JP4853430B2 - Construction method of underground tank, underground tank constructed by the construction method, and formwork apparatus - Google Patents

Construction method of underground tank, underground tank constructed by the construction method, and formwork apparatus Download PDF

Info

Publication number
JP4853430B2
JP4853430B2 JP2007224563A JP2007224563A JP4853430B2 JP 4853430 B2 JP4853430 B2 JP 4853430B2 JP 2007224563 A JP2007224563 A JP 2007224563A JP 2007224563 A JP2007224563 A JP 2007224563A JP 4853430 B2 JP4853430 B2 JP 4853430B2
Authority
JP
Japan
Prior art keywords
structural member
side wall
formwork
underground tank
steel roof
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007224563A
Other languages
Japanese (ja)
Other versions
JP2009057722A (en
Inventor
健 白砂
宏 仙名
伸和 渡邊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Obayashi Corp
Original Assignee
Obayashi Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Obayashi Corp filed Critical Obayashi Corp
Priority to JP2007224563A priority Critical patent/JP4853430B2/en
Publication of JP2009057722A publication Critical patent/JP2009057722A/en
Application granted granted Critical
Publication of JP4853430B2 publication Critical patent/JP4853430B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Underground Structures, Protecting, Testing And Restoring Foundations (AREA)

Description

本発明は、地盤内に構築される地下タンクの構築工法に関する。   The present invention relates to a construction method for an underground tank constructed in the ground.

サイロ、煙突、タンク等の円筒状コンクリート構造物を構築する方法として、内型枠と外型枠とジャッキとこれらを連結するヨークとからなる型枠装置を用い、これら内外両型枠間にコンクリートを打設し、そのコンクリートの所定の強度が発現したらジャッキで型枠装置全体を上昇させて次のコンクリート打設容積を確保するという作業を繰り返して構造物を構築する工法が知られている。   As a method of constructing cylindrical concrete structures such as silos, chimneys, tanks, etc., a formwork device comprising an inner formwork, an outer formwork, a jack and a yoke for connecting them is used, and concrete is provided between these inner and outer formwork. There is known a construction method for constructing a structure by repeating the work of raising the entire formwork device with a jack to secure the next concrete placement volume when a predetermined strength of the concrete is developed.

例えば、特許文献1には、地上で型枠装置に屋根を取り付け、型枠装置を上昇させると同時に屋根も上昇させて円筒状コンクリート構造物を構築する方法が開示されている。この方法は、まず、地上で屋根を型枠装置に吊り下げ、次に、内外両型枠間にコンクリートを打設し、そのコンクリートの所定の強度が発現したらジャッキで型枠装置及び屋根を上昇させて、再び内外両型枠間にコンクリートを打設して側壁を構築し、最後に、側壁の上部と屋根とを接合して円筒状コンクリート構造物を構築する。   For example, Patent Document 1 discloses a method of constructing a cylindrical concrete structure by attaching a roof to a formwork apparatus on the ground, raising the formwork apparatus, and simultaneously raising the roof. In this method, first, the roof is suspended on the formwork device on the ground, then concrete is placed between the inner and outer formwork, and when the predetermined strength of the concrete is developed, the formwork device and the roof are raised with a jack. Then, the side wall is constructed by placing concrete again between the inner and outer molds, and finally, the upper part of the side wall and the roof are joined to construct a cylindrical concrete structure.

また、特許文献2には、地盤内に空洞部を形成し、この空洞部内に型枠装置を用いて円筒状コンクリート構造物を構築する方法が開示されている。この方法は、まず、地盤内に空洞部を形成して、その空洞部の内壁から型枠装置の外型枠が昇降できる程度の間隔を隔てて内方に型枠装置を配置するとともに、空洞内に屋根を構築する。次に、内外両型枠間にコンクリートを打設し、そのコンクリートの所定の強度が発現したらジャッキで型枠装置を上昇させると同時に、型枠装置の下方に別途設けた昇降装置を用いて屋根を上昇させる。   Patent Document 2 discloses a method of forming a hollow concrete part in the ground and constructing a cylindrical concrete structure using a formwork device in the hollow part. In this method, first, a hollow portion is formed in the ground, and the formwork device is disposed inwardly with an interval that allows the outer formwork of the formwork device to be raised and lowered from the inner wall of the hollow portion. Build a roof inside. Next, concrete is placed between the inner and outer molds, and when the concrete exhibits a predetermined strength, the mold apparatus is lifted with a jack, and at the same time, a roof is provided using a lifting device provided separately below the mold apparatus. To raise.

そして、再び内外両型枠間にコンクリートを打設して側壁を構築し、そのコンクリートの強度が発現したら型枠装置を上昇させると同時に屋根も上昇させる。この作業を繰り返して行い、最後に、側壁の上部と屋根とを接合して円筒状コンクリート構造物を構築する。
特許公報昭59−109656 特開平7−286449号公報
Then, concrete is cast again between the inner and outer molds to construct a side wall. When the strength of the concrete is developed, the mold apparatus is raised and the roof is also raised. This operation is repeated, and finally, the upper part of the side wall and the roof are joined to construct a cylindrical concrete structure.
Patent Publication No. 59-109656 JP 7-286449 A

しかしながら、特許文献1に記載の方法では、屋根と型枠装置とを接続して型枠装置が水平方向に振れて変形しないようにしているが、基本的に屋根は型枠装置に吊り下げられているだけなので、型枠装置の変形抑制効果に限界があった。例えば、円筒状コンクリート構造物が大型になって円筒の直径が長大になると、屋根も大型になって重量が増し、変形抑制よりも屋根の重量の増加にともなう型枠装置の変形が大きくなってしまうものである。そして、型枠装置の変形が大きくなると側壁等の構築精度が低下するので、大型円筒状コンクリート構造物への適用が困難であった。   However, in the method described in Patent Document 1, the roof and the formwork device are connected to prevent the formwork device from being shaken in the horizontal direction and deformed, but basically the roof is suspended from the formwork device. Therefore, there is a limit to the deformation suppressing effect of the formwork device. For example, if the cylindrical concrete structure becomes large and the diameter of the cylinder becomes long, the roof also becomes large and the weight increases, and the deformation of the formwork device with the increase in the weight of the roof becomes larger than the deformation suppression. It is what will end up. And if the deformation | transformation of a formwork apparatus becomes large, since the construction precision of a side wall etc. will fall, it was difficult to apply to a large cylindrical concrete structure.

