JP4853758B2 - Surface inspection apparatus and surface inspection method - Google Patents

Surface inspection apparatus and surface inspection method Download PDF

Info

Publication number
JP4853758B2
JP4853758B2 JP2005143318A JP2005143318A JP4853758B2 JP 4853758 B2 JP4853758 B2 JP 4853758B2 JP 2005143318 A JP2005143318 A JP 2005143318A JP 2005143318 A JP2005143318 A JP 2005143318A JP 4853758 B2 JP4853758 B2 JP 4853758B2
Authority
JP
Japan
Prior art keywords
light
light beam
linearly polarized
polarization
optical member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005143318A
Other languages
Japanese (ja)
Other versions
JP2006343102A (en
Inventor
健雄 大森
秀男 広瀬
康晴 中島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP2005143318A priority Critical patent/JP4853758B2/en
Publication of JP2006343102A publication Critical patent/JP2006343102A/en
Application granted granted Critical
Publication of JP4853758B2 publication Critical patent/JP4853758B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Testing Or Measuring Of Semiconductors Or The Like (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)

Description

本発明は、半導体素子等の製造過程における、基板表面のムラ、傷、等の欠陥を検出する表面検査方法及び装置に関する。   The present invention relates to a surface inspection method and apparatus for detecting defects such as unevenness and scratches on a substrate surface in the manufacturing process of semiconductor elements and the like.

半導体回路素子等の製造工程におけるウェハの表面に形成された繰り返しパターンの欠陥の検査装置として、従来から、回折を利用したものが知られている。回折を利用した装置では、パターンのピッチによりステージのチルト角の調整が必要になる。また、より微細なパターンへの対応のためには照明光の波長の短波長化が必要である。
特開平10−232122号公報
2. Description of the Related Art Conventionally, a device using diffraction is known as an inspection device for a defect of a repeated pattern formed on the surface of a wafer in a manufacturing process of a semiconductor circuit element or the like. In an apparatus using diffraction, it is necessary to adjust the tilt angle of the stage according to the pattern pitch. In order to cope with finer patterns, it is necessary to shorten the wavelength of illumination light.
Japanese Patent Laid-Open No. 10-232122

しかしながら、繰り返しピッチの微細化(すなわち配線パターンなどのライン・アンド・スペースの微細化)に対応するために、照明光の短波長化を行おうとすると、光源の種類が限定され、高価で大掛かりな光源となってしまう。また、更に照明系や受光系を構成する光学素子の材料も高価なものに限定され、好ましくない。   However, in order to cope with repetitive pitch miniaturization (that is, line and space miniaturization of wiring patterns, etc.), when trying to shorten the wavelength of illumination light, the types of light sources are limited, which is expensive and large. It becomes a light source. Further, the material of the optical element constituting the illumination system and the light receiving system is also limited to an expensive material, which is not preferable.

本発明の目的は、照明光を短波長化しなくても、確実に繰り返しピッチの微細化に対応できる表面検査装置および表面検査方法を提供することにある。   An object of the present invention is to provide a surface inspection apparatus and a surface inspection method that can reliably cope with repeated pitch miniaturization without shortening the wavelength of illumination light.

上記課題を解決のため、本発明の表面検査装置は、繰り返しパターンが形成された被検査基板を照明するための直線偏光の発散光束を射出する光源手段と、前記光源と前記被検面の間の光路中に、前記直線偏光の発散光束の主光線が光軸に対してずれた位置に入射するように配置され、前記直線偏光の発散光束を前記被検査基板に導く光学部材と、前記検査基板からの光束のうち前記直線偏光とは偏光方向が直交する直線偏光を受光する受光手段と、前記光源手段と前記受光手段との間の光路中に、前記発散光束の主光線に対する前記光学部材の傾き方向とは逆の方向に傾けられて配置され、前記光学部材に起因して発生する偏光面の乱れを補正する少なくとも1つの平行平板からなる偏光補正部材と、を有し、前記受光手段で受光した光に基づいて前記被検査基板の表面の検査を行うものである。
In order to solve the above problems, a surface inspection apparatus according to the present invention includes a light source unit that emits a linearly polarized divergent light beam for illuminating a substrate to be inspected on which a repeated pattern is formed, and a space between the light source and the surface to be tested. An optical member for guiding the principal ray of the linearly polarized divergent light beam to a position shifted from the optical axis, and guiding the linearly polarized divergent light beam to the substrate to be inspected, and the inspection A light receiving means for receiving linearly polarized light whose polarization direction is orthogonal to the linearly polarized light out of the light flux from the substrate, and the optical member for the principal ray of the divergent light flux in an optical path between the light source means and the light receiving means. And a polarization correction member comprising at least one parallel plate that is arranged to be inclined in a direction opposite to the inclination direction of the optical axis and corrects the disturbance of the polarization plane caused by the optical member, and the light receiving means To the light received by And it performs inspection of the surface of the inspection substrate Zui.

請求項2の表面検査装置は、繰り返しパターンが形成された被検査基板を照明するため の直線偏光の光束を射出する光源手段と、前記被検査基板からの光束を入射する位置で 、前記被検査基板からの光束の主光線が光軸に対してずれた位置に入射するように配置され、前記被検査基板からの光束を該光束の主光線が所定の射出角を有する収束光束として射出する光学部材と、前記光学部材からの収束光束のうち前記所定の直線偏光とは直交する直線偏光を受光する受光手段と、前記光源手段と前記受光手段との間に光路中に、前記収束光束の主光線に対する前記光学部材の傾き方向とは逆の方向に傾けられて配置され、該光学部材に起因して発生する偏光面の乱れを補正する少なくとも1つの平行平板からなる偏光補正部材と、を有し、前記受光手段で受光した光に基づいて前記被検査基板の表面の検査を行うものである。
The surface inspection apparatus according to claim 2 includes: a light source unit that emits a linearly polarized light beam for illuminating a substrate to be inspected on which a repeated pattern is formed; and a position at which the light beam from the substrate to be inspected is incident. An optical system in which the principal ray of the light beam from the substrate is incident at a position shifted from the optical axis, and the light beam from the substrate to be inspected is emitted as a convergent light beam having a predetermined emission angle. A light receiving means for receiving linearly polarized light orthogonal to the predetermined linearly polarized light among the convergent light flux from the member and the optical member, and a main part of the convergent light flux in the optical path between the light source means and the light receiving means. A polarization correction member comprising at least one parallel flat plate arranged to be tilted in the direction opposite to the tilt direction of the optical member with respect to the light beam and correcting the disturbance of the polarization plane caused by the optical member. And said And performs inspection of the surface of the inspection substrate based on light received by the optical means.

請求項3に記載の表面検査装置は、繰り返しパターンが形成された被検査基板を照明するための直線偏光の発散光束を射出する光源手段と、前記光源と前記被検面の間に配置され、前記直線偏光の発散光束を該光束の主光線が光軸に対してずれた位置に入射し、前記直線偏光の発散光束を前記被検査基板へ導く第1の光学部材と、前記被検査基板からの光束を入射する位置に配置され、前記被検査基板からの光束を該光束の主光線が光軸に対してずれた位置に入射し、その収束光束を所定の射出角度をもって射出し所定面に結像させる第2の光学部材と、前記第2の光学部材からの収束光束のうち前記直線偏光とは直交する直線偏光を抽出する抽出手段と、 前記第2の光学部材と前記抽出手段とを経て形成された前記検査基板の像を受光する受光手段と、前記光源手段と前記受光手段との間の光路中に、前記発散光束の主光線に対する前記光学部材の傾き方向または 前記収束光束の主光線に対する前記光学部材の傾き方向とは逆の方向に傾けられて配置され、前記第1および第2の光学部材に起因して発生する前記光束の偏光面の乱れを補正する少なくとも1つの平行平板からなる偏光補正部材を有するものである。
The surface inspection apparatus according to claim 3 is disposed between a light source unit that emits a linearly polarized divergent light beam for illuminating a substrate to be inspected on which a repetitive pattern is formed, and between the light source and the test surface. The linearly polarized divergent light beam is incident on a position where the principal ray of the light beam is shifted from the optical axis, and the linearly polarized divergent light beam is guided to the substrate to be inspected, and the substrate to be inspected. The light beam from the substrate to be inspected is incident at a position where the principal ray of the light beam is shifted with respect to the optical axis, and the convergent light beam is emitted at a predetermined emission angle to the predetermined surface. A second optical member that forms an image; an extraction unit that extracts linearly polarized light orthogonal to the linearly polarized light out of a convergent light beam from the second optical member; and the second optical member and the extracting unit. Light reception for receiving an image of the inspection substrate formed through In the optical path between the light source means and the light receiving means, the direction of inclination of the optical member with respect to the principal ray of the divergent light beam or the direction opposite to the direction of inclination of the optical member with respect to the principal ray of the convergent light beam And a polarization correction member comprising at least one parallel plate that corrects disturbance of the polarization plane of the light beam caused by the first and second optical members.

請求項4の発明は、請求項1または請求項2に記載の表面検査装置において、前記光学材は凹面鏡を含むものである。
According to a fourth aspect of the present invention, in the surface inspection apparatus according to the first or second aspect, the optical material includes a concave mirror .

請求項に記載の発明は、請求項1乃至請求項のいずれか一項に記載の表面検査装置 において、前記偏光補正部材の傾き方向と傾き角度との少なくとも一方を調整可能に保 持する保持手段を更に有するものである。
According to a fifth aspect of the present invention, in the surface inspection apparatus according to any one of the first to fourth aspects, at least one of a tilt direction and a tilt angle of the polarization correction member is held to be adjustable. It further has a holding means.

請求項に記載の発明は、請求項1乃至請求項のいずれか一項に記載の表面検査装置 において、前記偏光補正部材は、前記光学部材の面に対して傾斜して配置された硝子の 平行平板であるものである。
According to a sixth aspect of the present invention, in the surface inspection apparatus according to any one of the first to fifth aspects, the polarization correction member is arranged to be inclined with respect to the surface of the optical member. It is a parallel plate.

請求項に記載の発明は、請求項1乃至請求項のいずれか一項に記載の表面検査装置 において、前記偏光補正部材は、前記光学部材の前記光軸に垂直な面に対して傾斜して 配置され、互いの結晶軸が直交するように貼り合わせられた2枚の複屈折性結晶の平行 平板であるものである。
The invention according to claim 7 is the surface inspection apparatus according to any one of claims 1 to 5 , wherein the polarization correction member is inclined with respect to a plane perpendicular to the optical axis of the optical member. These are parallel flat plates of two birefringent crystals that are arranged so that their crystal axes are orthogonal to each other.

請求項に記載の発明は、請求項1乃至請求項のいずれか一項に記載の表面検査装置 において、前記偏光補正部材は、前記光学部材の前記光軸に垂直な面に対して傾斜して 配置され、互いの結晶軸が直交するように、かつ平行平板を形成するように貼り合せら れた2枚の楔形の複屈折性結晶であるものである。
According to an eighth aspect of the present invention, in the surface inspection apparatus according to any one of the first to fifth aspects, the polarization correction member is inclined with respect to a plane perpendicular to the optical axis of the optical member. Thus, two wedge-shaped birefringent crystals that are arranged so that their crystal axes are orthogonal to each other and are bonded to form a parallel plate.

請求項9に記載の偏光照明装置は、直線偏光の発散光束を射出する光源手段と、前記光源と前記被検面の間で、前記直線偏光の発散光束の主光線が光軸に対してずれた位置に入射するように配置され、前記直線偏光の発散光束を前記被検査基板へ導く光学部材と、前記光源手段と前記被検査基板との間の光路中に、前記発散光束の主光線に対する前記光学部材の傾き方向とは逆の方向に傾けられて配置され、前記光学部材に起因して発生する前記光束の偏光面の乱れを補正する少なくとも1つの平行平板からなる偏光補正部材を有するものである。
The polarized illuminating device according to claim 9, wherein the principal ray of the linearly polarized divergent beam is deviated from the optical axis between the light source means for emitting the linearly polarized divergent beam and the light source and the test surface. An optical member that guides the linearly polarized divergent beam to the substrate to be inspected and an optical path between the light source means and the substrate to be inspected with respect to the principal ray of the divergent beam. Having a polarization correction member comprising at least one parallel plate arranged to be tilted in the direction opposite to the tilt direction of the optical member and correcting disturbance of the polarization plane of the light beam caused by the optical member It is.

請求項10に記載の受光装置は、被検査基板からの光束を入射する位置で、前記被検査基板からの光束の主光線が光軸に対してずれた位置に入射するように配置され、前記被検査基板からの所定の偏光成分を有する光束を入射して、その収束光束を所定の射出角度をもって射出させる光学部材と、前記光学部材からの光束のうち直線偏光を受光する受光手段と、前記被検査基板と前記受光手段との間の光路中に、前記収束光束の主光線に対する前記光学部材の傾き方向とは逆の方向に傾けられて配置され、前記光学部材に起因して発生する前記光束の偏光面の乱れを補正する少なくとも1つの平行平板からなる偏光補正部材を有するものである。 The light receiving device according to claim 10 is arranged such that a principal ray of a light beam from the substrate to be inspected is incident at a position shifted from an optical axis at a position where the light beam from the substrate to be inspected is incident, An optical member for injecting a light beam having a predetermined polarization component from the substrate to be inspected and emitting the converged light beam with a predetermined emission angle; and a light receiving means for receiving linearly polarized light out of the light beam from the optical member; In the optical path between the substrate to be inspected and the light receiving means, the optical member is disposed in an inclined direction opposite to the inclination direction of the optical member with respect to the principal ray of the convergent light beam, and is generated due to the optical member. It has a polarization correction member composed of at least one parallel plate that corrects the disturbance of the polarization plane of the light beam.

本発明によれば、照明光を短波長化しなくても、確実に繰り返しピッチの微細化に対応できる。   According to the present invention, it is possible to reliably cope with repeated pitch miniaturization without shortening the wavelength of illumination light.

以下、図面を用いて本発明の偏光を用いた表面検査装置の原理について詳細に説明する。
本発明の表面検査装置30は、図1に示すように、被検基板である半導体ウェハ20を支持するステージ11と、アライメント系12と、照明系13と、受光系14と、画像処理装置15とで構成されている。表面検査装置30は、半導体回路素子の製造工程において、半導体ウェハ20の表面の検査を自動的に行う装置である。半導体ウェハ20は、最上層のレジスト膜への露光・現像後、不図示の搬送系により、不図示のウェハカセットまたは現像装置から運ばれ、ステージ11に吸着される。
Hereinafter, the principle of the surface inspection apparatus using polarized light according to the present invention will be described in detail with reference to the drawings.
As shown in FIG. 1, the surface inspection apparatus 30 of the present invention includes a stage 11 that supports a semiconductor wafer 20 that is a substrate to be tested, an alignment system 12, an illumination system 13, a light receiving system 14, and an image processing apparatus 15. It consists of and. The surface inspection apparatus 30 is an apparatus that automatically inspects the surface of the semiconductor wafer 20 in the manufacturing process of the semiconductor circuit element. After exposure / development of the uppermost resist film, the semiconductor wafer 20 is carried from a wafer cassette (not shown) or a developing device by a conveyance system (not shown) and is attracted to the stage 11.

半導体ウェハ20の表面には、図2に示すように、複数のチップ領域21がXY方向に配列され、各チップ領域21の中に繰り返しパターン22が形成されている。繰り返しパターン22は、図3に示すように、複数のライン部2Aがその短手方向(X方向)に沿って一定のピッチPで配列されたレジストパターン(例えば配線パターン)である。隣り合うライン部2Aどうしの間は、スペース部2Bである。ライン部2Aの配列方向(X方向)を「繰り返しパターン22の繰り返し方向」という。   As shown in FIG. 2, a plurality of chip regions 21 are arranged in the XY direction on the surface of the semiconductor wafer 20, and a repeated pattern 22 is formed in each chip region 21. As shown in FIG. 3, the repetitive pattern 22 is a resist pattern (for example, a wiring pattern) in which a plurality of line portions 2A are arranged at a constant pitch P along the short direction (X direction). A space 2B is formed between the adjacent line portions 2A. The arrangement direction (X direction) of the line portions 2A is referred to as “repeating direction of the repeating pattern 22”.

ここで、繰り返しパターン22のライン部2Aの線幅DAの設計値をピッチPの1/2とする。設計値の通りに繰り返しパターン22が形成された場合、ライン部2Aの線幅DA
とスペース部2Bの線幅DBは等しくなり、ライン部2Aとスペース部2Bとの体積比は
略1:1になる。これに対して、繰り返しパターン22を形成する際の露光フォーカスが適正値から外れると、ピッチPは変わらないが、ライン部2Aの線幅DAが設計値とは異
なってしまい、スペース部2Bの線幅DBとも異なってしまい、ライン部2Aとスペース
部2Bとの体積比が略1:1から外れる。
Here, the design value of the line width D A of the line portion 2A of the repeating pattern 22 and 1/2 of the pitch P. When the repeated pattern 22 is formed according to the design value, the line width D A of the line portion 2A
The line width D B of the space portion 2B is equal, the volume ratio of the line portion 2A and the space portion 2B is substantially 1: 1. In contrast, when the exposure focus at the time of forming the repeating pattern 22 deviates from a proper value, the pitch P does not change, the line width D A of the line portion 2A becomes different from the designed value, the space portion 2B It becomes different even with the line width D B, the volume ratio of the line portion 2A and the space portion 2B is substantially 1: deviates from 1.

