JP4957894B2 - Reinforcement method for power transmission towers - Google Patents

Reinforcement method for power transmission towers Download PDF

Info

Publication number
JP4957894B2
JP4957894B2 JP2007046978A JP2007046978A JP4957894B2 JP 4957894 B2 JP4957894 B2 JP 4957894B2 JP 2007046978 A JP2007046978 A JP 2007046978A JP 2007046978 A JP2007046978 A JP 2007046978A JP 4957894 B2 JP4957894 B2 JP 4957894B2
Authority
JP
Japan
Prior art keywords
power transmission
transmission tower
reinforcing
foundation
tower
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007046978A
Other languages
Japanese (ja)
Other versions
JP2008208634A (en
Inventor
収司 和田
裕幸 武石
成 田邉
Original Assignee
東京電力株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東京電力株式会社 filed Critical 東京電力株式会社
Priority to JP2007046978A priority Critical patent/JP4957894B2/en
Publication of JP2008208634A publication Critical patent/JP2008208634A/en
Application granted granted Critical
Publication of JP4957894B2 publication Critical patent/JP4957894B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、軟弱地盤帯に構築された送電用鉄塔において、送電用鉄塔基礎の不等沈下により発生した送電用鉄塔支柱材の応力を緩和・解放した状態で送電用鉄塔を補強する送電用鉄塔の補強方法に関する。   The present invention relates to a power transmission tower constructed in a soft ground zone, in which the power transmission tower is reinforced in a state in which the stress of the power transmission tower pillar material generated by unequal settlement of the power transmission tower foundation is relaxed and released. It is related with the reinforcement method.
平野部の軟弱地盤帯では、高度経済成長期に、地下水のくみ上げ等により地盤沈下が発生し、地域によっては現在もこの傾向が続いている。このような地域に構築された送電用鉄塔のうち、比較的基礎への負荷荷重が大きい基幹系送電線用の鉄塔では、杭基礎や、より剛性の高いマット基礎が用いられているため、地盤沈下の影響を受けにくい。しかしながら、小規模な二次系送電線用の鉄塔では、一般に標準基礎といわれる逆T字型の独立基礎が多く採用されているため、地盤性状の影響を受けやすく、脚間の不等沈下が多数確認されている。   In the soft ground zone in the plain, ground subsidence occurred due to pumping of groundwater during the period of high economic growth, and this trend continues even in some regions. Among power transmission towers constructed in such areas, the foundation for power transmission lines with a relatively large load on the foundation uses pile foundations and mat foundations with higher rigidity. Less susceptible to subsidence. However, small steel towers for secondary transmission lines generally use inverted T-shaped independent foundations, which are generally referred to as standard foundations. Many have been confirmed.
従来より、軟弱地盤帯に構築された送電用鉄塔は、送電用鉄塔基礎の不等沈下が発生して、その沈下量が許容値を超えた場合には、何らかの補強工事もしくは鉄塔の立て替えが必要であった。   Conventionally, transmission towers built on soft ground have to undergo some kind of reinforcement work or replacement of the tower when the foundation of the transmission tower is unevenly subsidized and the subsidence exceeds the allowable value. Met.
従来の補強工法としては、例えば下記特許文献1では、図20に示されるように、送電用鉄塔主柱材50の切断すべき位置の上下部分にそれぞれ固定金具51、51を取り付け、これら固定金具51、51の両横側に、ジャッキ取付材52を介して主柱材50と平行に油圧ジャッキ53、53を装着し、次いで主柱材50の所定位置を切断し、当該油圧ジャッキ53、53により所定寸法のせり上げまたはせり下げを行った後、図21に示されるように、L型鋼の継ぎ材54で切断した支柱材50、50の上下を再結合する工法が開示されている。   As a conventional reinforcing method, for example, in Patent Document 1 below, as shown in FIG. 20, fixing brackets 51, 51 are respectively attached to upper and lower portions of a position to be cut of a power transmission tower main pillar 50. Hydraulic jacks 53 and 53 are mounted on both sides of 51 and 51 in parallel with the main column member 50 via a jack mounting member 52, then a predetermined position of the main column member 50 is cut, and the hydraulic jacks 53 and 53 are connected. After raising or lowering a predetermined dimension by the above method, as shown in FIG. 21, a method of rejoining the upper and lower sides of the support members 50 and 50 cut by the L-shaped steel joint material 54 is disclosed.
また、下記特許文献2では、多数のフランジ付き鋼管をボルトで接続した支柱から成る既設の鉄塔において、上下のフランジ付き鋼管の間にジャッキを介設して所要高さ押し上げ、フランジ間にスペーサを挿入してボルトで再接続する工法が開示されている。
特開昭57−77761号公報 特開2003−204612号公報
Moreover, in the following Patent Document 2, in an existing steel tower composed of pillars in which a number of flanged steel pipes are connected by bolts, a jack is interposed between the upper and lower flanged steel pipes to raise the required height, and a spacer is provided between the flanges. A method of inserting and reconnecting with bolts is disclosed.
JP-A-57-77761 JP 2003-204612 A
しかしながら、支柱材は、切断後、送電用鉄塔基礎の不等沈下に伴う支柱材内部に蓄積された応力が解放されるものであるから、切断された支柱材が同軸上に位置することはほとんどなく、必ず両切断面間に水平方向(平面的な)のずれが生じる。ところが、上記特許文献1、2記載の発明では、例えば図21に示されるように、この水平方向のずれを強制的に同軸上に位置矯正し、切断後の支柱材50、50を継ぎ材54で再結合するものであるため、支柱材50、50には二次的な応力が残留することになるなどの問題があった。   However, since the strut material releases the stress accumulated inside the strut material due to unequal settlement of the power transmission tower foundation after cutting, the cut strut material is rarely located on the same axis. There is always a horizontal (planar) shift between the two cut surfaces. However, in the inventions described in Patent Documents 1 and 2, for example, as shown in FIG. 21, this horizontal shift is forcibly corrected on the same axis, and the post materials 50 and 50 after cutting are joined to the joint material 54. Therefore, there is a problem that secondary stress remains in the support members 50 and 50.