また、特許文献2に記載の方法では、側壁の構築時に外型枠が昇降できるように空洞部の内壁と側壁との間に隙間を確保しなければならないので、構築しようとする地下タンクの直径よりも大きい直径の空洞部を形成しなければならない。さらに、地下タンク構築後は、その隙間を土砂で埋め戻さなければならない。特に、その隙間は空洞部の外周に形成されるので、掘削土及び埋戻土が大量となり、掘削作業及び埋戻作業に手間及び時間がかかって、工期が長くなるという問題点があった。   Moreover, in the method described in Patent Document 2, a gap must be secured between the inner wall and the side wall of the cavity so that the outer mold can be raised and lowered during the construction of the side wall. A larger diameter cavity must be formed. In addition, after the underground tank is constructed, the gap must be backfilled with earth and sand. In particular, since the gap is formed on the outer periphery of the hollow portion, there is a problem that the excavation soil and backfill soil become large, and the excavation work and backfilling work take time and effort, and the construction period becomes long.

そこで、本発明は、上記のような従来の問題に鑑みなされたものであって、短期間に精度良く地下タンクを構築可能な構築工法を提供することを目的とする。   Then, this invention is made | formed in view of the above conventional problems, Comprising: It aims at providing the construction method which can construct | assemble an underground tank accurately in a short time.

前記目的を達成するため、本発明の地下タンクの構築工法は、地盤内に形成された空洞部の内壁に沿って設置される側壁と該側壁の上部に設置される屋根とを備える地下タンクの構築工法において、前記空洞部の前記内壁から所定の間隔を隔てて内方に配置される型枠と、前記型枠と連結したヨークと、前記ヨークを上下移動させるための昇降手段と、前記屋根を構成する鋼製屋根用構造部材を前記ヨークに連結するための連結手段とを備えた型枠装置を用い、前記型枠装置と前記鋼製屋根用構造部材とを連結し、前記内壁と前記型枠との間にコンクリートを打設して、このコンクリートの所定の強度が発現したら前記昇降手段で前記ヨークを上昇させることにより前記型枠装置及び前記鋼製屋根用構造部材を上昇させるという作業を繰り返して側壁を構築し、構築された前記側壁と前記鋼製屋根用構造部材とを接合することを特徴とする(第1の発明)。   In order to achieve the object, an underground tank construction method according to the present invention includes a side wall installed along an inner wall of a cavity formed in the ground and a roof installed on the upper side of the side wall. In the construction method, a mold frame disposed inward from the inner wall of the hollow portion at a predetermined interval, a yoke connected to the mold frame, a lifting means for moving the yoke up and down, and the roof Using a formwork device comprising a connecting means for connecting the steel roof structural member to the yoke, connecting the formwork device and the steel roof structural member, the inner wall and the Work to raise the formwork device and the steel roof structural member by placing concrete between the formwork and raising the yoke by the lifting means when a predetermined strength of the concrete is developed. Repeat Te building a side wall, characterized by bonding the steel roof structural member and constructed the sidewalls (first invention).

本発明に係る地下タンクの構築工法によれば、空洞部の内壁から所定の間隔を隔てて内方に配置される型枠と、型枠と連結したヨークと、ヨークを上下移動させるための昇降手段と、一端がヨークに接続され、鋼製屋根用構造部材を前記ヨークに連結するための連結手段とを備えた型枠装置を用いて、内壁に接する側壁を構築することができる。   According to the construction method of an underground tank according to the present invention, a mold frame disposed inward at a predetermined interval from the inner wall of the cavity, a yoke connected to the mold frame, and a lift for moving the yoke up and down A side wall in contact with the inner wall can be constructed using means and a formwork device having one end connected to the yoke and connecting means for connecting the steel roof structural member to the yoke.

また、従来のように、内外両型枠の型枠装置を用いて地下に側壁を構築する場合には、内壁と側壁との間に外型枠昇降用の隙間を掘削する掘削作業及び埋戻す埋戻作業が必要となるのに対して、本発明の地下タンクの構築工法によれば、そのような隙間を設ける作業が不要となるので、工期を短縮することが可能となる。そして、外型枠昇降用の隙間を掘削する必要がないので、掘削土量を少なくすることができる。   Further, when a side wall is constructed in the basement using a formwork apparatus for both the inner and outer molds as in the prior art, excavation work for excavating a gap for raising and lowering the outer mold between the inner wall and the side wall and backfilling are performed. Whereas a backfilling operation is required, according to the construction method of an underground tank of the present invention, an operation for providing such a gap is not required, so that the construction period can be shortened. And since it is not necessary to excavate the clearance for raising / lowering the outer formwork, the amount of excavated soil can be reduced.

さらに、型枠装置と鋼製屋根用構造部材とが連結されているので、鋼製屋根用構造部材に型枠装置の変形抑制の役割を一部負担させることができる。つまり、型枠装置が変形しないので、精度良く側壁を構築することができる。   Furthermore, since the formwork apparatus and the steel roof structural member are connected, the steel roof structural member can partially bear the role of suppressing deformation of the formwork apparatus. That is, since the formwork device is not deformed, the side wall can be constructed with high accuracy.

また、鋼製屋根用構造部材を型枠装置で安全に支持しつつ、鋼製屋根用構造部材の下方で側壁を構築するので、側壁を構築した後に鋼製屋根用構造部材を上昇させる作業が無くなり、側壁構築後、すぐに側壁と鋼製屋根用構造部材とを接続することが可能となる。したがって、従来のように、側壁を構築した後に鋼製屋根用構造部材をクレーン等で側壁の上方に吊る場合には、側壁と鋼製屋根用構造部材とを接続するための足場を鋼製屋根用構造部材の下方に設置するという高所作業及び吊り荷の下での作業が必要となるのに対して、本発明の地下タンクの構築工法によれば、そのような作業が不要となるので、安全性が大幅に向上する。   Moreover, since the side wall is constructed below the steel roof structural member while the steel roof structural member is safely supported by the formwork apparatus, the work of raising the steel roof structural member after the side wall is constructed is performed. It becomes possible to connect the side wall and the steel roof structural member immediately after construction of the side wall. Therefore, when the steel roof structural member is suspended above the side wall by a crane or the like after the side wall is constructed, a scaffold for connecting the side wall and the steel roof structural member is used as a steel roof. However, according to the construction method of the underground tank of the present invention, such work is not required, while the work under the high place and the work under the suspended load are required to be installed below the structural member. , Safety is greatly improved.

第2の発明は、第1の発明において、前記鋼製屋根用構造部材は、ドームシェル構造であることを特徴とする。
本発明に係る地下タンクの構築工法によれば、鋼製屋根用構造部材をドームシェル構造にすることにより、鋼製屋根用構造部材に型枠装置の変形抑制の役割を効果的負担させることができる。また、鋼製屋根用構造部材をドームシェル構造にすることにより、屋根の重量を軽くすることができるので、型枠装置の変形を抑制することができる。
According to a second invention, in the first invention, the steel roof structural member has a dome shell structure.
According to the construction method of an underground tank according to the present invention, by making the steel roof structural member a dome shell structure, the steel roof structural member can effectively bear the role of suppressing deformation of the formwork device. it can. Moreover, since the weight of a roof can be lightened by making the structural member for steel roofs into a dome shell structure, a deformation | transformation of a formwork apparatus can be suppressed.

