JPH03246269A - Method for increasing yield of acetonitrile - Google Patents

Method for increasing yield of acetonitrile

Info

Publication number
JPH03246269A
JPH03246269A JP2038333A JP3833390A JPH03246269A JP H03246269 A JPH03246269 A JP H03246269A JP 2038333 A JP2038333 A JP 2038333A JP 3833390 A JP3833390 A JP 3833390A JP H03246269 A JPH03246269 A JP H03246269A
Authority
JP
Japan
Prior art keywords
reaction
acetonitrile
acetone
yield
ethyl alcohol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2038333A
Other languages
Japanese (ja)
Inventor
Masaru Someya
賢 染谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP2038333A priority Critical patent/JPH03246269A/en
Publication of JPH03246269A publication Critical patent/JPH03246269A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

PURPOSE:To increase the yield of acetonitrile in high efficiency without reducing the yield of the main reaction product by carrying out the ammoxidation reaction of a hydrocarbon, an oxygen-containing hydrocarbon or a nitrogen- containing hydrocarbon in the presence of acetone and ethyl alcohol in the reaction system. CONSTITUTION:A hydrocarbon, an oxygen-containing hydrocarbon (e.g. methyl alcohol or tert-butyl alcohol) or a nitrogen-containing hydrocarbon (e.g. picoline) is made to react with ammonia and oxygen in the presence of a catalyst such as bismuth phosphomolybdate to produce an unsaturated nitrile and acetonitrile by ammoxidation reaction. The above reaction is carried out in the presence of acetone and/or ethyl alcohol in the reaction system. There is no particular restriction on the amount of acetone and/or ethyl alcohol and the compounds are supplied to the system in an amount corresponding to the required amount of acetonitrile. The reaction conditions such as reaction temperature and reaction pressure are selected within a range commonly used in conventional ammoxidation reaction.

Description

【発明の詳細な説明】 産業上の利用分野 本発明はアセトニトリルの増収方法に関するものである
。さらに詳しくいえば、本発明は、アンモオキシデーシ
ョン反応により不飽和ニトリルを製造する際に副生する
アセトニトリルを効率よく増収する方法に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a method for increasing the yield of acetonitrile. More specifically, the present invention relates to a method for efficiently increasing the yield of acetonitrile, which is a by-product when producing unsaturated nitriles by an ammoxidation reaction.

従来の技術 アセトニトリルは医薬、香料、各種有機薬品の合成原料
として、あるいはブチレン−ブタンの抽出溶剤、合成繊
維用溶剤、その他溶剤などとして用いられる工業的価値
の高い化合物である。
BACKGROUND OF THE INVENTION Acetonitrile is a compound of high industrial value that is used as a synthetic raw material for medicines, fragrances, and various organic chemicals, as an extraction solvent for butylene-butane, a solvent for synthetic fibers, and other solvents.

このアセトニトリルは主としてプロピレンのアンモオキ
シデーション反応によってアクリロニトリルを製造する
際に副生物として得られているが、近年、アンモオキシ
デーション反応触媒の改良Iこよりアセトニトリルの副
反応生成率が低下する一方、アセトニトリルの産業上の
有用性から需要が拡大し供給不足に落ちていっているの
が実情である。
This acetonitrile is mainly obtained as a by-product when producing acrylonitrile through the ammoxidation reaction of propylene, but in recent years, the production rate of acetonitrile by side reactions has decreased due to improved ammoxidation reaction catalysts. The reality is that demand has increased due to its industrial utility, leading to a shortage of supply.

しかしながら、該アンモオキシデーション反応において
アセトニトリルを増収する方法については、これまで全
く技術開示がなされておらず、アセトニトリルの増収方
法の開発が強く望まれていIこ。
However, no technical disclosure has been made so far regarding a method for increasing the yield of acetonitrile in the ammoxidation reaction, and there is a strong desire to develop a method for increasing the yield of acetonitrile.

発明が解決しようとする課題 本発明はこのような事情のもとで、アンモオキシデーシ
ョン反応において、主反応生成物の収量を減少させるこ
となく、アセトニトリルを効率よく増収する方法を提供
することを目的としてなされたものである。
Problems to be Solved by the Invention Under these circumstances, an object of the present invention is to provide a method for efficiently increasing the yield of acetonitrile in an ammoxidation reaction without reducing the yield of the main reaction product. This was done as a.