また、不等沈下量の分だけせり上げることによって、一時的に送電用鉄塔の傾斜が矯正されるものの、送電用鉄塔基礎の耐力不足により経時的にさらに沈下するおそれもあるため、鉄塔の補強工事とともに、送電用鉄塔基礎の耐力補強との組合せが容易な工法が強く望まれていた。   In addition, although the slope of the transmission tower is temporarily corrected by raising the amount of unequal settlement, there is a risk of further settlement over time due to insufficient strength of the transmission tower foundation. Along with the construction, a construction method that can be easily combined with the strength reinforcement of the transmission tower foundation has been strongly desired.
そこで本発明の第1の課題は、送電用鉄塔基礎の不等沈下により発生した支柱材の応力を緩和・解放した状態で送電用鉄塔を補強することにある。   Accordingly, a first object of the present invention is to reinforce a power transmission tower in a state in which stress of a column material generated by uneven settlement of a power transmission tower foundation is relaxed and released.
第2に、前記送電用鉄塔の補強とともに、送電用鉄塔基礎の耐力を補強することにある。   The second is to reinforce the strength of the power transmission tower foundation together with the reinforcement of the power transmission tower.
前記課題を解決するために請求項1に係る本発明として、送電用鉄塔基礎の不等沈下により、送電用鉄塔支柱材に発生した応力を緩和・解放する送電用鉄塔の補強方法であって、
前記送電用鉄塔の支柱材を、ジャッキを介して支持鋼材によって仮設支持する鉄塔支持工程と、送電用鉄塔基礎の上端部のコンクリートを除去して内部の支柱材を露出させた後、この露出した支柱材の任意の箇所を切断予定位置とし、その上下部分の支柱材に対して支圧板を固設するとともに、前記切断予定位置で支柱材を切断する支柱材切断工程と、前記切断部を含めた支柱材の周囲に補強鉄筋を配置するとともに、その外周に型枠を設置し、切断された前記支柱材を位置ズレさせた状態のままで前記送電用鉄塔基礎と連続するようにコンクリートを打設するコンクリート打設工程とからなる送電用鉄塔の補強方法が提供される。
In order to solve the above-mentioned problem, the present invention according to claim 1 is a method for reinforcing a power transmission tower that relaxes / releases stress generated in a power tower column material due to uneven settlement of a power transmission tower foundation,
The tower support step of temporarily supporting the power tower tower material with a support steel material via a jack, and removing the concrete at the upper end of the power tower foundation to expose the internal pillar material, this exposed A strut material cutting step in which an arbitrary portion of the strut material is set as a planned cutting position and a supporting plate is fixed to the strut material at the upper and lower portions thereof, and the strut material is cut at the planned cutting position, and the cutting portion is included. Reinforcing bars are placed around the struts, and a formwork is installed on the outer periphery of the struts, and concrete is cast so that the cut struts are displaced and continue to the foundation of the power transmission tower. There is provided a method for reinforcing a power transmission tower comprising a concrete placing process.
上記請求項1記載の本発明では、送電用鉄塔の支柱材を切断後、前記切断部を含めた支柱材の周囲に補強鉄筋を配置するとともに、その外周に型枠を設置し、切断された前記支柱材を位置ズレさせた状態のままで前記送電用鉄塔基礎と連続するようにコンクリートを打設するようにした。従って、送電用鉄塔基礎の不等沈下によって、支柱材に発生した応力を確実に緩和・解放した状態で送電用鉄塔を補強できるようになる。   In the present invention according to claim 1, after cutting the pillar material of the power transmission tower, the reinforcing bars are disposed around the pillar material including the cutting portion, and the formwork is installed on the outer periphery thereof, and the steel rod is cut. The concrete was placed so as to be continuous with the power transmission tower foundation while the column material was displaced. Accordingly, the power transmission tower can be reinforced in a state in which the stress generated in the column material is reliably relieved and released by the uneven settlement of the power transmission tower foundation.
請求項2に係る本発明として、前記補強鉄筋は、前記支柱材とほぼ平行して配置された複数の軸力筋と、該軸力筋群の周囲に支柱材の周方向に沿って螺旋状に配置した螺旋鉄筋とからなる請求項1記載の送電用鉄塔の補強方法が提供される。   As a second aspect of the present invention, the reinforcing reinforcing bar has a plurality of axial reinforcing bars arranged substantially in parallel with the supporting rod member, and a spiral shape around the axial reinforcing rod group along the circumferential direction of the supporting rod member. A method for reinforcing a power transmission tower according to claim 1, comprising: a helical rebar disposed in a wall.
上記請求項2記載の発明は、補強鉄筋を前記支柱材とほぼ平行して配置された複数の軸力筋と、該軸力筋群の周囲に支柱材の周方向に沿って螺旋状に配置した螺旋鉄筋とから構成するようにしたものであり、特に周方向鉄筋として螺旋鉄筋を用いることにより、定着長を抑えることができ、補修する躯体部分をコンパクト化できるようになるとともに、既設基礎柱体をコンクリートの打ち換え等を行わずに補強できるようになる。   In the invention according to the second aspect, the reinforcing reinforcing bars are arranged in a spiral shape along the circumferential direction of the supporting rods around the axial reinforcing bars and the plurality of axial reinforcing bars arranged substantially in parallel with the supporting rods. In particular, the use of spiral rebar as a circumferential reinforcing bar can reduce the anchorage length, and the size of the frame part to be repaired can be reduced. The body can be reinforced without replacing concrete.
