic ammoxidation reaction of propylene or isobutylene.
In JP-A-10-137585, JP-A-11-285636, and JP-A-11-285637, propane reacts with a metal oxide catalyst composed of molybdenum, vanadium, antimony and niobium or tantalum, and acrylic acid is synthesized from propane. However, these publications only describe examples of the propane oxidation reaction, and do not describe the propane or isobutane ammoxidation reaction used in the inventive process of the present application.
[0006]
Japanese Patent Laid-Open No. 11-124361 disclosed by the present inventors is a specific technical disclosure capable of solving the yield reduction of the corresponding unsaturated nitrile by vapor phase catalytic ammoxidation of propane or isobutane in the prior art. Among these, a technique has been disclosed in which tellurium is an essential component and a tellurium compound is added to a catalyst system containing the element from the time of catalyst preparation to suppress a decrease in catalyst performance.
However, this technology has not disclosed any technology regarding a catalyst not containing tellurium as an essential component since the catalyst preparation. In addition, although there is a technical disclosure that improves the performance of a deteriorated catalyst by adding a tellurium compound, there is no technical disclosure regarding a technology that improves the initial catalyst performance by addition.
As described above, the yield of the target unsaturated nitrile is insufficient in the prior art, and when producing the corresponding unsaturated nitrile by vapor phase catalytic ammoxidation of propane or isobutane, molybdenum, vanadium, antimony and It contains niobium and does not contain tellurium in the catalyst preparation, and it contains not only tellurium compounds or molybdenum compounds and tellurium compounds, but also contains molybdenum, vanadium, antimony and niobium, and tellurium is included in the catalyst preparation. No specific measures have been proposed to improve the performance of non-catalysts by additive technology.
[0008]
[Problems to be solved by the invention]
In the present invention, a gas phase catalytic ammoxidation reaction is carried out with propane or isobutane in the presence of an oxide catalyst containing molybdenum, vanadium, antimony and niobium and not containing tellurium in the catalyst preparation stage, and stable at a high yield. It is an object of the present invention to provide a process for the production of correspondingly unsaturated nitriles.
[0009]
[Means for Solving the Problems]
In order to solve the above-mentioned problems, the present inventors carried out gas phase catalytic ammoxidation of propane or isobutane using an oxide catalyst containing molybdenum, vanadium, antimony and niobium and not containing tellurium at the time of catalyst preparation. result of intensive studies on a method for producing an unsaturated nitrile in high yield and stably for corresponding, by adding tellurium compound, or a motor Ribuden compound and tellurium compound to the reactor during the reaction, specifically the nitrile selectivity The improvement was found and the present invention was made.
[0010]
That is, the present invention is (1) using a fluidized bed reactor in the presence of an oxide catalyst containing molybdenum, vanadium, antimony and niobium supported on a carrier and not containing tellurium in the catalyst preparation stage. in producing the unsaturated nitrile corresponding isobutane perform ammonia and molecular oxygen and the gas phase ammoxidation addition, during the manufacturing, tellurium compounds, or the tellurium compound and a molybdenum compound in fluidized bed reactor A method for producing an unsaturated nitrile characterized by:
[0011]
(2) The method according to (1) above, wherein the oxide catalyst has a component composition represented by the following general formula supported on 10 to 60% by weight of silica;
Mo1VaSbbNbcXdOn
(In the above formula, X represents B, W, P, Sn, Cu, Cr, Re, Hf, Ta, Ti, Zr, Sb, Bi, Mn, Fe, Ru, Co, Rh, Ni, Pd, Pt, Zn. , Al, Ga, In, Tl and at least one element selected from alkaline earth metals, a, b, c, d and n are atoms of V, Sb, Nb, X, O per Mo atom A is 0.01 ≦ a ≦ 1.0, b is 0.01 ≦ b ≦ 1.0, c is 0.01 ≦ c ≦ 1.0, d is 0 ≦ d ≦ 1.0, N is an atomic ratio of oxygen determined by the oxidation number of the constituent metal element.)
[0012]
(3) The method for producing an unsaturated nitrile according to the above (1) or (2), wherein the added amount of the tellurium compound or the tellurium compound and the molybdenum compound is 0.1 or less per weight of the oxide catalyst. .
(4) The method for producing an unsaturated nitrile according to any one of (1) to (3) , wherein the tellurium compound is telluric acid and the molybdenum compound is ammonium heptamolybdate.
[0013]
The present invention will be specifically described below.
The main point of the present invention is to add an additive to the catalyst. The catalyst to which the addition of the additive of the present invention can be applied is an oxide containing molybdenum, antimony, vanadium, and niobium supported on a carrier and not containing tellurium at the time of catalyst preparation. It is an oxide expressed by a composition formula.
Mo1VaSbbNbcXdOn