第3の発明は、第1の発明において、前記連結手段は、前記鋼製屋根用構造部材に圧縮力を載荷可能な伸縮装置を備え、前記伸縮装置を伸張して前記鋼製屋根用構造部材に圧縮力を載荷することにより生じる前記鋼製屋根用構造部材の反力によって、前記型枠装置に作用する前記側壁の内側方向への曲げモーメントを低減することを特徴とする。
本発明に係る地下タンクの構築工法によれば、連結手段は、ジャッキ等の伸縮装置を備えるので、鋼製屋根用構造部材に圧縮力を載荷することが可能となる。この伸縮手段を伸張して鋼製屋根用構造部材に圧縮力を載荷することにより、鋼製屋根用構造部材から型枠装置に対して反力が作用する。この反力の水平成分が側壁の外側方向に作用するので、鋼製屋根用構造部材の重量、型枠装置の重量、及び型枠装置の上昇時に内型枠と側壁との間に生じる摩擦抵抗等によって生じる側壁の内側方向への曲げモーメントを低減することが可能となる。そして、型枠装置に作用する曲げモーメント等の荷重が小さくなるので、型枠装置の変形を抑制できて、側壁を精度良く構築することが可能となる。
According to a third invention, in the first invention, the connecting means includes a telescopic device capable of loading a compressive force on the steel roof structural member, and the steel roof structural member is extended by extending the telescopic device. A bending moment inward of the side wall acting on the formwork device is reduced by a reaction force of the steel roof structural member generated by loading a compression force on the side wall.
According to the construction method of an underground tank according to the present invention, the connecting means includes an expansion device such as a jack, so that it is possible to load a compressive force on the steel roof structural member. By extending the expansion / contraction means and applying a compressive force to the steel roof structural member, a reaction force acts on the formwork apparatus from the steel roof structural member. Since the horizontal component of the reaction force acts on the outer side of the side wall, the weight of the steel roof structural member, the weight of the formwork device, and the frictional resistance generated between the inner formwork and the side wall when the formwork device is raised. It is possible to reduce the bending moment in the inner side direction of the side wall caused by the above. And since loads, such as a bending moment which acts on a formwork apparatus, become small, a deformation | transformation of a formwork apparatus can be suppressed and it becomes possible to construct | assemble a side wall accurately.

第4の発明の地下タンクは、第1〜3のいずれかに記載の地下タンクの構築工法にて構築されたことを特徴とする。
本発明に係る地下タンクによれば、第1〜3に記載の地下タンクの構築工法で地下タンクを構築するので、短期間に精度良く地下タンクを構築することが可能となる。
The underground tank of 4th invention was constructed | assembled by the construction method of the underground tank in any one of 1-3.
According to the underground tank according to the present invention, since the underground tank is constructed by the underground tank construction method described in the first to third aspects, it is possible to construct the underground tank with high accuracy in a short time.

第5の発明の型枠装置は、地盤内に形成された空洞部の内壁に沿って設置される側壁と該側壁の上部に設置される屋根とを備えた地下タンクを構築するための型枠装置であって、前記空洞部の前記内壁から所定の間隔を隔てて内方に配置される型枠と、前記型枠と連結したヨークと、前記ヨークを上下移動させるための昇降手段と、前記屋根を構成する鋼製屋根用構造部材を前記ヨークに連結するための連結手段とを備えることを特徴とする。   The formwork apparatus of 5th invention is a formwork for constructing an underground tank provided with a side wall installed along an inner wall of a hollow portion formed in the ground and a roof installed on the upper side of the side wall. An apparatus, a mold frame disposed inwardly with a predetermined distance from the inner wall of the cavity, a yoke connected to the mold frame, a lifting means for moving the yoke up and down, And a connecting means for connecting a steel roof structural member constituting the roof to the yoke.

第6の発明は、第5の発明において、前記連結手段は、前記鋼製屋根用構造部材に圧縮力を載荷可能な伸縮装置であることを特徴とする。   A sixth invention is characterized in that, in the fifth invention, the connecting means is a telescopic device capable of loading a compressive force on the steel roof structural member.

本発明の地下タンクの構築工法によれば、短期間に精度良く地下タンクを構築することができる。   According to the underground tank construction method of the present invention, an underground tank can be constructed with high accuracy in a short period of time.

以下、本発明に係る地下タンクの構築工法の好ましい実施形態について図面を用いて詳細に説明する。   Hereinafter, a preferred embodiment of an underground tank construction method according to the present invention will be described in detail with reference to the drawings.

図1及び図2は、それぞれ本発明に係る型枠装置1を用いて地下タンク2の側壁3を構築している状態を示す側断面図及び平面図である。   FIG.1 and FIG.2 is the sectional side view and top view which show the state which has constructed | assembled the side wall 3 of the underground tank 2 using the formwork apparatus 1 which concerns on this invention, respectively.

図1及び図2に示すように、型枠装置1は、地盤4内に形成された空洞部5の内壁5aから所定の間隔Lを隔てて内方に配置される内型枠6と、内型枠6と連結したヨーク7と、ヨーク7を上下移動させるための昇降手段8と、一端がヨーク7に、他端が構築後に屋根の構造材となるドームシェル状の鋼製屋根用構造部材9に接続され、鋼製屋根用構造部材9をヨーク7に連結するための連結手段10と、ヨーク7の下側及び上側に取り付けられ、配筋作業等を行う作業足場14とを備えている。   As shown in FIGS. 1 and 2, the mold apparatus 1 includes an inner mold 6 that is disposed inward from the inner wall 5 a of the cavity 5 formed in the ground 4 with a predetermined distance L, and an inner mold 6. A yoke 7 connected to the formwork 6, elevating means 8 for moving the yoke 7 up and down, a dome shell-shaped steel roof structural member whose one end is the yoke 7 and the other end is the structural material of the roof after construction 9, a connecting means 10 for connecting the steel roof structural member 9 to the yoke 7, and a work scaffold 14 that is attached to the lower side and the upper side of the yoke 7 and performs bar arrangement work. .

内型枠6は、内壁5aから側壁3の肉厚に相当する所定の間隔Lを保持するようにヨーク7と連結されている。本実施形態においては、ヨーク7としてH型鋼を用いた。   The inner mold frame 6 is connected to the yoke 7 so as to maintain a predetermined distance L corresponding to the thickness of the side wall 3 from the inner wall 5a. In this embodiment, H-shaped steel is used as the yoke 7.