課題を解決するための手段 本発明者は、前記目的を達成するために鋭意研究を重ね
た結果、アンモオキシデーション反応において、反応系
にアセトンやエチルアルコールを共存させることにより
、その目的を達成しうろことを見い出し、この知見に基
づいて本発明を完成するに至った。
Means for Solving the Problems As a result of extensive research in order to achieve the above object, the present inventor has achieved the object by allowing acetone and ethyl alcohol to coexist in the reaction system in the ammoxidation reaction. They discovered scales and completed the present invention based on this knowledge.

すなわち、本発明は、 炭化水素、含酸素炭化水素又は
含窒素炭化水素にアンモニアと酸素とを反応させ、アン
モオキシデーションにより不飽和ニトリル及びアセトニ
トリルを製造するに当り、反応系にアセトン又はエチル
アルコール若しくはその両方を共存させることを特徴と
するアセトニトリルの増収方法を提供するものである。
That is, the present invention involves reacting hydrocarbons, oxygen-containing hydrocarbons, or nitrogen-containing hydrocarbons with ammonia and oxygen to produce unsaturated nitriles and acetonitrile by ammoxidation, and in which acetone, ethyl alcohol, or acetone is added to the reaction system. The present invention provides a method for increasing the yield of acetonitrile, which is characterized by allowing both of them to coexist.

以下、本発明の詳細な説明する。The present invention will be explained in detail below.

本発明方法においては、原料として炭化水素、含酸素炭
化水素又は含窒素炭化水素が用いられる。
In the method of the present invention, hydrocarbons, oxygen-containing hydrocarbons, or nitrogen-containing hydrocarbons are used as raw materials.

該炭化水素としては、例えばプロピレン、インブチレン
、トルエン、キシレン、プロパン、インブタンなどが挙
げられ、含酸素炭化水素としては、例えばメチルアルコ
ール、プロピルアルコーノ呟第三ブチルアルコール、イ
ソブチルアルコールなどが挙げられる。また、含窒素炭
化水素としては、例えばピコリンなどが挙げられる。こ
れらの化合物は、いずれもアンモオキシデーション反応
によってニトリル化合物を生成する原料のものであるが
、もちろんこれらに限定されるものではない。
Examples of the hydrocarbon include propylene, imbutylene, toluene, xylene, propane, imbutane, etc., and examples of the oxygen-containing hydrocarbon include methyl alcohol, propyl alcohol, tertiary butyl alcohol, isobutyl alcohol, etc. . Further, examples of nitrogen-containing hydrocarbons include picoline and the like. All of these compounds are raw materials that produce nitrile compounds through an ammoxidation reaction, but are of course not limited to these.

アンモオキシデーション反応において用いられるアンモ
ニアとしては、アンモニアガスやアンモニア水で代表さ
れるアンモニア前駆物質が挙げられる。一方、使用する
酸素の濃度については特に制限はなく、通常空気が用い
られるが、酸素富化空気も用いることができる。また、
アンモニア供給量については、アンモオキシデーション
反応によって消費される量に見合った量であればよく、
特に制限はない。
Examples of ammonia used in the ammoxidation reaction include ammonia precursors such as ammonia gas and aqueous ammonia. On the other hand, there is no particular restriction on the concentration of oxygen used, and normal air is used, but oxygen-enriched air can also be used. Also,
Regarding the amount of ammonia supplied, it is sufficient that the amount is commensurate with the amount consumed by the ammoxidation reaction.
There are no particular restrictions.

本発明方法においては、反応系にアセトン又はエチルア
ルコール若しくはその両方を共存させることが必要であ
る。その量については特に制限はないが、通常アセトニ
トリル必要量に見合った量を供給すればよい。
In the method of the present invention, it is necessary to coexist acetone, ethyl alcohol, or both in the reaction system. Although there is no particular restriction on the amount, it is sufficient to supply an amount corresponding to the required amount of acetonitrile.

反応器の形式については、アセトンやエチルアルコール
を供給する設備があればよく、特に制限されず、流動床
反応器、固定床反応器のいずれも用いることができる。
The type of reactor is not particularly limited as long as it has equipment for supplying acetone or ethyl alcohol, and either a fluidized bed reactor or a fixed bed reactor can be used.