本発明の表面検査装置30は、上記のような繰り返しパターン22におけるライン部2Aとスペース部2Bとの体積比の変化を利用して、繰り返しパターン22の欠陥検査を行うものである。説明を簡単にするため、理想的な体積比(設計値)を1:1とする。体積比の変化は、露光フォーカスの適正値からの外れに起因し、半導体ウェハ20のショット領域ごとに現れる。なお、体積比を断面形状の面積比と言い換えることもできる。   The surface inspection apparatus 30 of the present invention performs defect inspection of the repetitive pattern 22 by using the change in the volume ratio between the line portion 2A and the space portion 2B in the repetitive pattern 22 as described above. In order to simplify the explanation, the ideal volume ratio (design value) is 1: 1. The change in the volume ratio is caused by deviation from the appropriate value of the exposure focus, and appears for each shot area of the semiconductor wafer 20. The volume ratio can also be referred to as the area ratio of the cross-sectional shape.

また、繰り返しパターン22に対する照明光(後述)の波長と比較して繰り返しパターン22のピッチPが十分小さいとする。このため、繰り返しパターン22から回折光が発生することはなく、繰り返しパターン22の欠陥検査を回折光により行うことはできない。本発明の欠陥検査の原理は、以降、表面検査装置30の構成(図1)と共に順に説明する。   Further, it is assumed that the pitch P of the repeating pattern 22 is sufficiently small as compared with the wavelength of illumination light (described later) for the repeating pattern 22. For this reason, diffracted light is not generated from the repetitive pattern 22, and defect inspection of the repetitive pattern 22 cannot be performed by diffracted light. The principle of defect inspection according to the present invention will be described below together with the configuration of the surface inspection apparatus 30 (FIG. 1).

表面検査装置30のステージ11は、半導体ウェハ20を上面に載置して、例えば真空吸着により固定保持する。さらに、ステージ11は、上面の中心における法線1Aを軸に回転可能である。この回転機構によって、半導体ウェハ20の繰り返しパターン22の繰り返し方向(図2,図3のX方向)を、半導体ウェハ20の表面内で回転させることがで
きる。なお、ステージ11は、上面が水平面であり、チルト機構を持たない。このため、半導体ウェハ20を常に水平な状態に保つことができる。
The stage 11 of the surface inspection apparatus 30 places the semiconductor wafer 20 on the upper surface, and fixes and holds it, for example, by vacuum suction. Further, the stage 11 is rotatable about the normal 1A at the center of the upper surface. With this rotating mechanism, the repeating direction (X direction in FIGS. 2 and 3) of the repeating pattern 22 of the semiconductor wafer 20 can be rotated within the surface of the semiconductor wafer 20. The stage 11 has a horizontal upper surface and does not have a tilt mechanism. For this reason, the semiconductor wafer 20 can always be kept in a horizontal state.

アライメント系12は、ステージ11が回転しているときに、半導体ウェハ20の外縁部を照明し、外縁部に設けられた外形基準(例えばノッチ)の回転方向の位置を検出し、所定位置でステージ11を停止させる。その結果、半導体ウェハ20の繰り返しパターン22の繰り返し方向(図2,図3のX方向)を、後述の照明光の入射面3A(図4参照)
に対して、45度の角度に傾けて設定することができる。
The alignment system 12 illuminates the outer edge of the semiconductor wafer 20 when the stage 11 is rotating, detects the position in the rotation direction of an external reference (for example, a notch) provided on the outer edge, and moves the stage at a predetermined position. 11 is stopped. As a result, the repetitive direction (X direction in FIGS. 2 and 3) of the repetitive pattern 22 of the semiconductor wafer 20 is changed to an illumination light incident surface 3A described later (see FIG. 4).
In contrast, it can be set at an angle of 45 degrees.

照明系13は、光源31と波長選択フィルタ32とライトガイドファイバ33と偏光板34と凹面反射鏡35とで構成された偏心光学系であり、ステージ11上の半導体ウェハ20の繰り返しパターン22を直線偏光L1により照明する。この直線偏光L1が、繰り返しパターン22に対する照明光である。直線偏光L1は、半導体ウェハ20の表面全体に照射される。   The illumination system 13 is a decentered optical system composed of a light source 31, a wavelength selection filter 32, a light guide fiber 33, a polarizing plate 34, and a concave reflecting mirror 35, and linearly repeats the repetitive pattern 22 of the semiconductor wafer 20 on the stage 11. Illuminate with polarized light L1. This linearly polarized light L1 is illumination light for the repeated pattern 22. The linearly polarized light L <b> 1 is irradiated on the entire surface of the semiconductor wafer 20.

直線偏光L1の進行方向(半導体ウェハ20の表面上の任意の点に到達する直線偏光L1の主光線の方向)は、凹面反射鏡35の光軸O1に略平行である。光軸O1は、ステージ11の中心を通り、ステージ11の法線1Aに対して所定の角度θだけ傾けられている
。ちなみに、直線偏光L1の進行方向を含み、ステージ11の法線1Aに平行な平面が、直線偏光L1の入射面である。図4の入射面3Aは、半導体ウェハ20の中心における入射面である。
The traveling direction of the linearly polarized light L1 (the direction of the principal ray of the linearly polarized light L1 reaching an arbitrary point on the surface of the semiconductor wafer 20) is substantially parallel to the optical axis O1 of the concave reflecting mirror 35. The optical axis O1 passes through the center of the stage 11 and is inclined by a predetermined angle θ with respect to the normal line 1A of the stage 11. Incidentally, a plane including the traveling direction of the linearly polarized light L1 and parallel to the normal 1A of the stage 11 is an incident surface of the linearly polarized light L1. An incident surface 3 </ b> A in FIG. 4 is an incident surface at the center of the semiconductor wafer 20.

また、本説明では、例えば直線偏光L1がp偏光である。つまり、図5(a)に示すように、直線偏光L1の進行方向と電気ベクトルの振動方向とを含む平面(直線偏光L1の振動面)が、直線偏光L1の入射面(3A)内に含まれる。直線偏光L1の振動面は、凹面反射鏡35の前段に配置された偏光板34の透過軸により規定される。   In this description, for example, the linearly polarized light L1 is p-polarized light. That is, as shown in FIG. 5A, a plane including the traveling direction of the linearly polarized light L1 and the vibration direction of the electric vector (the vibrating surface of the linearly polarized light L1) is included in the incident surface (3A) of the linearly polarized light L1. It is. The vibration plane of the linearly polarized light L <b> 1 is defined by the transmission axis of the polarizing plate 34 disposed in front of the concave reflecting mirror 35.

なお、照明系13の光源31は、メタルハライドランプや水銀ランプなどの安価な放電光源である。波長選択フィルタ32は、光源31からの光のうち所定波長の輝線スペクトルを選択的に透過する。ライトガイドファイバ33は、波長選択フィルタ32からの光を伝送する。偏光板34は、ライトガイドファイバ33の射出端近傍に配置され、その透過軸が所定の方位に設定され、透過軸に応じてライトガイドファイバ33からの光を直線偏光にする。凹面反射鏡35は、球面の内側を反射面とした反射鏡であり、前側焦点がライトガイドファイバ33の射出端と略一致し、後側焦点が半導体ウェハ20の表面と略一致するように配置され、偏光板34からの光を半導体ウェハ20の表面に導く。照明系13は、半導体ウェハ20側に対してテレセントリックな光学系である。   The light source 31 of the illumination system 13 is an inexpensive discharge light source such as a metal halide lamp or a mercury lamp. The wavelength selection filter 32 selectively transmits an emission line spectrum having a predetermined wavelength in the light from the light source 31. The light guide fiber 33 transmits the light from the wavelength selection filter 32. The polarizing plate 34 is disposed in the vicinity of the exit end of the light guide fiber 33, and its transmission axis is set to a predetermined direction, and the light from the light guide fiber 33 is linearly polarized according to the transmission axis. The concave reflecting mirror 35 is a reflecting mirror having a spherical inner surface as a reflecting surface, and is arranged so that the front focal point substantially coincides with the exit end of the light guide fiber 33 and the rear focal point substantially coincides with the surface of the semiconductor wafer 20. Then, the light from the polarizing plate 34 is guided to the surface of the semiconductor wafer 20. The illumination system 13 is an optical system that is telecentric with respect to the semiconductor wafer 20 side.

上記の照明系13において、光源31からの光は、波長選択フィルタ32とライトガイドファイバ33と偏光板34と凹面反射鏡35とを介し、p偏光の直線偏光L1(図5(
a))となって、半導体ウェハ20の表面全体に入射する。半導体ウェハ20の各点にお
ける直線偏光L1の入射角度は、互いに同じであり、光軸O1と法線1Aとの成す角度θに相当する。
In the illumination system 13, the light from the light source 31 passes through the wavelength selection filter 32, the light guide fiber 33, the polarizing plate 34, and the concave reflecting mirror 35, and is p-polarized linearly polarized light L1 (FIG. 5 (
a)) and enters the entire surface of the semiconductor wafer 20. The incident angles of the linearly polarized light L1 at each point of the semiconductor wafer 20 are the same and correspond to the angle θ formed by the optical axis O1 and the normal line 1A.

半導体ウェハ20に入射する直線偏光L1がp偏光(図5(a))であるため、図4に示す通り、半導体ウェハ20の繰り返しパターン22の繰り返し方向(X方向)が直線偏光L1の入射面(3A)に対して45度の角度に設定された場合、半導体ウェハ20の表面における直線偏光L1の振動面の方向(図6のV方向)と、繰り返しパターン22の繰り返し方向(X方向)との成す角度も、45度に設定される。   Since the linearly polarized light L1 incident on the semiconductor wafer 20 is p-polarized light (FIG. 5A), the repeating direction (X direction) of the repeated pattern 22 of the semiconductor wafer 20 is incident on the linearly polarized light L1 as shown in FIG. When the angle is set to 45 degrees with respect to (3A), the direction of the vibrating surface of the linearly polarized light L1 on the surface of the semiconductor wafer 20 (the V direction in FIG. 6) and the repeating direction (X direction) of the repeating pattern 22 Is also set to 45 degrees.

換言すると、直線偏光L1は、半導体ウェハ20の表面における振動面の方向(図6のV方向)が繰り返しパターン22の繰り返し方向(X方向)に対して45度に傾いた状態で、繰り返しパターン22を斜めに横切るような状態で、繰り返しパターン22に入射する。   In other words, the linearly polarized light L1 has a repeating pattern 22 in a state where the direction of the vibration surface (V direction in FIG. 6) on the surface of the semiconductor wafer 20 is inclined 45 degrees with respect to the repeating direction (X direction) of the repeating pattern 22. Is incident on the repetitive pattern 22 in a state of crossing diagonally.

このような直線偏光L1と繰り返しパターン22との角度状態は、半導体ウェハ20の表面全体において均一である。なお、45度を135度,225度,315度の何れかに言い換えても、直線偏光L1と繰り返しパターン22との角度状態は同じである。また、図6の振動面の方向(V方向)と繰り返し方向(X方向)との成す角度を45度に設定するのは、繰り返しパターン22の欠陥検査の感度を最も高くするためである。   Such an angle state between the linearly polarized light L <b> 1 and the repeated pattern 22 is uniform over the entire surface of the semiconductor wafer 20. Note that the angle state between the linearly polarized light L1 and the repetitive pattern 22 is the same even if 45 degrees is replaced with any of 135 degrees, 225 degrees, and 315 degrees. The reason why the angle formed by the vibration surface direction (V direction) and the repeat direction (X direction) in FIG. 6 is set to 45 degrees is to maximize the sensitivity of the defect inspection of the repeat pattern 22.

そして、上記の直線偏光L1を用いて繰り返しパターン22を照明すると、繰り返しパターン22から正反射方向に楕円偏光L2が発生する(図1,図5(b))。この場合、楕
円偏光L2の進行方向が正反射方向に一致する。正反射方向とは、直線偏光L1の入射面(3A)内に含まれ、ステージ11の法線1Aに対して角度θ(直線偏光L1の入射角度θに等しい角度)だけ傾いた方向である。なお、上記の通り、繰り返しパターン22のピッチPが照明波長と比較して十分小さいため、繰り返しパターン22から回折光が発生することはない。
When the repetitive pattern 22 is illuminated using the linearly polarized light L1, the elliptically polarized light L2 is generated from the repetitive pattern 22 in the regular reflection direction (FIGS. 1 and 5B). In this case, the traveling direction of the elliptically polarized light L2 coincides with the regular reflection direction. The regular reflection direction is a direction that is included in the incident surface (3A) of the linearly polarized light L1 and is inclined by an angle θ (an angle equal to the incident angle θ of the linearly polarized light L1) with respect to the normal 1A of the stage 11. As described above, since the pitch P of the repeated pattern 22 is sufficiently smaller than the illumination wavelength, no diffracted light is generated from the repeated pattern 22.

ここで、直線偏光L1が繰り返しパターン22により楕円化し、繰り返しパターン22から楕円偏光L2が発生する理由について簡単に説明する。直線偏光L1は、繰り返しパターン22に入射すると、振動面の方向(図6のV方向)が、図7に示す2つの偏光成分VX,VYに分かれる。一方の偏光成分VXは、繰り返し方向(X方向)に平行な成分である。他方の偏光成分VYは、繰り返し方向(X方向)に垂直な成分である。そして、2つの
偏光成分VX,VYは、それぞれ独立に、異なる振幅変化と位相変化とを受ける。振幅変化
と位相変化が異なるのは、繰り返しパターン22の異方性に起因して複素反射率(つまり複素数の振幅反射率)が異なるからであり、構造性複屈折(formbirefringence)と呼ば
れる。その結果、2つの偏光成分VX,VYの反射光は互いに振幅と位相が異なり、これら
の合成による反射光は楕円偏光L2となる(図5(b))。
Here, the reason why the linearly polarized light L1 is ovalized by the repeated pattern 22 and the elliptically polarized light L2 is generated from the repeated pattern 22 will be briefly described. When the linearly polarized light L1 enters the repetitive pattern 22, the direction of the vibration surface (the V direction in FIG. 6) is divided into two polarization components V X and V Y shown in FIG. One polarization component V X is a component parallel to the repetition direction (X direction). The other polarization component V Y is a component perpendicular to the repetition direction (X direction). The two polarization components V X and V Y are independently subjected to different amplitude changes and phase changes. The reason why the amplitude change and the phase change are different is that the complex reflectivity (that is, the complex amplitude reflectivity) is different due to the anisotropy of the repetitive pattern 22, and this is called structural birefringence. As a result, the reflected lights of the two polarization components V X and V Y have different amplitudes and phases, and the reflected light obtained by combining them becomes elliptically polarized light L2 (FIG. 5B).

また、繰り返しパターン22の異方性に起因する楕円化の程度は、図5(b)の楕円偏光L2のうち、図5(a)の直線偏光L1の振動面(入射面(3A)と一致)に垂直な偏光成分L3(図5(c))と考えることができる。そして、この偏光成分L3の大きさは、繰り返しパターン22の材質および形状と、図6の振動面の方向(V方向)と繰り返し方向(X方
向)との成す角度に依存する。このため、V方向とX方向との成す角度を一定の値(例え
ば45度)に保つ場合、繰り返しパターン22の材質が一定であっても、繰り返しパターン22の形状が変化すると、楕円化の程度(偏光成分L3の大きさ)が変化することになる。
Further, the degree of ovalization due to the anisotropy of the repeated pattern 22 is the same as the vibration plane (incident plane (3A)) of the linearly polarized light L1 in FIG. 5A among the elliptically polarized light L2 in FIG. ) Can be considered as a polarized light component L3 (FIG. 5C). The magnitude of the polarization component L3 depends on the material and shape of the repetitive pattern 22 and the angle formed by the vibration plane direction (V direction) and the repetitive direction (X direction) in FIG. For this reason, when the angle formed between the V direction and the X direction is maintained at a constant value (for example, 45 degrees), even if the material of the repeated pattern 22 is constant, if the shape of the repeated pattern 22 changes, the degree of ovalization (The size of the polarization component L3) changes.