(In the above formula, X is B, W, P, Sn, Cu, Cr, Re, Hf, Ta, Ti, Zr, Sb, Bi, Mn, Fe, Ru, Co, Rh, Ni, Pd, Pt, Zn. , Al, Ga, In, Tl and at least one element selected from alkaline earth metals, a, b, c, d and n represent atomic ratios per Mo atom, and a is 0.01 ≦ a ≦ 1.0, b is 0.01 ≦ b ≦ 1.0, c is 0.01 ≦ c ≦ 1.0, d is 0 ≦ d ≦ 1.0, preferably a is 0.2 ≦ a ≦ 0.6, b is 0.05 ≦ b ≦ 0.5, c is 0.05 ≦ c ≦ 0.5 and d are 0.005 ≦ d ≦ 0.05, and n is the atomic ratio of oxygen determined by the oxidation number of the constituent metal elements.)
[0014]
Tellurium and molybdenum compounds used as additives in the present invention are telluric acid (H6TeO6), tellurium dioxide (TeO2), tellurium trioxide (TeO3), organic tellurium, ammonium heptamolybdate ((NH3) 6Mo7O24 · 4H2O), molybdenum Acid (H2MoO4), molybdenum dioxide (MoO2), molybdenum trioxide (MoO3), etc. can be selected, and telluric acid and ammonium heptamolybdate are preferred.
[0015]
The production of acrylonitrile or methacrylonitrile by the ammoxidation reaction of propane or isobutane according to the present invention is carried out using a fluidized bed reactor. Although the yield of the nitrile decreases with the progress of the reaction, the yield can be improved by adding the additive of the present invention to the fluidized bed reactor during the reaction. The addition can be carried out by pumping the powdered additive into the reactor together with an air stream such as air or nitrogen through a pipe. A good mixing contact between the catalyst and the additive can be obtained by pumping the additive to the dense layer portion of the fluidized bed reactor. This addition can be performed continuously or intermittently. Thus, since the addition of the additive can be performed without stopping the ammoxidation reaction, there is no loss of nitrile production due to the reaction stop. .
[0016]
Among the additives of the present invention, when a tellurium compound is used for addition, a substantially sufficient catalyst performance improving effect can be obtained. Molybdenum compounds can be used as auxiliary additives.
The additive amount of the tellurium compound or tellurium compound and molybdenum compound of the present invention is 0.1 or less, preferably 0.02 or less, relative to the catalyst 1 by weight.
[0017]
The addition frequency of the tellurium compound or the tellurium compound and the molybdenum compound is 1 to 30 days, preferably 1 to 7 days.
The amount and frequency of the tellurium compound can be determined simply by adding the tellurium compound little by little while tracking the results of the ammonic acid reaction.
During the ammoxidation reaction, the yield of the unsaturated nitrile after the addition of the additive is improved as compared with the case where the additive is not added.
[0018]
The improvement in the yield of the catalyst referred to in the present invention cannot be said to have a direct relationship between the tellurium content in the catalyst and the performance of the ammoxidation reaction. That is, even if the yield is improved by adding the tellurium compound or the tellurium compound and the molybdenum compound to the catalyst, simply adding the equivalent amount of the tellurium compound or the tellurium compound and the molybdenum compound to the catalyst preparation stage can increase the yield. The improvement effect is not seen.
The mechanism of the additive effect expression of the additive of the present invention is not sufficiently clear. During the fluidized bed ammoxidation reaction, the added powdered tellurium compound or powdered molybdenum compound comes into contact with the surface of the catalyst particles in the reactor to physically or chemically interact with the active sites of the composite oxide constituting the catalyst particles. It may be involved in the reaction.
[0019]
The oxide catalyst of the present invention is a supported catalyst supported on a carrier, but is preferably a silica-supported catalyst. The concentration of the alkali compound contained in the carrier is 5000 ppm or less, preferably 1000 ppm. When the oxide catalyst of the present invention is a silica-supported catalyst, it has a high mechanical strength and is suitable for an ammoxidation reaction using a fluidized bed reactor. The content of the silica support is preferably 10 to 60% by weight, more preferably 20 to 55% in terms of SiO2, based on the total weight of the silica-supported oxide catalyst composed of the oxide of the catalyst constituent element and the silica support. % By weight.
[0020]
Although the raw material of the component metal for manufacturing the oxide catalyst of this invention is not specifically limited, For example, the following compound can be used.
As the raw materials for Mo and V, ammonium heptamolybdate [(NH4) 6Mo7O24 · 4H2O] and ammonium metavanadate [NH4VO3] can be preferably used, respectively.
Niobium is preferably used as an organic acid salt of niobium, and dicarboxylic acid, preferably oxalic acid is used as the organic acid.
[0021]
As raw materials for Nb, niobic acid, niobium inorganic acid salt and niobium organic acid salt can be used. Niobic acid is particularly good.
Niobic acid is represented by Nb2O5.nH2O and is also referred to as niobium hydroxide or niobium oxide hydrate. Further, it is preferably used as an Nb raw material liquid having an organic acid / niobium molar ratio of 2 to 4.