請求項3に係る本発明として、前記補強鉄筋を、前記送電用鉄塔基礎部分まで連続するように配置し、前記送電用鉄塔基礎と一体化を図るようにコンクリートを打設する請求項1、2いずれかに記載の送電用鉄塔の補強方法が提供される。   According to a third aspect of the present invention, the reinforcing reinforcing bars are arranged so as to continue to the power transmission tower foundation, and concrete is cast so as to be integrated with the power transmission tower foundation. A method for reinforcing a power transmission tower according to any one of the above is provided.
上記請求項3記載の発明は、前記補強鉄筋(軸力筋及び螺旋鉄筋)を、前記送電用鉄塔基礎部分まで連続するように配置し(鉄塔基礎の上端部分を取り囲むように配置)、この補強鉄筋の配置領域にコンクリートを打設することにより、補強部分と鉄塔基礎部分とが一体的に接続され、より強固に補強が行われるようになる。これにより、支柱材のズレによって発生する送電用鉄塔基礎部分への応力増加に対しても補強が可能となる。   In the invention according to the third aspect, the reinforcing reinforcing bars (axial reinforcing bars and spiral reinforcing bars) are arranged so as to continue to the power transmission tower base portion (disposed so as to surround the upper end portion of the steel tower foundation). By placing concrete in the reinforcing bar arrangement region, the reinforcing portion and the steel tower foundation portion are integrally connected, and the reinforcement is performed more firmly. Thereby, it is possible to reinforce against an increase in stress applied to the power transmission tower foundation caused by the displacement of the support material.
請求項4に係る本発明として、事前に、前記送電用鉄塔基礎に近接し、かつ地表面に頭部を突出させた状態で1又は複数の補強用杭を打ち込んでおき、前記コンクリート打設工程において、前記補強用杭の地表面突出部を含めて、前記型枠を配置し、前記送電用鉄塔基礎と補強用杭との一体化を図るようにコンクリートを打設する請求項1〜3いずれかに記載の送電用鉄塔の補強方法が提供される。   As the present invention according to claim 4, one or more reinforcing piles are driven in advance in the state of being close to the power transmission tower foundation and having a head protruding on the ground surface, and the concrete placing step In any one of Claims 1-3 which arrange | position concrete so that the said formwork may be arrange | positioned including the ground-surface protrusion part of the said reinforcement pile, and the said power transmission tower foundation and the reinforcement pile may be integrated. A method for reinforcing a power transmission tower as described above is provided.
上記請求項4記載の本発明は、送電用鉄塔の補強と同時に、送電用鉄塔基礎の耐力増強を目的とするものであり、事前に、前記補強がなされる送電用鉄塔基礎に近接し、かつ地表面に頭部を突出させた状態で1又は複数の補強用杭を打ち込んでおき、前記コンクリート打設工程において、前記補強用杭の地表面突出部を含めて、前記型枠を配置し、前記送電用鉄塔基礎と補強用杭との一体化を図るようにコンクリートを打設することにより、鉄塔支柱の補強と同時に送電用鉄塔基礎の耐力補強が同時になされるようになる。   The present invention according to claim 4 is intended to increase the proof stress of the transmission tower foundation simultaneously with the reinforcement of the transmission tower, in advance, close to the transmission tower foundation to be reinforced, and One or a plurality of reinforcing piles are driven in a state where the head is projected on the ground surface, and in the concrete placing step, including the ground surface protruding portion of the reinforcing pile, the mold is disposed, By placing concrete so that the power transmission tower foundation and the reinforcing pile are integrated, the reinforcement of the power transmission tower foundation is simultaneously performed at the same time as the reinforcement of the tower pillars.
請求項5に係る本発明として、送電用鉄塔基礎の配設領域全体にマット基礎を配設し、前記コンクリート打設工程で打設したコンクリートが前記マット基礎に接続して設けられる請求項1〜4いずれかに記載の送電用鉄塔の補強方法が提供される。   As the present invention according to claim 5, the mat foundation is disposed in the entire arrangement region of the power transmission tower foundation, and the concrete cast in the concrete placing step is provided connected to the mat foundation. 4. A method for reinforcing a power transmission tower according to any one of 4 is provided.
上記請求項5記載の本発明も、送電用鉄塔の補強と同時に、送電用鉄塔基礎の耐力増強を目的とするものであり、送電用鉄塔基礎の配設領域全体にマット基礎を配設し、前記コンクリート打設工程で打設したコンクリートが前記マット基礎に接続して設けられることにより、送電用鉄塔基礎の床板の耐力とマット基礎の耐力との相互作用により、地耐力が一段と補強されるようになる。   The present invention according to claim 5 is also intended to enhance the strength of the power transmission tower foundation at the same time as the reinforcement of the power transmission tower. The concrete cast in the concrete placing process is connected to the mat foundation so that the ground strength is further reinforced by the interaction between the strength of the floor plate of the power transmission tower foundation and the strength of the mat foundation. become.
以上詳説のとおり本発明によれば、送電用鉄塔基礎の不等沈下により発生した支柱材の応力を緩和・解放した状態で送電用鉄塔の補強ができるようになる。また、鉄塔の補強と同時に、簡単に送電用鉄塔基礎の耐力補強が可能となる。   As described above in detail, according to the present invention, the power transmission tower can be reinforced in a state where the stress of the column material generated by the uneven settlement of the power transmission tower foundation is relaxed and released. Moreover, simultaneously with the reinforcement of the steel tower, it is possible to easily reinforce the strength of the foundation of the power transmission tower.