繰り返しパターン22の形状と偏光成分L3の大きさとの関係について説明する。図3に示すように、繰り返しパターン22は、ライン部2Aとスペース部2BとをX方向に沿って交互に配列した凹凸形状を有し、適正な露光フォーカスで設計値の通りに形成されると、ライン部2Aの線幅DAとスペース部2Bの線幅DBが等しく、ライン部2Aとスペース部2Bとの体積比が略1:1となる。このような理想的な形状の場合、偏光成分L3の大きさは最も大きくなる。これに対し、露光フォーカスが適正値から外れると、ライン部2Aの線幅DAとスペース部2Bの線幅DBとが異なってしまい、ライン部2Aとスペース部2Bとの体積比が略1:1から外れる。このとき、偏光成分L3の大きさは理想的な場合と比較して小さくなる。偏光成分L3の大きさの変化を図示すると、図8のようになる。図8の横軸は、ライン部2Aの線幅DAである。 A relationship between the shape of the repeated pattern 22 and the size of the polarization component L3 will be described. As shown in FIG. 3, the repetitive pattern 22 has a concavo-convex shape in which the line portions 2A and the space portions 2B are alternately arranged along the X direction, and is formed according to the design value with an appropriate exposure focus. , line width D B is equal to the line width D a and the space portion 2B of the line portion 2A, the volume ratio of the line portion 2A and the space portion 2B is substantially 1: 1. In the case of such an ideal shape, the size of the polarization component L3 is the largest. In contrast, when the exposure focus deviates from an appropriate value, becomes different and the line width D B of the line width D A and the space portion 2B of the line portion 2A, substantially the volume ratio of the line portion 2A and the space portion 2B 1 : 1 off. At this time, the size of the polarization component L3 is smaller than the ideal case. The change in the magnitude of the polarization component L3 is illustrated in FIG. The horizontal axis in FIG. 8 is the line width D A of the line portion 2A.

このように、直線偏光L1を用い、図6の振動面の方向(V方向)が繰り返しパターン22の繰り返し方向(X方向)に対して45度に傾いた状態で、繰り返しパターン22を照明すると、正反射方向に発生した楕円偏光L2(図1,図5(b))は、その楕円化の程度(
図5(c)の偏光成分L3の大きさ)が、繰り返しパターン22の形状(ライン部2Aとスペース部2Bとの体積比)に応じたものとなる(図8)。楕円偏光L2の進行方向は、直線偏光L1の入射面(3A)内に含まれ、ステージ11の法線1Aに対して角度θ(直線偏光L1の入射角度θに等しい角度)だけ傾いている。
In this way, when the repetitive pattern 22 is illuminated using the linearly polarized light L1 in a state where the vibration plane direction (V direction) in FIG. 6 is inclined by 45 degrees with respect to the repetitive direction (X direction) of the repetitive pattern 22, The elliptically polarized light L2 (FIGS. 1 and 5 (b)) generated in the specular direction is the degree of ovalization (
The magnitude of the polarization component L3 in FIG. 5C corresponds to the shape of the repeated pattern 22 (volume ratio between the line portion 2A and the space portion 2B) (FIG. 8). The traveling direction of the elliptically polarized light L2 is included in the incident surface (3A) of the linearly polarized light L1, and is inclined with respect to the normal 1A of the stage 11 by an angle θ (an angle equal to the incident angle θ of the linearly polarized light L1).

次に、受光系14の説明を行う。受光系14は、図1に示すように、凹面反射鏡36と結像レンズ37と偏光板38と撮像素子39とで構成された偏心光学系である。
凹面反射鏡36は、上記した照明系13の凹面反射鏡35と同様の反射鏡であり、その光軸O2が、ステージ11の中心を通り、かつ、ステージ11の法線1Aに対して角度θだけ傾くように配置されている。したがって、繰り返しパターン22からの楕円偏光L2は、凹面反射鏡36の光軸O2に沿って進行することになる。凹面反射鏡36は、楕円偏光L2を反射して結像レンズ37の方に導き、結像レンズ37と協働して撮像素子39の撮像面に集光する。
Next, the light receiving system 14 will be described. As shown in FIG. 1, the light receiving system 14 is a decentered optical system including a concave reflecting mirror 36, an imaging lens 37, a polarizing plate 38, and an image sensor 39.
The concave reflecting mirror 36 is a reflecting mirror similar to the concave reflecting mirror 35 of the illumination system 13 described above, and its optical axis O2 passes through the center of the stage 11 and has an angle θ with respect to the normal 1A of the stage 11. It is arranged to tilt only. Therefore, the elliptically polarized light L <b> 2 from the repeated pattern 22 travels along the optical axis O <b> 2 of the concave reflecting mirror 36. The concave reflecting mirror 36 reflects the elliptically polarized light L <b> 2 and guides it toward the imaging lens 37, and collects it on the imaging surface of the imaging device 39 in cooperation with the imaging lens 37.

ただし、結像レンズ37と凹面反射鏡36との間には、偏光板38が配置されている。偏光板38の透過軸の方位は、上記した照明系13の偏光板34の透過軸に対して直交す
るように設定されている(クロスニコル(直交ニコル)の状態)。したがって、偏光板38により、楕円偏光L2の図5(c)の偏光成分L3に相当する偏光成分L4(図1)のみを抽出して、撮像素子39に導くことができる。その結果、撮像素子39の撮像面には、偏光成分L4による半導体ウェハ20の反射像が形成される。
However, a polarizing plate 38 is disposed between the imaging lens 37 and the concave reflecting mirror 36. The direction of the transmission axis of the polarizing plate 38 is set so as to be orthogonal to the transmission axis of the polarizing plate 34 of the illumination system 13 described above (crossed Nicol state). Therefore, only the polarization component L4 (FIG. 1) corresponding to the polarization component L3 in FIG. 5C of the elliptically polarized light L2 can be extracted by the polarizing plate 38 and guided to the image sensor 39. As a result, a reflection image of the semiconductor wafer 20 by the polarization component L4 is formed on the imaging surface of the imaging element 39.

撮像素子39は、例えばCCD撮像素子などであり、撮像面に形成された半導体ウェハ20の反射像を光電変換して、画像信号を画像処理装置15に出力する。半導体ウェハ20の反射像の明暗は、偏光成分L4の光強度(図5(c)の偏光成分L3の大きさ)に略比例し、繰り返しパターン22の形状(ライン部2Aとスペース部2Bとの体積比)に応じて変化する(図8参照)。半導体ウェハ20の反射像が最も明るくなるのは、繰り返しパターン22が理想的な形状(体積比が1:1)の場合である。なお、半導体ウェハ20の反射像の明暗は、ショット領域ごとに現れる。   The image sensor 39 is, for example, a CCD image sensor or the like, photoelectrically converts the reflected image of the semiconductor wafer 20 formed on the imaging surface, and outputs an image signal to the image processing device 15. The brightness and darkness of the reflected image of the semiconductor wafer 20 is substantially proportional to the light intensity of the polarization component L4 (the magnitude of the polarization component L3 in FIG. 5C), and the shape of the repeated pattern 22 (the line portion 2A and the space portion 2B). It changes according to the volume ratio (see FIG. 8). The reflected image of the semiconductor wafer 20 is brightest when the repeated pattern 22 has an ideal shape (volume ratio is 1: 1). Note that the brightness and darkness of the reflected image of the semiconductor wafer 20 appears for each shot area.

画像処理装置15は、撮像素子39から出力される画像信号に基づいて、半導体ウェハ20の反射画像を取り込む。なお、画像処理装置15は、比較のため、良品ウェハの反射画像を予め記憶している。良品ウェハとは、繰り返しパターン22が理想的な形状(体積比が1:1)で表面全体に形成されたものである。良品ウェハの反射画像の輝度情報は、最も高い輝度値を示すと考えられる。   The image processing device 15 captures a reflected image of the semiconductor wafer 20 based on the image signal output from the image sensor 39. Note that the image processing apparatus 15 stores a reflection image of a non-defective wafer in advance for comparison. A non-defective wafer is one in which the repetitive pattern 22 is formed on the entire surface in an ideal shape (volume ratio is 1: 1). It is considered that the luminance information of the reflected image of the non-defective wafer shows the highest luminance value.

したがって、画像処理装置15は、被検基板である半導体ウェハ20の反射画像を取り込むと、その輝度情報を良品ウェハの反射画像の輝度情報と比較する。そして、半導体ウェハ20の反射画像の暗い箇所の輝度値の低下量(∝図8の低下量Δ)に基づいて、繰り返しパターン22の欠陥(ライン部2Aとスペース部2Bとの体積比の変化)を検出する。例えば、輝度値の低下量が予め定めた閾値(許容値)より大きければ「欠陥」と判定し、閾値より小さければ「正常」と判断すればよい。   Therefore, when the image processing apparatus 15 captures the reflection image of the semiconductor wafer 20 that is the test substrate, the image processing apparatus 15 compares the luminance information with the luminance information of the reflection image of the non-defective wafer. Then, based on the amount of decrease in the luminance value of the dark portion of the reflected image of the semiconductor wafer 20 (the amount of decrease Δ in FIG. 8), the defect of the repeated pattern 22 (change in the volume ratio between the line portion 2A and the space portion 2B). Is detected. For example, if the amount of decrease in luminance value is larger than a predetermined threshold (allowable value), it is determined as “defect”, and if it is smaller than the threshold, it is determined as “normal”.

なお、画像処理装置15においては、上記のように、良品ウェハの反射画像を予め記憶しておく構成の他、ウェハのショット領域の配列データと輝度値の閾値を予め記憶しておく構成でもよい。   As described above, the image processing device 15 may have a configuration in which the reflection data of the non-defective wafer is stored in advance and the array data of the shot area of the wafer and the threshold value of the brightness value are stored in advance. .

この場合、ショット領域の配列データに基づいて、取り込まれたウェハの反射画像中における各ショット領域の位置が分かるので、各ショット領域の輝度値を求める。そして、その輝度値と記憶されている閾値とを比較することにより、パターンの欠陥を検出する。閾値より輝度値が小さいショット領域を欠陥と判断すればよい。   In this case, since the position of each shot area in the captured reflection image of the wafer is known based on the array data of the shot area, the luminance value of each shot area is obtained. Then, a pattern defect is detected by comparing the brightness value with a stored threshold value. A shot region having a luminance value smaller than the threshold value may be determined as a defect.

上記したように、表面検査装置30によれば、直線偏光L1を用い、図6の振動面の方向(V方向)が繰り返しパターン22の繰り返し方向(X方向)に対して傾いた状態で、繰り返しパターン22を照明すると共に、正反射方向に発生した楕円偏光L2のうち、偏光成分L4の光強度(図5(c)の偏光成分L3の大きさ)に基づいて、繰り返しパターン22の欠陥を検出するため、照明波長と比較して繰り返しパターン22のピッチPが十分小さくても、確実に欠陥検査を行うことができる。つまり、照明光である直線偏光L1を短波長化しなくても、確実に繰り返しピッチの微細化に対応できる。   As described above, according to the surface inspection apparatus 30, the linearly polarized light L <b> 1 is used, and the vibration plane direction (V direction) in FIG. 6 is repeatedly inclined with respect to the repeating direction (X direction) of the repeating pattern 22. While illuminating the pattern 22, the defect of the repeated pattern 22 is detected based on the light intensity of the polarization component L4 (the magnitude of the polarization component L3 in FIG. 5C) of the elliptically polarized light L2 generated in the regular reflection direction. Therefore, even if the pitch P of the repeated pattern 22 is sufficiently small compared to the illumination wavelength, the defect inspection can be reliably performed. That is, even if the linearly polarized light L1 that is illumination light is not shortened in wavelength, it is possible to reliably cope with repetitive miniaturization of the pitch.

さらに、表面検査装置30では、図6の振動面の方向(V方向)と繰り返し方向(X方向)との成す角度を45度に設定したことにより、半導体ウェハ20の反射画像の輝度値の低下量(∝図8の低下量Δ)を大きく捉えることができ、繰り返しパターン22の欠陥検査を高感度で行うことができる。   Furthermore, in the surface inspection apparatus 30, the luminance value of the reflected image of the semiconductor wafer 20 is reduced by setting the angle formed by the vibration surface direction (V direction) and the repetition direction (X direction) in FIG. The amount (the amount of decrease Δ in FIG. 8) can be grasped greatly, and the defect inspection of the repeated pattern 22 can be performed with high sensitivity.

また、表面検査装置30では、照明波長と比較して繰り返しパターン22のピッチPが十分小さい場合に限らず、繰り返しパターン22のピッチPが照明波長と同程度でも、照
明波長より大きい場合でも、同様に繰り返しパターン22の欠陥検査を行うことができる。つまり、繰り返しパターン22のピッチPに拘わらず、確実に欠陥検査を行うことができる。繰り返しパターン22による直線偏光L1の楕円化は、繰り返しパターン22のライン部2Aとスペース部2Bとの体積比に依存して起こるものであり、繰り返しパターン22のピッチPに依存しないからである。
The surface inspection apparatus 30 is not limited to the case where the pitch P of the repetitive pattern 22 is sufficiently small compared to the illumination wavelength, and the same is true even when the pitch P of the repetitive pattern 22 is about the same as the illumination wavelength or larger than the illumination wavelength. In addition, the defect inspection of the repeated pattern 22 can be performed. That is, the defect inspection can be surely performed regardless of the pitch P of the repeated pattern 22. This is because the ellipticalization of the linearly polarized light L1 due to the repeated pattern 22 occurs depending on the volume ratio between the line portion 2A and the space portion 2B of the repeated pattern 22, and does not depend on the pitch P of the repeated pattern 22.

さらに、表面検査装置30では、繰り返しパターン22のライン部2Aとスペース部2Bとの体積比が同じであれば、反射画像の輝度値の低下量(∝図8の低下量Δ)が等しくなる。このため、繰り返しパターン22のピッチPに拘わらず、体積比の変化量が同じであれば、同じ感度で、その検出を行うことができる。例えば、図9(a),(b)に示す繰り
返しパターン22のように、ピッチPが異なり、ライン部2Aとスペース部2Bとの体積比が同じ場合、同じ感度で欠陥検査を行える。また、図9(a),(b)の比較から分かるよ
うに、ピッチPが小さいほど、微細な形状変化(ライン部2Aの線幅DAの設計値からの
ずれ量δ)を確実に検出することができる。
Further, in the surface inspection apparatus 30, if the volume ratio between the line portion 2A and the space portion 2B of the repetitive pattern 22 is the same, the amount of decrease in the luminance value of the reflected image (the amount of decrease Δ in FIG. 8) becomes equal. For this reason, regardless of the pitch P of the repetitive pattern 22, if the change amount of the volume ratio is the same, the detection can be performed with the same sensitivity. For example, as in the repeated pattern 22 shown in FIGS. 9A and 9B, when the pitch P is different and the volume ratio between the line portion 2A and the space portion 2B is the same, the defect inspection can be performed with the same sensitivity. As can be seen from the comparison between FIGS. 9A and 9B, the smaller the pitch P, the more reliably the minute shape change (deviation amount δ from the design value of the line width D A of the line portion 2A) is reliably detected. can do.

また、表面検査装置30では、繰り返しパターン22のピッチPが異なる場合でも、半導体ウェハ20を水平な状態に保ったままで(従来のようなステージのチルト調整を行わずに)検査を行えるため、実際に欠陥検査を開始する(つまり半導体ウェハ20の反射画像を取り込む)までの準備時間を確実に短縮することができ、作業効率が向上する。   In the surface inspection apparatus 30, even when the pitch P of the repetitive pattern 22 is different, the inspection can be performed while the semiconductor wafer 20 is kept in a horizontal state (without adjusting the tilt of the stage as in the prior art). Therefore, it is possible to reliably reduce the preparation time until the defect inspection is started (that is, to capture the reflection image of the semiconductor wafer 20), and the working efficiency is improved.

さらに、表面検査装置30では、ステージ11がチルト機構を持たないため、装置構成が簡素化する。また、照明系13の光源31として安価な放電光源を用いることができ、表面検査装置30の全体構成が安価で簡素なものとなる。   Furthermore, in the surface inspection apparatus 30, since the stage 11 does not have a tilt mechanism, the apparatus configuration is simplified. In addition, an inexpensive discharge light source can be used as the light source 31 of the illumination system 13, and the overall configuration of the surface inspection apparatus 30 is inexpensive and simple.

また、表面検査装置30では、半導体ウェハ20の表面に複数種類の繰り返しパターンが形成され、ピッチPや繰り返し方向(X方向)の異なる繰り返しパターンが混在している場合でも、半導体ウェハ20の表面全体の反射画像を一括で取り込み、各々の箇所における輝度値の低下量を調べるだけで、全ての繰り返しパターンの欠陥検査を簡単に行うことができる。ちなみに、繰り返し方向の異なる繰り返しパターンは、図10に示すように、0度方向の繰り返しパターン25と90度方向の繰り返しパターン26とである。これらの繰り返しパターン25,26は、互いに、繰り返し方向(X方向)が90度異なっている
。しかし、各々の繰り返し方向(X方向)と直線偏光L1の振動面の方向(V方向)との成す角度は、共に45度である。
In the surface inspection apparatus 30, even when a plurality of types of repetitive patterns are formed on the surface of the semiconductor wafer 20 and repetitive patterns having different pitches P and different repetitive directions (X directions) are mixed, the entire surface of the semiconductor wafer 20 is present. It is possible to easily inspect defects of all the repetitive patterns simply by fetching the reflected images at once and examining the amount of decrease in the luminance value at each location. Incidentally, the repeating patterns having different repeating directions are a repeating pattern 25 in the 0 degree direction and a repeating pattern 26 in the 90 degree direction, as shown in FIG. These repeating patterns 25 and 26 are 90 degrees different from each other in the repeating direction (X direction). However, the angle formed between each repeating direction (X direction) and the direction of the vibration plane of the linearly polarized light L1 (V direction) is 45 degrees.