Examples of the raw material for Sb include Sb2O3, Sb2O5, and metal antimony, but it is preferable to use diantimony trioxide [Sb2O3].
[0022]
The manufacturing method of the oxide catalyst of the present invention can be prepared by a general method. For example, (1) a step of preparing a raw material mixture, (2) a step of drying the raw material mixture obtained in step (1) to obtain a catalyst precursor, and (3) a catalyst precursor obtained in step (2). It can be manufactured through three steps of baking the body.
The catalyst adjustment stage of the present invention refers to the above steps (1) to (3), and does not include the stage after the ammoxidation reaction is started in the fluidized bed reactor.
[0023]
Below, the preferable preparation example of the oxide catalyst of this invention which consists of process (1)-(3) is demonstrated. In the present invention, the term “not containing tellurium” in the catalyst preparation stage means a catalyst containing no tellurium in the raw material preparation step in this preparation example.
[0024]
(Process 1: Raw material preparation process)
A slurry in which ammonium heptamolybdate, ammonium metavanadate and diantimony trioxide powder are dispersed is heated under reflux conditions to prepare a mixed solution (A).
Niobic acid and oxalic acid are heated and stirred in water to prepare a mixed solution (B).
Oxide catalyst component X (B, W, P, Sn, Cu, Cr, Re, Hf, Ta, Ti, Zr, Sb, Bi, Mn, Fe, Ru, Co, Rh, Ni, Pd as required , Pt, Zn, Al, Ga, In, Tl, and alkaline earth metal) (C) is prepared.
According to the target composition, the mixed solution (A), the mixed solution (B), and the mixed solution (C) are suitably mixed to obtain a raw material preparation solution.
[0025]
When the catalyst for ammoxidation of the present invention is a silica-supported catalyst, the raw material preparation liquid is prepared so as to contain silica sol. Silica sol can be added as appropriate.
Furthermore, it is preferable to add hydrogen peroxide to the liquid mixture (A) or a liquid containing the components of the liquid mixture (A) being prepared. At this time, H2O2 / Sb (molar ratio) is preferably 0.1 to 2, and more preferably 1 to 1.5. At this time, it is preferable to continue stirring at 30 ° C. to 70 ° C. for 30 minutes to 2 hours.
The raw material mixture obtained in this way may be a uniform solution, but is usually a slurry.
[0026]
(Process 2: Drying process)
The raw material preparation liquid obtained in the raw material preparation step is dried by a spray drying method to obtain a dry powder. The atomization in the spray drying method can employ a centrifugal method, a two-fluid nozzle method, or a high-pressure nozzle method. As the drying heat source, air heated by steam, an electric heater or the like can be used. The dryer inlet temperature of hot air is preferably 150 to 300 ° C.
[0027]
(Process 3: Firing process)
An oxide catalyst is obtained by firing the dry powder obtained in the drying step. Firing is performed in an inert gas atmosphere substantially free of oxygen, such as nitrogen gas, argon gas, and helium gas, preferably at 500 to 800 ° C., preferably 550 to 700 ° C. while circulating the inert gas. . The firing time is 0.5 to 20 hours, preferably 1 to 8 hours.
[0028]
Firing can be performed using a rotary furnace, tunnel furnace, tubular furnace, fluidized firing furnace, or the like. Firing can be repeated.
Prior to the firing step, it is also preferable to pre-fire the dry powder at 200 to 400 ° C. for 1 to 5 hours in an air atmosphere or air circulation.
Acrylonitrile or methacrylonitrile is produced by subjecting propane or isobutane to a gas phase catalytic ammoxidation reaction with ammonia and oxygen in the presence of the oxide catalyst thus produced.
[0029]
The feedstock for propane or isobutane and ammonia does not necessarily have to be high purity, and industrial grade gases can be used.
Air, oxygen-enriched air, or pure oxygen can be used as the supply oxygen source. Further, helium, argon, carbon dioxide gas, water vapor, nitrogen or the like may be supplied as a dilution gas.
The molar ratio of ammonia to propane or isobutane supplied to the reaction is 0.3 to 1.5, preferably 0.8 to 1.0.
[0030]
The molar ratio of oxygen supplied to the reaction to propane or isobutane is 0.1 to 6, preferably 0.5 to 4.
The reaction temperature is 350 ° C to 500 ° C, preferably 380 ° C to 470 ° C.
The reaction pressure is 1 * 10 4 to 5 * 10 5 Pa, preferably 5 * 10 4 to 3 * 10 5 Pa.
[0031]
The contact time is 0.1 to 10 (sec · g / cc), preferably 0.5 to 5 (sec · g / cc). In the present invention, the contact time is determined by the following equation.
Contact time (sec · g / cc) = (W / F) × 273 / (273 + T) × (P + 1.013 * 105) / P
Where W = filled catalyst amount (g)
F = Raw material mixed gas flow rate (Ncc / sec) at standard condition (0 ° C., 1.013 * 10 5 Pa)
T = reaction temperature (° C.)
P = reaction pressure (Pa)
It is.
[0032]
As the reaction method, a conventional method such as a fluidized bed or a moving bed can be adopted, but a fluidized bed reactor in which reaction heat can be easily removed is preferable.
The reaction of the present invention may be a single flow type or a recycle type.