以下、本発明の実施の形態について図面を参照しながら詳述する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
本発明に係る送電用鉄塔の補強方法では、図1に示されるように、鉄塔を構成する複数の支柱材1、1…と、これら各支柱材1に対応して、コンクリート床板2Aと柱体2Bとからなる逆T字型の独立基礎(送電用鉄塔基礎2)が設けられた送電用鉄塔を対象とする。   In the method for reinforcing a power transmission tower according to the present invention, as shown in FIG. 1, a plurality of support members 1, 1... A power transmission tower provided with an inverted T-shaped independent foundation (transmission tower foundation 2) composed of 2B is targeted.
本発明に係る送電用鉄塔の補強方法は、送電用鉄塔基礎の不等沈下により、送電用鉄塔の支柱材1に発生した応力の緩和・解放を主たる目的として、送電用鉄塔を補強する方法である。以下、手順に沿って説明する。   The method for reinforcing a power transmission tower according to the present invention is a method of reinforcing a power transmission tower mainly for the purpose of relaxation / release of stress generated in the column material 1 of the power transmission tower due to unequal settlement of the power transmission tower foundation. is there. Hereinafter, it demonstrates along a procedure.
〔第1形態例〕
(鉄塔支持工程)
鉄塔支持工程では、図2及び図3に示されるように、送電用鉄塔の支柱材1をジャッキ4を介して支持鋼材3によって仮設支持し、必要に応じてジャッキ4の操作により送電用鉄塔の矯正を行う。支持鋼材3による支持方法は、図2に示されるように、支柱材1、1…の全体を支持する方法や、図3に示されるように、補強する送電用鉄塔基礎に対応した特定の支柱材1のみを支持する方法とすることができる。
[First embodiment]
(Steel tower support process)
In the tower support process, as shown in FIG. 2 and FIG. 3, the column material 1 of the power transmission tower is temporarily supported by the support steel material 3 through the jack 4, and the power transmission tower is operated by operating the jack 4 as necessary. Correct. As shown in FIG. 2, the support method using the support steel material 3 is a method of supporting the entire support members 1, 1,... Or a specific support column corresponding to the power transmission tower foundation to be reinforced as shown in FIG. A method of supporting only the material 1 can be adopted.
(支柱材切断工程)
その後、図4に示されるように、対象となる送電用鉄塔基礎2の周囲の表面土を掘り出し、送電用鉄塔基礎2の柱体2B上部を露出させるとともに、この送電用鉄塔基礎2の柱体上部(斜線部)のコンクリートを解体(はつり除去)して、内部の支柱材1を露出させる。そして、図5に示されるように、この露出した支柱材1の任意の箇所を切断予定位置とし、その上下部分の支柱材1に対して垂設するように複数段の、図示例では上下各2段の支圧板5、5…を固設し、その後、図6に示されるように、前記切断予定位置で支柱材1を切断する。なお、前記支圧板5は、支柱材1の切断後に固設するようにしてもよい。
(Post material cutting process)
Thereafter, as shown in FIG. 4, the surface soil around the target power transmission tower foundation 2 is dug to expose the upper part of the pillar body 2B of the power transmission tower foundation 2, and the column body of the power transmission tower foundation 2 is exposed. The upper (shaded) portion of the concrete is dismantled (suspended) to expose the internal strut material 1. Then, as shown in FIG. 5, an arbitrary portion of the exposed strut material 1 is set as a scheduled cutting position, and a plurality of stages are arranged so as to be suspended from the strut material 1 in the upper and lower portions. .. Are fixed, and then, as shown in FIG. 6, the support material 1 is cut at the planned cutting position. The bearing plate 5 may be fixed after the support material 1 is cut.
前記支圧板5は、例えば図7に示されるように、断面L字型を成す部材を用い、一方の面を支柱材1の各面から垂設させた状態で取付け、ボルト締め、溶接等により支柱材1に固設される。   For example, as shown in FIG. 7, the bearing plate 5 uses a member having an L-shaped cross section, and is attached in a state where one surface is suspended from each surface of the column material 1, by bolting, welding, or the like. Fixed to the support material 1.
この支柱材1の切断後は、これまで送電用鉄塔基礎の不等沈下に伴う支柱材1の歪みにより、支柱材1の内部に蓄積していた応力が解放され、図6に示されるように、切断部上側の支柱材1と下側の支柱材1との間に位置ずれが生じるようになる。この位置ズレは、通常X、Y、Z方向の三次元的方向への位置ズレである。   After the cutting of the column material 1, the stress accumulated in the column material 1 is released by the distortion of the column material 1 due to the uneven settlement of the power transmission tower foundation so far, as shown in FIG. Then, a positional deviation occurs between the upper column material 1 and the lower column material 1. This positional deviation is usually a positional deviation in the three-dimensional direction of the X, Y, and Z directions.
(コンクリート打設工程)
コンクリート打設工程では、先ず、図8に示されるように、前記切断部を含めた支柱材1の周囲に、支柱材1とほぼ平行して複数の軸力筋(兼曲げモーメント筋)6、6…を配置するとともに、該軸力筋群6、6…の周囲を支柱材1の周方向に沿って螺旋状に螺旋鉄筋7を配置する。その後、図9に示されるように、前記配筋の外周にコンクリート打設用の型枠8を設置し、切断された前記支柱材を位置ズレさせた状態のままで前記送電用鉄塔基礎2と連続するようにコンクリートを打設する。そして、図10に示されるように、前記型枠8を除去し、周囲を覆土して送電用鉄塔の補強工事を終える。
(Concrete placing process)
In the concrete placing step, first, as shown in FIG. 8, a plurality of axial force bars (also called bending moment bars) 6 around the support material 1 including the cutting portion, substantially parallel to the support material 1, .. Are arranged, and the spiral reinforcing bars 7 are arranged spirally around the axial force bar groups 6, 6. Thereafter, as shown in FIG. 9, a concrete casting form 8 is installed on the outer periphery of the bar arrangement, and the power transmission tower foundation 2 is placed in a state where the cut support material is displaced. Place concrete in a continuous manner. Then, as shown in FIG. 10, the formwork 8 is removed, the surroundings are covered with soil, and the reinforcement work for the transmission tower is completed.