昇降手段8は、構築中の側壁3内に、長手方向が鉛直になるように埋設されているロッド8aと、このロッド8aを支柱として昇降可能なジャッキ8bとから構成されている。ジャッキ8bは、ヨーク7に溶接等により接合されており、ジャッキ8bでロッド8aを握持し、ロッド8aを反力材としてヨーク7を上昇させることにより、型枠装置1を所望の位置まで上昇させる。   The raising / lowering means 8 is comprised from the rod 8a embed | buried so that the longitudinal direction may become perpendicular | vertical in the side wall 3 under construction, and the jack 8b which can be raised / lowered using this rod 8a as a support | pillar. The jack 8b is joined to the yoke 7 by welding or the like, and the rod 8a is gripped by the jack 8b, and the yoke 7 is lifted using the rod 8a as a reaction material, thereby raising the mold apparatus 1 to a desired position. Let

連結手段10は、鋼製屋根用構造部材9に圧縮力を載荷するための伸縮装置10aと、一端が伸縮装置10aに、他端がヨーク7に接続されるストラット10bと、一端が連結材10dを介して鋼製屋根用構造部材9に、他端がヨーク7に接続される支持材10cとから構成されている。本実施形態においては、伸縮装置10aとして手動で操作可能なスクリュージャッキを用い、鋼製屋根用構造部材9、ストラット10b、支持材10cとしてH型鋼を用いた。   The connecting means 10 includes a telescopic device 10a for loading compressive force on the steel roof structural member 9, a strut 10b having one end connected to the telescopic device 10a and the other end connected to the yoke 7, and one end connecting material 10d. The steel roof structural member 9 is provided with a support member 10c having the other end connected to the yoke 7. In this embodiment, the screw jack which can be operated manually is used as the expansion and contraction device 10a, and the steel roof structural member 9, the strut 10b, and the H-shaped steel are used as the support member 10c.

伸縮装置10aとストラット10b、伸縮装置10aと鋼製屋根用構造部材9、鋼製屋根用構造部材9と連結材10d、連結材10dと支持材10c、支持材10cとヨーク7は、それぞれボルト20・ナット21で、脱着可能に連結されている。また、ストラット10bとヨーク7は、溶接により接合されている。   The telescopic device 10a and the strut 10b, the telescopic device 10a and the steel roof structural member 9, the steel roof structural member 9 and the connecting material 10d, the connecting material 10d and the supporting material 10c, and the supporting material 10c and the yoke 7 are respectively bolts 20. -The nut 21 is connected so as to be detachable. The strut 10b and the yoke 7 are joined by welding.

なお、本実施形態においては、伸縮装置10aとしてスクリュージャッキを用いたが、これに限定されるものではなく、鋼製屋根用構造部材9に圧縮力を載荷可能な装置であれば他のもの、例えば、バネ等を用いても良い。   In the present embodiment, a screw jack is used as the expansion and contraction device 10a. However, the present invention is not limited to this, and any other device that can load a compressive force on the steel roof structural member 9; For example, a spring or the like may be used.

図3は、型枠装置1に作用している概略の荷重状態を示す図である。図3に示すように、伸縮装置10aを伸張して鋼製屋根用構造部材9に圧縮力F1を載荷すると、鋼製屋根用構造部材9の両端は、側壁3の内周面に沿って設置される円形の型枠装置1に連結されているので、反力F2がストラット10bの軸方向に生じる。この状態で支持材10cに作用する鉛直方向下向き荷重V3は、鋼製屋根用構造部材9の自重による鉛直方向下向きの荷重V2と圧縮力F1の鉛直方向上向きの分力である鉛直力V1とが相殺されたものとなり、荷重V2よりも小さい値になる。この荷重V3は、型枠装置1を側壁3の内側に向かって回転させる曲げモーメントをM1を大きくする要因の一つなので、荷重V3ができるだけ小さくなるように、つまり、F1sinθ(θは構成屋根用構造部材9の伸縮装置10aによる支持点での水平方向に対する角度)が荷重V2とほぼ一致するように圧縮力F1を調整する。   FIG. 3 is a diagram showing a schematic load state acting on the mold apparatus 1. As shown in FIG. 3, when the expansion / contraction device 10 a is extended and a compressive force F <b> 1 is loaded on the steel roof structural member 9, both ends of the steel roof structural member 9 are installed along the inner peripheral surface of the side wall 3. The reaction force F2 is generated in the axial direction of the strut 10b. The vertical downward load V3 acting on the support member 10c in this state includes a vertical downward load V2 due to the weight of the steel roof structural member 9 and a vertical force V1 which is a vertical upward component of the compressive force F1. It is canceled out and becomes a value smaller than the load V2. This load V3 is one of the factors that increase M1 in the bending moment that rotates the formwork device 1 toward the inside of the side wall 3, so that the load V3 is as small as possible, that is, F1sinθ (θ is for the component roof) The compression force F1 is adjusted so that the angle of the structural member 9 with respect to the horizontal direction at the support point by the expansion device 10a substantially coincides with the load V2.

曲げモーメントM1は、型枠装置1を側壁3の内側に向かって回転させようとする力なので、この力が大きくなると内型枠6が変形してしまい、側壁3を精度良く構築することが困難になる。これに対して、本発明の構築工法によれば、曲げモーメントM1を低減することができるので、側壁3を精度良く構築することが可能になる。また、地下タンク2が大型になると鋼製屋根用構造部材9の自重が増大し、曲げモーメントM1も増加するが、本発明の構築工法を用いることにより、その曲げモーメントM1を低減して内型枠6の変形を抑制することができるので、地下タンク2が大型化しても側壁3を精度良く構築することが可能になる。   Since the bending moment M1 is a force for rotating the mold apparatus 1 toward the inside of the side wall 3, the inner mold frame 6 is deformed when this force is increased, and it is difficult to construct the side wall 3 with high accuracy. become. On the other hand, according to the construction method of the present invention, the bending moment M1 can be reduced, so that the side wall 3 can be constructed with high accuracy. Further, when the underground tank 2 becomes large, the weight of the steel roof structural member 9 increases and the bending moment M1 also increases. However, by using the construction method of the present invention, the bending moment M1 is reduced to reduce the inner mold. Since the deformation of the frame 6 can be suppressed, the side wall 3 can be constructed with high accuracy even when the underground tank 2 is enlarged.

上述した型枠装置1を用いて側壁3を構築する際は、内壁5aと内型枠6との間にコンクリートを打設して、そのコンクリートの所定の強度が発現したらジャッキ8bで型枠装置1を所望の位置まで上昇させて次のコンクリート打設容積を確保するという作業を繰り返す。   When the side wall 3 is constructed using the above-described formwork device 1, concrete is placed between the inner wall 5a and the inner formwork 6, and when the predetermined strength of the concrete is expressed, the formwork device is formed with the jack 8b. The operation of raising 1 to a desired position to secure the next concrete placement volume is repeated.