[0033]
DETAILED DESCRIPTION OF THE INVENTION
The oxide catalyst of the present invention will be described below with reference to examples of preparation of the catalyst and examples of production of acrylonitrile by the gas-phase catalytic ammoxidation reaction of propane. It is not limited.
Propane conversion (%) = (moles of propane reacted) / (moles of propane fed) × 100
Acrylonitrile selectivity (%) = (number of moles of acrylonitrile produced) / (number of moles of reacted propane) × 100
[0034]
[Example 1]
(Preparation of catalyst)
An oxide catalyst having a composition formula of Mo1V0.33Sb0.22Nb0.07 / 50 wt% -SiO2 was prepared as follows.
41.87 g of ammonium heptamolybdate [(NH4) 6Mo7O24 · 4H2O], 90.55 g of ammonium metavanadate [NH4VO3], and 74.47 g of diantimony trioxide [Sb2O3] were added to 2200 g of water for 3 hours 30 hours. After heating to reflux for minutes, the mixture was cooled to about 70 ° C. to obtain liquid mixture A-1.
[0035]
After adding 38.53 g of niobic acid containing 76.6% by weight as Nb2O5 and 69.98 g of oxalic acid dihydrate [H2C2O4 · 2H2O] to 275 g of water, the mixture was heated to about 60 ° C. with stirring and dissolved. The liquid mixture B-1 cooled to about 30 degreeC was obtained.
To the obtained mixed liquid A-1, 1666.7 g of silica sol containing 30 wt% as SiO 2 was added. The liquid temperature dropped to about 50 ° C. Further, 115.8 g of hydrogen peroxide containing 15 wt% as H 2 O 2 was added and stirring was continued at 50 ° C. for 1 hour. Meanwhile, the color of the liquid changed from dark blue to reddish brown. Next, the mixed solution B-1 was added to obtain a raw material preparation solution.
[0036]
The obtained raw material mixture was supplied to a centrifugal spray dryer and dried to obtain a microspherical dry powder. The dryer inlet temperature was 210 ° C and the outlet temperature was 120 ° C.
100 g of the obtained dry powder was filled in a glass tube having a diameter of 1 inch and calcined at 640 ° C. for 2 hours under a nitrogen gas flow of 600 Ncc / min to obtain a catalyst.
[0037]
(Propane ammoxidation reaction)
45 g of the catalyst obtained in a Vycor glass fluidized bed reaction tube having an inner diameter of 25 mm was charged, and propane: ammonia: oxygen: helium = 1: 0 under a reaction temperature of 440 ° C. and a reaction pressure of 1.507 * 10 5 Pa. A mixed gas having a molar ratio of .85: 1.8: 5.0 was passed at a contact time of 3.0 (sec · g / cc), and the change in performance with time was followed.
[0038]
(Change with time and effect of addition)
The reaction results 24 hours after the start of the reaction were a conversion of 50.0% and a selectivity of 54.7%. 48 hours after the start of the reaction, 0.5 g of powdered telluric acid [H6TeO6] as an additive was injected into the reactor through a pipe together with a nitrogen stream during the reaction.
[0039]
The reaction results started to recover immediately after the addition, and after 5 hours, the conversion was 50.0% and the selectivity was 56.6%. As for the reaction results after 100 hours, the conversion was 49.7% and the selectivity was 56.3%. Table 1 shows the reaction results 24 hours, 53 hours and 100 hours after the start of the reaction.
Thereafter, the reaction was continued, and 0.1 g of telluric acid was similarly added every 200 hours, 300 hours, 400 hours, and 500 hours from the start of the reaction. As for the reaction results after 510 hours, the conversion rate was 50.0% and the selectivity rate was 56.4%, so that high selectivity could be maintained.
The obtained results are shown in Table 1.
[0040]
[Example 2]
(Preparation of catalyst)
An oxide catalyst having a composition formula of Mo1V0.3Sb0.20Nb0.07 / 50 wt% -SiO2 was prepared in the same manner as in Example 1.
(Propane ammoxidation reaction)
Using the obtained catalyst, an ammoxidation reaction was carried out in the same manner as in Example 1.
(Change with time and effect of addition)
48 hours after the start of the reaction, 0.1 g of powdered telluric acid [H6TeO6] and 0.1 g of ammonium heptamolybdate [(NH4) 6Mo7O24 · 4H2O] were injected into the reactor through a pipe together with a nitrogen stream. did. Table 1 shows the reaction results 24 hours after the start of the reaction and 53 hours after the start of the reaction.
[0041]
[Comparative Example 1]
(Preparation of catalyst)
An oxide catalyst having a charged composition formula of Mo1V0.33Sb0.22Nb0.07 / 50 wt% -SiO2 was prepared in the same manner as in Example 1.
(Propane ammoxidation reaction)
Using the obtained catalyst, an ammoxidation reaction was carried out in the same manner as in Example 1.
(Change with time and effect of addition)
The reaction was evaluated immediately after the reaction, 24 hours after the start of the reaction, and 53 hours after the start without adding the telluric acid. The obtained results are shown in Table 1.
[0042]
【The invention's effect】
In the present invention, a gas phase catalytic ammoxidation reaction is carried out with propane or isobutane in the presence of an oxide catalyst containing molybdenum, vanadium, antimony and niobium and not containing tellurium at the time of preparation of the catalyst. It aims at providing the method of manufacturing the unsaturated nitrile corresponding to this.

Claims (4)

流動床反応器を用いて、担体に担持されたモリブデン、バナジウム、アンチモンおよびニオブを含有し、且つ、触媒調製段階でテルルを含有しない酸化物触媒の存在下、プロパンまたはイソブタンをアンモニアおよび分子状酸素と気相接触アンモ酸化反応を行って対応する不飽和ニトリルを製造するに当たり、該製造時、テルル化合物、またはテルル化合物とモリブデン化合物を該流動床反応器に添加する事を特徴とする不飽和ニトリルの製造方法。Using a fluidized bed reactor, propane or isobutane is converted to ammonia and molecular oxygen in the presence of an oxide catalyst containing molybdenum, vanadium, antimony and niobium supported on the support and not containing tellurium in the catalyst preparation stage. and in producing the corresponding unsaturated nitrile performing vapor-phase catalytic ammoxidation reaction, during the manufacture, tellurium compounds, it was or is characterized by adding a tellurium compound and a molybdenum compound in the fluidized bed reactor not Method for producing saturated nitrile. 該酸化物触媒が、10〜60重量%のシリカに担持された下記一般式で表わされる成分組成を有することを特徴とする請求項1に記載の方法;
Mo1VaSbbNbcXdOn
(上式において、XはB、W、P、Sn、Cu、Cr、Re、Hf、Ta、Ti、Zr、Sb、Bi、Mn、Fe、Ru、Co、Rh、Ni、Pd、Pt、Zn、Al、Ga、In、Tlおよびアルカリ土類金属から選ばれる少なくとも1種類以上の元素であり、a、b、c、dおよびnはMo1原子当たりのV、Sb、Nb、X、Oの原子比を表し、aは0.01≦a≦1.0、bは0.01≦b≦1.0、cは0.01≦c≦1.0、dは0≦d≦1.0、そして、nは構成金属元素の酸化数によって決まる酸素の原子比である。)
The method according to claim 1, wherein the oxide catalyst has a component composition represented by the following general formula supported on 10 to 60% by weight of silica;
Mo1VaSbbNbcXdOn
(In the above formula, X represents B, W, P, Sn, Cu, Cr, Re, Hf, Ta, Ti, Zr, Sb, Bi, Mn, Fe, Ru, Co, Rh, Ni, Pd, Pt, Zn. , Al, Ga, In, Tl and at least one element selected from alkaline earth metals, a, b, c, d and n are atoms of V, Sb, Nb, X, O per Mo atom A is 0.01 ≦ a ≦ 1.0, b is 0.01 ≦ b ≦ 1.0, c is 0.01 ≦ c ≦ 1.0, d is 0 ≦ d ≦ 1.0, N is an atomic ratio of oxygen determined by the oxidation number of the constituent metal element.)
該テルル化合物もしくは該テルル化合物と該モリブデン化合物の添加量が重量で該酸化物触媒1当たり0.1相当以下である請求項1又は2に記載の不飽和ニトリルの製造方法。The method for producing an unsaturated nitrile according to claim 1 or 2, wherein the addition amount of the tellurium compound or the tellurium compound and the molybdenum compound is 0.1 or less per weight of the oxide catalyst. 該テルル化合物がテルル酸であり、該モリブデン化合物がヘプタモリブデン酸アンモニウムである請求項1乃至3のいずれかに記載の不飽和ニトリルの製造方法。The method for producing an unsaturated nitrile according to any one of claims 1 to 3 , wherein the tellurium compound is telluric acid and the molybdenum compound is ammonium heptamolybdate.
JP2000021035A 2000-01-31 2000-01-31 Process for producing unsaturated nitriles Expired - Lifetime JP4484995B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000021035A JP4484995B2 (en) 2000-01-31 2000-01-31 Process for producing unsaturated nitriles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000021035A JP4484995B2 (en) 2000-01-31 2000-01-31 Process for producing unsaturated nitriles