このように、本発明に係る補強方法では、切断部における支柱材1、1間のずれを強制的に修正するのではなく、前記位置ズレした状態のまま、すなわち支柱材1に蓄積された応力を解放させた状態で、補強対策が行われるので、長期的に安定した補強がなされるようになる。   Thus, in the reinforcing method according to the present invention, the displacement between the support members 1 and 1 in the cut portion is not forcibly corrected, but the stress accumulated in the support member 1 remains in the displaced state. Since the reinforcement measures are performed in a state in which the is released, the long-term stable reinforcement is made.
なお、前記軸力筋6及び螺旋鉄筋7は、一般的な軸力筋とフープ筋との組合せとしても良い。また、前記軸力筋6としては、図8に示されるように、ロッド6aの両端にそれぞれヘッド6b、6bが設けられて構成された、所謂Tヘッドバーを用いるようにしてもよい。   The axial force bars 6 and the helical reinforcing bars 7 may be a combination of general axial force bars and hoop bars. Further, as the axial force bar 6, as shown in FIG. 8, a so-called T head bar configured by providing heads 6b and 6b at both ends of the rod 6a, respectively, may be used.
前記螺旋鉄筋7は、一般的に通常のフープ鉄筋に比して密に配置でき、構造耐力を高めることができるため、前記切断部の周囲に配置することにより、定着部の長さ(高さ)と幅を短く抑えることができるようになり、配筋時間も短縮できる本補強工法で採用するのが望ましい。また、鉄塔基礎2のコンクリート解体範囲が低減でき、工事時間の短縮化が図れるようになる。なお、本実施例では軸力筋6、6…の周囲に螺旋鉄筋7を配置するようにしたが、支柱材1が切断されていることから、これに代えて拘束鋼管(図示せず)を配置するようにしてもよい。   The helical rebar 7 can generally be arranged densely as compared with a normal hoop rebar, and the structural yield strength can be increased. Therefore, by arranging the helical rebar 7 around the cut portion, the length (height of the fixing portion) can be increased. ) And the width can be kept short, and it is desirable to adopt this reinforcement method which can shorten the bar arrangement time. Moreover, the concrete dismantling range of the steel tower foundation 2 can be reduced, and the construction time can be shortened. In this embodiment, the spiral reinforcing bars 7 are arranged around the axial force bars 6, 6,..., But since the support material 1 is cut, instead of this, a restraining steel pipe (not shown) is used. It may be arranged.
また、図11に示されるように、前記軸力筋6及び螺旋鉄筋7を、前記送電用鉄塔基礎2部分まで連続して配置するとともに、この軸力筋6及び螺旋鉄筋7の配置領域にコンクリートを打設するようにしてもよい。これにより、鉄塔基礎2の補強も同時にでき、送電用鉄塔基礎2の強度を増すことができる。   Further, as shown in FIG. 11, the axial reinforcing bars 6 and the helical reinforcing bars 7 are continuously arranged up to the power transmission tower foundation 2 portion, and concrete is provided in the arrangement area of the axial reinforcing bars 6 and the helical reinforcing bars 7. May be placed. Thereby, the steel tower foundation 2 can be reinforced at the same time, and the strength of the power transmission tower foundation 2 can be increased.
〔第2形態例〕
本発明の第2形態例に係る送電用鉄塔の補強方法は、送電用鉄塔の補強と同時に、送電用鉄塔基礎2の耐力増強を目的とするものである。具体的には、図12に示されるように、事前に、前述の補強がなされる送電用鉄塔基礎2に近接し、かつ地表面に頭部を突出させた状態で1又は複数の補強用杭10、10を打ち込んでおき、前述と同様に鉄塔支持工程、支柱材切断工程を経た後、コンクリート打設工程において、図13に示されるように、前記補強用杭10、10の地表面突出部を含めて、コンクリート打設用の型枠8を配置し、前記送電用鉄塔基礎2と連続してコンクリートを打設するようにする。
[Second embodiment]
The method for reinforcing a power transmission tower according to the second embodiment of the present invention aims to enhance the strength of the power transmission tower foundation 2 simultaneously with the reinforcement of the power transmission tower. Specifically, as shown in FIG. 12, one or a plurality of reinforcing piles in advance in the state where the head is protruded from the ground surface in the vicinity of the power transmission tower foundation 2 to be reinforced as described above. 10 and 10, and after passing through the tower support process and the strut material cutting process in the same manner as described above, in the concrete placing process, as shown in FIG. The concrete casting form 8 is arranged so that concrete is placed continuously with the power transmission tower foundation 2.
このようにして構築した補強部Rは、図14及び図15に示されるように、送電用鉄塔の各独立基礎2、2…に施すことができ、これにより、既設鉄塔基礎のコンクリートの打ち換えや、鉄塔の建て替えなどの大規模な補強工事によらずに、送電用鉄塔が建った状態のまま、送電用鉄塔基礎2の耐力を個別的に強化できるようになる。   As shown in FIGS. 14 and 15, the reinforcing portion R constructed in this way can be applied to each of the independent foundations 2, 2... Of the transmission tower, thereby replacing concrete of the existing tower foundation. In addition, the strength of the power transmission tower foundation 2 can be individually strengthened while the power transmission tower is in a state where the power transmission tower has been built, regardless of large-scale reinforcement work such as rebuilding of the steel tower.
〔第3形態例〕
本形態例も前記第2形態例と同様に、送電用鉄塔の補強と同時に、送電用鉄塔基礎2の耐力増強を目的とするものである。具体的には、図16及び図17に示されるように、送電用鉄塔基礎2、2…の配設領域全体にマット基礎11を配設し、前記コンクリート打設工程で打設した補強部Rが前記マット基礎11に接続して設けられるようにする。なお、マット基礎11と補強部Rとの定着力を高めるため、補強部Rのコンクリート形状に上方に向けて拡張したテーパを付けたり、螺旋配筋7を密に配置して型枠代わりとし、螺旋鉄筋7の内側にのみ事前にコンクリートを打設したりすることが好ましい。
[Third embodiment]