図4は、型枠装置1が上昇するときの概略の荷重状態を示す図である。図4に示すように、型枠装置1が上昇するときには、型枠装置1の重量W1及び上記荷重V3に加えて、内型枠6と側壁3の内周面との間に生じる摩擦抵抗W2が鉛直方向下向きに作用する。これらの合力によって、型枠装置1が側壁3の内側に向かって回転しようとすると(これらの合力により生じる曲げモーメントをM2とする)、伸縮装置10aを介して鋼製屋根用構造部材9に圧縮力F3が載荷される。かかる状態では、鋼製屋根用構造部材9が弾性体の働きをして、鋼製屋根用構造部材9と伸縮装置10aとの接続部に反力F4がストラット10bの軸方向に生じる。この反力F4の水平成分F4hは、側壁3の外側方向に作用して、型枠装置1に曲げモーメントM2とは逆向きのモーメントを生じさせるので、型枠装置1には曲げモーメントM2よりも小さい曲げモーメントM3が作用する。したがって、型枠装置1には、曲げモーメントM2よりも小さい曲げモーメントM3が作用するので、内型枠6の変形が抑制され、側壁3を精度良く構築することができる。   FIG. 4 is a diagram showing a schematic load state when the mold apparatus 1 is raised. As shown in FIG. 4, when the mold apparatus 1 rises, in addition to the weight W <b> 1 of the mold apparatus 1 and the load V <b> 3, a frictional resistance W <b> 2 generated between the inner mold frame 6 and the inner peripheral surface of the side wall 3. Acts vertically downward. When the formwork device 1 tries to rotate toward the inside of the side wall 3 by these resultant forces (the bending moment generated by these resultant forces is assumed to be M2), it is compressed to the steel roof structural member 9 via the expansion / contraction device 10a. Force F3 is loaded. In such a state, the steel roof structural member 9 acts as an elastic body, and a reaction force F4 is generated in the axial direction of the strut 10b at the connecting portion between the steel roof structural member 9 and the telescopic device 10a. The horizontal component F4h of the reaction force F4 acts on the outer side of the side wall 3 to cause the mold apparatus 1 to generate a moment opposite to the bending moment M2. Therefore, the mold apparatus 1 has more than the bending moment M2. A small bending moment M3 acts. Therefore, since the bending moment M3 smaller than the bending moment M2 acts on the mold apparatus 1, the deformation of the inner mold 6 is suppressed, and the side wall 3 can be constructed with high accuracy.

鋼製屋根用構造部材9は、半径方向に配置された梁9aと、円周方向に配置された梁9bとからなるドームシェル構造をなし、円周方向、半径方向及び鉛直方向の3次元方向の剛性を有している。型枠装置1を上昇させるときに内型枠6と側壁3との間に生じた摩擦力による内型枠6の変形やコンクリート打設時の内型枠6の変形などの作業荷重による変形に対してドームシェル構造をなす鋼製屋根用構造部材9は、そのドームシェル構造の前記3次元方向の剛性が型枠6の変形を抑制するように作用するので、側壁3を精度よく構築することができる。   The steel roof structural member 9 has a dome shell structure composed of a beam 9a arranged in the radial direction and a beam 9b arranged in the circumferential direction, and has a three-dimensional direction in the circumferential direction, the radial direction, and the vertical direction. It has the rigidity of. For deformation due to work load such as deformation of the inner mold frame 6 due to frictional force generated between the inner mold frame 6 and the side wall 3 when the mold apparatus 1 is raised, or deformation of the inner mold frame 6 when placing concrete. On the other hand, the steel roof structural member 9 forming the dome shell structure acts so that the rigidity in the three-dimensional direction of the dome shell structure suppresses the deformation of the mold 6, so that the side wall 3 is constructed with high accuracy. Can do.

次に、上記型枠装置1を用いた地下タンク2の構築方法について施工手順にしたがって説明する。
図5〜図13は、地下タンク2の構築手順を示す図である。
Next, the construction method of the underground tank 2 using the mold apparatus 1 will be described according to the construction procedure.
5-13 is a figure which shows the construction procedure of the underground tank 2. As shown in FIG.

まず、図5に示すように、地盤4を円筒状に所定の深度まで掘削し、掘削土砂を排出して、掘削された部分にコンクリートを充填することにより地中連続壁11を構築する。   First, as shown in FIG. 5, the ground 4 is excavated in a cylindrical shape to a predetermined depth, the excavated soil is discharged, and the excavated portion is filled with concrete to construct the underground continuous wall 11.

地中連続壁11は、地盤4の土圧及び地下水圧を支持する外圧耐荷性能及び地盤4からの地下水の流入を極力防止する止水性能を有し、設計等により決定された所定の深度まで所定の厚みで構築される。   The underground continuous wall 11 has an external pressure load resistance performance that supports the earth pressure and groundwater pressure of the ground 4 and a water stop performance that prevents the inflow of groundwater from the ground 4 as much as possible, to a predetermined depth determined by design and the like. It is constructed with a predetermined thickness.

そして、地中連続壁11の所定の強度が発現した後、図6に示すように、地中連続壁11で囲まれた内側の土砂を掘削し、上方が開口した空洞部5を構築する。この空洞部5の底部に、図示はしないが、礫、小石、砕石等を敷設するとともに、集水管、揚水ポンプを設置し、排水層を構築する。   And after the predetermined | prescribed intensity | strength of the underground continuous wall 11 expresses, as shown in FIG. 6, the inner earth and sand enclosed by the underground continuous wall 11 is excavated, and the cavity part 5 which upper direction opened is constructed | assembled. Although not shown, gravels, pebbles, crushed stones, and the like are laid on the bottom of the cavity 5, and a water collecting pipe and a pump are installed to construct a drainage layer.

次に、図7に示すように、排水層の上に底板用鉄筋(図示しない)を組み立て、コンクリートを打設することにより円盤状の底板12を構築する。   Next, as shown in FIG. 7, the bottom plate 12 is constructed by assembling a bottom plate reinforcing bar (not shown) on the drainage layer and placing concrete.

次に、図8に示すように、底板12の所望の強度が発現した後に、地中連続壁11の内壁11aから所定の間隔Lを隔てた内方に架台13を設置し、その上に鋼製屋根用構造部材9を載置する。   Next, as shown in FIG. 8, after the desired strength of the bottom plate 12 is developed, the pedestal 13 is installed inwardly at a predetermined distance L from the inner wall 11 a of the underground continuous wall 11, and the steel is formed thereon. The structural member 9 for roof making is placed.

そして、図9に示すように、地中連続壁11の内壁11aと架台13との間にロッド8a及び側壁用鉄筋17を配置し、コンクリートを打設して側壁3の下部3aを構築する。本実施形態においては、側壁3の直径は、例えば、30mであるが、これに限定されるものではない。   And as shown in FIG. 9, the rod 8a and the side wall reinforcement 17 are arrange | positioned between the inner wall 11a of the underground continuous wall 11 and the mount 13, and concrete is laid, and the lower part 3a of the side wall 3 is constructed | assembled. In the present embodiment, the diameter of the side wall 3 is, for example, 30 m, but is not limited thereto.