さらに、表面検査装置30では、半導体ウェハ20の表面に対して直線偏光L1を斜めに入射させるため(図1参照)、繰り返しパターン22のライン部2Aのエッジ形状の非対称性(例えばエッジ形状の崩れの方向性)に関わる欠陥情報も得ることができる。このためには、ステージ11により半導体ウェハ20の繰り返しパターン22の繰り返し方向(X方向)を180度回転させ、その前後の状態で半導体ウェハ20の反射画像を取り込み、同じ箇所の輝度差を調べることになる。   Further, in the surface inspection apparatus 30, the linearly polarized light L 1 is incident obliquely on the surface of the semiconductor wafer 20 (see FIG. 1), so that the edge shape asymmetry of the line portion 2 A of the repetitive pattern 22 (for example, the edge shape collapses). It is also possible to obtain defect information related to the directionality of For this purpose, the repeat direction (X direction) of the repetitive pattern 22 of the semiconductor wafer 20 is rotated 180 degrees by the stage 11, the reflected image of the semiconductor wafer 20 is captured in the state before and after that, and the luminance difference at the same location is examined. become.

図11には、エッジ形状が非対称な繰り返しパターン22と直線偏光L1の入射方向との関係を図示した。例えば、図11(a)は180度回転前の状態であり、ライン部2AのエッジE1,E2のうち崩れたエッジ(E1)側から照明光が入射される。図11(b)は180度回転後の状態であり、2つのエッジE1,E2のうち崩れていないエッジ(E2)側から照明光が入射される。そして、各々の状態で取り込んだ反射画像の輝度値は、入射方向にあるエッジE1,E2のエッジ形状を反映したものとなり、この例では図11(a)の場合の
方が反射画像の輝度値が大きくなる。したがって、180度回転させる前後の反射画像の輝度差を調べることにより、ライン部2Aのエッジ形状の非対称性が分かる。180度回転させる前後の反射画像を合成して欠陥検査を行ってもよい。
FIG. 11 illustrates the relationship between the repetitive pattern 22 having an asymmetric edge shape and the incident direction of the linearly polarized light L1. For example, FIG. 11A shows a state before 180 ° rotation, and illumination light is incident from the broken edge (E 1 ) side of the edges E 1 and E 2 of the line portion 2A. FIG. 11B shows a state after rotation of 180 degrees, and illumination light is incident from the unbroken edge (E 2 ) side of the two edges E 1 and E 2 . Then, the brightness value of the reflected image captured in each state reflects the edge shape of the edges E 1 and E 2 in the incident direction, and in this example, the case of FIG. The brightness value increases. Therefore, the asymmetry of the edge shape of the line portion 2A can be found by examining the luminance difference between the reflected images before and after being rotated 180 degrees. The defect inspection may be performed by combining the reflection images before and after being rotated by 180 degrees.

なお、半導体ウェハ20の表面に対して直線偏光L1を斜めに入射させる場合(図1参照,入射角度θ)、繰り返しパターン22から発生する楕円偏光L2(図5(b))は、厳
密に言えば、その進行方向を軸として僅かに回転している。このため、その回転角度を考慮して、受光系14の偏光板38の透過軸の方位を微調整することが好ましい。微調整後の状態では、2つの偏光板34,38の透過軸の方位が正確な90度ではなくなるが、こ
のような角度も"垂直(または直交)"の範疇であり、クロスニコルの状態と言える。偏光板38の透過軸の方位を微調整することにより、検査精度を向上させることができる。微調整の方法としては、例えば、繰り返しパターンの無い表面で直線偏光L1を反射させて画像を取り込み、画像の輝度値が最も小さくなるように、偏光板38の透過軸の方位を回転させることが考えられる。
When the linearly polarized light L1 is incident obliquely on the surface of the semiconductor wafer 20 (see FIG. 1, incident angle θ), the elliptically polarized light L2 (FIG. 5B) generated from the repeated pattern 22 can be said strictly. For example, it is slightly rotated around its traveling direction. For this reason, it is preferable to finely adjust the direction of the transmission axis of the polarizing plate 38 of the light receiving system 14 in consideration of the rotation angle. In the state after fine adjustment, the orientations of the transmission axes of the two polarizing plates 34 and 38 are not exactly 90 degrees, but such an angle is also in the “vertical (or orthogonal)” category, I can say that. By finely adjusting the orientation of the transmission axis of the polarizing plate 38, the inspection accuracy can be improved. As a fine adjustment method, for example, an image is captured by reflecting linearly polarized light L1 on a surface without a repetitive pattern, and the direction of the transmission axis of the polarizing plate 38 is rotated so that the luminance value of the image is minimized. Conceivable.

また、上記では、直線偏光L1がp偏光である例を説明したが、本発明はこれに限定されない。p偏光ではなくs偏光にしても良い。s偏光とは、振動面が入射面に垂直な直線偏光である。このため、図4に示す通り、半導体ウェハ20の繰り返しパターン22の繰り返し方向(X方向)が直線偏光L1であるs偏光の入射面(3A)に対して45度の角度に設定された場合、半導体ウェハ20の表面におけるs偏光の振動面の方向と、繰り返しパターン22の繰り返し方向(X方向)との成す角度も、45度に設定される。   In the above description, an example in which the linearly polarized light L1 is p-polarized light has been described. However, the present invention is not limited to this. It may be s-polarized light instead of p-polarized light. The s-polarized light is linearly polarized light whose vibration surface is perpendicular to the incident surface. For this reason, as shown in FIG. 4, when the repetitive direction (X direction) of the repetitive pattern 22 of the semiconductor wafer 20 is set at an angle of 45 degrees with respect to the incident surface (3A) of s-polarized light that is linearly polarized light L1, The angle formed by the direction of the vibrating surface of the s-polarized light on the surface of the semiconductor wafer 20 and the repeating direction (X direction) of the repeating pattern 22 is also set to 45 degrees.

なお、p偏光は、繰り返しパターン22のライン部2Aのエッジ形状に関わる欠陥情報を取得するのに有利である。s偏光は、半導体ウェハ20の表面の欠陥情報を効率よく捉えて、SN比を向上させるのに有利である。   The p-polarized light is advantageous for acquiring defect information related to the edge shape of the line portion 2A of the repetitive pattern 22. The s-polarized light is advantageous for efficiently capturing defect information on the surface of the semiconductor wafer 20 and improving the SN ratio.

さらに、p偏光やs偏光に限らず、振動面が入射面に対して任意の傾きを持つような直線偏光でも構わない。この場合、繰り返しパターン22の繰り返し方向(X方向)を直線偏光L1の入射面に対して45度以外の角度に設定し、半導体ウェハ20の表面における直線偏光L1の振動面の方向と、繰り返しパターン22の繰り返し方向(X方向)との成す角度を、45度に設定することが好ましい。   Furthermore, not only p-polarized light and s-polarized light, but also linearly polarized light whose vibration surface has an arbitrary inclination with respect to the incident surface may be used. In this case, the repeating direction (X direction) of the repeating pattern 22 is set to an angle other than 45 degrees with respect to the incident surface of the linearly polarized light L1, and the direction of the vibrating surface of the linearly polarized light L1 on the surface of the semiconductor wafer 20 and the repeating pattern are set. It is preferable to set the angle formed by the 22 repeat directions (X direction) to 45 degrees.

図12は、本発明による第1実施例の照明光学系13を示す図である。
ランプハウスLSの内部には不図示のハロゲンランプやメタルハライドランプ、水銀ランプなどの光源31と、波長選択フィルタ32、不図示の、光量調整用のNDフィルタ等が内蔵されており、一部の波長の光のみが照明光L1として抽出され、ライトガイドファイバ33に入射している。照明光学系13はライトガイドファイバ33と偏光板34と偏光補償板9と凹面反射鏡35とで構成されている。ライトガイドファイバ33から射出された発散光束である照明光L1は球面形状の凹面反射鏡35によりほぼ平行な光に変換され、ステージ11上に載置されたウェハ20を照明する。ライトガイドファイバ33の射出部付近には偏光板34が配置されていて、ライトガイドファイバ33から射出された照明光L1を直線偏光にする。偏光板34によって直線偏光となった光は後述する偏光補償板9を経て凹面反射鏡35よってコリメートされ、直線偏光のコリメート光がウェハ20を照明する。スループットを向上させるためには、ウェハ面全面の画像を一括で取ることが極めて有利であるので、本実施形態では、上述のように、光源からの光束を拡大して、凹面反射鏡35によりコリメートし、ウェハ全面を照明できる構成となっている。
FIG. 12 is a diagram showing the illumination optical system 13 of the first embodiment according to the present invention.
The lamp house LS contains a light source 31 such as a halogen lamp (not shown), a metal halide lamp, or a mercury lamp, a wavelength selection filter 32, an ND filter (not shown) for adjusting the amount of light, etc. Is extracted as illumination light L 1 and is incident on the light guide fiber 33. The illumination optical system 13 includes a light guide fiber 33, a polarizing plate 34, a polarization compensator 9, and a concave reflecting mirror 35. The illumination light L1, which is a divergent light beam emitted from the light guide fiber 33, is converted into substantially parallel light by the spherical concave reflecting mirror 35, and illuminates the wafer 20 placed on the stage 11. A polarizing plate 34 is disposed in the vicinity of the emission portion of the light guide fiber 33, and the illumination light L1 emitted from the light guide fiber 33 is linearly polarized. The light that has been linearly polarized by the polarizing plate 34 is collimated by the concave reflecting mirror 35 through the polarization compensation plate 9 described later, and the linearly polarized collimated light illuminates the wafer 20. In order to improve throughput, it is extremely advantageous to collect images of the entire wafer surface in a lump. In this embodiment, as described above, the luminous flux from the light source is expanded and collimated by the concave reflecting mirror 35. In addition, the entire surface of the wafer can be illuminated.

本実施例においては、照明光学系13には、偏光板34と凹面反射鏡35との間に、偏光補償板9が配置されている。まず、偏光補償板を有さない場合に、凹面反射鏡12に入射し、反射した光束の偏光状態について説明する。   In the present embodiment, the polarization compensation plate 9 is disposed in the illumination optical system 13 between the polarizing plate 34 and the concave reflecting mirror 35. First, a description will be given of the polarization state of a light beam incident on and reflected from the concave reflecting mirror 12 when no polarization compensator is provided.

図12において、ライトガイドファイバ33の開口数に応じて発散された照明光L1は
上述のように偏光板34で所定の直線偏光に変換され、発散光束の主光線AX1は凹面反射鏡35の光軸O35に対してずれた部位に入射する所謂軸外しの光学系となっている。
In FIG. 12, the illumination light L1 diverged in accordance with the numerical aperture of the light guide fiber 33 is converted into predetermined linearly polarized light by the polarizing plate 34 as described above, and the principal ray AX1 of the divergent light beam is the light from the concave reflecting mirror 35. This is a so-called off-axis optical system that is incident on a portion shifted from the axis O35.

ここで、説明のため、凹面反射鏡35に関して、凹面反射鏡に入射する直線偏光L1の主光線AX1と、主光線が入射する凹面反射鏡の部位の垂線とを含む平面を、凹面反射鏡に入射する直線偏光L1の基準入射面A4と定義する。また、前記基準入射面のうち、前記主光線と平行で前記凹面反射鏡と垂直に交わる軸をこの凹面反射鏡の光軸O35と定義する。   Here, for explanation, regarding the concave reflecting mirror 35, a plane including the principal ray AX1 of the linearly polarized light L1 incident on the concave reflecting mirror and the perpendicular of the portion of the concave reflecting mirror on which the principal ray enters is used as the concave reflecting mirror. It is defined as a reference incident surface A4 for the incident linearly polarized light L1. In addition, an axis of the reference incident surface that is parallel to the principal ray and intersects with the concave reflecting mirror perpendicularly is defined as an optical axis O35 of the concave reflecting mirror.

前述のように、凹面反射鏡35に入射する光束は、発散光束である。このためFrenelの反射の式に従って、偏光のp成分とs成分との間に透過率の差が発生し、その結果偏光面の回転が発生する。   As described above, the light beam incident on the concave reflecting mirror 35 is a divergent light beam. For this reason, according to Frenel's reflection formula, a difference in transmittance occurs between the p component and the s component of the polarized light, and as a result, the polarization plane rotates.

以下偏光面の回転の挙動について説明する。基準入射面A4に対して平行な振動面(p偏光)を有する直線偏光の発散光束が凹面反射鏡35に入射される場合を考える。図13にこの様子を示す。図12においては、光源からの光は凹面反射鏡35の有効径にのみ入射するが、図13は、凹面反射鏡を前記光軸O35を中心とし、凹面反射鏡35の有効径を含む円(点線)として表し、入射光束の径もこの円全体を照明するように拡大して記載している。このとき、凹面反射鏡35の面のうち、前記基準入射面A4と交わる部位と、光軸O35を含み前記基準入射面A4に対して垂直な面と交わる部位とにおいては、偏光面の回転は起こらないが、凹面反射鏡35の他の部位では回転が起こる。図13に示すように、凹面反射鏡35の面内のうち、基準入射面を挟んで線対称に偏光の振動面は回転する。また、偏光の振動面の回転は、凹面反射鏡35のうち、光軸O35を含み、基準入射面に対して垂直な面をはさんでも線対称に発生する。この偏光の回転量は凹面反射鏡の光軸O35から離れた部位ほど大きい。これは、凹面反射鏡の光軸から離れた部位ほど、すなわち、垂直入射からはなれた部位ほど入射光線の入射角が大きくなるためである。   The polarization plane rotation behavior will be described below. Consider a case where a linearly polarized divergent light beam having a vibration surface (p-polarized light) parallel to the reference incident surface A4 is incident on the concave reflecting mirror 35. FIG. 13 shows this state. In FIG. 12, the light from the light source is incident only on the effective diameter of the concave reflecting mirror 35. However, in FIG. 13, the concave reflecting mirror is centered on the optical axis O35 and includes a circle (including the effective diameter of the concave reflecting mirror 35). This is expressed as a dotted line), and the diameter of the incident light beam is also shown enlarged to illuminate the entire circle. At this time, of the surface of the concave reflecting mirror 35, the rotation of the polarization plane is the portion that intersects the reference incident surface A4 and the portion that intersects with the surface that includes the optical axis O35 and is perpendicular to the reference incident surface A4. Although it does not occur, rotation occurs in other parts of the concave reflecting mirror 35. As shown in FIG. 13, the plane of polarization of the concave reflecting mirror 35 rotates symmetrically with respect to the reference incident plane. Further, the rotation of the vibration plane of the polarization is generated in line symmetry with respect to the concave reflecting mirror 35 including the optical axis O35 and the plane perpendicular to the reference incident plane. The amount of rotation of the polarized light is larger as the position is away from the optical axis O35 of the concave reflecting mirror. This is because the incident angle of the incident light beam increases as the position is farther from the optical axis of the concave reflecting mirror, that is, the position is away from the normal incidence.

ここで、図12のように、凹面反射鏡35の光軸O35からずれた位置から発散光束が入射すると(図13の実線で囲んだ領域35が凹面反射鏡35の光束入射領域に対応)、凹面反射鏡35に入射する光束の最も左側の光は最も入射角度が小さく、最も右側の光は最も入射角度が大きくなるような傾斜を有する。(入射角度は入射光と、凹面反射鏡面の法線との角度である)。   Here, as shown in FIG. 12, when a divergent light beam enters from a position shifted from the optical axis O35 of the concave reflecting mirror 35 (a region 35 surrounded by a solid line in FIG. 13 corresponds to a light beam incident region of the concave reflecting mirror 35). The leftmost light of the light beam incident on the concave reflecting mirror 35 has an inclination such that the incident angle is the smallest and the rightmost light has the largest incident angle. (The incident angle is the angle between the incident light and the normal of the concave reflecting mirror surface).

このように凹面反射鏡に対する光の入射角度が面内で異なる(傾斜を有する)ため、面内で偏光面の回転にわずかの差が生じ、例えば、後段にクロスニコルで偏光板を配置したときに消光比のムラが発生する。   In this way, the incident angle of light with respect to the concave reflecting mirror is different in the plane (has an inclination), so there is a slight difference in the rotation of the polarization plane in the plane. Causes unevenness in extinction ratio.

凹面反射鏡に方位角αiの直線偏光が入射した時の反射光の偏光の方位角αrは(1)式で表される。
tanαr=rs/rp・exp(i・(Δs−Δp))tanαi
=rs/rp・exp(i・Δ)tanαi …(1)
rp、rsはそれぞれ、光の進行方向に垂直な面内で互いに直角の方向に振動する2つの成分(以下、p成分、s成分と記載する)の各々の振幅反射率、Δp、Δsはp成分、s成分それぞれの反射に起因する位相差で、反射面の複素屈折率と入射角度で決される値である(ボルン・ウォルフ光学の原理III金属光学の章等参照)。凹面反射鏡の反射面は
アルミなどの金属であり、(1)式の位相差Δ、振幅反射率rp、rsは入射角度により変化する。
The azimuth angle αr of the polarized light of the reflected light when the linearly polarized light having the azimuth angle αi is incident on the concave reflecting mirror is expressed by the equation (1).
tanαr = rs / rp · exp (i · (Δs−Δp)) tanαi
= Rs / rp · exp (i · Δ) tanαi (1)
rp and rs are amplitude reflectivities of two components (hereinafter referred to as “p component” and “s component”) that vibrate in directions perpendicular to each other in a plane perpendicular to the traveling direction of light, and Δp and Δs are p. It is a phase difference caused by reflection of each of the component and s component, and is a value determined by the complex refractive index of the reflecting surface and the incident angle (see the principle of Born-Wolf optics III, metal optics, etc.). The reflecting surface of the concave reflecting mirror is a metal such as aluminum, and the phase difference Δ and the amplitude reflectances rp and rs in the equation (1) vary depending on the incident angle.

本実施例においては、偏光板34からウェハ20までの間の光学部材は、アルミの反射面を有する凹面反射鏡35のみであり、この凹面反射鏡を反射する光束の偏光面の回転は
たかだか数度程度と小さい(偏光面の回転角が3°であれば照明光の波長λの1/60の位相変化に相当)。
In the present embodiment, the optical member between the polarizing plate 34 and the wafer 20 is only the concave reflecting mirror 35 having an aluminum reflecting surface, and the rotation of the polarization plane of the light beam reflected by the concave reflecting mirror is at most several. It is as small as about 50 degrees (if the rotation angle of the polarization plane is 3 °, this corresponds to a phase change of 1/60 of the wavelength λ of the illumination light).

また、上述のように凹面反射鏡35の光軸から外れた部位に発散光束L1が入射するため、凹面反射鏡35の面に入射した直線偏光の光束において、入射面A4を挟んで対称に回転が発生する。この回転量は凹面反射鏡35の光軸O35から離れるほど大きい。従って、回転量は光軸O35の方向に傾斜を有する。   Further, as described above, since the divergent light beam L1 is incident on a portion off the optical axis of the concave reflecting mirror 35, the linearly polarized light beam incident on the surface of the concave reflecting mirror 35 rotates symmetrically across the incident surface A4. Occurs. The amount of rotation increases as the distance from the optical axis O35 of the concave reflecting mirror 35 increases. Accordingly, the rotation amount has an inclination in the direction of the optical axis O35.

この、傾斜を有して分布する微小な偏光面の回転による、照明光の面内での偏光面の回転ムラを解消するために、本実施例では、偏光補償板9を偏光板34と凹面反射鏡35との間に配置する。偏光補償板9はガラスの平行平板であり、照明光L1の光軸AX1に対して傾斜して配置されている。以下に、偏光補償板9の作用について説明する。   In order to eliminate the uneven rotation of the polarization plane in the plane of the illumination light due to the rotation of the minute polarization plane distributed with an inclination, in this embodiment, the polarization compensator 9 is formed with the polarizing plate 34 and the concave surface. It arrange | positions between the reflective mirrors 35. FIG. The polarization compensation plate 9 is a parallel plate made of glass, and is inclined with respect to the optical axis AX1 of the illumination light L1. The operation of the polarization compensation plate 9 will be described below.

ライトガイドファイバ11から射出され、偏光板34を経て直線偏光光となった光束L1は偏光補償板9に入射する。ここで、光束L1は発散光束であり、かつ偏光補償板9は光軸AX1に対して傾いて配置されているので、偏光補償板9に入射する光束の入射角度の大きさは光束の断面方向で傾斜を有する。   A light beam L1 emitted from the light guide fiber 11 and converted into linearly polarized light through the polarizing plate 34 enters the polarization compensator 9. Here, since the light beam L1 is a divergent light beam and the polarization compensator 9 is disposed to be inclined with respect to the optical axis AX1, the incident angle of the light beam incident on the polarization compensator 9 is the cross-sectional direction of the light beam. With a slope.

偏光補償板に方位角α’iで入射した光束の透過光の偏光の方位角は、(2)式で表さ
れる。
tanαi=ts/tp・exp(i・(Δs−Δp))・tanα'i
=ts/tp・exp(i・Δ)・tanα'i … (2)
この場合、ts、tpはs成分、p成分それぞれの透過面での振幅透過率、Δp、Δsはs成分、p成分それぞれの成分の透過に起因する位相差である。ts、ts、Δp、Δsは硝子の屈折率と入射角の関数となる。
The azimuth angle of the polarization of the transmitted light of the light beam incident on the polarization compensator at the azimuth angle α′i is expressed by equation (2).
tanαi = ts / tp · exp (i · (Δs−Δp)) · tanα'i
= Ts / tp · exp (i · Δ) · tan α'i (2)
In this case, ts and tp are amplitude transmittances at the transmission surfaces of the s component and the p component, respectively, and Δp and Δs are phase differences caused by the transmission of the components of the s component and the p component. ts, ts, Δp, and Δs are functions of the refractive index of the glass and the incident angle.

理想的な位相板では位相差Δと偏光面の回転量δはΔ=2δの関係があり、今回の実施例でもほぼこの関係を満たすものと考えてよい。その為、偏光補償板9を透過した照明光L1は入射光の入射角度に応じて、p成分とs成分の位相差Δが変化し偏光面が回転する。偏光補償板9により生じた偏光の回転の様子を図13(b)に示す。   In an ideal phase plate, the phase difference Δ and the rotation amount δ of the polarization plane have a relationship of Δ = 2δ, and it can be considered that the present embodiment also satisfies this relationship. Therefore, the illumination light L1 transmitted through the polarization compensator 9 changes the phase difference Δ between the p component and the s component according to the incident angle of the incident light, and the plane of polarization rotates. FIG. 13B shows the state of polarization rotation generated by the polarization compensator 9.

ウェハ20を照明する時点での照明光L1の偏光面は偏光補償板9で生じた偏光面の回転と凹面反射鏡35で生じた偏光面の回転量との足し合わせとなる。従って、偏光補償板9を照明光学系の光軸AX1に対して傾けて、凹面反射鏡35で生じる偏光面の回転量の傾斜とは、反対の傾斜を有する偏光面の回転を生じるように配置することによって、偏光面の回転量の値(すなわち、照明光束の全面で光の方位角α)がそろう。   The polarization plane of the illumination light L1 at the time of illuminating the wafer 20 is the sum of the rotation of the polarization plane generated by the polarization compensation plate 9 and the rotation amount of the polarization plane generated by the concave reflecting mirror 35. Therefore, the polarization compensator 9 is tilted with respect to the optical axis AX1 of the illumination optical system, and is arranged so as to cause rotation of the polarization plane having an inclination opposite to that of the polarization plane rotation amount generated by the concave reflecting mirror 35. By doing so, the value of the rotation amount of the polarization plane (that is, the azimuth angle α of the light over the entire surface of the illumination light beam) is aligned.

図12においては、前述のように、凹面反射鏡35への入射した直線偏光の光束は、入射面A4を挟んで対称にかつ、凹面反射鏡35の光軸O35から離れるほど回転量が大きい回転量を有する(すなわち凹面反射鏡の光軸O35を中心として傾斜を有する)。この傾斜に対して、逆向きの傾斜を与えるために、偏光補償板を光束に対する凹面反射鏡の傾き方向とは逆の傾き方向に配置することによって、凹面反射鏡35を反射する光束の、断面方向の偏光面の回転量の分布を略一様にそろえることができる。   In FIG. 12, as described above, the linearly polarized light beam incident on the concave reflecting mirror 35 is symmetric with respect to the incident surface A4, and the rotation amount increases as the distance from the optical axis O35 of the concave reflecting mirror 35 increases. (Ie, having an inclination about the optical axis O35 of the concave reflector). In order to give a tilt in the opposite direction to this tilt, the polarization compensator is arranged in a tilt direction opposite to the tilt direction of the concave reflecting mirror with respect to the light beam, so that a cross section of the light beam reflected by the concave reflecting mirror 35 is obtained. The distribution of the rotation amount of the polarization plane in the direction can be made substantially uniform.

ここで、図16に示すように、偏光補償板9には傾斜角度と傾斜方向とを任意に設定する位置調整40を設けることが好ましい。このように構成することによって、装置による僅かなばらつきを調整できる。また、例えば、光源31および波長選択フィルタによって照明波長を変化させたときに生じる凹面反射鏡35における偏光面の回転の回転量や分布の変化に応じて、傾斜角度および傾斜方向のいずれか一方または両者を調整することによって、位相補償量を調整することができる。また、例えば装置の調整状態等の装置の状況
に合わせた微調整も可能である。位置調整機構によって、実際に、照明波長λの数十分の1の位相差変化の領域で微調整も含めた調整が出来ている。
Here, as shown in FIG. 16, it is preferable to provide the polarization compensation plate 9 with a position adjustment 40 for arbitrarily setting the tilt angle and the tilt direction. With this configuration, slight variations due to the apparatus can be adjusted. Further, for example, depending on the rotation amount or distribution change of the polarization plane rotation in the concave reflecting mirror 35 generated when the illumination wavelength is changed by the light source 31 and the wavelength selection filter, either one of the inclination angle and the inclination direction or By adjusting both, the phase compensation amount can be adjusted. Further, for example, fine adjustment in accordance with the state of the apparatus such as the adjustment state of the apparatus is possible. By the position adjusting mechanism, the adjustment including the fine adjustment can be actually performed in the phase difference change region of several tenths of the illumination wavelength λ.

以上のように、照明光学系13においては、偏光補償板9を配置することによって、凹面反射鏡12による光束の断面方向での偏光面の回転量の傾斜を補正することができるのでウェハ面全面で偏光面の回転方向の揃った照明光を照射することができる。   As described above, in the illumination optical system 13, by disposing the polarization compensation plate 9, the tilt of the rotation amount of the polarization plane in the cross-sectional direction of the light beam by the concave reflecting mirror 12 can be corrected. Thus, it is possible to irradiate illumination light having a uniform polarization plane rotation direction.

以上、説明したように、凹面反射鏡35を軸外しで使用して発散光束を平行光束にするため、凹面反射鏡の35の各点で法線に対する入射角が異なり(図12中の凹面反射鏡35々の左右で値が傾斜を有する)、偏光面の回転に傾きが生じる。これらの偏光面の回転角は微小である。この回転角の分布を一様に揃えるためには偏光補償板9も同様に極めて微小な傾斜を有する位相差を有することが必要である。上述のように、硝子面に光束が角度を持って入射する時、p偏光、s偏光で生じる位相差に差が生じる。これを利用して、実施例1では回転角の分布を一様にするために必要な位相差の傾きを、硝子の平行平面を非平行光束に傾けて配置することにより生じさせ、軸外しの凹面反射鏡を用いた光学系における偏光の振動面の回転分布の僅かな乱れを均一に補償することができる。また、この平行平面の傾斜角度および傾斜方向を調整可能に構成すれば、波長λの数十分の一から百分の一のオーダで位相差の傾きの量を調整できるので、個々の照明装置の状態に応じて微妙な調整が可能となる。   As described above, since the concave reflecting mirror 35 is used off-axis to make the divergent light beam into a parallel light beam, the incident angle with respect to the normal is different at each point of the concave reflecting mirror 35 (the concave reflection in FIG. 12). The values of the mirrors 35 are inclined to the left and right), and the polarization plane is inclined. The rotation angles of these polarization planes are very small. In order to make the distribution of the rotation angles uniform, the polarization compensator 9 needs to have a phase difference having a very small inclination. As described above, when the light beam is incident on the glass surface at an angle, a difference occurs in the phase difference generated between the p-polarized light and the s-polarized light. By utilizing this, in Example 1, the inclination of the phase difference necessary to make the distribution of the rotation angle uniform is generated by inclining the parallel plane of the glass to the non-parallel light beam, and off-axis A slight disturbance of the rotational distribution of the vibration plane of polarized light in the optical system using the concave reflecting mirror can be compensated uniformly. Further, if the tilt angle and tilt direction of the parallel plane are configured to be adjustable, the amount of tilt of the phase difference can be adjusted on the order of several tenths to one hundredth of the wavelength λ. Subtle adjustments are possible according to the state of the.

また本実施例では、ガラスの平行平板を用いているので、通常の位相板のように加工誤差(通常10%程度発生)の影響を受けない利点もある。   Further, in this embodiment, since a parallel plate of glass is used, there is an advantage that it is not affected by a processing error (generally about 10%) unlike a normal phase plate.

実施例2においては、図14に基づいて、本発明の表面検査装置の受光光学系について説明する。本発明の受光光学系14は、ウェハ20からの光を入射して集光させる凹面鏡36と、後述の偏光補償板10と、偏光板38と、レンズ37と、撮像素子39とで構成される。   In Example 2, the light receiving optical system of the surface inspection apparatus of the present invention will be described with reference to FIG. The light receiving optical system 14 of the present invention is composed of a concave mirror 36 that makes light from the wafer 20 incident and condensed, a polarization compensation plate 10 to be described later, a polarizing plate 38, a lens 37, and an imaging device 39. .

ウェハ20は、例えば、実施例1に説明したような、偏光補償板9を供えた偏光照明光学系によって、照明光の断面方向に偏光面の回転量が揃えられた直線偏光の光束L1により照明される。ウェハは、原理の説明で説明したように、繰り返しパターンの並び方向が、照明光の直線偏光の振動面に対して45°の角度を有するように配置されている。ウェハ20から生じる正反射光L2は、ウェハ面に形成された繰り返しパターンの状態(例えばパターン形状やピッチ、エッジの形状等)に起因する構造複屈折性によって偏光状態が変化している。   The wafer 20 is illuminated with, for example, a linearly polarized light beam L1 in which the amount of rotation of the polarization plane is aligned in the cross-sectional direction of the illumination light by the polarization illumination optical system provided with the polarization compensation plate 9 as described in the first embodiment. Is done. As described in the explanation of the principle, the wafer is arranged so that the arrangement direction of the repeated patterns has an angle of 45 ° with respect to the vibration plane of the linearly polarized light of the illumination light. The state of polarization of the specularly reflected light L2 generated from the wafer 20 changes due to structural birefringence caused by the state of a repeated pattern (for example, pattern shape, pitch, edge shape, etc.) formed on the wafer surface.

ウェハ20からの正反射光L2は、凹面反射鏡36、レンズ37で構成された受光光学系14に導かれて集光され、正反射光L2によるウェハ2の像を撮像素子39の撮像面上
に形成する。撮像素子39は例えは2次元CCDカメラである。
The specularly reflected light L2 from the wafer 20 is guided and collected by a light receiving optical system 14 including a concave reflecting mirror 36 and a lens 37, and an image of the wafer 2 by the specularly reflected light L2 is captured on the imaging surface of the image sensor 39. To form. The image sensor 39 is, for example, a two-dimensional CCD camera.

凹面反射鏡36とレンズ37との間には偏光板38が配置されていて、照明光L1の直線偏光に対して直交する直線偏光を透過するように配置されている。偏光板38と凹面反射鏡36との間には偏光補償板10が配置されている。   A polarizing plate 38 is disposed between the concave reflecting mirror 36 and the lens 37 so as to transmit linearly polarized light orthogonal to the linearly polarized light of the illumination light L1. A polarization compensation plate 10 is disposed between the polarizing plate 38 and the concave reflecting mirror 36.

実施例1では、発散光束が凹面反射鏡35に入射する光束の断面方向の偏光面の回転量の傾斜を、偏光補償板9により偏光面の回転量がそろうように補正した。これと同様の原理で、受光光学系14では、凹面反射鏡36を反射して射出する収束光束の断面方向の偏光面の回転量の傾斜を、偏光補償板10で偏光面の回転量がそろうように補正している。   In Example 1, the inclination of the amount of rotation of the polarization plane in the cross-sectional direction of the beam of divergent light incident on the concave reflecting mirror 35 is corrected by the polarization compensator 9 so that the amount of rotation of the polarization plane is aligned. Based on the same principle, in the light receiving optical system 14, the rotation amount of the polarization plane in the polarization compensator 10 is aligned with the inclination of the rotation amount of the polarization plane in the cross-sectional direction of the convergent light beam reflected and emitted from the concave reflecting mirror 36. It is corrected as follows.

図14において、凹面反射鏡36に関して、凹面反射鏡36から射出する直線偏光L2の主光線AX2を含み凹面反射鏡の光軸O36に平行な平面が、凹面反射鏡36から射出する直線偏光L2の入射面を基準入射面A5とする。一方、ウェハ20を反射した平行光束L2は、凹面反射鏡36のうち光軸O36から外れた部位に入射して収束作用を受けるので、受光光学系14は、所謂軸外しの光学系となっている。   In FIG. 14, regarding the concave reflecting mirror 36, a plane including the principal ray AX <b> 2 of the linearly polarized light L <b> 2 emitted from the concave reflecting mirror 36 and parallel to the optical axis O <b> 36 of the concave reflecting mirror is the linearly polarized light L <b> 2 emitted from the concave reflecting mirror 36. The incident surface is defined as a reference incident surface A5. On the other hand, the collimated light beam L2 reflected from the wafer 20 is incident on a portion of the concave reflecting mirror 36 that is off the optical axis O36 and receives a converging action, so that the light receiving optical system 14 is a so-called off-axis optical system. Yes.

ここで、説明のため、第一実施例と同様に、凹面反射鏡36に関して、凹面反射鏡から射出する直線偏光L2の主光線AX2と、主光線AX2が射出する凹面反射鏡の部位の垂線とを含む平面を、凹面反射鏡36から射出する直線偏光L2の基準入射面A5と定義する。また、前記基準入射面のうち、前記主光線と平行で前記凹面反射鏡と垂直に交わる軸をこの凹面反射鏡の光軸O36と定義する。   Here, for the sake of explanation, as in the first embodiment, with respect to the concave reflecting mirror 36, the principal ray AX2 of the linearly polarized light L2 emitted from the concave reflecting mirror and the perpendicular of the portion of the concave reflecting mirror from which the principal ray AX2 emerges Is defined as a reference incident surface A5 of the linearly polarized light L2 emitted from the concave reflecting mirror 36. Further, an axis of the reference incident surface that is parallel to the principal ray and intersects with the concave reflecting mirror perpendicularly is defined as an optical axis O36 of the concave reflecting mirror.

凹面反射鏡36を射出する収束光束の偏光面の回転は、実施例1で図13に基づいて行った説明に準じる。凹面反射鏡36において、凹面反射鏡36の面内のうち、前記基準入射面A5を挟んで線対称に、偏光の振動面が回転する。この回転量は凹面反射鏡の光軸O36から離れた部位ほど大きい。これは、凹面反射鏡36を射出する収束光束L2が、凹面反射鏡36の光軸O36からずれた位置から射出するため、図14において、凹面反射鏡36から射出する光束の最も右側の光は最も射出角度が小さく、最も左側の光は最も射出角度が大きくなるような傾斜を有するからである。(射出角度は射出光と、凹面反射鏡面の法線との角度である)。このように凹面反射鏡に対する光の射出角度が面内で異なる(傾斜を有する)ため、面内で偏光面の回転にわずかの差が生じ、例えばクロスニコル配置の場合に、消光比のムラが発生する。   The rotation of the polarization plane of the convergent light beam exiting from the concave reflecting mirror 36 is in accordance with the description made with reference to FIG. In the concave reflecting mirror 36, the polarization vibration plane rotates in line symmetry with respect to the reference incident surface A 5 in the plane of the concave reflecting mirror 36. The amount of rotation increases as the position is farther from the optical axis O36 of the concave reflecting mirror. This is because the convergent light beam L2 emitted from the concave reflecting mirror 36 is emitted from a position deviated from the optical axis O36 of the concave reflecting mirror 36, and therefore the rightmost light of the light beam emitted from the concave reflecting mirror 36 in FIG. This is because the light exit angle is the smallest, and the leftmost light has a slope such that the light exit angle is the largest. (The exit angle is the angle between the exit light and the normal of the concave reflecting mirror surface). As described above, since the light emission angle with respect to the concave reflecting mirror is different (inclined) in the plane, there is a slight difference in the rotation of the polarization plane in the plane. appear.

偏光補償板10は、第一実施例の偏光補償板9と同様に、硝子の平行平面板であり、正反射光L2の主光線AX2に対して傾斜して配置されている。正反射光L2は収束光なので、光軸AX2に対して傾斜して配置された偏光補償板10に対する入射角度の大きさは、光束の断面方向で傾斜を有する。   The polarization compensation plate 10 is a glass parallel plane plate, similar to the polarization compensation plate 9 of the first embodiment, and is inclined with respect to the principal ray AX2 of the regular reflection light L2. Since the specularly reflected light L2 is convergent light, the magnitude of the incident angle with respect to the polarization compensator 10 that is arranged to be inclined with respect to the optical axis AX2 has an inclination in the cross-sectional direction of the light beam.

その為、偏光補償板10も偏光補償板9と同様入射角度の応じた傾斜を持ったp成分とs成分との位相差を生じさせられる。凹面反射鏡41で生じるp成分とs成分の位相差の分布の傾きに対して、p成分とs成分の位相差が逆の傾きを有する分布を有するように偏光補償板の角度をきめればほぼ偏光面の回転を揃えることが出来る。   For this reason, the polarization compensator 10 can also generate a phase difference between the p component and the s component having an inclination corresponding to the incident angle, similarly to the polarization compensator 9. If the angle of the polarization compensator is determined such that the phase difference between the p component and the s component has a reverse slope with respect to the slope of the phase difference distribution between the p component and the s component generated in the concave reflecting mirror 41. The rotation of the polarization plane can be almost aligned.

図16に示すように、偏光補償板10にも位置調整機構41を設け、受光光学系14に配置される傾斜角と傾斜方向とを自在に設定できることが好ましい。このように構成することによって、例えば装置の調整状態等、装置の状況に合わせた微調整が可能となる。また、このように構成することによって照明波長λの数十分の1の位相差変化の領域で微調整も含めた補正が可能となることも照明光学系1の場合と同様である。また、照明光学系13の場合と同様に、照明光の波長を変えた場合等で生じる偏光面の回転の分布の変化に対応させることができる。   As shown in FIG. 16, it is preferable that the polarization compensation plate 10 is also provided with a position adjusting mechanism 41 so that the inclination angle and the inclination direction arranged in the light receiving optical system 14 can be set freely. With this configuration, it is possible to perform fine adjustment in accordance with the status of the apparatus, such as the adjustment state of the apparatus. In addition, as in the case of the illumination optical system 1, it is possible to perform correction including fine adjustment in the phase difference change region of several tenths of the illumination wavelength λ with this configuration. Further, similarly to the case of the illumination optical system 13, it is possible to cope with a change in the rotation distribution of the polarization plane that occurs when the wavelength of the illumination light is changed.

上述のように、受光光学系14においても、偏光補償板10を配置することによって、凹面反射鏡36による光束の断面方向での偏光面の回転量の傾斜を補正することができるので、ウェハからの正反射光L2の偏光面の分布を変えずに撮像素子39に導くことができる。従って、検出精度の高い装置を提供することができる。   As described above, also in the light receiving optical system 14, by arranging the polarization compensation plate 10, the inclination of the rotation amount of the polarization plane in the cross-sectional direction of the light beam by the concave reflecting mirror 36 can be corrected. The regular reflection light L2 can be guided to the image sensor 39 without changing the distribution of the polarization plane. Therefore, an apparatus with high detection accuracy can be provided.

実施例においては、ウェハ20と偏光板38の間の光学部材はアルミの反射面を有する凹面反射鏡36のみである。凹面反射鏡36による偏光面の回転は小さくたかだか数度程度である(偏光面の回転角3度でほぼ照明光の波長λの1/60の位相変化に相当)。   In the embodiment, the optical member between the wafer 20 and the polarizing plate 38 is only the concave reflecting mirror 36 having an aluminum reflecting surface. The rotation of the polarization plane by the concave reflecting mirror 36 is small and about several degrees (corresponding to a phase change of about 1/60 of the wavelength λ of the illumination light when the rotation angle of the polarization plane is 3 degrees).

以上説明したように、本実施例では、凹面反射鏡36を軸外しで使用して平行光束を収斂光束にするため、凹面反射鏡の36の各点で法線に対する射出角が異なり(図14中の凹面反射鏡36の各々の左右で値が傾斜を有する)、偏光面の回転に傾きが生じる。これらの偏光面の回転角は微小である。この回転角の分布を一様に揃えるためには偏光補償板10も同様に極めて微小な傾斜を有する位相差を有することが必要である。実施例1で説明したように、硝子面に光束が角度を持って入射する時、p偏光、s偏光で生じる位相差に差が生じる。これを利用して、実施例2においても、必要な位相差の傾きを硝子の平行平面を非平行光束に傾けて配置することにより生じさせた。また、また平行平面の傾斜角度および傾斜方向を調整可能に構成すれば、波長λの数十分の一から百分の一のオーダで位相差の傾きの量を調整できるため、個々の受光装置の状態に応じて微妙な調整を行うことが可能となる。また通常の位相板のように加工誤差(通常10%程度発生)の影響を受けない利点もある。   As described above, in this embodiment, the concave reflecting mirror 36 is used off-axis to convert the parallel light beam into a converging light beam, and therefore the exit angle with respect to the normal line differs at each point of the concave reflecting mirror 36 (FIG. 14). The value is inclined on the left and right of each concave reflecting mirror 36), and the rotation of the polarization plane is inclined. The rotation angles of these polarization planes are very small. In order to make the rotation angle distribution uniform, the polarization compensator 10 needs to have a phase difference having a very small inclination. As described in the first embodiment, when a light beam is incident on the glass surface with an angle, a difference occurs in the phase difference generated between the p-polarized light and the s-polarized light. Utilizing this fact, also in the second embodiment, the necessary retardation of the phase difference is generated by arranging the parallel plane of the glass in a non-parallel light beam. In addition, if the tilt angle and tilt direction of the parallel plane can be adjusted, the amount of tilt of the phase difference can be adjusted on the order of several tenths to one hundredth of the wavelength λ. Subtle adjustments can be made according to the state of Further, there is an advantage that it is not affected by a processing error (generally about 10%) unlike a normal phase plate.

実施例3では、実施例1で説明した照明光学系と、実施例2で説明した受光光学系とを備えた表面検査装置について説明する。図15に本発明の表面検査装置を示す。
照明光学系13の構成は実施例1の構成と同様である。ライトガイドファイバ33の射出部付近には偏光板34が配置されていて、ライトガイドファイバ33から射出された照明光L1を直線偏光にする。偏光板34によって直線偏光となった光は後述する偏光補償板9を経て凹面反射鏡35よってコリメートされ、直線偏光のコリメート光L1がウェハ20を照明する。スループットを向上させるためには、ウェハ面全面の画像を一括で取ることが極めて有利であるので、本実施形態では、上述のように、光源からの光束を拡大して、凹面反射鏡35によりコリメートし、ウェハ全面を照明できる構成となっている。
In Example 3, a surface inspection apparatus including the illumination optical system described in Example 1 and the light receiving optical system described in Example 2 will be described. FIG. 15 shows a surface inspection apparatus of the present invention.
The configuration of the illumination optical system 13 is the same as that of the first embodiment. A polarizing plate 34 is disposed in the vicinity of the emission portion of the light guide fiber 33, and the illumination light L1 emitted from the light guide fiber 33 is linearly polarized. The light that has been linearly polarized by the polarizing plate 34 is collimated by the concave reflecting mirror 35 through the polarization compensation plate 9 described later, and the linearly polarized collimated light L 1 illuminates the wafer 20. In order to improve throughput, it is extremely advantageous to collect images of the entire wafer surface in a lump. In this embodiment, as described above, the luminous flux from the light source is expanded and collimated by the concave reflecting mirror 35. In addition, the entire surface of the wafer can be illuminated.

ウェハ20に入射した直線偏光のコリメート光L1はウェハ表面で反射されて、受光光学系14に入射する。受光光学系14の構成は実施例2と同様である。ウェハ20で反射された光束L2は、凹面反射鏡36に入射して収束作用を受け、収束光束は後述する偏光補償板10と、前記偏光板34とはクロスニコルの関係に配置された偏光板38とを経て、結像レンズ37により前記ウェハ20の表面と共役な位置に配置された撮像素子39の撮像面上に前記ウェハ20表面の像を形成する。   The linearly polarized collimated light L 1 incident on the wafer 20 is reflected by the wafer surface and enters the light receiving optical system 14. The configuration of the light receiving optical system 14 is the same as that of the second embodiment. The light beam L2 reflected by the wafer 20 is incident on the concave reflecting mirror 36 and receives a converging action. The convergent light beam is a polarizing plate in which the polarizing compensator 10 described later and the polarizing plate 34 are arranged in a crossed Nicols relationship. Then, an image of the surface of the wafer 20 is formed on the imaging surface of the imaging device 39 disposed at a position conjugate with the surface of the wafer 20 by the imaging lens 37.

ウェハ20の表面には例えば、図2に示すような複数のチップ領域21がXY方向に配列され、各チップ領域21の中に繰り返しパターン22が形成されている。繰り返しパターン22は、図3に示すように複数のライン部2Aとスペース部2Bとがその短手方向(X方向)に沿って一定のピッチPで配列されたレジストパターン(例えば配線パターン)である。   For example, a plurality of chip areas 21 as shown in FIG. 2 are arranged in the XY direction on the surface of the wafer 20, and a repeated pattern 22 is formed in each chip area 21. The repetitive pattern 22 is a resist pattern (for example, a wiring pattern) in which a plurality of line portions 2A and space portions 2B are arranged at a constant pitch P along the short direction (X direction) as shown in FIG. .

ステージ11は、表面に上述のパターンが形成されたウェハ20を戴置して、真空吸着等により固定保持する。さらに、ステージ11はステージ回転機構16によってステージ面に直交する所定の回転軸周りに回転可能に構成されている。このステージ回転機構16により、ウェハ20を照明する光束L1の直線偏光の振動面に対するウェハ20表面の形成された繰り返しパターンの長手方向とのなす角度を任意の角度に設定することができる。   The stage 11 places the wafer 20 on which the above-described pattern is formed, and fixes and holds the wafer 20 by vacuum suction or the like. Further, the stage 11 is configured to be rotatable around a predetermined rotation axis orthogonal to the stage surface by a stage rotation mechanism 16. With this stage rotation mechanism 16, the angle formed by the longitudinal direction of the repeated pattern formed on the surface of the wafer 20 with respect to the linearly polarized vibrating surface of the light beam L1 that illuminates the wafer 20 can be set to an arbitrary angle.

また、図15の表面検査装置において、凹面反射鏡35と凹面反射鏡36との間には、ステージ11に戴置されたウェハ20の表面に形成されたパターンの向きを検知するためのアライメント系12が配設され、予め設定された光束L1の直線偏光の振動面と繰り返しパターン22の長手方向Yとのなす角度を検知して、ステージ回転機構16により照明光学系13及び受光光学系14に対する繰り返しパターンの長手方向Yの向きを調整することができる。本実施例における欠陥検査の原理は表面検査装置の原理の説明で述べたも
のと同様である。
In the surface inspection apparatus of FIG. 15, an alignment system for detecting the orientation of the pattern formed on the surface of the wafer 20 placed on the stage 11 between the concave reflecting mirror 35 and the concave reflecting mirror 36. 12 is arranged, and an angle formed by a preset linearly polarized vibrating surface of the light beam L1 and the longitudinal direction Y of the repeated pattern 22 is detected, and the stage rotating mechanism 16 is used to detect the illumination optical system 13 and the light receiving optical system 14. The direction of the longitudinal direction Y of the repeated pattern can be adjusted. The principle of defect inspection in this embodiment is the same as that described in the explanation of the principle of the surface inspection apparatus.

実施例1で説明した照明光学系と実施例2で説明した受光光学系とを用いて表面検査装置30を構成することによって、2枚の凹面反射鏡35、36による偏光面の回転に対して、偏光補償板9、10を配置して、位相変化を前記のように適宜に与えることにより偏光面の回転角を揃えるので、クロスニコルに配置された2枚の偏光板34、38による消光比を小さく抑えた表面検査装置を構成することができる。   By configuring the surface inspection apparatus 30 using the illumination optical system described in the first embodiment and the light receiving optical system described in the second embodiment, the rotation of the polarization plane by the two concave reflecting mirrors 35 and 36 is prevented. Since the polarization compensators 9 and 10 are arranged and the phase change is appropriately applied as described above to align the rotation angle of the polarization plane, the extinction ratio by the two polarizing plates 34 and 38 arranged in crossed Nicols. It is possible to configure a surface inspection apparatus that suppresses the above.

図15の表面検査装置において、上述のように、消光比が小さく抑えられた照明光学系および受光光学系を経て得られたウェハ20の像は、ウェハ20の表面と共役な位置に配置された撮像素子39によって撮像され、デジタル画像に変換される。ここで得られる像は、ウェハ表面に形成された繰り返しパターンの形状やピッチ、側面の形状などに基づいてパターンの領域により異なる輝度値を有する。デジタル画像は画像処理装置15に送られ、撮像素子39で取り込んだ画像の画像処理を行いパターンの領域ごとの輝度値を抽出する。露光装置のデフォーカスや露光量等に異常がある部位では、正常に露光が行われた部位に比較して、偏光面の回転量に違いが生じるため、得られた画像に明るさの差が生じる。画像処理装置15では、これを抽出された輝度値に基づいて検出し、欠陥検査を行う。   In the surface inspection apparatus of FIG. 15, as described above, the image of the wafer 20 obtained through the illumination optical system and the light receiving optical system in which the extinction ratio is kept small is arranged at a position conjugate with the surface of the wafer 20. The image is picked up by the image pickup device 39 and converted into a digital image. The image obtained here has different luminance values depending on the pattern region based on the shape and pitch of the repeated pattern formed on the wafer surface, the shape of the side surface, and the like. The digital image is sent to the image processing device 15, and image processing of the image captured by the image sensor 39 is performed to extract a luminance value for each pattern area. In parts where there is an abnormality in the defocus or exposure amount of the exposure device, the amount of rotation of the polarization plane is different compared to the part where exposure has been performed normally. Arise. The image processing device 15 detects this based on the extracted luminance value, and performs defect inspection.

更に、照明光学系13により完全に偏光の方位角の揃った直線偏光光束でウェハを照明する必要があれば、例えば、偏光板の後側に所定の位相板を設ける等によって、偏光補償板9に凹面反射鏡35による偏光面の回転とは逆の回転をもたらす位相差を与えればよい。   Further, if the illumination optical system 13 needs to illuminate the wafer with a linearly polarized light beam whose polarization azimuths are completely aligned, the polarization compensator 9 is provided, for example, by providing a predetermined phase plate behind the polarizing plate. It is sufficient to give a phase difference that causes a rotation opposite to the rotation of the polarization plane by the concave reflecting mirror 35.

このように、本実施形態の表面検査装置では、ウェハへの照明側の凹面反射鏡、ウェハより受光側の凹面反射鏡による夫々の偏光面の回転を夫々偏光補償板9、10により面内での偏光面の回転を揃えることが出来る。従って、照明光学系および受光光学系に起因する消光比のムラをなくすことができるので光束断面の全面にわたって消光比が向上し、ノイズが減少するため構造複屈折による僅かな偏光状態の変化を高い検出精度で検出できる。   As described above, in the surface inspection apparatus of this embodiment, the rotation of the respective polarization planes by the concave reflecting mirror on the illumination side of the wafer and the concave reflecting mirror on the light receiving side from the wafer is performed in-plane by the polarization compensators 9 and 10, respectively. The rotation of the polarization plane can be aligned. Therefore, since the non-uniformity of the extinction ratio due to the illumination optical system and the light receiving optical system can be eliminated, the extinction ratio is improved over the entire surface of the light beam cross section, and noise is reduced. It can be detected with detection accuracy.

ここで、図16に示すように、偏光補償板9および偏光補償板10にはそれぞれ傾斜角度と傾斜方向とを任意に設定する位置調整40、41を設けることが好ましい。このように構成することによって、装置による僅かなばらつきを調整できる。また、例えば、偏光板34、38を回転させたときや、光源31および波長選択フィルタによって照明波長を変化させたときに生じる凹面反射鏡35における偏光面の回転の回転量や分布の変化に応じて、傾斜角度および傾斜方向のいずれか一方または両者を調整することによって、位相補償量を調整することができる。また、例えば装置の調整状態等、装置の状況に合わせた微調整も可能である。位置調整機構によって、実際に、照明波長λの数十分の1の位相差変化の領域で微調整も含めた調整が出来ている。   Here, as shown in FIG. 16, it is preferable that the polarization compensation plate 9 and the polarization compensation plate 10 are provided with position adjustments 40 and 41 for arbitrarily setting the inclination angle and the inclination direction, respectively. With this configuration, slight variations due to the apparatus can be adjusted. Further, for example, according to the rotation amount and distribution change of the polarization plane rotation in the concave reflecting mirror 35 that occurs when the polarizing plates 34 and 38 are rotated or when the illumination wavelength is changed by the light source 31 and the wavelength selection filter. Thus, the phase compensation amount can be adjusted by adjusting one or both of the tilt angle and the tilt direction. Further, for example, fine adjustment in accordance with the state of the apparatus, such as the adjustment state of the apparatus, is possible. By the position adjusting mechanism, the adjustment including the fine adjustment can be actually performed in the phase difference change region of several tenths of the illumination wavelength λ.

(変形例)
本実施例では、構造複屈折を利用した欠陥検出を行う表面検査装置について説明したが、変形例として、本発明の技術を偏光を利用したホールパターンの検査方法にも適用できる。この場合は、正反射光だけでなくパターンからの回折光も使用する。回折光による検査を行う場合には、例えば図15において、ステージ11に、不図示のチルト機構を設ける。このチルト機構によって紙面と垂直な回転軸AX11周りに、ステージ11をチルトし、ウェハ20上の繰り返しパターンから発生する任意の次数の回折光を受光光学系で取り込めるように角度の調整を行う。一方、構造複屈折に基づいて欠陥検出を行う場合には、主に、正反射光束を用いる。
(Modification)
In the present embodiment, a surface inspection apparatus that performs defect detection using structural birefringence has been described. However, as a modification, the technique of the present invention can be applied to a hole pattern inspection method using polarized light. In this case, not only specularly reflected light but also diffracted light from the pattern is used. When performing inspection using diffracted light, for example, in FIG. 15, a stage 11 is provided with a tilt mechanism (not shown). By this tilt mechanism, the stage 11 is tilted about the rotation axis AX11 perpendicular to the paper surface, and the angle is adjusted so that an arbitrary order diffracted light generated from the repeated pattern on the wafer 20 can be taken in by the light receiving optical system. On the other hand, when performing defect detection based on structural birefringence, a specularly reflected light beam is mainly used.

また、上述の実施例では、照明光学系と受光光学系との双方に偏光補償板を入れ、照明光学系の偏光面の回転ムラと、受光光学系の偏光面の回転ムラとの双方を解消したが、偏光補償板は照明光学系または受光光学系何れか一方に配置し、凹面反射鏡35、凹面反射鏡36で生じた位相ずれを同時に補正しても良い。もちろん軸外しの方向や角度により完全には補正しきれない場合には、実施例のように照明系、受光系それぞれに挿入して独立に補正することにより、より偏光面の回転角を確実に揃えることが出来、消光比が向上する。偏光補償板の配置は凹面反射鏡の配置位置や、要求される仕様に合わせて選択すればよい。また、凹面反射鏡の配置については、実施例1および実施例2では、図13で説明したように、入射面A4(A5)と、該入射面に垂直な面で凹面反射鏡の光軸O35を含む面とで規定される反射面のうち、直径方向が入射面に重なるような面を用いて、光束を反射させているが、実施例に捕らわれるものではない。例えば、該入射面と、これに垂直で凹面反射鏡の光軸を含む面とのどちらも含まない領域で反射させるようにしてもよい。この場合、偏光の回転角度は入射面を含む面よりも大きくなるが、実施例1及び2と同様に、発生する振動面の回転量の傾斜を解消するように傾斜させた偏光補償板を配置することによって光束の断面方向での振動面の回転の分布が均一になるように補正することができる。   In the above-described embodiment, a polarization compensator is inserted in both the illumination optical system and the light receiving optical system to eliminate both the rotation unevenness of the polarization plane of the illumination optical system and the rotation unevenness of the polarization plane of the light receiving optical system. However, the polarization compensator may be disposed in either the illumination optical system or the light receiving optical system to simultaneously correct the phase shift caused by the concave reflecting mirror 35 and the concave reflecting mirror 36. Of course, if it cannot be completely corrected due to the off-axis direction or angle, the rotation angle of the polarization plane can be more reliably ensured by inserting the illumination system and the light receiving system separately as in the embodiment, and making independent corrections. Can be aligned and the extinction ratio is improved. The arrangement of the polarization compensator may be selected according to the arrangement position of the concave reflecting mirror and the required specifications. As for the arrangement of the concave reflecting mirror, in the first and second embodiments, as described with reference to FIG. 13, the incident surface A4 (A5) and the optical axis O35 of the concave reflecting mirror on the plane perpendicular to the incident surface. Of the reflecting surfaces defined by the surface including the light beam, the light beam is reflected by using a surface whose diameter direction overlaps the incident surface. However, the present invention is not limited to the embodiment. For example, the light may be reflected in a region that does not include both the incident surface and a surface that is perpendicular to the incident surface and includes the optical axis of the concave reflecting mirror. In this case, the polarization rotation angle is larger than that of the plane including the incident surface, but the polarization compensator tilted so as to eliminate the tilt of the rotation amount of the generated vibration plane is disposed as in the first and second embodiments. By doing so, it can correct | amend so that distribution of rotation of the vibration surface in the cross-sectional direction of a light beam may become uniform.

また、偏光補償板9、偏光補償板10は、ガラスの平行平面板であるが、発散、及び収束系に挿入して傾斜させる為、傾斜による収差(アス)が生じる。収差を少なくするには、傾斜角を小さく、又厚さを薄くするのが望ましい。傾斜角を小さくするには、平行平面板の屈折率を高くすれば良い。一般的な低屈折率の光学ガラス、例えばBK7は屈折率1.
5であるが、フリント系の高屈折率硝子であれば屈折率が2.0に近いものがあり、それらを使用すればよい。或いは低屈折率のガラス表面に、高屈折率の物質の薄膜を蒸着(コート)したものを使用しても良い。この場合の位相変化は、蒸着物質と空気との界面での屈折率差による位相変化と蒸着物質とガラスとの界面での屈折率差による位相変化を足したものになる。蒸着物質とガラスとの屈折率差は蒸着物質と空気との屈折率差より小さく、実質的には蒸着物質と空気との界面による位相変化が支配的となる。従って高屈折率ガラスによる平行平面板と同等の効果を得られる。ガラスと蒸着物質の厚さの組み合わせによっては反射増加膜が形成され、透過率が低くなる場合もある。それが不都合であれば、高屈折率のガラスに高屈折率の物質を蒸着すればよい。ガラスと蒸着物質の屈折率が同じであれば効果はガラスのみの物と同等である。高屈折率のガラスはヤケが生じやすく、薄膜の蒸着によりヤケの防止にもつながる。
Moreover, although the polarization compensator 9 and the polarization compensator 10 are parallel plane plates made of glass, since they are inserted into the divergence and convergence system and tilted, aberration (as) due to tilt occurs. In order to reduce the aberration, it is desirable to reduce the tilt angle and reduce the thickness. In order to reduce the inclination angle, the refractive index of the plane parallel plate may be increased. A general low refractive index optical glass such as BK7 has a refractive index of 1.
However, there are some flint-type high refractive index glasses having a refractive index close to 2.0, and these may be used. Or you may use what vapor-deposited (coated) the thin film of the high refractive index substance on the glass surface of a low refractive index. The phase change in this case is obtained by adding the phase change due to the refractive index difference at the interface between the vapor deposition material and air and the phase change due to the refractive index difference at the interface between the vapor deposition material and glass. The difference in refractive index between the vapor deposition material and glass is smaller than the refractive index difference between the vapor deposition material and air, and the phase change due to the interface between the vapor deposition material and air is dominant. Accordingly, an effect equivalent to that of a plane parallel plate made of high refractive index glass can be obtained. Depending on the combination of the thickness of the glass and the vapor deposition material, a reflection increasing film may be formed and the transmittance may be lowered. If this is inconvenient, a high refractive index substance may be deposited on a high refractive index glass. If the refractive indexes of glass and vapor deposition material are the same, the effect is equivalent to that of glass only. High-refractive-index glass is prone to burn, and thin film deposition also prevents burn.

また、偏光補償板9、10は検査光に対して透明な物質であれば、ガラスでなくプラスチック類でも構わない。平行平板の材質は要求される仕様に合わせて選択すればよい。
さらに、偏光補償板9、10はガラスの平行平面板でなく複屈折性を有する結晶、例えば水晶などの平行平面板を2枚、図17のように互いの結晶軸方向が直交するように張り合わせたものを使用しても良い。結晶の厚さ、並びに常光線と異常光線の屈折率差で生じる位相差により、凹面反射鏡で生じる偏光面の回転を打ち消すことが出来る。2枚の結晶それぞれの厚さをt1、t2、結晶の常光線と異常光線の屈折率差をΔnとすると位相差φは、
φ=2π/λ・(t1−t2)Δn で計算される。
The polarization compensators 9 and 10 may be made of plastic instead of glass as long as the material is transparent to the inspection light. The material of the parallel plate may be selected according to the required specifications.
Furthermore, the polarization compensation plates 9 and 10 are not glass parallel plane plates but are bonded to each other so that two crystal planes having birefringence, for example, quartz or other parallel plane plates are orthogonal to each other as shown in FIG. You may also use a new one. The rotation of the polarization plane caused by the concave reflecting mirror can be canceled out by the thickness of the crystal and the phase difference caused by the difference in refractive index between ordinary rays and extraordinary rays. When the thickness of each of the two crystals is t1, t2, and the refractive index difference between the ordinary ray and the extraordinary ray of the crystal is Δn, the phase difference φ is
φ = 2π / λ · (t1−t2) Δn

また、偏光補償板9、10は瞳空間に配置されているので、光束の光軸とのなす角度がウェハ上の位置に相当する。瞳空間での光束径はウェハ上での開口数(NA)に相当する。図18のように光束径が大きい場合は先述のガラスの平行平面板や結晶を張り合わせたものが良いが、図20のように光束径が細い場合はバビネの補償板を用いても良い。バビネの補償板は、複屈折性を有する結晶、例えば水晶などのくさびプリズムを2枚、図19のように互いの結晶軸方向が直交するように張り合わせた平行平面板である。生じる位相
差は先述の式と同じであるが、くさびの角度により、補償板を通る位置でt1−t2値が変化する。その為角度ごとに異なる位相差を与えることができ、先と同様凹面反射鏡で生じる偏光面の回転を打ち消すことが出来る。
Further, since the polarization compensation plates 9 and 10 are arranged in the pupil space, the angle formed with the optical axis of the light beam corresponds to the position on the wafer. The beam diameter in the pupil space corresponds to the numerical aperture (NA) on the wafer. When the beam diameter is large as shown in FIG. 18, the above-mentioned parallel plane plate or crystal of glass is preferably laminated, but when the beam diameter is thin as shown in FIG. 20, a Babinet compensation plate may be used. The Babinet compensation plate is a parallel flat plate in which two wedge prisms such as a crystal having birefringence, for example, quartz, are bonded so that the crystal axis directions thereof are orthogonal to each other as shown in FIG. The resulting phase difference is the same as in the previous equation, but the t1-t2 value changes at the position through the compensator depending on the wedge angle. Therefore, a different phase difference can be given for each angle, and the rotation of the polarization plane caused by the concave reflecting mirror can be canceled as before.

しかし、図18のように光束径が太いと同じ角度の光線(ウェハ上で同じ位置を照明或いは反射、回折する光線。実線、点線、一点鎖線で示している)でも位相板を通る位置によって生じる位相差が変化する為、消光比を均一に改善できない。   However, as shown in FIG. 18, even when the light beam diameter is large, the light beam having the same angle (light beam that illuminates, reflects, or diffracts the same position on the wafer. Indicated by a solid line, a dotted line, and a one-dot chain line) Since the phase difference changes, the extinction ratio cannot be improved uniformly.

従って、光束径の大小により、補償板を適宜選択すればよい。複屈折性の結晶を用いた場合は、入射する角度が大きい場合は用いることが困難になるが、装置の発散角等が比較的小さい場合は使用することも可能である。装置の条件に合わせて選択すればよい。   Accordingly, a compensation plate may be selected as appropriate depending on the size of the light beam diameter. When a birefringent crystal is used, it becomes difficult to use when the incident angle is large, but it can also be used when the divergence angle of the device is relatively small. What is necessary is just to select according to the conditions of an apparatus.

本発明の全ての実施形態では、照明光学系および受光光学系に凹面反射鏡を用いた形態について説明したが、凹面反射鏡にかぎらず、発散光または収束光が、斜めに配置された反射ミラー、屈折光学系、反射屈折光学系に入射する場合にも、光束の断面方向の偏光面の回転量の傾斜は発生する。このような場合であっても、本発明の構成とすることによって、偏光面の回転量を光束の断面方向で一様とすることができることはいうまでもない。   In all the embodiments of the present invention, the configuration using the concave reflecting mirror in the illumination optical system and the light receiving optical system has been described. However, the reflecting mirror is not limited to the concave reflecting mirror, and the diverging light or the convergent light is arranged obliquely. Even when the light enters the refractive optical system or the catadioptric optical system, an inclination of the rotation amount of the polarization plane in the cross-sectional direction of the light beam occurs. Even in such a case, it goes without saying that the amount of rotation of the polarization plane can be made uniform in the cross-sectional direction of the light beam by employing the configuration of the present invention.

表面検査装置30の全体構成を示す図である。1 is a diagram illustrating an overall configuration of a surface inspection apparatus 30. FIG. 半導体ウェハ20の表面の外観図である。2 is an external view of the surface of a semiconductor wafer 20. FIG. 繰り返しパターン22の凹凸構造を説明する斜視図である。FIG. 6 is a perspective view for explaining an uneven structure of a repeated pattern 22. 直線偏光L1の入射面(3A)と、繰り返しパターン22の繰り返し方向(X方向)との傾き状態を説明する図である。It is a figure explaining the inclination state of the incident surface (3A) of the linearly polarized light L1 and the repeating direction (X direction) of the repeating pattern 22. FIG. 直線偏光L1と楕円偏光L2の振動方向を説明する図である。It is a figure explaining the vibration direction of linearly polarized light L1 and elliptically polarized light L2. 直線偏光L1の振動面の方向(V方向)と、繰り返しパターン22の繰り返し方向(X方向)との傾き状態を説明する図である。It is a figure explaining the inclination state of the direction (V direction) of the vibration surface of the linearly polarized light L1, and the repeating direction (X direction) of the repeating pattern 22. FIG. 繰り返し方向(X方向)に平行な偏光成分VXと垂直な偏光成分VYとに分かれる様子を説明する図である。It is a diagram for explaining a state where divided into the repeat direction (X direction) polarization component parallel to the V X perpendicular polarization component V Y. 偏光成分L3の大きさと、繰り返しパターン22のライン部2Aの線幅DAとの関係を説明する図である。6 is a diagram for explaining the relationship between the size of a polarization component L3 and the line width D A of a line portion 2A of a repetitive pattern 22. FIG. ピッチPが異なると共に、ライン部2Aとスペース部2Bとの体積比が同じ繰り返しパターン22の一例を示す図である。It is a figure which shows an example of the repeating pattern 22 from which the pitch P differs and the volume ratio of the line part 2A and the space part 2B is the same. 繰り返し方向が異なる繰り返しパターン25,26を説明する図である。It is a figure explaining the repeating patterns 25 and 26 from which a repeating direction differs. エッジ形状が非対称な繰り返しパターン22と直線偏光L1の入射方向との関係を示す図である。It is a figure which shows the relationship between the repeating pattern 22 with an asymmetrical edge shape, and the incident direction of the linearly polarized light L1. 第1実施例の表面検査装置の全体構成を示す図である。It is a figure which shows the whole structure of the surface inspection apparatus of 1st Example. (a)凹面反射鏡35における偏光の回転の様子を示す図である。(A) It is a figure which shows the mode of the polarization | polarized-light rotation in the concave reflecting mirror 35. FIG.

(b)偏光補償板9における偏光の回転の様子を示す図である。
第2実施例の表面検査装置の全体構成を示す図である。 第3実施例の表面検査装置の全体構成を示す図である。 第3実施例の表面検査装置の変形例を示す図である。 偏光補償板の構成を示す図である。 偏光補償板を通る光束の模式図である。 偏光補償板の構成を示す図である。 偏光補償板を通る光束の模式図である。
(B) It is a figure which shows the mode of the polarization | polarized-light rotation in the polarization compensator.
It is a figure which shows the whole structure of the surface inspection apparatus of 2nd Example. It is a figure which shows the whole structure of the surface inspection apparatus of 3rd Example. It is a figure which shows the modification of the surface inspection apparatus of 3rd Example. It is a figure which shows the structure of a polarization compensator. It is a schematic diagram of the light beam passing through the polarization compensation plate. It is a figure which shows the structure of a polarization compensator. It is a schematic diagram of the light beam passing through the polarization compensation plate.

符号の説明Explanation of symbols

9,10 偏光補償板
30 表面検査装置
11 ステージ
12 アライメント系
13 照明系
14 受光系
15 画像処理装置
16 ステージ回転機構
20 半導体ウェハ
21 チップ領域
22,25,26 繰り返しパターン22
31 光源
32 波長選択フィルタ
33 ライトガイドファイバ
34,38 偏光板
35,36 凹面反射鏡
37 結像レンズ
39 撮像素子
L1 照明光
L2 反射光
9, 10 Polarization compensation plate 30 Surface inspection device 11 Stage 12 Alignment system 13 Illumination system 14 Light receiving system 15 Image processing device 16 Stage rotation mechanism 20 Semiconductor wafer 21 Chip region 22, 25, 26 Repeat pattern 22
31 Light source 32 Wavelength selection filter 33 Light guide fibers 34 and 38 Polarizing plates 35 and 36 Concave reflecting mirror 37 Imaging lens 39 Imaging element L1 Illumination light L2 Reflected light

Claims (10)

繰り返しパターンが形成された被検査基板を照明するための直線偏光の発散光束を射出する光源手段と、
前記光源と前記被検面の間で、前記直線偏光の発散光束の主光線が光軸に対してずれた位置に入射するように配置され、前記直線偏光の発散光束を前記被検査基板に導く光学部材と、
前記検査基板からの光束のうち前記直線偏光とは偏光方向が直交する直線偏光を受光する受光手段と、
前記光源手段と前記受光手段との間の光路中に、前記発散光束の主光線に対する前記光学部材の傾き方向とは逆の方向に傾けられて配置され、前記光学部材に起因して発生する偏光面の乱れを補正する少なくとも1つの平行平板からなる偏光補正部材と、を有し、
前記受光手段で受光した光に基づいて前記被検査基板の表面の検査を行うことを特徴とする表面検査装置。
Light source means for emitting a linearly polarized divergent light beam for illuminating a substrate to be inspected on which a repeated pattern is formed;
The principal ray of the linearly polarized divergent light beam is disposed between the light source and the test surface so as to enter a position shifted from the optical axis, and guides the linearly polarized divergent light beam to the substrate to be inspected. An optical member;
A light receiving means for receiving linearly polarized light whose polarization direction is orthogonal to the linearly polarized light out of the light flux from the inspection substrate;
Polarized light generated due to the optical member disposed in the optical path between the light source means and the light receiving means, being tilted in a direction opposite to the tilt direction of the optical member with respect to the principal ray of the divergent light beam A polarization correction member composed of at least one parallel plate for correcting surface disturbance,
A surface inspection apparatus for inspecting a surface of the substrate to be inspected based on light received by the light receiving means.
繰り返しパターンが形成された被検査基板を照明するための直線偏光の光束を射出する光源手段と、
前記被検査基板からの光束が入射する位置で、前記被検査基板からの光束の主光線が光軸に対してずれた位置に入射するように配置され、前記被検査基板からの光束を該光束の主光線が所定の射出角を有する収束光束として射出する光学部材と、
前記光学部材からの収束光束のうち前記所定の直線偏光とは直交する直線偏光を受光する受光手段と、
前記光源手段と前記受光手段との間に光路中に、前記収束光束の主光線に対する前記光学部材の傾き方向とは逆の方向に傾けられて配置され、該光学部材に起因して発生する偏光面の乱れを補正する少なくとも1つの平行平板からなる偏光補正部材と、を有し、
前記受光手段で受光した光に基づいて前記被検査基板の表面の検査を行うことを特徴とする表面検査装置。
Light source means for emitting a linearly polarized light beam for illuminating a substrate to be inspected on which a repeated pattern is formed;
The light beam from the substrate to be inspected is arranged so that the principal ray of the light beam from the substrate to be inspected enters a position shifted from the optical axis, and the light beam from the substrate to be inspected is incident on the light beam. An optical member that emits a principal ray of the light beam as a convergent light beam having a predetermined emission angle;
A light receiving means for receiving linearly polarized light orthogonal to the predetermined linearly polarized light among the convergent light flux from the optical member;
Polarized light generated due to the optical member disposed between the light source unit and the light receiving unit in the optical path, tilted in a direction opposite to the tilt direction of the optical member with respect to the principal ray of the convergent light beam. A polarization correction member composed of at least one parallel plate for correcting surface disturbance,
A surface inspection apparatus for inspecting a surface of the substrate to be inspected based on light received by the light receiving means.
繰り返しパターンが形成された被検査基板を照明するための直線偏光の発散光束を射出する光源手段と、
前記光源と前記被検面の間に配置され、前記直線偏光の発散光束を該光束の主光線が光軸に対してずれた位置に入射し、前記直線偏光の発散光束を前記被検査基板へ導く第1の光学部材と、
前記被検査基板からの光束が入射する位置に配置され、前記被検査基板からの光束を該光束の主光線が光軸に対してずれた位置に入射し、その収束光束を所定の射出角度をもって射出し所定面に結像させる第2の光学部材と、
前記第2の光学部材からの収束光束のうち前記直線偏光とは直交する直線偏光を抽出する抽出手段と、
前記第2の光学部材と前記抽出手段とを経て形成された前記検査基板の像を受光する受光手段と、
前記光源手段と前記受光手段との間の光路中に、前記発散光束の主光線に対する前記光学部材の傾き方向または前記収束光束の主光線に対する前記光学部材の傾き方向とは逆の方向に傾けられて配置され、前記第1および第2の光学部材に起因して発生する前記光束の偏光面の乱れを補正する少なくとも1つの平行平板からなる偏光補正部材を有することを特徴とする表面検査装置。
Light source means for emitting a linearly polarized divergent light beam for illuminating a substrate to be inspected on which a repeated pattern is formed;
Located between the light source and the test surface, the linearly polarized divergent light beam is incident on a position where the principal ray of the light beam is shifted from the optical axis, and the linearly polarized divergent light beam is incident on the substrate to be inspected. A first optical member for guiding;
The light beam from the substrate to be inspected is disposed at a position where the light beam from the substrate to be inspected enters, the light beam from the substrate to be inspected is incident on a position where the principal ray of the light beam is shifted from the optical axis, and the convergent light beam has a predetermined emission angle A second optical member that is ejected and imaged on a predetermined surface;
Extraction means for extracting linearly polarized light orthogonal to the linearly polarized light out of the convergent light beam from the second optical member;
A light receiving means for receiving an image of the inspection substrate formed through the second optical member and the extracting means;
In the optical path between the light source means and the light receiving means, the optical member is inclined in the direction opposite to the inclination direction of the optical member with respect to the principal ray of the divergent light beam or the inclination direction of the optical member with respect to the principal ray of the convergent light beam. A surface inspection apparatus comprising: a polarization correction member comprising at least one parallel plate that is arranged in a manner that corrects a polarization plane disturbance of the light beam caused by the first and second optical members.
前記光学部材は凹面鏡を含むことを特徴とする請求項1または請求項2に記載の表面検査装置。 The surface inspection apparatus according to claim 1, wherein the optical member includes a concave mirror . 前記偏光補正部材の傾き方向と傾き角度との少なくとも一方を調整可能に保持する保持手段を更に有することを特徴とする請求項1乃至請求項4のいずれか一項に記載の表面検査装置。   The surface inspection apparatus according to claim 1, further comprising a holding unit that holds at least one of an inclination direction and an inclination angle of the polarization correction member in an adjustable manner. 前記偏光補正部材は、前記光学部材の面に対して傾斜して配置された硝子の平行平板であることを特徴とする請求項1乃至請求項5のいずれか一項に記載の表面検査装置。   6. The surface inspection apparatus according to claim 1, wherein the polarization correction member is a parallel plate of glass arranged to be inclined with respect to a surface of the optical member. 前記偏光補正部材は、前記光学部材の前記光軸に垂直な面に対して傾斜して配置され、互いの結晶軸が直交するように貼り合わせられた2枚の複屈折性結晶の平行平板であることを特徴とする請求項1乃至請求項5のいずれか一項に記載の表面検査装置。   The polarization correction member is a parallel flat plate of two birefringent crystals that are arranged so as to be inclined with respect to a plane perpendicular to the optical axis of the optical member and are bonded so that the crystal axes thereof are orthogonal to each other. The surface inspection apparatus according to claim 1, wherein the surface inspection apparatus is provided. 前記偏光補正部材は、前記光学部材の前記光軸に垂直な面に対して傾斜して配置され、互いの結晶軸が直交するように、かつ平行平板を形成するように貼り合せられた2枚の楔形の複屈折性結晶であることを特徴とする請求項1乃至請求項5のいずれか一項に記載の表面検査装置。   The polarization correction member is disposed with an inclination with respect to a plane perpendicular to the optical axis of the optical member, and is bonded to form a parallel plate so that the crystal axes thereof are orthogonal to each other. 6. The surface inspection apparatus according to claim 1, wherein the surface inspection apparatus is a wedge-shaped birefringent crystal. 直線偏光の発散光束を射出する光源手段と、
前記光源と前記被検面の間で、前記直線偏光の発散光束の主光線が光軸に対してずれた位置に入射するように配置され、前記直線偏光の発散光束を前記被検査基板へ導く光学部材と、
前記光源手段と前記被検査基板との間の光路中に、前記発散光束の主光線に対する前記光学部材の傾き方向とは逆の方向に傾けられて配置され、前記光学部材に起因して発生する前記光束の偏光面の乱れを補正する少なくとも1つの平行平板からなる偏光補正部材を有することを特徴とする偏光照明装置。
Light source means for emitting a linearly polarized divergent beam;
The principal ray of the linearly polarized divergent light beam is disposed between the light source and the test surface so as to enter a position shifted from the optical axis, and guides the linearly polarized divergent light beam to the substrate to be inspected. An optical member;
In the optical path between the light source means and the substrate to be inspected, the optical member is tilted in a direction opposite to the tilt direction of the optical member with respect to the principal ray of the divergent light beam, and is generated due to the optical member. A polarization illumination device comprising: a polarization correction member comprising at least one parallel plate for correcting disturbance of a polarization plane of the light beam.
被検査基板からの光束が入射する位置で、前記被検査基板からの光束の主光線が光軸に対してずれた位置に入射するように配置され、前記被検査基板からの所定の偏光成分を有する光束を入射して、その収束光束を所定の射出角度をもって射出させる光学部材と、
前記光学部材からの光束のうち直線偏光を受光する受光手段と、
前記被検査基板と前記受光手段との間の光路中に、前記収束光束の主光線に対する前記光学部材の傾き方向とは逆の方向に傾けられて配置され、前記光学部材に起因して発生する前記光束の偏光面の乱れを補正する少なくとも1つの平行平板からなる偏光補正部材を有することを特徴とする受光装置。
It is arranged so that the principal ray of the light beam from the substrate to be inspected is incident on a position shifted from the optical axis at the position where the light beam from the substrate to be inspected, and a predetermined polarization component from the substrate to be inspected An optical member that makes the incident light beam incident and emits the convergent light beam with a predetermined emission angle;
A light receiving means for receiving linearly polarized light out of the light flux from the optical member;
In the optical path between the substrate to be inspected and the light receiving means, the optical member is disposed in an inclined direction opposite to the inclination direction of the optical member with respect to the principal ray of the convergent light beam, and is generated due to the optical member. A light receiving device comprising: a polarization correction member comprising at least one parallel plate for correcting disturbance of a polarization plane of the light beam.
JP2005143318A 2004-06-16 2005-05-16 Surface inspection apparatus and surface inspection method Active JP4853758B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005143318A JP4853758B2 (en) 2004-06-16 2005-05-16 Surface inspection apparatus and surface inspection method

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
JP2004178880 2004-06-16
JP2004178880 2004-06-16
JP2004324688 2004-11-09
JP2004324688 2004-11-09
JP2005139068 2005-05-11
JP2005139068 2005-05-11
JP2005143318A JP4853758B2 (en) 2004-06-16 2005-05-16 Surface inspection apparatus and surface inspection method

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2011053077A Division JP2011149951A (en) 2004-06-16 2011-03-10 Device and method for surface inspection

Publications (2)

Publication Number Publication Date
JP2006343102A JP2006343102A (en) 2006-12-21
JP4853758B2 true JP4853758B2 (en) 2012-01-11

Family

ID=37640186

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005143318A Active JP4853758B2 (en) 2004-06-16 2005-05-16 Surface inspection apparatus and surface inspection method

Country Status (1)

Country Link
JP (1) JP4853758B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4635939B2 (en) * 2006-03-30 2011-02-23 株式会社ニコン Surface inspection device
JP5534406B2 (en) * 2007-09-26 2014-07-02 株式会社ニコン Surface inspection method and surface inspection apparatus
WO2009048003A1 (en) * 2007-10-12 2009-04-16 Nikon Corporation Surface examining device
JP2009097988A (en) * 2007-10-17 2009-05-07 Nikon Corp Surface inspection apparatus
JP5212779B2 (en) * 2007-12-18 2013-06-19 株式会社ニコン Surface inspection apparatus and surface inspection method
JP4600476B2 (en) * 2007-12-28 2010-12-15 日本電気株式会社 Defect inspection method and defect inspection apparatus for fine structure
JP5333890B2 (en) * 2008-03-28 2013-11-06 株式会社ニコン Surface inspection device
JP5943366B1 (en) * 2015-08-28 2016-07-05 株式会社サタケ Device with optical unit

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3692685B2 (en) * 1997-02-19 2005-09-07 株式会社ニコン Defect inspection equipment
JP2001356276A (en) * 2000-06-13 2001-12-26 Nikon Corp Polarizing microscope
JP2002006222A (en) * 2000-06-22 2002-01-09 Nikon Corp Microscope provided with function for compensating rogation of polarizing direction

Also Published As

Publication number Publication date
JP2006343102A (en) 2006-12-21

Similar Documents

Publication Publication Date Title
KR101248674B1 (en) Surface inspecting device and surface inspecting method
US7834993B2 (en) Surface inspection apparatus and surface inspection method
TWI409455B (en) Surface inspection device
JP4853758B2 (en) Surface inspection apparatus and surface inspection method
TWI467159B (en) Surface inspection device and surface inspection method
US11243175B2 (en) Sensitive particle detection with spatially-varying polarization rotator and polarizer
TW200804758A (en) Surface inspection device
JP4462232B2 (en) Surface inspection device
JP4696607B2 (en) Surface inspection device
JP2009097988A (en) Surface inspection apparatus
JP4605089B2 (en) Surface inspection device
JP4462222B2 (en) Surface inspection device
JP2011149951A (en) Device and method for surface inspection
JP4635939B2 (en) Surface inspection device
JP2006266817A (en) Surface inspection apparatus
JP2016130741A (en) Inspection apparatus and manufacturing method of image pickup element
JP5201443B2 (en) Surface inspection apparatus and surface inspection method
JP2006250839A (en) Surface inspection apparatus
JP2013161809A (en) Lighting device, inspection apparatus and manufacturing method of image pickup element
JP2009150776A (en) Surface inspection device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070725

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20080620

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20081127

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100312

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100629

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100824

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110111

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20110901

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110930

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111013

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141104

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4853758

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141104

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250