また、アセトンやエチルアルコールの供給方法について
も特に制限はなく、原料の炭化水素類とアンモニアとの
混合物と混合して供給してもよいし、該混合物供給口よ
り後部から供給してもよい。さらに、使用する酸素の量
については反応量に見合った量であればよく、特に制限
はない。
Furthermore, there are no particular restrictions on the method of supplying acetone or ethyl alcohol, and they may be supplied after being mixed with a mixture of raw material hydrocarbons and ammonia, or may be supplied from the rear of the mixture supply port. Furthermore, the amount of oxygen used is not particularly limited as long as it is appropriate for the amount of reaction.

本発明方法においては、従来アンモオキシデーション反
応において慣用されている触媒を用いることができる。
In the method of the present invention, catalysts conventionally used in ammoxidation reactions can be used.

このような触媒として、例えばリン・モリブデン酸ビス
マスを主成分とする触媒(特公昭36−5870号公報
)、リン・モリブデン酸ビスマスに鉄、コバルト、ニッ
ケルなどの種々の添加物を加えt;触媒(特開昭48−
49719号公報)やその改良触媒(特開昭50−25
528号公報、特開昭51−40391号公報)、アン
チモン、鉄を含有する触媒(特開昭51−17194号
公報)やその改良触媒(特開昭57−26592号公報
、特開平1−224354号公報、特開平1−2650
68号公報)、リン・モリブデン酸ビスマスにナトリウ
ムが添加された触媒(特開昭50−129519号公報
)やその改良触媒(特開昭54−95513号公報、特
開昭58−67349号公報、特開昭58−72550
号公報、特公昭61−58426号公報)などを挙げる
ことができる。
Such catalysts include, for example, a catalyst containing bismuth phosphomolybdate as a main component (Japanese Patent Publication No. 36-5870), a catalyst containing various additives such as iron, cobalt, and nickel to bismuth phosphomolybdate; (Unexamined Japanese Patent Publication 1973-
49719) and its improved catalyst (Japanese Unexamined Patent Publication No. 50-25
528, JP-A-51-40391), catalysts containing antimony and iron (JP-A-51-17194) and improved catalysts thereof (JP-A-57-26592, JP-A-1-224354) Publication No. 1-2650
68 Publication), a catalyst in which sodium is added to bismuth phosphomolybdate (Japanese Unexamined Patent Publication No. 50-129519) and its improved catalyst (Japanese Unexamined Patent Publication No. 54-95513, Unexamined Japanese Patent Application No. 58-67349, Japanese Patent Publication No. 58-72550
(Japanese Patent Publication No. 61-58426).

これらの触媒には優劣はあるが、いずれの触媒を用いて
も、反応系にアセトンやエチルアルコールを共存させる
ことにより、アセトニトリルを増収することができる。
Although these catalysts have advantages and disadvantages, no matter which catalyst is used, the yield of acetonitrile can be increased by allowing acetone or ethyl alcohol to coexist in the reaction system.

本発明におけるアンモオキシデーション反応における反
応温度、反応圧力などの反応条件は、通常のアンモオキ
シデーション反応において慣用されている範囲内で選ば
れる。
Reaction conditions such as reaction temperature and reaction pressure in the ammoxidation reaction in the present invention are selected within the range commonly used in normal ammoxidation reactions.

次に添付図面に従って本発明の好適な実施態様を説明す
る。
Next, preferred embodiments of the present invention will be described with reference to the accompanying drawings.

区は、本発明を実施するのに好適な反応装置の1例を示
す説明図であって、焼結フィルター2を配設し、電気ヒ
ーター3,3により外部から所定温度に加熱された触媒
充填反応器lの中へ、管路4を経て炭化水素類とアンモ
ニアと空気の混合物を、また管路5よりアセトンとエチ
ルアルコールと空気の混合物をそれぞれ導入し反応させ
る。得られた反応混合物は管路6を経て回収され、それ
ぞれ別に設けた分離器において分離される。図中のし□
は炭化水素類供給口と触媒層上端との距離、L2はアセ
トンやエチルアルコールと空気との混合物の供給口と触
媒層上端との距離である。
1 is an explanatory diagram showing one example of a reaction apparatus suitable for carrying out the present invention, in which a sintered filter 2 is disposed and a catalyst filling is heated to a predetermined temperature from the outside by electric heaters 3. A mixture of hydrocarbons, ammonia and air is introduced into the reactor 1 through line 4, and a mixture of acetone, ethyl alcohol and air is introduced through line 5 and reacted. The resulting reaction mixture is recovered via line 6 and separated in separate separators. Noshi in the diagram □
is the distance between the hydrocarbon supply port and the top of the catalyst layer, and L2 is the distance between the supply port of the mixture of acetone or ethyl alcohol and air and the top of the catalyst layer.