次に、図10に示すように、側壁3の下部3aの強度が発現した後に、型枠装置1を側壁3の下部3aの上に設置し、この型枠装置1の伸縮装置10aを伸張して鋼製屋根用構造部材9に圧縮力を載荷し、次に、型枠装置1と鋼製屋根用構造部材9とを連結する。連結は、圧縮力の載荷時に緩めていた鋼製屋根用構造部材9と連結材10dとを締結するためのボルト20・ナット21を締め付けることにより行う。それから、完全に鋼製屋根用構造部材9が連結されていることを確認して、架台13を撤去する。   Next, as shown in FIG. 10, after the strength of the lower part 3a of the side wall 3 is developed, the mold apparatus 1 is installed on the lower part 3a of the side wall 3, and the expansion / contraction apparatus 10a of the mold apparatus 1 is extended. Then, a compressive force is loaded on the steel roof structural member 9, and then the formwork device 1 and the steel roof structural member 9 are connected. The connection is performed by tightening bolts 20 and nuts 21 for fastening the steel roof structural member 9 and the connecting member 10d that have been loosened when the compressive force is loaded. Then, after confirming that the steel roof structural member 9 is completely connected, the gantry 13 is removed.

次に、上述したように、内壁11aと内型枠6との間にコンクリートを打設して、そのコンクリートの強度が発現したらジャッキ8bでヨーク7、内型枠6及び鋼製屋根用構造部材9を所望の位置まで上昇させて次のコンクリート打設容積を確保し、再び地中連続壁11の内壁11aと内型枠6との間にコンクリートを打設して厚さLの側壁3を構築する。   Next, as described above, concrete is placed between the inner wall 11a and the inner mold frame 6, and when the strength of the concrete is expressed, the jack 7, the yoke 7, the inner mold frame 6, and the steel roof structural member 9 is raised to a desired position to secure the next concrete placement volume, and concrete is again placed between the inner wall 11a of the underground continuous wall 11 and the inner mold 6 to form the side wall 3 having a thickness L. To construct.

次に、図11及び図12に示すように、地中部分の側壁3の構築が完了したら、アンカー15を側壁3に打設して型枠装置1を側壁3に固定する。そして、型枠装置1が側壁3に完全に固定されていることを確認したら、伸縮装置10aを収縮して鋼製屋根用構造部材9に載荷していた圧縮力を解放し、伸縮装置10a、ストラット10bを取り外す。かかる状態での鋼製屋根用構造部材9の自重による鉛直方向下向きの荷重V2は、ジャッキ8bやアンカー15で支持する。   Next, as shown in FIGS. 11 and 12, when the construction of the side wall 3 in the underground portion is completed, the anchor 15 is driven on the side wall 3 to fix the formwork apparatus 1 to the side wall 3. And if it confirms that the formwork apparatus 1 is being completely fixed to the side wall 3, the expansion-contraction apparatus 10a will be shrunk and the compressive force loaded on the structural member 9 for steel roofs will be released, and the expansion-contraction apparatus 10a, Remove the strut 10b. The vertically downward load V2 due to the weight of the steel roof structural member 9 in this state is supported by the jack 8b and the anchor 15.

次に、伸縮装置10a、ストラット10bを取り付けていた箇所に屋根リングプレート16を設置し、屋根リングプレート16の一端を鋼製屋根用構造部材9に、他端を側壁3に埋設されている延長材19にそれぞれ溶接にて接合する。接合後に、ジャッキ8bやヨーク7の側壁3内に干渉している部分を撤去する。なお、ジャッキ8bやヨーク7の側壁3内に干渉している部分を撤去しても型枠装置1はアンカー15で側壁3に固定されているので落下しない。そして、側壁3の上端に側壁用鉄筋17を組み付けて、外型枠18及び内型枠22を設置する。   Next, the roof ring plate 16 is installed at the place where the expansion and contraction device 10a and the strut 10b are attached, and one end of the roof ring plate 16 is embedded in the steel roof structural member 9 and the other end is embedded in the side wall 3. Each material 19 is joined by welding. After joining, the jack 8b and the part interfering in the side wall 3 of the yoke 7 are removed. Even if the part interfering in the side wall 3 of the jack 8b or the yoke 7 is removed, the formwork device 1 is fixed to the side wall 3 by the anchor 15, so it does not fall. Then, the side bars 17 are assembled to the upper end of the side wall 3, and the outer mold 18 and the inner mold 22 are installed.

最後に、図13に示すように、外型枠18と内型枠6との間にコンクリートを打設して側壁3の上部3bを構築するとともに、屋根リングプレート16と側壁3とを完全に一体化する。そして、図示しないが、鋼製屋根用構造部材9の上に屋根板を設置することにより地下タンク2を構築する。   Finally, as shown in FIG. 13, concrete is placed between the outer mold 18 and the inner mold 6 to construct the upper portion 3b of the side wall 3, and the roof ring plate 16 and the side wall 3 are completely connected. Integrate. And although not shown in figure, the underground tank 2 is constructed | assembled by installing a roof board on the structural member 9 for steel roofs.

以上のようにして構築された本発明に係る地下タンク2の構築工法によれば、地中連続壁11の内壁11aから側壁3の厚さL分を隔てて内方に配置される内型枠6と、内型枠6と連結したヨーク7と、ヨーク7を上下移動させるための昇降手段8と、一端がヨーク7に、他端が鋼製屋根用構造部材9に接続され、鋼製屋根用構造部材9をヨーク7に連結するための連結手段10とを備えた型枠装置1を用いて、地中連続壁11の内壁11aに接する側壁3を構築することができる。   According to the construction method of the underground tank 2 according to the present invention constructed as described above, the inner mold frame disposed inwardly with the thickness L of the side wall 3 from the inner wall 11a of the underground continuous wall 11. 6, a yoke 7 connected to the inner mold 6, lifting means 8 for moving the yoke 7 up and down, one end connected to the yoke 7, and the other end connected to the steel roof structural member 9. The side wall 3 in contact with the inner wall 11a of the underground continuous wall 11 can be constructed by using the formwork apparatus 1 including the connecting means 10 for connecting the structural member 9 to the yoke 7.

また、従来のように、外型枠18と内型枠6とを備えた型枠装置を用いて側壁3を構築する場合には、内壁11aと側壁3との間に外型枠昇降用の隙間を掘削する掘削作業及び埋戻す埋戻作業が必要となるのに対して、本実施形態では、そのような隙間を設ける作業が不要となるので、地盤の掘削土量を低減することができるとともに、工期を短縮することができる。   Further, when the side wall 3 is constructed by using a formwork apparatus including the outer formwork 18 and the inner formwork 6 as in the prior art, the outer formwork lifting and lowering is performed between the inner wall 11 a and the sidewall 3. Whereas excavation work for excavating the gap and backfilling work for backfilling are required, in the present embodiment, the work for providing such a gap is not necessary, so the amount of excavated soil in the ground can be reduced. At the same time, the construction period can be shortened.