Publications (2)

Publication Number Publication Date
JP2001213855A JP2001213855A (en) 2001-08-07
JP4484995B2 true JP4484995B2 (en) 2010-06-16

Family

ID=18547497

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000021035A Expired - Lifetime JP4484995B2 (en) 2000-01-31 2000-01-31 Process for producing unsaturated nitriles

Country Status (1)

Country Link
JP (1) JP4484995B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004108278A1 (en) 2003-06-09 2004-12-16 Asahi Kasei Kabushiki Kaisha Catalyst for oxidation or ammoxidation
BRPI0807671A2 (en) * 2007-02-16 2014-06-10 Ineos Usa Llc SATURATED AND UNSATURATED HYDROCARBON AMOXIDATION PROCESSES OR MIXED SATURATED AND UNSATURATED HYDROCARBONS
US20080248947A1 (en) * 2007-04-03 2008-10-09 Zajac Gerry W Mixed metal oxide catalysts and catalytic processes for conversions of lower alkane hydrocarbons
DE102007010422A1 (en) * 2007-03-01 2008-09-04 Basf Se Preparation of a catalyst, useful in the heterogeneously catalyzed partial gas phase oxidation of acrolein to acrylic acid, comprises attaching one of the active mass to the surface of the carrier body with the help of a binding agent
CN101878194A (en) * 2007-10-11 2010-11-03 伊内奥斯美国公司 Process for the ammoxidation or oxidation of propane and isobutane
EP2682385B1 (en) 2011-03-02 2022-05-11 Asahi Kasei Kabushiki Kaisha Method for producing unsaturated nitrile
JPWO2019220521A1 (en) * 2018-05-15 2021-06-10 旭化成株式会社 Method for producing unsaturated nitrile

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5859955A (en) * 1981-10-07 1983-04-09 Nitto Chem Ind Co Ltd Ammoxydation
JPS58121262A (en) * 1982-01-12 1983-07-19 Nitto Chem Ind Co Ltd Ammoxidation of organic compound
JPS58140056A (en) * 1982-02-16 1983-08-19 Nitto Chem Ind Co Ltd Ammoxidation process
WO1997033863A1 (en) * 1996-03-12 1997-09-18 Asahi Kasei Kogyo Kabushiki Kaisha Process for preparing unsaturated nitrile
JPH113340A (en) * 1997-06-12 1999-01-06 Mitsubishi Electric Corp Production history retrieving device
JPH11235526A (en) * 1997-12-05 1999-08-31 Standard Oil Co:The Improvement of performance of used molybdenum-based catalyst by addition of ammonium dimolybdate
JP2000001464A (en) * 1998-04-15 2000-01-07 Mitsubishi Chemicals Corp Production of nitrile from alkane

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5976543A (en) * 1982-10-26 1984-05-01 Nitto Chem Ind Co Ltd Regenerating method of iron-antimony type metallic oxide catalyst
JP4179675B2 (en) * 1997-08-11 2008-11-12 旭化成ケミカルズ株式会社 Process for producing unsaturated nitriles

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5859955A (en) * 1981-10-07 1983-04-09 Nitto Chem Ind Co Ltd Ammoxydation
JPS58121262A (en) * 1982-01-12 1983-07-19 Nitto Chem Ind Co Ltd Ammoxidation of organic compound
JPS58140056A (en) * 1982-02-16 1983-08-19 Nitto Chem Ind Co Ltd Ammoxidation process
WO1997033863A1 (en) * 1996-03-12 1997-09-18 Asahi Kasei Kogyo Kabushiki Kaisha Process for preparing unsaturated nitrile
JPH113340A (en) * 1997-06-12 1999-01-06 Mitsubishi Electric Corp Production history retrieving device
JPH11235526A (en) * 1997-12-05 1999-08-31 Standard Oil Co:The Improvement of performance of used molybdenum-based catalyst by addition of ammonium dimolybdate
JP2000001464A (en) * 1998-04-15 2000-01-07 Mitsubishi Chemicals Corp Production of nitrile from alkane

Also Published As

Publication number Publication date
JP2001213855A (en) 2001-08-07

Similar Documents

Publication Publication Date Title
US6060422A (en) Process for producing acrylic acid
WO2001028985A1 (en) Method for producing acrylonitrile, catalyst for use therein and the method for preparing the same
WO2001028984A1 (en) Method for producing acrylonitrile, catalyst for use therein and the method for preparing the same
WO2001028986A1 (en) Method for producing acrylonitrile, catalyst for use therein and the method for preparing the same
TW201630660A (en) Improved mixed metal oxide ammoxidation catalysts
JP3680115B2 (en) Catalyst composition for producing unsaturated nitrile
JP4484995B2 (en) Process for producing unsaturated nitriles
JP4187837B2 (en) Method for producing catalyst for producing unsaturated nitrile
JPH02111444A (en) Ammoxidation of paraffin and catalyst thereof
JP4081824B2 (en) Acrylic acid production method
JPH09157241A (en) Production of nitrile
JP4179675B2 (en) Process for producing unsaturated nitriles
JP5187800B2 (en) Method for producing unsaturated acid or unsaturated nitrile
US20110178332A1 (en) Catalyst for gas-phase contact oxidation of hydrocarbon, preparation method thereof and gas-phase oxidation method of hydrocarbon using the same
JP4854150B2 (en) How to increase production of cyanide stably
JP4666334B2 (en) Method for producing oxide catalyst for oxidation or ammoxidation
JP4854149B2 (en) A method to stably increase the production of acetonitrile
JP4428682B2 (en) Method for producing a catalyst for acrylic acid production
JP4791203B2 (en) Method for producing oxide catalyst
JP4187856B2 (en) Catalyst and method for producing unsaturated nitrile using the same
JP2003048870A (en) Method of producing acrylonitrile and/or acrylic acid
JP4311842B2 (en) Catalyst for acrylonitrile or methacrylonitrile production
JP2001276618A (en) Catalyst for oxidation or ammoxidation
JP4667674B2 (en) Method for producing oxidation or ammoxidation catalyst
JP4162945B2 (en) Oxide catalyst

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061207

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091026

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091110

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100119

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100224

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100323

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100324

R150 Certificate of patent or registration of utility model

Ref document number: 4484995

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130402

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130402

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140402

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term