発明の効果 本発明によると、アンモオキシデーション反応によりニ
トリル化合物を製造する際に、反応系にアセトンやエチ
ルアルコールを共存させることにより、主反応生成物の
収量を減少させることなく効率よくアセトニトリルを増
収することができる。
Effects of the Invention According to the present invention, when a nitrile compound is produced by an ammoxidation reaction, acetone or ethyl alcohol is allowed to coexist in the reaction system, thereby efficiently increasing the yield of acetonitrile without reducing the yield of the main reaction product. can do.

実施例 次に実施例により本発明をさらに詳細に説明するが本発
明はこれらの例によってなんら限定されるものではない
EXAMPLES Next, the present invention will be explained in more detail with reference to Examples, but the present invention is not limited to these Examples in any way.

なお、実施例及び比較例中において反応成績を表わすた
めに用いたプロピレン反応率(%)、インブチレン反応
率(%)、アクリロニトリル収率(%)、メタクリロニ
トリル収率(%)、アセトニトリル収率(%)及びアセ
トニトリル収量増加率(%)は次式で定義される。
In addition, propylene reaction rate (%), inbutylene reaction rate (%), acrylonitrile yield (%), methacrylonitrile yield (%), acetonitrile yield used to express reaction results in Examples and Comparative Examples. The rate (%) and the acetonitrile yield increase rate (%) are defined by the following formula.

プロピレン反応率(%)− インブチレン反応率(%)− アクリロニトリル収率(%) 供給したインブチレンのモル族 アセトニトリル収率(%) アセトニトリル収量増加率(%)= ただし、 A:アセトン及び/又はエチルアルコールを供給した時
のアセトニトリル収率 B:アセトン及び/又はエチルアルコールを供給しない
時のアセトニトリル収率 また、実施例及び比較例におけるアンモオキシデーショ
ン反応には、触媒流動部の内径が2インチで内部に16
メツシユのステンレス鋼製金鋼を内蔵した図に示すよう
な流動床反応器を用いた。
Propylene reaction rate (%) - Inbutylene reaction rate (%) - Acrylonitrile yield (%) Mole group acetonitrile yield (%) of supplied imbutylene Acetonitrile yield increase rate (%) = However, A: Acetone and/or Acetonitrile yield B when ethyl alcohol is supplied: Acetonitrile yield when acetone and/or ethyl alcohol are not supplied.Also, for the ammoxidation reactions in Examples and Comparative Examples, the inner diameter of the catalyst flow section was 2 inches. 16 inside
A fluidized bed reactor as shown in the figure containing mesh stainless steel gold steel was used.

反応器に充填した触媒は3〜4日間反応を行い活性が安
定したのちに、アセトンやエチルアルコールを供給しア
セトニトリル増収試験を行つた。
After the catalyst filled in the reactor reacted for 3 to 4 days and its activity stabilized, acetone and ethyl alcohol were supplied to perform an acetonitrile yield increase test.

反応条件は目的に反応して、適宜変化させ、反応生成物
はガスクロマトグラフにより分析定量を行った。ただし
、アンモニアと青酸については滴定法により分析定量し
た。
The reaction conditions were changed as appropriate depending on the desired reaction, and the reaction products were analyzed and quantified using gas chromatography. However, ammonia and hydrocyanic acid were analyzed and determined by titration.

さらに、実施例及び比較例における接触時間は下記の定
義による。
Further, the contact time in Examples and Comparative Examples is defined as below.

プロピレン又はインブチレンの見掛接触時間(θ1)及
びアセトン及び/又はエチルアルコールの見掛接触時間
(θ2)は次式で与えられる。
The apparent contact time (θ1) of propylene or imbutylene and the apparent contact time (θ2) of acetone and/or ethyl alcohol are given by the following equations.

ただし Ql:反応器底部より供給されるプロピレン又はインブ
チレン、アンモニア及び空 気のガス流量〔mQ/SeC〕(反応条件換算)Q2:
反応器へ供給されるアセトン及び/又はエチルアルコー
ルと空気とのガス流 量〔IIIQ/sec〕(反応条件換算)Ll:プロピ
レン又はインブチレン供給口と触媒層上端との距離(c
m) L、:アセトン及び/又はエチルアルコールの供給口と
触媒層上端との距離(cm)A :反応器の断面積Cc
m2) θ1.θ2の単位はC5ec)で表示される。
However, Ql: Gas flow rate of propylene or imbutylene, ammonia and air supplied from the bottom of the reactor [mQ/SeC] (converted to reaction conditions) Q2:
Gas flow rate of acetone and/or ethyl alcohol and air supplied to the reactor [IIIQ/sec] (converted to reaction conditions) Ll: distance between propylene or imbutylene supply port and the top of the catalyst layer (c
m) L: Distance between the acetone and/or ethyl alcohol supply port and the top of the catalyst layer (cm) A: Cross-sectional area of the reactor Cc
m2) θ1. The unit of θ2 is expressed in C5ec).

調製例1 触媒(I)の調製 50重量%のシリカに担持された金属成分の原子比組成
が、MOBIO,826Fee、 s7s L、’oo
aNa、 O5Po。1゜で示される酸化物触媒を次の
ようにして調製した。
Preparation Example 1 Preparation of Catalyst (I) The atomic ratio composition of the metal component supported on 50% by weight of silica is MOBIO, 826Fee, s7s L,'oo
aNa, O5Po. An oxide catalyst having an angle of 1° was prepared as follows.

30重量%の5iOzを含むシリカゾル(日産化学製の
スノーテックスN)500hに、かきまぜながら85重
量%のリン酸28.89を加え、次いで水1100gに
t・モリブデン酸アンモニウム〔(NHJ)aMoto
□・4HzO)44hを溶解した液を加え、最後にあら
かじめ15重量%の硝酸1000gに、硝酸ビスマス[
Bi(NOx)s・5HzO) 10109、硝酸第二
鉄CFeCN0x)s ” 9H20) 6961?、
硝酸ナトリウム10.6g及び硝酸カリウム1.52g
を溶解した混合液を加えた。ここで得られた原料スラリ
ーを並流式噴霧乾燥器に送り約200℃で乾燥した。
To 500 hours of silica sol (Snowtex N manufactured by Nissan Chemical) containing 30% by weight of 5iOz, 85% by weight of phosphoric acid (28.89 g) was added with stirring, and then t-ammonium molybdate [(NHJ)aMoto] was added to 1100 g of water.
□・4HzO) 44h was added, and finally, bismuth nitrate [
Bi(NOx)s・5HzO) 10109, ferric nitrate CFeCN0x)s” 9H20) 6961?,
Sodium nitrate 10.6g and potassium nitrate 1.52g
A mixed solution containing dissolved was added. The raw material slurry obtained here was sent to a co-current spray dryer and dried at about 200°C.

得られた乾燥粉体をマツフル炉で400℃、1時間、次
いで690℃で2時間焼成して触媒(1)を得た。
The obtained dry powder was calcined in a Matsufuru furnace at 400°C for 1 hour and then at 690°C for 2 hours to obtain catalyst (1).

調製例2 触媒(I[)の調製 50重量%のシリカに担持された金属成分の原子組成が
、Pdo、 02 MO+t Bja1Fe7.2P+
 KO,+17で示される酸化物触媒を調製例1と同様
の方法で噴霧造粒し、次いで400°Cで1時間、69
0°Cで2時間焼成して触媒(II)を得た。
Preparation Example 2 Preparation of Catalyst (I[) The atomic composition of the metal component supported on 50% by weight of silica is Pdo, 02 MO+t Bja1Fe7.2P+
The oxide catalyst represented by KO, +17 was spray-granulated in the same manner as in Preparation Example 1, and then heated at 400°C for 1 hour at 69°C.
The catalyst (II) was obtained by calcining at 0°C for 2 hours.

調製例3 触媒(I[[)の調製 50重量%のシリカに担持された金属成分の原子比組成
が、pdoo6 Mo+z B10. @ Fea、 
sP+Kl 3で示される酸化物触媒を調製例1と同様
の方法で噴霧造粒し、次いで400℃で1時間、690
℃で2時間焼成して触媒(n[)を得た。
Preparation Example 3 Preparation of Catalyst (I[[) The atomic ratio composition of the metal component supported on 50% by weight of silica is pdoo6 Mo+z B10. @ Fea,
The oxide catalyst represented by sP+Kl 3 was spray-granulated in the same manner as in Preparation Example 1, and then heated at 400°C for 1 hour at 690 °C.
The catalyst (n[) was obtained by calcining at ℃ for 2 hours.

実施例1〜16、比較例1〜3 調製例で得た触媒(I)〜(III)を用いて、図に示
す反応器に950g充填し反応を行った。
Examples 1 to 16, Comparative Examples 1 to 3 Using the catalysts (I) to (III) obtained in Preparation Examples, 950 g of the catalysts were charged into the reactor shown in the figure and reacted.

酸素源としては空気を用い、反応圧力は0.5kg/c
が・G一定に保ったが、反応温度及び触媒時間は適宜調
整した。
Air was used as the oxygen source, and the reaction pressure was 0.5 kg/c.
Although G was kept constant, the reaction temperature and catalyst time were adjusted as appropriate.

プロピレンを用いたときの反応結果を反応条件と共に第
1表に、またイソブチレンを用いたときの反応結果を反
応条件と共に第2表にそれぞれ示す。
The reaction results when propylene was used are shown in Table 1 together with the reaction conditions, and the reaction results when isobutylene was used are shown in Table 2 together with the reaction conditions.

本発明方法は比較例の結果と比ベアクリロニトリルやメ
タクリロニトリルの収率を減少させることなく、大巾に
アクリロニトリルの収量が増加していることは明らかで
ある。
It is clear that the method of the present invention greatly increases the yield of acrylonitrile without reducing the yield of bare acrylonitrile or methacrylonitrile compared to the results of the comparative examples.

【図面の簡単な説明】[Brief explanation of drawings]

図は本発明方法を実施するために用いられる反応装置の
1例の説明図であり、図中符号lは反応器、2は焼結フ
ィルター、3は電気ヒーター、4は炭化水素類とアンモ
ニアと空気との混合物の導入管路、5はアセトンやエチ
ルアルコールと空気との混合物の導入管路、6反応生成
物の回収管路である。
The figure is an explanatory view of one example of a reaction apparatus used to carry out the method of the present invention. In the figure, reference numeral l is a reactor, 2 is a sintered filter, 3 is an electric heater, and 4 is a reactor for hydrocarbons and ammonia. 5 is a conduit for introducing a mixture with air, 5 is a conduit for introducing a mixture of acetone or ethyl alcohol and air, and 6 is a conduit for recovering reaction products.

Claims (1)

【特許請求の範囲】[Claims] 1 炭化水素、含酸素炭化水素又は含窒素炭化水素にア
ンモニアと酸素とを反応させ、アンモオキシデーション
により不飽和ニトリル及びアセトニトリルを製造するに
当り、反応系にアセトン又はエチルアルコール若しくは
その両方を共存させることを特徴とするアセトニトリル
の増収方法。
1. When producing unsaturated nitriles and acetonitrile by ammoxidation by reacting hydrocarbons, oxygen-containing hydrocarbons, or nitrogen-containing hydrocarbons with ammonia and oxygen, acetone or ethyl alcohol, or both, are allowed to coexist in the reaction system. A method for increasing the yield of acetonitrile, characterized by the following.
JP2038333A 1990-02-21 1990-02-21 Method for increasing yield of acetonitrile Pending JPH03246269A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2038333A JPH03246269A (en) 1990-02-21 1990-02-21 Method for increasing yield of acetonitrile

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2038333A JPH03246269A (en) 1990-02-21 1990-02-21 Method for increasing yield of acetonitrile

Publications (1)

Publication Number Publication Date
JPH03246269A true JPH03246269A (en) 1991-11-01

Family

ID=12522356

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2038333A Pending JPH03246269A (en) 1990-02-21 1990-02-21 Method for increasing yield of acetonitrile

Country Status (1)

Country Link
JP (1) JPH03246269A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000073261A1 (en) * 1999-05-27 2000-12-07 The Standard Oil Company Ammoxidation of a mixture of ketones to acetonitrile and hydrogen cyanide
JP2003002870A (en) * 2001-06-21 2003-01-08 Asahi Kasei Corp Method for coproducing prussic acid in production of unsaturated nitrile
JP2003064041A (en) * 2001-08-29 2003-03-05 Asahi Kasei Corp Method for stably increasing production of acetonitrile and hydrocyanic acid
JP2003064042A (en) * 2001-08-29 2003-03-05 Asahi Kasei Corp Method for stably increasing production of acetonitrile
JP2004525913A (en) * 2001-03-05 2004-08-26 ザ・スタンダード・オイル・カンパニー Ammoxidation of alcohol mixtures to nitrile mixtures, acetonitrile and HCN mixtures
CN102452954A (en) * 2010-10-21 2012-05-16 中国石油化工股份有限公司 Method for increasing yield of acetonitrile in acrylonitrile production
CN102452956A (en) * 2010-10-21 2012-05-16 中国石油化工股份有限公司 Method for increasing production of acetonitrile by hydrocarbon and alcohol mixed ammoxidation
KR20140112522A (en) 2012-03-26 2014-09-23 아사히 가세이 케미칼즈 가부시키가이샤 Method for purifying acetonitrile

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000073261A1 (en) * 1999-05-27 2000-12-07 The Standard Oil Company Ammoxidation of a mixture of ketones to acetonitrile and hydrogen cyanide
BG65744B1 (en) * 1999-05-27 2009-09-30 The Standard Oil Company Ammonium oxidation of a ketones mixture to acetonitrile and hydrocyanogen
JP2004525913A (en) * 2001-03-05 2004-08-26 ザ・スタンダード・オイル・カンパニー Ammoxidation of alcohol mixtures to nitrile mixtures, acetonitrile and HCN mixtures
JP4716643B2 (en) * 2001-03-05 2011-07-06 イネオス・ユーエスエイ・エルエルシー Ammoxidation of alcohol mixtures to nitrile mixtures, acetonitrile and HCN mixtures
JP2003002870A (en) * 2001-06-21 2003-01-08 Asahi Kasei Corp Method for coproducing prussic acid in production of unsaturated nitrile
JP2003064041A (en) * 2001-08-29 2003-03-05 Asahi Kasei Corp Method for stably increasing production of acetonitrile and hydrocyanic acid
JP2003064042A (en) * 2001-08-29 2003-03-05 Asahi Kasei Corp Method for stably increasing production of acetonitrile
CN102452954A (en) * 2010-10-21 2012-05-16 中国石油化工股份有限公司 Method for increasing yield of acetonitrile in acrylonitrile production
CN102452956A (en) * 2010-10-21 2012-05-16 中国石油化工股份有限公司 Method for increasing production of acetonitrile by hydrocarbon and alcohol mixed ammoxidation
KR20140112522A (en) 2012-03-26 2014-09-23 아사히 가세이 케미칼즈 가부시키가이샤 Method for purifying acetonitrile

Similar Documents

Publication Publication Date Title
KR100786051B1 (en) Improved catalyst for the manufacture of acrylonitrile
US3948959A (en) Process for preparing alpha, beta unsaturated acids by catalytic oxidation of corresponding saturated acids in the gas phase
US5747411A (en) Supported catalysts which are suitable for ammonoxidation
KR100283790B1 (en) Process for preparing acrolein from propylene by redox reaction and use of solid composite oxide composition as redox system in this reaction
JPS6126419B2 (en)
JPS6299360A (en) Manufacture of 3-cyanopyridine from mixture of 3-methylpyridine and 3-methylpiperidine
JPH03246269A (en) Method for increasing yield of acetonitrile
GB1578994A (en) Metal- and oxygen-containing compositions
EP0104507B1 (en) Preparation of methyl mercaptan from carbon oxides
US3262962A (en) Catalytic synthesis of acrylonitrile from olefins, ammonia and oxygen
JPS5820944B2 (en) Production method of acrolein by propylene oxidation
EP0107638B1 (en) Catalysts for the oxidation and ammoxidation of alcohols
CN110612158B (en) Catalyst, method for producing catalyst, and method for producing acrylonitrile
US3670009A (en) Ammoxidation of saturated hydrocarbons
US5334743A (en) Catalytic ammoxidation of saturated hydrocarbons
Reddy et al. One step synthesis of acetonitrile from ethanol via ammoxidation over Sb–V–P–O/Al 2 O 3 catalyst
JP2003010691A (en) Method for manufacturing catalyst for manufacturing methacrylic acid and method for manufacturing methacrylic acid
CN100384531C (en) Fluid-bed catalyst for ammoxidation to prepare acrylonitrile
JPS6041665B2 (en) Method for producing methacrylonitrile
US3784560A (en) Process for the production of methacrylonitrile
JP2017502926A (en) Method for producing butadiene
JP2001525238A (en) Catalyst for acrylonitrile production
EP0322796B1 (en) Production method of hydrocyanic acid
US4341659A (en) Catalytic composition
EP0044875B1 (en) Catalytic composition, method for its preparation and its use