さらに、型枠装置1と鋼製屋根用構造部材9とが連結されているので、鋼製屋根用構造部材9に型枠装置1の変形抑制の役割を一部負担させて、精度良く側壁3を構築することができる。また、鋼製屋根用構造部材9をドームシェル構造にすることにより、鋼製屋根用構造部材9に型枠6の変形抑制の役割を効果的負担させることができるとともに、屋根の重量を軽くすることができる。   Furthermore, since the formwork apparatus 1 and the steel roof structural member 9 are connected, the steel roof structural member 9 is partially responsible for the role of suppressing deformation of the formwork apparatus 1 and the side wall 3 is accurately obtained. Can be built. Moreover, by making the steel roof structural member 9 into a dome shell structure, the steel roof structural member 9 can be effectively burdened with the role of suppressing deformation of the mold 6 and the weight of the roof can be reduced. be able to.

また、鋼製屋根用構造部材9を型枠装置1で支持しつつ、鋼製屋根用構造部材9の下方で側壁3を構築するので、側壁3を構築した後に鋼製屋根用構造部材9を上昇させる作業が無くなり、側壁3の構築後、すぐに側壁3と鋼製屋根用構造部材9とを接続することが可能となる。したがって、従来のように、側壁3を構築した後に鋼製屋根用構造部材9をクレーン等で側壁3の上方に吊る場合には、側壁3と鋼製屋根用構造部材9とを接続するための足場14を側壁3の上部3bに設置するという高所作業及び吊り荷の下での作業が必要となるのに対して、本実施形態ではそのような作業が不要となるので、安全性が大幅に向上する。   Moreover, since the side wall 3 is constructed under the steel roof structural member 9 while the steel roof structural member 9 is supported by the mold apparatus 1, the steel roof structural member 9 is constructed after the side wall 3 is constructed. As a result, the side wall 3 and the steel roof structural member 9 can be connected immediately after the side wall 3 is constructed. Therefore, when the steel roof structural member 9 is hung above the side wall 3 with a crane or the like after the side wall 3 is constructed as in the prior art, the side wall 3 and the steel roof structural member 9 are connected to each other. While it is necessary to perform the work at a high place and under a suspended load in which the scaffold 14 is installed on the upper part 3b of the side wall 3, such work is not necessary in the present embodiment, so the safety is greatly improved. To improve.

そして、型枠装置1の上昇時は、鋼製屋根用構造部材9に圧縮力F3が載荷されることにより、鋼製屋根用構造部材9からストラット10bに対して反力F4が作用する。この反力F4の水平成分F4hは側壁3の外側方向に作用するので、型枠装置1に作用する曲げモーメントM2が低減される。これにより、型枠装置1を正確に所定の位置に設置できるので、側壁3を精度良く構築することが可能となる。   And when the formwork apparatus 1 is raised, the reaction force F4 acts on the strut 10b from the structural member 9 for steel roof by loading the compressive force F3 on the structural member 9 for steel roof. Since the horizontal component F4h of the reaction force F4 acts in the outward direction of the side wall 3, the bending moment M2 acting on the mold apparatus 1 is reduced. Thereby, since the formwork apparatus 1 can be accurately installed at a predetermined position, the side wall 3 can be constructed with high accuracy.

本発明に係る型枠装置を用いて側壁を構築している状態を示す側断面図である。It is a sectional side view which shows the state which has constructed | assembled the side wall using the formwork apparatus which concerns on this invention. 本発明に係る型枠装置を用いて側壁を構築している状態を示す平面図である。It is a top view which shows the state which has constructed | assembled the side wall using the formwork apparatus which concerns on this invention. 型枠装置に作用している概略の荷重状態を示す図である。It is a figure which shows the general load state which is acting on the formwork apparatus. 型枠装置が上昇するときの概略の荷重状態を示す図である。It is a figure which shows the general load state when a formwork apparatus raises. 地下タンクの構築手順を示す図である。It is a figure which shows the construction procedure of an underground tank. 地下タンクの構築手順を示す図である。It is a figure which shows the construction procedure of an underground tank. 地下タンクの構築手順を示す図である。It is a figure which shows the construction procedure of an underground tank. 地下タンクの構築手順を示す図である。It is a figure which shows the construction procedure of an underground tank. 地下タンクの構築手順を示す図である。It is a figure which shows the construction procedure of an underground tank. 地下タンクの構築手順を示す図である。It is a figure which shows the construction procedure of an underground tank. 地下タンクの構築手順を示す図である。It is a figure which shows the construction procedure of an underground tank. 地下タンクの構築手順を示す図である。It is a figure which shows the construction procedure of an underground tank. 地下タンクの構築手順を示す図である。It is a figure which shows the construction procedure of an underground tank.

符号の説明Explanation of symbols

1 型枠装置
2 地下タンク
3 側壁
3a 側壁の下部
3b 側壁の上部
4 地盤
5 空洞部
5a 内壁
6 内型枠
7 ヨーク
8 昇降手段
8a ロッド
8b ジャッキ
9 鋼製屋根用構造部材
9a、9b 梁
10 連結手段
10a 伸縮装置
10b ストラット
10c 支持材
10d 連結材
11 地中連続壁
11a 内壁
12 底板
13 架台
14 足場
15 アンカー
16 屋根リングプレート
17 側壁用鉄筋
18 外型枠
19 延長材
20 ボルト
21 ナット
22 内型枠
L 所定の間隔
DESCRIPTION OF SYMBOLS 1 Formwork apparatus 2 Underground tank 3 Side wall 3a Lower part of side wall 3b Upper part of side wall 4 Ground 5 Cavity part 5a Inner wall 6 Inner form frame 7 Yoke 8 Lifting means 8a Rod 8b Jack 9 Steel roof structural members 9a, 9b Beam 10 Connection Means 10a Stretching device 10b Strut 10c Support material 10d Linking material 11 Underground continuous wall 11a Inner wall 12 Bottom plate 13 Mounting base 14 Scaffold 15 Anchor 16 Roof ring plate 17 Rebar for side wall 18 Outer frame 19 Extension material 20 Bolt 21 Nut 22 Inner mold L Predetermined interval

Claims (6)