Similar to the second embodiment, this embodiment is intended to enhance the strength of the transmission tower foundation 2 at the same time as reinforcing the transmission tower. Specifically, as shown in FIG. 16 and FIG. 17, the reinforcing portion R provided with the mat foundation 11 in the entire arrangement region of the power transmission tower foundations 2, 2, and placed in the concrete placing step. Is provided in connection with the mat base 11. In order to increase the fixing force between the mat foundation 11 and the reinforcing portion R, the concrete shape of the reinforcing portion R is provided with a taper extended upward, or the spiral reinforcement 7 is closely arranged to replace the formwork, It is preferable to place concrete in advance only inside the spiral reinforcing bar 7.
従来、鉄塔基礎をマット型のスラブで補強する場合、図18及び図19に示されるように、鉄塔基礎30、30…の柱体部分に定着部材33を取り付けて支柱材1と一体化させていた。かかる方法では、構造上、基礎30の柱体部(マットで補強された下部)の耐力不足により、スラブ梁31と送電用鉄塔基礎2、2…の足し合わせによる地耐力の増加が見込めず、自重増のため、杭32を打つ必要があった。   Conventionally, when a steel tower foundation is reinforced with a mat-type slab, as shown in FIGS. 18 and 19, a fixing member 33 is attached to a pillar portion of the steel tower foundation 30, 30. It was. In such a method, due to the lack of proof strength of the column part of the foundation 30 (lower part reinforced with mat), an increase in the proof strength due to the addition of the slab beam 31 and the power transmission tower foundations 2, 2,. It was necessary to hit the pile 32 to increase its own weight.
しかし本形態例では、送電用鉄塔基礎2、2…の柱体部分が補強できるため、前述の床板の耐力とマット基礎11の耐力との相互作用により、地耐力が一体的に評価できるようになり、杭を省略できる。   However, in this embodiment, since the pillar portions of the power transmission tower foundations 2, 2... Can be reinforced, the ground strength can be integrally evaluated by the interaction between the strength of the floor board and the strength of the mat foundation 11. The pile can be omitted.
送電用鉄塔の全体図である。1 is an overall view of a power transmission tower. 送電用鉄塔の支持要領図(その1)である。It is a support procedure figure (the 1) of the tower for power transmission. 送電用鉄塔の支持要領図(その2)である。It is a support procedure figure (the 2) of the steel tower for power transmission. 送電用鉄塔基礎2のコンクリート解体部分を示す縦断面図である。It is a longitudinal cross-sectional view which shows the concrete demolition part of the steel tower foundation 2 for electric power transmission. 支柱材1の切断予定位置を示す縦断面図である。It is a longitudinal cross-sectional view which shows the cutting plan position of the support | pillar material. 支柱材1の切断後の状態を示す縦断面図である。It is a longitudinal cross-sectional view which shows the state after the cutting | disconnection of the support | pillar material 1. FIG. 支柱材1への支圧板5の固設要領を示す、(A)は側面図、(B)はそのB−B線矢視図である。The fixing method of the bearing plate 5 to the support | pillar material 1 is shown, (A) is a side view, (B) is the BB line arrow directional view. 鉄筋の配筋状態を示す縦断面図である。It is a longitudinal cross-sectional view which shows the bar arrangement state of a reinforcing bar. コンクリートの打設状態を示す縦断面図である。It is a longitudinal cross-sectional view which shows the placement state of concrete. 工事終了後の送電用鉄塔を示す縦断面図である。It is a longitudinal cross-sectional view which shows the power transmission tower after completion | finish of construction. 他の形態例に係る鉄筋の配筋状態を示す縦断面図である。It is a longitudinal cross-sectional view which shows the bar arrangement state of the reinforcing bar which concerns on the other example of a form. 第2形態例に係る杭10の打ち込み状態を示す縦断面図である。It is a longitudinal cross-sectional view which shows the driving | running state of the pile 10 which concerns on a 2nd form example. 第2形態例に係るコンクリートの打設状態を示す縦断面図である。It is a longitudinal cross-sectional view which shows the placement state of the concrete which concerns on a 2nd form example. 第2形態例に係る工事終了後の送電用鉄塔を示す縦断面図である。It is a longitudinal cross-sectional view which shows the power transmission tower after completion | finish of construction which concerns on a 2nd form example. その基礎伏図である。It is the basic plan. 第3形態例に係る工事終了後の送電用鉄塔を示す縦断面図である。It is a longitudinal cross-sectional view which shows the power transmission tower after completion | finish of construction which concerns on a 3rd form example. その基礎伏図である。It is the basic plan. 従来のマット基礎による補強後の送電用鉄塔を示す縦断面図である。It is a longitudinal cross-sectional view which shows the power transmission tower after reinforcement by the conventional mat foundation. その基礎伏図である。It is the basic plan. 従来の送電用鉄塔の補強方法に使用される装置の側面図である。It is a side view of the apparatus used for the reinforcement method of the conventional power transmission tower. 継ぎ材54で結合した状態を示す斜視図である。It is a perspective view which shows the state couple | bonded with the joint material.
符号の説明Explanation of symbols
1…支柱材、2…送電用鉄塔基礎、3…支持鋼材、4…ジャッキ、5…支圧板、6…軸力筋、7…螺旋鉄筋、8…型枠   DESCRIPTION OF SYMBOLS 1 ... Column material, 2 ... Steel tower foundation for transmission, 3 ... Support steel material, 4 ... Jack, 5 ... Supporting plate, 6 ... Axial reinforcement, 7 ... Spiral reinforcement, 8 ... Formwork

Claims (5)

  1. 送電用鉄塔基礎の不等沈下により、送電用鉄塔支柱材に発生した応力を緩和・解放する送電用鉄塔の補強方法であって、
    前記送電用鉄塔の支柱材を、ジャッキを介して支持鋼材によって仮設支持する鉄塔支持工程と、送電用鉄塔基礎の上端部のコンクリートを除去して内部の支柱材を露出させた後、この露出した支柱材の任意の箇所を切断予定位置とし、その上下部分の支柱材に対して支圧板を固設するとともに、前記切断予定位置で支柱材を切断する支柱材切断工程と、前記切断部を含めた支柱材の周囲に補強鉄筋を配置するとともに、その外周に型枠を設置し、切断された前記支柱材を位置ズレさせた状態のままで前記送電用鉄塔基礎と連続するようにコンクリートを打設するコンクリート打設工程とからなる送電用鉄塔の補強方法。
    A method for reinforcing a power transmission tower that relieves and releases stress generated in a power tower pillar material due to uneven settlement of the power transmission tower foundation,
    The tower support step of temporarily supporting the power tower tower material with a support steel material via a jack, and removing the concrete at the upper end of the power tower foundation to expose the internal pillar material, this exposed A strut material cutting step in which an arbitrary portion of the strut material is set as a planned cutting position and a supporting plate is fixed to the strut material at the upper and lower portions thereof, and the strut material is cut at the planned cutting position, and the cutting portion is included. Reinforcing bars are placed around the struts, and a formwork is installed on the outer periphery of the struts, and concrete is cast so that the cut struts are displaced and continue to the foundation of the power transmission tower. A method for reinforcing a power transmission tower comprising a concrete placing process.
  2. 前記補強鉄筋は、前記支柱材とほぼ平行して配置された複数の軸力筋と、該軸力筋群の周囲に支柱材の周方向に沿って螺旋状に配置した螺旋鉄筋とからなる請求項1記載の送電用鉄塔の補強方法。   The reinforcing reinforcing bar is composed of a plurality of axial reinforcing bars arranged substantially in parallel with the supporting rod member, and a helical reinforcing bar arranged in a spiral shape around the axial reinforcing rod group along the circumferential direction of the supporting rod member. Item 2. A method for reinforcing a power transmission tower according to Item 1.
  3. 前記補強鉄筋を、前記送電用鉄塔基礎部分まで連続するように配置し、前記送電用鉄塔基礎と一体化を図るようにコンクリートを打設する請求項1、2いずれかに記載の送電用鉄塔の補強方法。   The power transmission tower according to any one of claims 1 and 2, wherein the reinforcing reinforcing bars are arranged so as to continue to the power transmission tower foundation, and concrete is placed so as to be integrated with the power transmission tower foundation. Reinforcement method.
  4. 事前に、前記送電用鉄塔基礎に近接し、かつ地表面に頭部を突出させた状態で1又は複数の補強用杭を打ち込んでおき、前記コンクリート打設工程において、前記補強用杭の地表面突出部を含めて、前記型枠を配置し、前記送電用鉄塔基礎と補強用杭との一体化を図るようにコンクリートを打設する請求項1〜3いずれかに記載の送電用鉄塔の補強方法。   In advance, one or a plurality of reinforcing piles are driven close to the foundation of the power transmission tower and with the head protruding from the ground surface. In the concrete placing step, the ground surface of the reinforcing piles The reinforcement of the transmission tower according to any one of claims 1 to 3, wherein the formwork is arranged including a projecting portion, and concrete is placed so as to integrate the transmission tower foundation and the reinforcing pile. Method.
  5. 送電用鉄塔基礎の配設領域全体にマット基礎を配設し、前記コンクリート打設工程で打設したコンクリートが前記マット基礎に接続して設けられる請求項1〜4いずれかに記載の送電用鉄塔の補強方法。   The power transmission tower according to any one of claims 1 to 4, wherein a mat foundation is disposed in an entire area of the power transmission tower foundation, and the concrete cast in the concrete placing step is connected to the mat foundation. Reinforcement method.
JP2007046978A 2007-02-27 2007-02-27 Reinforcement method for power transmission towers Active JP4957894B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007046978A JP4957894B2 (en) 2007-02-27 2007-02-27 Reinforcement method for power transmission towers

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007046978A JP4957894B2 (en) 2007-02-27 2007-02-27 Reinforcement method for power transmission towers

Publications (2)

Publication Number Publication Date
JP2008208634A JP2008208634A (en) 2008-09-11
JP4957894B2 true JP4957894B2 (en) 2012-06-20

Family

ID=39785166

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007046978A Active JP4957894B2 (en) 2007-02-27 2007-02-27 Reinforcement method for power transmission towers

Country Status (1)

Country Link
JP (1) JP4957894B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101967903A (en) * 2010-09-25 2011-02-09 中国电力科学研究院 Basic guide rail for helicopter assembly transmission line iron tower leg section

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101775813B (en) * 2010-03-10 2011-08-31 江苏省电力设计院 Composite foundation of power transmission line iron tower
CN101967902B (en) * 2010-09-25 2013-11-27 中国电力科学研究院 Basic guide rail for helicopter assembly transmission line iron tower leg section
JP5679305B2 (en) * 2011-02-17 2015-03-04 東京電力株式会社 Reinforcement method for power transmission towers
KR101319784B1 (en) * 2011-07-01 2013-10-18 주식회사 남강엔지니어링 Reinforcement structure of steel tower and reinforcement method thereof
JP5002735B1 (en) * 2012-03-05 2012-08-15 北陸電力株式会社 Steel tower foundation repair method, repair structure, and jig used therefor
JP5951375B2 (en) * 2012-07-09 2016-07-13 中国電力株式会社 Steel tower reinforcement structure
JP5461627B2 (en) * 2012-07-26 2014-04-02 中国電力株式会社 Steel tower reinforcement method
JP5962348B2 (en) * 2012-09-03 2016-08-03 東京電力ホールディングス株式会社 Steel tower foundation structure and method for reinforcing steel tower foundation
JP6333675B2 (en) * 2014-09-02 2018-05-30 三和鋼器株式会社 Reinforcement method for steel tower legs and displacement adjustment fittings to eliminate inconsistent displacement of steel towers, etc.
JP6834226B2 (en) * 2016-08-02 2021-02-24 東京電力ホールディングス株式会社 Pile foundation and tower rebuilding method

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002256573A (en) * 2001-03-02 2002-09-11 Chubu Electric Power Co Inc Foundation for existing foundation reinforcing steel tower and construction method for it
JP3764729B2 (en) * 2003-03-24 2006-04-12 前田建設工業株式会社 Construction method of steel tower foundation using concrete restraint joint member

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101967903A (en) * 2010-09-25 2011-02-09 中国电力科学研究院 Basic guide rail for helicopter assembly transmission line iron tower leg section

Also Published As

Publication number Publication date
JP2008208634A (en) 2008-09-11

Similar Documents

Publication Publication Date Title
KR100797194B1 (en) Composite concrete column and construction method using the same
US8522507B2 (en) Concrete platform production process, concrete platform, and connecting member
JP2012527549A (en) Support structure for windmill and method for installing support structure
JP2018505981A (en) PC truss wall structure and construction method thereof
JP4823790B2 (en) Column unit and method of building building using column unit
KR100884289B1 (en) Composite type steel temporary construction and construction method thereof
US20140331596A1 (en) Composite concrete column and construction method using the same
KR100951097B1 (en) Slab and subgrade external wall structure and method for constructing underground slab and subgrade external wall, bracket
KR20050055171A (en) Composite rigid-frame bridge installing prestressed compound beam to the contral point of the slab of rigid-frame bridge and connecting the beam to the steel member installed in the upper of pole, and construction method thereof
JP2006090026A (en) Repairing/reinforcing structure of existing steel member arch bridge
US20030005650A1 (en) Composite retaining wall and construction method for underground structure
KR101385028B1 (en) Earth retaining structure having beam
JP4691690B2 (en) Joint structure and joining method of pedestal
KR101178876B1 (en) Prestressed composit rahmen bridge construdtion method
JP2005256341A (en) Corrugated steel-plate web u component bridge
KR101301076B1 (en) Wall structure construction method using precast front wall panel and precast back wall panel
JP4164857B2 (en) Reconstruction method using existing underground structure
JP2002256573A (en) Foundation for existing foundation reinforcing steel tower and construction method for it
JP5367297B2 (en) Bridge with precast cross girder and precast girder and its construction method
KR100837608B1 (en) J.K Bracket Method
KR100991208B1 (en) Prestress composite wale for earth retaining scaffolding and this construction technique
WO2009011516A2 (en) Form with reinforcing bars, non-support form system and non-support construction method using the same
CN108951653B (en) Foundation pit row pile supporting pile soil reinforcing method
JP4680803B2 (en) Construction method of three-dimensional viaduct structure
KR101628264B1 (en) Support and frame system using temporary strut for top-down method and construction method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100202

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111024

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120222

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120306

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150330

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4957894

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350