地盤内に形成された空洞部の内壁に沿って設置される側壁と該側壁の上部に設置される屋根とを備える地下タンクの構築工法において、
前記空洞部の前記内壁から所定の間隔を隔てて内方に配置される型枠と、前記型枠と連結したヨークと、前記ヨークを上下移動させるための昇降手段と、前記屋根を構成する鋼製屋根用構造部材を前記ヨークに連結するための連結手段とを備えた型枠装置を用い、
前記型枠装置と前記鋼製屋根用構造部材とを連結し、
前記内壁と前記型枠との間にコンクリートを打設して、このコンクリートの所定の強度が発現したら前記昇降手段で前記ヨークを上昇させることにより前記型枠装置及び前記鋼製屋根用構造部材を上昇させるという作業を繰り返して側壁を構築し、
構築された前記側壁と前記鋼製屋根用構造部材とを接合することを特徴とする地下タンクの構築工法。
In the construction method of the underground tank comprising a side wall installed along the inner wall of the cavity formed in the ground and a roof installed on the upper part of the side wall,
A mold frame that is arranged inward from the inner wall of the hollow portion at a predetermined interval, a yoke that is connected to the mold frame, lifting means for moving the yoke up and down, and steel that constitutes the roof Using a formwork apparatus provided with a connecting means for connecting the structural member for roof making to the yoke,
Connecting the formwork device and the steel roof structural member;
Concrete is placed between the inner wall and the formwork, and when a predetermined strength of the concrete is developed, the yoke is raised by the lifting means to thereby form the formwork device and the steel roof structural member. Build the side walls by repeating the work of raising,
A construction method of an underground tank, characterized in that the constructed side wall and the steel roof structural member are joined.
前記鋼製屋根用構造部材は、ドームシェル構造であることを特徴とする請求項1に記載の地下タンクの構築工法。   The construction method for an underground tank according to claim 1, wherein the steel roof structural member has a dome shell structure. 前記連結手段は、前記鋼製屋根用構造部材に圧縮力を載荷可能な伸縮装置を備え、前記伸縮装置を伸張して前記鋼製屋根用構造部材に圧縮力を載荷することにより前記鋼製屋根用構造部材から前記型枠装置に作用する反力によって、前記型枠装置に作用する前記側壁の内側方向への曲げモーメントを低減することを特徴とする請求項1に記載の地下タンクの構築工法。   The connecting means includes a telescopic device capable of loading a compressive force on the steel roof structural member, and the steel roof is formed by extending the telescopic device and loading the steel roof structural member with the compressive force. 2. The construction method of an underground tank according to claim 1, wherein a bending moment inwardly of the side wall acting on the formwork device is reduced by a reaction force acting on the formwork device from a structural member. . 請求項1〜3のいずれかに記載の地下タンクの構築工法にて構築されたことを特徴とする地下タンク。   An underground tank constructed by the underground tank construction method according to any one of claims 1 to 3. 地盤内に形成された空洞部の内壁に沿って設置される側壁と該側壁の上部に設置される屋根とを備えた地下タンクを構築するための型枠装置であって、
前記空洞部の前記内壁から所定の間隔を隔てて内方に配置される型枠と、
前記型枠と連結したヨークと、
前記ヨークを上下移動させるための昇降手段と、
前記屋根を構成する鋼製屋根用構造部材を前記ヨークに連結するための連結手段とを備えることを特徴とする型枠装置。
A formwork device for constructing an underground tank comprising a side wall installed along an inner wall of a hollow portion formed in the ground and a roof installed on the upper side of the side wall,
A mold that is disposed inward from the inner wall of the hollow portion at a predetermined interval;
A yoke connected to the formwork;
Elevating means for moving the yoke up and down;
A formwork apparatus comprising: a connecting means for connecting a steel roof structural member constituting the roof to the yoke.
前記連結手段は、前記鋼製屋根用構造部材に圧縮力を載荷可能な伸縮装置を備えることを特徴とする請求項5に記載の型枠装置。   6. The formwork apparatus according to claim 5, wherein the connecting means includes an expansion / contraction device capable of loading a compressive force on the steel roof structural member.
JP2007224563A 2007-08-30 2007-08-30 Construction method of underground tank, underground tank constructed by the construction method, and formwork apparatus Expired - Fee Related JP4853430B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007224563A JP4853430B2 (en) 2007-08-30 2007-08-30 Construction method of underground tank, underground tank constructed by the construction method, and formwork apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007224563A JP4853430B2 (en) 2007-08-30 2007-08-30 Construction method of underground tank, underground tank constructed by the construction method, and formwork apparatus

Publications (2)

Publication Number Publication Date
JP2009057722A JP2009057722A (en) 2009-03-19
JP4853430B2 true JP4853430B2 (en) 2012-01-11

Family

ID=40553720

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007224563A Expired - Fee Related JP4853430B2 (en) 2007-08-30 2007-08-30 Construction method of underground tank, underground tank constructed by the construction method, and formwork apparatus

Country Status (1)

Country Link
JP (1) JP4853430B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102094542B (en) * 2010-12-24 2013-02-06 江苏河海新能源有限公司 Method for manufacturing energy storage underground water tank and support member for energy storage underground water tank
JP6075004B2 (en) * 2012-10-22 2017-02-08 株式会社Ihi Construction method of above-ground cryogenic tank

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57178066A (en) * 1981-04-23 1982-11-02 Obayashi Gumi Kk Method and mold frame apparatus for constructing internally wound wall of underground structure
JPH0711806A (en) * 1993-06-28 1995-01-13 Mitsubishi Heavy Ind Ltd Construction of low-temperature underground tank
JP3435611B2 (en) * 1994-04-15 2003-08-11 大成建設株式会社 How to build an underground storage tank

Also Published As

Publication number Publication date
JP2009057722A (en) 2009-03-19

Similar Documents

Publication Publication Date Title
CN102720201B (en) Support change construction building method implemented by using main structure of building
JP6010070B2 (en) Temporary closing method for existing underwater structures
JP4957894B2 (en) Reinforcement method for power transmission towers
JP5976373B2 (en) Pile foundation reinforcement structure and reinforcement method
JP4853430B2 (en) Construction method of underground tank, underground tank constructed by the construction method, and formwork apparatus
JP5131645B2 (en) Construction method of steel tower foundation
CN213062136U (en) Independent foundation underpinning system for storey-adding building
JP3888174B2 (en) Temporary deadline construction method
JP2015036493A (en) Method for constructing underground storage tank
JP5223701B2 (en) Construction method of side wall of underground tank structure
RU2123091C1 (en) Foundation for metal column, method of foundation construction and alignment
JP6220659B2 (en) Position adjustment method of reaction force receiving member and top of column
JP3682704B2 (en) Built-in column construction method without casing
JP2011089320A (en) Method for constructing precast basement column
JP6792239B2 (en) Scuttling prevention device for steel pipe piles and scuttling prevention method
JP6084388B2 (en) How to build a new foundation
JP3160485U (en) Deep foundation foundation pile reinforcement bar construction
JP5027752B2 (en) Construction method of underground floor pillar and underground floor pillar
JP3809618B2 (en) Foundation pile and construction method of foundation pile
JP7364105B2 (en) Position adjustment device and method for adjusting the position of the structure pillar
JP4856737B2 (en) Foundation reinforcement method for existing houses
JP7437336B2 (en) Temporary cofferdam method, temporary cofferdam structure
JP4475116B2 (en) Vertical shaft structure and its construction method
JP3791092B2 (en) Construction method of shaft
JP6826956B2 (en) Dismantling method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100720

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110914

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110927

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111010

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141104

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees