JP4853269B2 - Sheath thermocouple and manufacturing method thereof - Google Patents

Sheath thermocouple and manufacturing method thereof Download PDF

Info

Publication number
JP4853269B2
JP4853269B2 JP2006335601A JP2006335601A JP4853269B2 JP 4853269 B2 JP4853269 B2 JP 4853269B2 JP 2006335601 A JP2006335601 A JP 2006335601A JP 2006335601 A JP2006335601 A JP 2006335601A JP 4853269 B2 JP4853269 B2 JP 4853269B2
Authority
JP
Japan
Prior art keywords
sheath
tip
thermocouple
metal sheath
inorganic insulator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006335601A
Other languages
Japanese (ja)
Other versions
JP2007187654A (en
Inventor
嘉久 糯田
智治 新舛
悟 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yamari Industries Ltd
Original Assignee
Yamari Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yamari Industries Ltd filed Critical Yamari Industries Ltd
Priority to JP2006335601A priority Critical patent/JP4853269B2/en
Publication of JP2007187654A publication Critical patent/JP2007187654A/en
Application granted granted Critical
Publication of JP4853269B2 publication Critical patent/JP4853269B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Measuring Temperature Or Quantity Of Heat (AREA)

Description

本発明は、シース熱電対およびその製造方法に係わり、より詳しくは、特にガスタービンや蒸気タービン、石油化学プラント等の高温・高速流体の温度測定に好適なシース熱電対の製造方法およびそれにより製造されたシース熱電対に関する。   The present invention relates to a sheathed thermocouple and a manufacturing method thereof, and more particularly, a manufacturing method of a sheathed thermocouple suitable for temperature measurement of a high-temperature / high-speed fluid such as a gas turbine, a steam turbine, and a petrochemical plant, and the manufacturing thereof. Sheathed thermocouples.

熱電対は、種類の異なる二本の素線を接続し、この接続部(温接点)間に温度差が生じたとき閉回路に熱起電力が発生し、回路に電流が流れるゼーペック効果を利用して温度を測定するものである。シース熱電対は、熱電対素線を金属シース内に納め、酸化マグネシウム(MgO)等の無機絶縁物で充填密封して一体化したものである。従来のシース熱電対は、先端が互いに接続された二本の熱電対素線を当該接続部で折り返した形に平行に配し、棒状の金属シース基端から挿入して、温接点をシース先端部分に位置させるとともに、シース基端側を片持ち状に支持することで先端側を被測定流体中に突出させ、当該温接点が位置するシース先端の部分で温度測定するものである(例えば、特許文献1および2参照。)。   The thermocouple uses two types of strands, and when there is a temperature difference between these connections (hot junctions), a thermoelectromotive force is generated in the closed circuit, and the Zepeck effect is used, in which current flows through the circuit. The temperature is then measured. In the sheath thermocouple, a thermocouple wire is placed in a metal sheath and filled and sealed with an inorganic insulator such as magnesium oxide (MgO) and integrated. A conventional sheathed thermocouple has two thermocouple strands whose tips are connected to each other in parallel with the folded shape at the connection, and is inserted from the base end of the rod-shaped metal sheath. In addition to being positioned at the portion, the distal end side is protruded into the fluid to be measured by supporting the sheath proximal end side in a cantilever shape, and the temperature is measured at the sheath distal end portion where the hot junction is located (for example, (See Patent Documents 1 and 2.)

このようなシース熱電対の先端部の形成方法として、図13(a)のシース熱電対101に示すように、熱電対202を収容した金属シース110の先端開口部110aを封止する際、溶接棒をアーク電極により溶融し溶かし込むことにより先端封止部104を形成し、絶縁物が飛び出さないよう蓋をする手法が提案されている(例えば、特許文献3参照。)。しかしながら、このような手法では、溶接棒に金属シースと同材質のものを用いる必要があるため、毎回溶接棒と金属シースの材質の確認作業が必要となるとともに、金属シースの材質が変わる度に合わせて溶接棒の材質を変更する必要があり、材質の異なる溶接棒の在庫が増え、低コスト化が困難であり、それにより商品価格が高くなる問題があった。また、溶接する際に、溶接棒と金属シースとを正確に位置合わせする必要があるため、このような溶接工程を含むシース熱電対の製造を自動化することは困難であった。更に、実際に用いられている専用溶接棒は金属シースの組成と微妙に異なり、その異成分を原因として耐酸化性等の耐久性を低下させる原因となっていた。   As a method for forming the tip portion of such a sheathed thermocouple, welding is performed when sealing the tip opening 110a of the metal sheath 110 containing the thermocouple 202, as shown in the sheath thermocouple 101 of FIG. There has been proposed a method in which a rod is melted and melted by an arc electrode to form a tip sealing portion 104 and a lid is applied so that an insulator does not jump out (see, for example, Patent Document 3). However, in this method, since it is necessary to use the same material as the metal sheath for the welding rod, it is necessary to check the material of the welding rod and the metal sheath every time, and whenever the material of the metal sheath changes. In addition, it is necessary to change the material of the welding rod, and there is a problem that the stock of welding rods of different materials increases, making it difficult to reduce the cost, thereby increasing the product price. Further, since it is necessary to accurately align the welding rod and the metal sheath when welding, it is difficult to automate the manufacture of the sheath thermocouple including such a welding process. Furthermore, the dedicated welding rods actually used are slightly different from the composition of the metal sheath, which causes the deterioration of durability such as oxidation resistance due to the different components.

また、図13(b)のシース熱電対201に示すように、熱電対202を収容した金属シース210の先端開口部に封止部材240を嵌入させ、溶接により開口縁部210aに固定して先端封止部204を形成する手法も行われているが、この方法では金属シースの内径に合致した封止部材240を別途用意する必要があり、部品点数および工数の増加などコスト増大の原因となる。また、先端封止部にシース内壁や無機絶縁物の埋設表面との間に空間が生じると温度測定精度に悪影響を与えるところ、このような封止部材240を用いる方法では、封止部材240自体の精度や封止部材240の熱膨張/収縮を原因として空間が生じやすく、精度低下の懸念がある。   Further, as shown in the sheath thermocouple 201 of FIG. 13 (b), a sealing member 240 is fitted into the distal end opening of the metal sheath 210 containing the thermocouple 202, and fixed to the opening edge 210a by welding. Although a method for forming the sealing portion 204 is also performed, it is necessary to prepare a sealing member 240 that matches the inner diameter of the metal sheath separately in this method, which causes an increase in cost such as an increase in the number of parts and man-hours. . In addition, if a space is formed between the inner wall of the sheath and the embedded surface of the inorganic insulator in the distal end sealing portion, the temperature measurement accuracy is adversely affected. In such a method using the sealing member 240, the sealing member 240 itself There is a possibility that a space is likely to be generated due to the accuracy and thermal expansion / contraction of the sealing member 240, and there is a concern that the accuracy may be reduced.

特開平8−82557号公報JP-A-8-82557 特開2001−165780号公報JP 2001-165780 A 特公昭59−37771号公報Japanese Examined Patent Publication No.59-37771

そこで、本発明が前述の状況に鑑み、解決しようとするところは、工数を減らし生産速度を向上できるとともに、低コスト化することができ、しかも自動化するのに適し、耐久性および測定精度に優れたシース熱電対の製造方法、およびそれにより製造されたシース熱電対を提供する点にある。   Therefore, in view of the above-mentioned situation, the present invention is to solve the problem by reducing the man-hours and improving the production speed, reducing the cost, and being suitable for automation, excellent in durability and measurement accuracy. Another object of the present invention is to provide a method for manufacturing a sheathed thermocouple and a sheathed thermocouple manufactured thereby.

本発明は、前述の課題解決のために、金属シース内部に、少なくとも一対の熱電対素線およびこれら熱電対素線と金属シースの隙間を埋める無機絶縁物を収容し、先端側を気密封止してなるシース熱電対において、前記金属シース先端側の気密封止として、前記無機絶縁物の埋設表面から所定長さ延出させたシース先端部位を溶融させ、当該金属シース材からなる先端封止部を形成してなることを特徴とするシース熱電対を構成した。ここに、「所定長さ」とは、狙いとする容量の先端封止部を形成するために設定される長さであり、金属シースの厚み、径などの寸法に基づいて適宜設定される。   In order to solve the above problems, the present invention accommodates at least a pair of thermocouple wires and an inorganic insulator filling the gap between the thermocouple wires and the metal sheath inside the metal sheath, and hermetically seals the distal end side. In the sheath thermocouple thus formed, as a hermetic seal on the metal sheath tip side, a tip end portion made of the metal sheath material is melted by melting a sheath tip portion extending a predetermined length from the embedded surface of the inorganic insulator A sheathed thermocouple characterized by forming a portion was constructed. Here, the “predetermined length” is a length set in order to form a tip sealing portion having a target capacity, and is set as appropriate based on dimensions such as the thickness and diameter of the metal sheath.

ここで、前記シース先端部位を、筒状のまま若しくは先端を縮径させたうえで、又は所定形状にかしめたうえで溶融させたものが好ましい。   Here, it is preferable to melt the sheath distal end portion in a cylindrical shape, after the distal end is reduced in diameter, or after being crimped into a predetermined shape.

また、前記シース先端部位を、筒状のまま若しくは先端を縮径させたうえで、先端縁から全周にわたって略均一に溶融させることにより略半球形状に形成したものが好ましい。   In addition, it is preferable that the sheath distal end portion is formed in a substantially hemispherical shape by being melted substantially uniformly over the entire circumference from the distal end edge while keeping the tubular shape or reducing the diameter of the distal end.

また、本発明は、金属シース内部に、少なくとも一対の熱電対素線およびこれら熱電対素線と金属シースの隙間を埋める無機絶縁物を収容し、先端側を気密封止してなるシース熱電対の製造方法において、前記金属シース先端側の気密封止に際し、前記無機絶縁物の埋設表面を金属シース先端縁から所定深さの位置に設定し、これにより前記埋設表面から所定長さ延出されたシース先端部位を溶融して、当該金属シース材からなる先端封止部を形成することを特徴とするシース熱電対の製造方法をも提供する。   The present invention also includes a sheath thermocouple in which at least a pair of thermocouple wires and an inorganic insulator that fills the gap between the thermocouple wires and the metal sheath are housed inside the metal sheath and the tip side is hermetically sealed. In the manufacturing method, the hermetic sealing at the distal end side of the metal sheath sets the embedded surface of the inorganic insulator at a predetermined depth from the distal end edge of the metal sheath, thereby extending a predetermined length from the embedded surface. A sheath thermocouple manufacturing method is also provided, wherein the sheath tip portion is melted to form a tip sealing portion made of the metal sheath material.

ここでも、前記シース先端部位を、筒状のまま若しくは先端を縮径させた後に、又は所定形状にかしめた後に溶融させることが好ましい。   Also here, it is preferable to melt the sheath distal end portion in a cylindrical shape, after the distal end is reduced in diameter, or after being crimped into a predetermined shape.

また、前記シース先端部位を、筒状のまま若しくは先端を縮径させた後に、先端縁から全周にわたって略均一に溶融させることにより略半球形状に形成することが好ましい。   In addition, it is preferable that the sheath distal end portion is formed in a substantially hemispherical shape by being melted substantially uniformly from the distal end edge over the entire circumference after the distal end portion remains in a cylindrical shape or the diameter of the distal end is reduced.

さらに詳しくは、少なくとも一対の熱電対素線およびこれら熱電対素線と金属シースの隙間を埋める無機絶縁物を収容した長尺な金属シースを、所定の長さに切断し、切断された金属シースの一端側から無機絶縁物を除去し、一対の熱電対素線を突出させ、突出した熱電対素線を結線して温接点を形成して、無機絶縁物を埋め戻し、該無機絶縁物の埋設表面を金属シース先端縁から所定深さの位置に設定し、該埋設表面から所定長さ延出しているシース先端部位を、そのまま若しくは先端を縮径させた後に、又は所定形状にかしめた後に溶融して前記先端封止部を形成することが好ましい。ここに、「長尺な」とは、例えば10m程度をいい、複数の長さに切り分けて効率よく生産できる長さが設定されるが、とくにその寸法は限定されない。   More specifically, a long metal sheath containing at least a pair of thermocouple wires and an inorganic insulator that fills a gap between the thermocouple wires and the metal sheath is cut to a predetermined length, and the cut metal sheath is cut. The inorganic insulator is removed from one end of the substrate, the pair of thermocouple wires is projected, the protruding thermocouple wires are connected to form a hot junction, the inorganic insulator is backfilled, and the inorganic insulator After setting the embedded surface at a position at a predetermined depth from the metal sheath front edge and after crimping the sheath tip portion extending a predetermined length from the embedded surface as it is or after reducing the diameter of the tip, or after crimping to a predetermined shape It is preferable that the tip sealing portion is formed by melting. Here, “long” means, for example, about 10 m, and a length that can be efficiently divided into a plurality of lengths is set, but the dimensions are not particularly limited.

また、前記温接点を形成する手法は、前記金属シース一端側に内嵌する外周面とその先端面に縦断面略V字状の切り欠き部を設けた冶具を、前記無機絶縁物を除去した空所に挿入し、金属シース端部の内壁に付着した無機絶縁物を前記冶具の外周面でかき落とすと同時に、温接点を形成する一対の熱電対素線を前記切り欠き部の略V字面に案内させて互いにもたれ合うように折曲して前記熱電対素線端部を結線することが好ましい。   Further, the method of forming the hot junction is such that the inorganic insulator is removed from a jig provided with an outer peripheral surface fitted into one end of the metal sheath and a notch portion having a substantially V-shaped longitudinal section at the tip end surface. The inorganic insulator attached to the inner wall of the end portion of the metal sheath is scraped off at the outer peripheral surface of the jig, and at the same time, a pair of thermocouple wires forming a hot junction are substantially V-shaped in the notch portion. It is preferable that the thermocouple element ends are connected by bending them so that they stand against each other.

また、少なくとも一対の熱電対素線およびこれら熱電対素線と金属シースの隙間を埋める無機絶縁物を収容した長尺な金属シースを、所定の長さに切断し、切断された金属シースの一端側から無機絶縁物を除去し、一対の熱電対素線を突出させ、前記シース先端部位を溶融して、前記突出した熱電対素線を当該金属シース材からなる先端封止部に埋入させることが好ましく、たとえば、突出した熱電対素線を挟み込むように、前記シース先端部位を所定形状にかしめた後に溶融させる。   In addition, a long metal sheath containing at least a pair of thermocouple wires and an inorganic insulator that fills a gap between the thermocouple wires and the metal sheath is cut into a predetermined length, and one end of the cut metal sheath is cut The inorganic insulator is removed from the side, a pair of thermocouple wires are protruded, the sheath tip portion is melted, and the protruding thermocouple wires are embedded in the tip sealing portion made of the metal sheath material. Preferably, for example, the sheath tip portion is crimped into a predetermined shape so as to sandwich the protruding thermocouple wire, and then melted.

さらに、前記シース先端部位を所定形状にかしめた後に溶融させる方法では、前記シース先端部位を所定形状にかしめたかしめ部のシース長手方向に沿った長さを前記シース外径の1〜3倍とすることが好ましく、また、前記シース先端部位を所定形状にかしめたかしめ部の横断面形状を、シース軸心に対して対称形とすること、特に前記かしめ部がシース軸心から少なくとも3方向へ伸びるかしめ片より構成されることが好ましい。   Further, in the method of melting after crimping the sheath distal end portion into a predetermined shape, the length along the sheath longitudinal direction of the caulking portion caulking the sheath distal end portion into a predetermined shape is 1 to 3 times the outer diameter of the sheath. It is preferable that the cross-sectional shape of the caulking portion caulking the sheath distal end portion into a predetermined shape is symmetrical with respect to the sheath axis, and in particular, the caulking portion is in at least three directions from the sheath axis. It is preferable that it is comprised from the crimping piece extended.

そして、前記シース先端部位は、好ましくは溶接により溶融される。   The sheath tip portion is preferably melted by welding.

以上にしてなる本願発明によれば、溶接棒を用いる必要がないため、溶接棒とシースとの材質確認作業が不要となり工数を減らし生産速度を向上できるとともに、材質の異なる溶接棒の在庫を保有する必要もなくなり低コスト化することができ、しかも溶接棒と金属シースとを正確に位置合わせして溶接する必要がないため製造工程を自動化するのに適したものとなる。また、溶接棒の異成分が耐酸化性を低下させるといった問題も解消され、耐久性及び測定精度に優れたシース熱電対を低コストに提供できる。   According to the present invention as described above, since it is not necessary to use a welding rod, the material confirmation work of the welding rod and the sheath is not required, man-hours can be reduced, the production speed can be improved, and a stock of welding rods of different materials is held. Therefore, it is possible to reduce the cost, and it is not necessary to accurately position and weld the welding rod and the metal sheath, so that it is suitable for automating the manufacturing process. Moreover, the problem that the different components of the welding rod lower the oxidation resistance is solved, and a sheath thermocouple excellent in durability and measurement accuracy can be provided at low cost.

また、シース先端部位を筒状のまま若しくは先端を縮径させた後に、又は所定形状にかしめた後に溶融させることで、シース径や厚さ等に応じて適切な方法でシース先端部位を確実にかつ略半円形となるように溶融させることができる。   In addition, the sheath distal end portion can be reliably secured by an appropriate method according to the sheath diameter, thickness, etc., by melting the sheath distal end portion in a cylindrical shape, after reducing the diameter of the distal end, or after crimping to a predetermined shape. And it can be made to melt | dissolve so that it may become a substantially semicircle.

また、熱電対素線と無機絶縁物を収容した長尺な金属シースを所定の長さに切断し、切断された金属シースの一端側から無機絶縁物を除去し、一対の熱電対素線を突出させ、突出した熱電対素線を結線して温接点を形成して、無機絶縁物を埋め戻し、該無機絶縁物の埋設表面を金属シース先端縁から所定深さの位置に設定し、延出しているシース先端部位を溶融するので、大量生産への対応にも優れたものとなり、生産効率を向上することができるものとなる。   In addition, a long metal sheath containing a thermocouple wire and an inorganic insulator is cut to a predetermined length, the inorganic insulator is removed from one end of the cut metal sheath, and a pair of thermocouple wires is attached. Projecting, connecting the protruding thermocouple wires to form a hot junction, backfilling the inorganic insulator, setting the embedded surface of the inorganic insulator at a predetermined depth from the metal sheath tip edge, and extending Since the sheath tip portion that is being taken out is melted, it is excellent in response to mass production, and production efficiency can be improved.

また、温接点を形成する手法として、前記金属シース一端側に内嵌する外周面とその先端面に縦断面略V字状の切り欠き部を設けた冶具を、前記無機絶縁物を除去した空所に挿入し、金属シース端部の内壁に付着した無機絶縁物を前記冶具の外周面でかき落とすと同時に、温接点を形成する一対の熱電対素線を前記切り欠き部の略V字面に案内させて互いにもたれ合うように折曲して前記熱電対素線端部を結線するので、付着物の除去と温接点の形成とを同時に行うことができ、工数を増やすことなく、安定的に高い気密性で封止できる。   In addition, as a method of forming a hot junction, a jig provided with an outer peripheral surface fitted into one end of the metal sheath and a notch portion having a substantially V-shaped longitudinal section at the tip end surface is formed by removing the inorganic insulating material from the empty surface. The inorganic insulator attached to the inner wall of the end portion of the metal sheath is scraped off at the outer peripheral surface of the jig, and at the same time, a pair of thermocouple wires forming a hot junction are formed on the substantially V-shaped surface of the notch. Since the ends of the thermocouple strands are connected by bending them so as to guide each other, deposits can be removed and hot junctions can be formed at the same time, stably without increasing the number of man-hours. It can be sealed with high airtightness.

また、熱電対素線と無機絶縁物を収容した長尺な金属シースを所定の長さに切断し、切断された金属シースの一端側から無機絶縁物を除去し、一対の熱電対素線を突出させ、前記シース先端部位を溶融して、前記突出した熱電対素線を当該金属シース材からなる先端封止部に埋入させることにより、応答が速い接触型のシース熱電対を低コストで提供できる。   In addition, a long metal sheath containing a thermocouple wire and an inorganic insulator is cut to a predetermined length, the inorganic insulator is removed from one end of the cut metal sheath, and a pair of thermocouple wires is attached. By projecting, melting the sheath tip portion, and embedding the projecting thermocouple wire in the tip sealing portion made of the metal sheath material, a contact-type sheath thermocouple with quick response can be obtained at low cost. Can be provided.

また、かしめ部のシース長手方向に沿った長さを、金属シース外径の1〜3倍とすることにより、かしめ片の大きさが溶融させるのに最適なものとなり、溶融させた後のシース熱電対先端形状を良好なものとし高い気密性で封止することが容易となる。   In addition, by setting the length of the caulking portion along the longitudinal direction of the sheath to 1 to 3 times the outer diameter of the metal sheath, the size of the caulking piece is optimal for melting, and the sheath after being melted It becomes easy to seal with high airtightness by making the thermocouple tip shape good.

さらに、前記かしめ部の横断面形状を、シース軸心に対して対称形とすることにより、溶融させた後のシース先端形状を、肉厚に偏りのない略半球状に形成することが容易となる。   Furthermore, by making the cross-sectional shape of the caulking portion symmetrical with respect to the sheath axis, it is easy to form the sheath tip shape after melting into a substantially hemispherical shape without uneven thickness. Become.

また、かしめ部が、シース軸心から少なくとも3方向へ伸びるかしめ片より構成されることにより、かしめ部の強度が向上し、かしめ片が折れ曲がることによる不良品の発生を低減することができる。   In addition, since the caulking portion is composed of caulking pieces extending in at least three directions from the sheath axis, the strength of the caulking portion is improved, and the occurrence of defective products due to bending of the caulking pieces can be reduced.

また、シース先端部位は溶接により溶融することにより、容易かつ確実に気密封止することができる。   Further, the sheath tip portion can be easily and reliably hermetically sealed by melting by welding.

次に、本発明の実施形態を添付図面に基づき詳細に説明する。   Next, embodiments of the present invention will be described in detail with reference to the accompanying drawings.

図1は本発明に係るシース熱電対を示す説明図であり、図1〜5は第1実施形態、図6は第2実施形態、図7〜11は第3実施形態、図12は第4実施形態を示し、図中符号1はシース熱電対、2は熱電対、3は無機絶縁物、4は先端封止部、10は金属シースをそれぞれ示している。   FIG. 1 is an explanatory view showing a sheath thermocouple according to the present invention. FIGS. 1 to 5 are a first embodiment, FIG. 6 is a second embodiment, FIGS. 7 to 11 are a third embodiment, and FIG. In the drawings, reference numeral 1 denotes a sheath thermocouple, 2 denotes a thermocouple, 3 denotes an inorganic insulator, 4 denotes a tip sealing portion, and 10 denotes a metal sheath.

シース熱電対1は、図1に示すように、金属シース10内部に、一対の熱電対素線21,21よりなる熱電対2、およびこれら熱電対2と金属シース10の隙間を埋める無機絶縁物3を収容し、先端側を気密封止したものであり、当該気密封止した一端側が温度測定する際に被測定流体中に突出させる先端側となる。本発明はとくに、金属シース10先端側の気密封止として、図3に示すように、無機絶縁物3の埋設表面31から所定長さLだけ延出させたシース先端部位11を溶融させ、当該金属シース材からなる先端封止部4を形成してなることを特徴とする。   As shown in FIG. 1, the sheath thermocouple 1 includes a thermocouple 2 including a pair of thermocouple wires 21 and 21 inside the metal sheath 10, and an inorganic insulator that fills a gap between the thermocouple 2 and the metal sheath 10. 3 and the tip side is hermetically sealed, and the one end side that is hermetically sealed is the tip side that protrudes into the fluid to be measured when measuring the temperature. In particular, as shown in FIG. 3, the present invention melts the sheath tip portion 11 extended from the embedded surface 31 of the inorganic insulator 3 by a predetermined length L as an airtight seal on the tip side of the metal sheath 10, It is characterized by forming a tip sealing portion 4 made of a metal sheath material.

なお、先端封止部4を除いて、金属シース10や熱電対2、無機絶縁物3などの素材や各部の構造については、従来のシース熱電対と同様のものを採用できる。金属シース10は、オーステナイト系ステンレス鋼(SUS304、SUS316等)やニッケルクローム系耐熱合金(インコネル)等を用いることができ、シース内に充填する無機絶縁物3として、酸化マグネシウム(MgO)等を用いることができるが、これらに何ら限定されるものでもない。また、熱電対2を構成する熱電対素線21は、たとえばプラス側素線にニッケル−クロム合金、マイナス側素線にニッケル合金が用いることができるが、とくに限定されるものではない。また、本例では、熱電対素線21,21を一対のみ収容したもの例示しているが、複数対内挿したものでも勿論よい。また、シース熱電対1の基端側において、熱電対が接続部5内の補償導線を介してリード線6に接続されているが、このような構造に何ら限定されず、たとえばスリーブ状の保護管で支持し、端子箱から延出した補償導線で測定器に接続される耐圧防爆型や、端子箱を介することなく脱着コネクタを設けたものなど、従来と同様の種々の接続構造を採用できる。   Except for the tip sealing portion 4, the same material as the conventional sheathed thermocouple can be used for the materials such as the metal sheath 10, the thermocouple 2, and the inorganic insulator 3 and the structure of each part. As the metal sheath 10, austenitic stainless steel (SUS304, SUS316, etc.), nickel chrome heat-resistant alloy (Inconel), or the like can be used, and magnesium oxide (MgO) or the like is used as the inorganic insulator 3 filled in the sheath. However, it is not limited to these. Further, the thermocouple element 21 constituting the thermocouple 2 can be made of, for example, a nickel-chromium alloy for the plus element and a nickel alloy for the minus element, but is not particularly limited. In this example, only one pair of thermocouple wires 21 and 21 is accommodated, but a plurality of pairs may be inserted as a matter of course. Further, although the thermocouple is connected to the lead wire 6 via the compensating lead wire in the connecting portion 5 on the proximal end side of the sheath thermocouple 1, it is not limited to such a structure, and for example, a sleeve-like protection Various conventional connection structures such as a flameproof explosion-proof type supported by a tube and connected to a measuring instrument with a compensating lead wire extending from the terminal box, and those with a detachable connector without using a terminal box can be adopted. .

先ず、図1〜5に基づき、本発明の第1実施形態を説明する。   First, based on FIGS. 1-5, 1st Embodiment of this invention is described.

本実施形態のシース熱電対1は、非接触型シース熱電対であり、図3に示すように、金属シース10先端側の気密封止として、前記無機絶縁物の埋設表面31を金属シース先端縁10aから所定深さLの位置に設定し、これにより無機絶縁物の埋設表面31から所定長さ延出されたシース先端部位11を、筒状のまま先端縁10aから全周にわたって略均一に溶融させることにより略半球形状の先端封止部4を形成したものである。   The sheath thermocouple 1 of the present embodiment is a non-contact type sheath thermocouple, and as shown in FIG. 3, the embedded surface 31 of the inorganic insulator is used as an airtight seal on the tip side of the metal sheath 10 as shown in FIG. 10a is set to a position of a predetermined depth L, so that the sheath distal end portion 11 extended from the embedded surface 31 of the inorganic insulator by a predetermined length is melted substantially uniformly over the entire circumference from the distal end edge 10a in a cylindrical shape. By doing so, a substantially hemispherical tip sealing portion 4 is formed.

シース先端部位11を構成するまでの工程は、図2に示す通りである。すなわち、まず一対の熱電対素線21,21およびこれら熱電対素線21と金属シース10の隙間を埋める無機絶縁物3を収容した長尺な金属シース10を所定長さに切断し(S101)、切断された金属シース10の一端側から無機絶縁物を除去するとともに所定長さに設定された一対の熱電対素線21、21を突出させ(S102)、該熱電対素線21、21を先端部で結線して温接点22を形成する(S103)。ここで、温接点22の形成は、後述の第3実施形態と同様、図9に示すような冶具9を用いてシース内壁25に付着した無機絶縁物3をかき落とすと同時に温接点22を形成する一対の熱電対素線21,21を互いにもたれ合うように折曲させた上で、各熱電対素線の先端部を互いに結線して形成してもよい。   The steps until the sheath tip portion 11 is configured are as shown in FIG. That is, first, the long metal sheath 10 containing the pair of thermocouple wires 21 and 21 and the inorganic insulator 3 filling the gap between the thermocouple wires 21 and the metal sheath 10 is cut to a predetermined length (S101). Then, the inorganic insulator is removed from one end side of the cut metal sheath 10 and a pair of thermocouple wires 21 and 21 set to a predetermined length are projected (S102), and the thermocouple wires 21 and 21 are The hot junction 22 is formed by connecting at the tip (S103). Here, the hot contact 22 is formed in the same manner as in the third embodiment described later by simultaneously scraping off the inorganic insulator 3 attached to the sheath inner wall 25 using the jig 9 as shown in FIG. The pair of thermocouple strands 21 and 21 may be bent so as to lean against each other, and the tip portions of the thermocouple strands may be connected to each other.

そして、無機絶縁物3を埋め戻して前記温接点22を埋没させた後(S104)、該無機絶縁物3を除去して埋設表面31が金属シース先端縁から所定深さLの位置となるように設定する(S105)。ここで、無機絶縁物を除去するには、好ましくはエンドミルやドリルなどが用いられ、このとき発生する削りカスを吸引或いはエアーの吹き付けにより除去しながら行うことがより好ましい。これによりシース先端部位11を溶融する際に無機絶縁物が含まれてしまうことを防止できる。   Then, after refilling the inorganic insulator 3 and burying the hot junction 22 (S104), the inorganic insulator 3 is removed so that the buried surface 31 is positioned at a predetermined depth L from the distal end edge of the metal sheath. (S105). Here, in order to remove the inorganic insulator, an end mill, a drill, or the like is preferably used, and it is more preferable to carry out while removing the shavings generated at this time by suction or air blowing. Thereby, it is possible to prevent the inorganic insulator from being included when the sheath tip portion 11 is melted.

なお、シース先端部位11を形成するその他の方法としては、図4に示すように、金属シース10を所定長さに切断し(S301)、該金属シース10に予め温接点22を形成した一対の熱電対素線21を挿入した後(S302)、該温接点22を無機絶縁物3により埋没させて所定深さLに設定する方法を採用することも勿論可能である。   As another method for forming the sheath distal end portion 11, as shown in FIG. 4, the metal sheath 10 is cut to a predetermined length (S301), and a pair of hot contacts 22 are previously formed on the metal sheath 10. It is of course possible to adopt a method in which the hot junction 22 is buried with the inorganic insulator 3 and set to a predetermined depth L after the thermocouple element 21 is inserted (S302).

次に、シース先端部位11を溶融して先端封止部4を構成する工程は、図3のS201〜203に示すように、シース先端部位11の先端縁10aから全周にわたって略均一に溶融させることにより、略半球形状の先端封止部4を形成する(S204)。溶融手法としては、特に制限されるものではないが、容易かつ確実に気密封止できることから溶接が用いられる。具体的には、溶接棒は用いずにアーク溶接またはTIG溶接によりシース先端部位11を溶融させる。このようにシース先端部位11を溶融することにより、シース熱電対先端部における余分な気泡の噛み込みが殆どなく気密性が高いシース熱電対を作製することが容易となり、また溶接棒と金属シースとを正確に位置合わせして溶接する必要がないため製造工程を自動化するのに適したものとなる。なお、溶融の際には、図示しない金属シースの他端側から真空ポンプなどで吸引し、シース内部を減圧した状態としておくことが、内部に空気が残存することなく確実に気密封止することができるため好ましい。   Next, in the step of melting the sheath distal end portion 11 to form the distal end sealing portion 4, as shown in S 201 to 203 in FIG. 3, the sheath distal end portion 11 is melted substantially uniformly over the entire circumference from the distal end edge 10 a. Thus, the substantially hemispherical tip sealing portion 4 is formed (S204). Although it does not restrict | limit especially as a melting method, Since welding can be carried out easily and reliably, welding is used. Specifically, the sheath distal end portion 11 is melted by arc welding or TIG welding without using a welding rod. By melting the sheath tip portion 11 in this way, it becomes easy to produce a sheath thermocouple having almost no excess bubbles at the sheath thermocouple tip and having high airtightness. Since it is not necessary to accurately position and weld, it is suitable for automating the manufacturing process. When melting, suction from the other end of a metal sheath (not shown) with a vacuum pump or the like to keep the inside of the sheath in a reduced pressure state ensures airtight sealing without any air remaining inside. Is preferable.

このようにして製造したシース熱電対は、先端形状が肉厚に偏りのない略半球状で、余分な気泡の噛み込みや、前記気泡がシース熱電対先端部を溶融する際に熱膨張しはじけることによる表面の凹凸や歪みの発生が殆どなく、気密性も高いものとなり、かつ低コスト化できるものとなる。また非接触型であるため、長時間の使用にも耐え得る耐久性の高いものとなる。   The sheath thermocouple manufactured in this way has a substantially hemispherical tip shape that is not biased in thickness, and the thermal expansion of the bubbles occurs when the bubbles are bitten or when the bubbles melt the sheath thermocouple tip. As a result, surface irregularities and distortions are hardly generated, the airtightness is high, and the cost can be reduced. In addition, since it is a non-contact type, it is highly durable and can withstand long-time use.

なお、以上の例ではシース先端部位11を筒状のまま溶融させていたが、図5に示すように、先端を縮径させたうえで、先端縁10aから全周にわたって略均一に溶融させることも好ましい実施例である。これによれば金属シース10の径が大きい場合でも溶接をスムーズに行うことができる。   In the above example, the sheath distal end portion 11 is melted in a cylindrical shape. However, as shown in FIG. 5, the distal end is reduced in diameter and melted substantially uniformly from the distal end edge 10a over the entire circumference. Is also a preferred embodiment. According to this, even when the diameter of the metal sheath 10 is large, welding can be performed smoothly.

次に、図6に基づき、本発明の第2実施形態を説明する。   Next, a second embodiment of the present invention will be described based on FIG.

本実施形態は、接触型のシース熱電対を構成したものであり、図6に示すように、一対の熱電対素線21,21を収容し、これら熱電対素線間に無機絶縁物3を充填した長尺な金属シース10を所定の長さに切断し(S401)、切断された金属シース10一端側から無機絶縁物3を除去するとともに所定長さに設定された熱電対素線21,21を突出させ、無機絶縁物3の埋設表面31は所定深さLに設定される(S402)。そして、埋設表面31より突出するシース先端部位11を溶融して、同じく突出している熱電対素線21,21を当該金属シース材からなる先端封止部4に埋入させたものである(S403)。   In the present embodiment, a contact-type sheath thermocouple is configured. As shown in FIG. 6, a pair of thermocouple wires 21 and 21 are accommodated, and an inorganic insulator 3 is placed between these thermocouple wires. The filled long metal sheath 10 is cut to a predetermined length (S401), the inorganic insulator 3 is removed from one end side of the cut metal sheath 10, and the thermocouple strand 21 set to a predetermined length, 21 is protruded, and the embedded surface 31 of the inorganic insulator 3 is set to a predetermined depth L (S402). Then, the sheath tip portion 11 protruding from the embedded surface 31 is melted, and the thermocouple wires 21 and 21 protruding similarly are embedded in the tip sealing portion 4 made of the metal sheath material (S403). ).

このようにして製造したシース熱電対は、先端形状が肉厚に偏りのない略半球状で、余分な気泡の噛み込みが殆どなく気密性が高いものとなり、かつ低コスト化に対応したものとなる。また接触型であるため、温度測定時の応答が速いものとなる。その他については上記第1実施形態と同様であり説明を省略する。   The sheath thermocouple manufactured in this way has a substantially hemispherical tip shape with no bias in thickness, has almost no excess air bubbles, has high airtightness, and is low in cost. Become. Moreover, since it is a contact type, the response at the time of temperature measurement is quick. Others are the same as those in the first embodiment, and a description thereof will be omitted.

次に、図7〜11に基づき、本発明の第3実施形態を説明する。   Next, a third embodiment of the present invention will be described with reference to FIGS.

本実施形態に係るシース熱電対1は、非接触型のものであり、所定長さLだけ延出されたシース先端部位11を所定形状にかしめてかしめ部13を形成した上で、該かしめ部13を溶融させ、当該金属シース材からなる先端封止部4を形成したものである。尚、本発明において「かしめ」は、目的とするかしめ部13の形状を得るために、図示しない種々の形状よりなる冶具又は型を用いて、従来のかしめ方法と同様に行われるものであり特に限定されないが、所望のかしめ形状を得るために、数段階の荷重負荷工程を経て徐々に目的とするかしめ部13形状を形成していくことが、金属シース10への負荷が分散されるため好ましい。   The sheath thermocouple 1 according to the present embodiment is of a non-contact type, and after the sheath tip portion 11 extended by a predetermined length L is caulked into a predetermined shape to form a caulking portion 13, the caulking portion 13 is melted to form the tip sealing portion 4 made of the metal sheath material. In the present invention, “caulking” is performed in the same manner as the conventional caulking method using a jig or mold having various shapes (not shown) in order to obtain the desired caulking portion 13 shape. Although not limited, in order to obtain a desired caulking shape, it is preferable to gradually form the desired caulking portion 13 shape through several steps of load application because the load on the metal sheath 10 is dispersed. .

具体的には、図8に示すように、一対の熱電対素線21,21を収容し、これら熱電対素線間に無機絶縁物3を充填した長尺な金属シース10を所定の長さに切断し(S501)、切断された金属シース10一端側の無機絶縁物3を除去するとともに所定長さに設定された一対の熱電対素線21,21を突出させ(S502)、これら熱電対素線21,21を結線して温接点を形成する(S503)。そして、無機絶縁物3を埋め戻して温接点22を埋没した埋設表面31を所定深さLに設定した後(S504)、該埋設表面31から所定長さ延出しているシース先端部位11を所定形状にかしめ(S505)、当該かしめ部13を溶融させて先端封止部4を形成する(S506)。   Specifically, as shown in FIG. 8, a long metal sheath 10 containing a pair of thermocouple wires 21 and 21 and filled with an inorganic insulator 3 between the thermocouple wires has a predetermined length. (S501), the inorganic insulator 3 at one end of the cut metal sheath 10 is removed, and a pair of thermocouple wires 21 and 21 set to a predetermined length are protruded (S502). The strands 21 and 21 are connected to form a hot junction (S503). Then, the buried surface 31 in which the inorganic insulator 3 is backfilled and the hot junction 22 is buried is set to a predetermined depth L (S504), and then the sheath distal end portion 11 extending from the buried surface 31 by a predetermined length is determined in advance. The shape is caulked (S505), and the caulking portion 13 is melted to form the tip sealing portion 4 (S506).

より詳しくは、前記温接点22を形成する際には、図9に示すように前記金属シース10一端側に内嵌する外周面9bとその先端面に縦断面略V字状の切り欠き部9aを設けた冶具9を、前記無機絶縁物3を除去した空所に挿入し(図中(a))、金属シース10端部の内壁25に付着した無機絶縁物3を前記冶具9の外周面9bでかき落とすと同時に、温接点22を形成する一対の熱電対素線21を前記切り欠き部9aの略V字面に案内させて互いにもたれ合うように折曲して(図中(b))、前記熱電対素線端部を結線する(図中(c))。   More specifically, when forming the hot junction 22, as shown in FIG. 9, an outer peripheral surface 9b fitted into one end of the metal sheath 10 and a notch 9a having a substantially V-shaped longitudinal section at the distal end surface thereof. Is inserted into the void from which the inorganic insulator 3 is removed ((a) in the figure), and the inorganic insulator 3 attached to the inner wall 25 at the end of the metal sheath 10 is inserted into the outer peripheral surface of the jig 9. At the same time as scraping off at 9b, the pair of thermocouple wires 21 forming the hot junction 22 are guided to the substantially V-shaped surface of the notch 9a and bent so as to lean against each other ((b) in the figure). The ends of the thermocouple strands are connected ((c) in the figure).

この冶具9の形状としては、切り欠き部が円錐形状となっているものがより好ましく、このような冶具9を、無機絶縁物3を除去した空所に回転させながら挿入することがさらに好ましい。尚、温接点22を形成する工程と、金属シース10端部の内壁25に付着した無機絶縁物3をかき落とす工程とを、別々に備えてもよいことは勿論であり、内壁25に付着した無機絶縁物3を除去する手法としては、前記の手法以外にも、例えば超音波により除去する手法を採用することもできる。   As the shape of the jig 9, it is more preferable that the notch has a conical shape, and it is more preferable to insert such a jig 9 while rotating the jig 9 into a space where the inorganic insulator 3 is removed. Needless to say, the step of forming the hot junction 22 and the step of scraping off the inorganic insulator 3 attached to the inner wall 25 at the end of the metal sheath 10 may be provided separately. As a method for removing the inorganic insulator 3, other than the above method, for example, a method of removing by an ultrasonic wave may be employed.

なお、上記第1実施形態と同様、シース先端部位11を構成するその他の方法として、図10に示すように、金属シース10を所定長さに切断し(S601)、該金属シース10に予め温接点22を形成した一対の熱電対素線21を挿入した後(S602)、該温接点22を無機絶縁物3により埋没させて所定深さLに設定する(S603、S604)方法を採用することも可能である。   As in the first embodiment, as another method of constructing the sheath distal end portion 11, as shown in FIG. 10, the metal sheath 10 is cut to a predetermined length (S601), and the metal sheath 10 is preheated. After inserting the pair of thermocouple wires 21 forming the contact 22 (S602), the hot contact 22 is buried with the inorganic insulator 3 and set to a predetermined depth L (S603, S604). Is also possible.

前記かしめ部13の横断面形状は、例えば図11(a)〜(e)に示すように、シース軸心23に対して対称形とすることにより、溶融させた後のシース先端形状を、肉厚に偏りのない略半球状に形成することが容易となるため好ましい。さらに、前記かしめ部13を、シース軸心23から少なくとも3方向へ伸びるかしめ片12より構成することにより、かしめ部の強度が向上し、かしめ片が折れ曲がることによる不良品の発生を低減することができるため、より好ましい。例えば、図11(b)、(d)に示すかしめ部は、シース軸心23に対して対称形で、かつ3方向へ伸びるかしめ片12より構成されたものであり、図11(c)に示すかしめ部は、シース軸心23に対して対称形で、かつ4方向へ伸びるかしめ片12より構成されたものである。また、前記かしめ部13のシース長手方向に沿った長さAを、前記シース外径Bの1〜3倍とすることにより、かしめ片12の大きさが溶融させるのに最適なものとなり、高い気密性で封止することが容易となる。   For example, as shown in FIGS. 11 (a) to 11 (e), the cross-sectional shape of the caulking portion 13 is symmetrical with respect to the sheath axis 23, so that the sheath tip shape after melting is the meat. It is preferable because it is easy to form a substantially hemispherical shape with no uneven thickness. Further, by forming the caulking portion 13 from the caulking piece 12 extending in at least three directions from the sheath axis 23, the strength of the caulking portion can be improved, and the occurrence of defective products due to bending of the caulking piece can be reduced. Since it can do, it is more preferable. For example, the caulking portion shown in FIGS. 11 (b) and 11 (d) is formed of caulking pieces 12 that are symmetrical with respect to the sheath axis 23 and extend in three directions, as shown in FIG. 11 (c). The caulking portion shown is symmetrical with respect to the sheath axis 23 and is composed of caulking pieces 12 extending in four directions. Further, by setting the length A of the caulking portion 13 along the sheath longitudinal direction to 1 to 3 times the sheath outer diameter B, the size of the caulking piece 12 is optimal for melting, and is high. It becomes easy to seal with airtightness.

かしめ部13の溶融は、上記第1実施形態と同様、溶接によること、特に金属シースの他端24を例えば真空ポンプなどを用いて吸引して金属シース10内部を減圧した状態で溶接することが好ましい。このようにかしめ部13を形成してこれを溶融することで、金属シースが大径であっても溶接をスムーズに行うことができ、先端封止部4が肉厚に偏りのない略半球状のものとすることができる。その他については基本的には上記第1実施形態と同様であり、同一構造には同一符合を付してその説明を省略する。   As in the first embodiment, the caulking portion 13 is melted by welding, in particular, by welding the metal sheath 10 while reducing the pressure inside the metal sheath 10 by sucking the other end 24 of the metal sheath using, for example, a vacuum pump. preferable. By forming the caulking portion 13 in this way and melting it, welding can be performed smoothly even if the metal sheath has a large diameter, and the tip sealing portion 4 is substantially hemispherical with no uneven thickness. Can be. Others are basically the same as those in the first embodiment, and the same structure is denoted by the same reference numeral and the description thereof is omitted.

次に、図12に基づき、本発明の第4実施形態を説明する。   Next, based on FIG. 12, 4th Embodiment of this invention is described.

本実施形態のシース熱電対1は、第3実施形態のようにかしめ部を形成して溶融するケースにおいて、シース熱電対を接触型とするものであり、図12に示すように、一対の熱電対素線21,21を収容し、これら熱電対素線間に無機絶縁物3を充填した長尺な金属シース10を所定の長さに切断し、切断された金属シース10一端側から無機絶縁物3を除去し、所定長さに設定された熱電対素線21,21を突出させて埋設表面31を所定深さLに設定するとともに、各熱電対素線21を適切な長さに切断し(S701)、熱電対素線21,21を挟み込むように、当該シース先端部位11を所定形状にかしめた後(S702)、当該かしめ部13を溶融することにより、金属シース材からなる先端封止部4に熱電対素線21,21埋入させたものである。   The sheath thermocouple 1 of the present embodiment is a contact type thermocouple in a case where a caulking portion is formed and melted as in the third embodiment. As shown in FIG. 12, a pair of thermocouples is used. A long metal sheath 10 containing the pair of strands 21 and 21 and filled with the inorganic insulator 3 between these thermocouple wires is cut to a predetermined length, and inorganic insulation is provided from one end of the cut metal sheath 10. The object 3 is removed, the thermocouple wires 21 and 21 set to a predetermined length are projected to set the embedded surface 31 to a predetermined depth L, and each thermocouple wire 21 is cut to an appropriate length (S701), after crimping the sheath tip portion 11 into a predetermined shape so as to sandwich the thermocouple wires 21 and 21 (S702), the tip 13 made of a metal sheath material is melted by melting the crimp portion 13 Thermocouple strands 21 and 21 are embedded in stopper 4 Those were.

この場合、一対の熱電対素線21をかしめ片12内に挟み込むようにかしめる必要があるため、かしめ部13の形状としては、図11(a)、(c)及び(e)に示すように、シース軸心23に対して対称形で、かつ偶数の方向へ伸びるかしめ片12より構成される形状とすることが好ましい。   In this case, since it is necessary to crimp the pair of thermocouple wires 21 so as to be sandwiched in the crimping piece 12, the shape of the crimping portion 13 is as shown in FIGS. 11 (a), 11 (c) and 11 (e). In addition, it is preferable that the shape is constituted by the caulking pieces 12 that are symmetrical with respect to the sheath axis 23 and extend in an even number direction.

以上、本発明の実施形態についてそれぞれ説明したが、本発明はこうした実施例に何ら限定されるものではなく、例えば金属シースが細径(例えば、外径0.25〜1.6mm)の場合、シース内の空間容積が少ないことから無機絶縁物3により該温接点22を埋没させずに内部に空間を有するタイプのシース熱電対としても特に支障はなく、その他、本発明の要旨を逸脱しない範囲において種々なる形態で実施し得ることは勿論である。   The embodiments of the present invention have been described above, but the present invention is not limited to these examples. For example, when the metal sheath has a small diameter (for example, an outer diameter of 0.25 to 1.6 mm), Since the space volume in the sheath is small, there is no particular problem as a sheath thermocouple having a space in the interior without burying the hot junction 22 with the inorganic insulator 3, and the scope not departing from the gist of the present invention. Of course, it can be implemented in various forms.

図13(a)に示した従来からの製法により、JIS規格で定められたインコネル用溶接棒を用いて先端を封じ溶接した3.2mm、2.3mm、1.6mmのインコネルシース型K熱電対について、1150℃、1100℃、1050℃などの加速試験温度で加熱並びにEMFの経時変化を測定する試験を実施した結果、EMF値はクラスIIの範囲内に
ありながら、予測されたインコネルの耐久時間よりも短時間でシースに破損が生じた。以下、その考察について説明する。
A 3.2 mm, 2.3 mm, and 1.6 mm Inconel sheath type K thermocouple with the tip sealed and welded using a welding rod for Inconel defined by JIS standards by the conventional manufacturing method shown in FIG. As a result of conducting tests at 1150 ° C., 1100 ° C., 1050 ° C. and other accelerated test temperatures and measuring the time-dependent change in EMF, the estimated inconel endurance time while the EMF value was within the range of class II The sheath was damaged in a shorter time. The consideration will be described below.

図14は、破損品の破損部断面の光学顕微鏡による観察結果を示し、下記表1は、破損品の溶接部近傍のSEM/EDX元素定量分析比較結果を示している。この図14および表1から、次のことが考察される。破損品の先端封止部近傍のシース母材部分は、表面に緻密な酸化クロムを主成分とした酸化物で覆われている(箇所B)が、母材(箇所C)は残存している。母材の結晶粒界には構成元素のCr,Fe,Niの粒界酸化物が析出しているものの、母材を貫通する程には粒界酸化は及んでいない。一方、シース先端封止部は、酸化しきらずに金属組織が一部残留している。残留組織の特徴は粒界に大量に酸化物が析出している。また、残留組織の成分は、表1から分かるように本来のインコネルシース母材とは異なり、溶接直後の先端溶接部の成分(溶接棒成分)から、恐らく酸化により消失した成分を示している。   FIG. 14 shows an observation result of the cross-section of the damaged part by an optical microscope, and Table 1 below shows a comparison result of quantitative analysis of SEM / EDX elements in the vicinity of the welded part of the damaged product. From this FIG. 14 and Table 1, the following is considered. The sheath base material portion in the vicinity of the tip sealing portion of the damaged product is covered with an oxide whose main component is dense chromium oxide (location B), but the base material (location C) remains. . Although grain boundary oxides of the constituent elements Cr, Fe, and Ni are precipitated at the crystal grain boundaries of the base material, the grain boundary oxidation does not reach to the extent that it penetrates the base material. On the other hand, the sheath tip sealing portion is not completely oxidized and a part of the metal structure remains. A characteristic of the residual structure is that a large amount of oxide is precipitated at the grain boundaries. Further, as can be seen from Table 1, the component of the residual structure is different from the original Inconel sheath base material, and is probably a component that has disappeared due to oxidation from the component of the tip welded portion (welding rod component) immediately after welding.

次に、破損品先端封止部近傍の約1mm長さ範囲の酸化損耗の原因を調べるべく、破損品と同じくJIS規格で定められたインコネル用溶接棒を用いて先端を封じ溶接したインコネルシース型K熱電対(比較例1)と、本発明の上記第1実施形態の方法により、溶接棒を用いずにシース先端部位を溶融させて先端封止したインコネルシース型K熱電対(実施例1)の比較観察を実施した。図15(a)は、比較例1の先端封止部近傍断面の走査型電子顕微鏡観察結果を示し、図15(b)は、実施例1の先端封止部近傍断面の走査型電子顕微鏡観察結果を示し、表2は比較例1、実施例1の溶接部近傍のSEM/EDX元素定量分析比較結果を示している。図15の走査型電子顕微鏡写真での両者の差は明瞭で、実施例1は当然ながら母材と先端封止部は均質であったが、溶接棒を用いて封止した比較例1では溶接境界面に不均質の兆候が見られる。そして、表2の分析結果から、比較例1では本来シース母材に含まれないMn,Nbを含有し、その他の元素に関しても微妙に母材とは異なっている。   Next, the Inconel sheath type in which the tip is sealed and welded using a welding rod for Inconel defined by JIS standards in the same way as the damaged product, in order to investigate the cause of oxidative wear in the range of about 1 mm length near the tip of the damaged product A K thermocouple (Comparative Example 1) and an Inconel sheath type K thermocouple (Example 1) in which the sheath tip part is melted and sealed without using a welding rod by the method of the first embodiment of the present invention. A comparative observation was conducted. 15A shows the result of observation by the scanning electron microscope of the cross section near the tip sealing portion of Comparative Example 1, and FIG. 15B shows the result of scanning electron microscope observation of the cross section near the tip sealing portion of Example 1. FIG. A result is shown and Table 2 has shown the SEM / EDX element quantitative analysis comparison result of the welding part vicinity of the comparative example 1 and Example 1. FIG. The difference between the two in the scanning electron micrograph of FIG. 15 is clear. In Example 1, the base material and the tip sealing portion were naturally uniform, but in Comparative Example 1 sealed with a welding rod, welding was performed. There are signs of heterogeneity at the interface. From the analysis results of Table 2, Comparative Example 1 contains Mn and Nb that are not originally included in the sheath base material, and other elements are slightly different from the base material.

以上の破損品、比較例1、実施例1の観察結果から、次のことが想定される。まずインコネル用溶接棒はインコネルそのものより耐酸化性が劣る。また、シース母材では表面に緻密な酸化クロム膜を形成し、その酸化膜がある程度の表面からの一様な酸化に対して抑制する機能を果たしているが、先端封止部に残留した金属組織の特徴から、溶接棒で形成された部分は溶接後の結晶組織の粒度は母材よりも大きく、その粒界にMn,Nbなどの酸化しやすい添加元素が析出し、表面からの一様な酸化に加えて、粒界酸化が生じたと考えらえる。そのため、酸化の耐久性が母材に劣る結果となったと考えられる。このことから、溶接棒を用いずに母材自体を溶融させて先端封止した本発明は優れた耐酸化性を有することが分かる。   From the above-mentioned damaged products, the observation results of Comparative Example 1 and Example 1, the following is assumed. First, the welding rod for Inconel is inferior in oxidation resistance to Inconel itself. In addition, the sheath base material forms a dense chromium oxide film on the surface, and the oxide film functions to suppress uniform oxidation from a certain level of the surface. From the characteristics of the welded rod, the grain size of the crystal structure after welding is larger than that of the base material, and easily oxidizable additive elements such as Mn and Nb are precipitated at the grain boundaries, resulting in a uniform surface from the surface. It can be considered that grain boundary oxidation occurred in addition to oxidation. Therefore, it is considered that the oxidation durability was inferior to that of the base material. From this, it can be seen that the present invention in which the base material itself is melted without using a welding rod and the tip is sealed has excellent oxidation resistance.

本発明の第1実施形態に係るシース熱電対を示す説明図。Explanatory drawing which shows the sheath thermocouple which concerns on 1st Embodiment of this invention. シース先端部位を構成するまでの工程を示す説明図。Explanatory drawing which shows the process until it comprises a sheath front-end | tip site | part. シース先端部位を溶融して先端封止部を構成する工程を示す説明図。Explanatory drawing which shows the process of fuse | melting a sheath front-end | tip part and comprising a front-end | tip sealing part. シース先端部位を形成する他の方法を示す説明図。Explanatory drawing which shows the other method of forming a sheath front-end | tip part. シース先端部位を縮径させて溶融する変形例を示す説明図。Explanatory drawing which shows the modification which shrinks | reduces a sheath front-end | tip part and fuse | melts. 本発明の第2実施形態に係るシース熱電対の製作手順を示す説明図。Explanatory drawing which shows the manufacture procedure of the sheath thermocouple which concerns on 2nd Embodiment of this invention. 本発明の第3実施形態に係るシース熱電対の製作工程におけるかしめ部の代表的形状を示す斜視図。The perspective view which shows the typical shape of the crimping | crimped part in the manufacturing process of the sheath thermocouple which concerns on 3rd Embodiment of this invention. 同じく第3実施形態に係るシース熱電対の製作手順を示す説明図。Explanatory drawing which similarly shows the manufacture procedure of the sheathed thermocouple which concerns on 3rd Embodiment. (a)〜(c)は熱電対の温接点を形成する方法を示す説明図。(A)-(c) is explanatory drawing which shows the method of forming the hot junction of a thermocouple. シース先端部位を形成する他の方法を示す説明図。Explanatory drawing which shows the other method of forming a sheath front-end | tip part. (a)〜(e)はそれぞれかしめ部形状の変形例を示す説明図。(A)-(e) is explanatory drawing which shows the modification of a caulking part shape, respectively. 本発明の第4実施形態に係るシース熱電対の製作手順を示す説明図。Explanatory drawing which shows the manufacture procedure of the sheath thermocouple which concerns on 4th Embodiment of this invention. (a),(b)は、従来のシース熱電対を示す説明図。(A), (b) is explanatory drawing which shows the conventional sheathed thermocouple. 破損品の破損部断面の光学顕微鏡写真。An optical micrograph of a cross-section of a damaged part. (a)は比較例1の先端封止部近傍断面の走査型電子顕微鏡写真、(b)は実施例1の先端封止部近傍断面の走査型電子顕微鏡写真。(A) is a scanning electron micrograph of the cross section near the tip sealing portion of Comparative Example 1, and (b) is a scanning electron micrograph of the cross section near the tip sealing portion of Example 1.

符号の説明Explanation of symbols

1 シース熱電対
2 熱電対
3 無機絶縁物
4 先端封止部
5 接続部
6 リード線
9 冶具
9a 切り欠き部
9b 外周面
10 金属シース
10a 先端縁
11 シース先端部位
12 かしめ片
13 かしめ部
21 熱電対素線
22 温接点
23 軸心
24 他端
25 内壁
31 埋設表面
DESCRIPTION OF SYMBOLS 1 Sheath thermocouple 2 Thermocouple 3 Inorganic insulator 4 Tip sealing part 5 Connection part 6 Lead wire 9 Jig 9a Notch 9b Outer peripheral surface 10 Metal sheath 10a Tip edge 11 Sheath tip part 12 Caulking piece 13 Caulking part 21 Thermocouple Wire 22 Warm contact 23 Axle 24 Other end 25 Inner wall 31 Embedded surface

Claims (6)

金属シース内部に、少なくとも一対の熱電対素線およびこれら熱電対素線と金属シースの隙間を埋める無機絶縁物を収容し、先端側を気密封止してなるシース熱電対において、前記金属シース先端側の気密封止として、前記無機絶縁物の埋設表面から所定長さ延出させたシース先端部位を、筒状のまま若しくは先端を縮径させたうえで、先端縁から全周にわたって略均一に溶融させ、これにより当該金属シース材からなる略半球形状の先端封止部を形成してなることを特徴とするシース熱電対。 In a sheath thermocouple, in which at least a pair of thermocouple wires and an inorganic insulator that fills the gap between the thermocouple wires and the metal sheath are accommodated inside the metal sheath, and the tip side is hermetically sealed, the tip of the metal sheath As a hermetic seal on the side, the sheath tip part extended a predetermined length from the embedded surface of the inorganic insulator remains in a cylindrical shape or the tip is reduced in diameter, and then substantially uniformly from the tip edge to the entire circumference. A sheathed thermocouple characterized by melting and thereby forming a substantially hemispherical tip sealing portion made of the metal sheath material. 金属シース内部に、少なくとも一対の熱電対素線およびこれら熱電対素線と金属シースの隙間を埋める無機絶縁物を収容し、先端側を気密封止してなるシース熱電対の製造方法において、
前記金属シース先端側の気密封止に際し、前記無機絶縁物の埋設表面を金属シース先端縁から所定深さの位置に設定し、
これにより前記埋設表面から所定長さ延出されたシース先端部位を、筒状のまま若しくは先端を縮径させた後に、先端縁から全周にわたって略均一に溶融して、
これにより当該金属シース材からなる略半球形状の先端封止部を形成することを特徴とするシース熱電対の製造方法。
In the method of manufacturing a sheath thermocouple, in which at least a pair of thermocouple wires and an inorganic insulator that fills the gap between the thermocouple wires and the metal sheath are housed inside the metal sheath, and the tip side is hermetically sealed,
Upon hermetic sealing of the metal sheath tip side, the embedded surface of the inorganic insulator is set at a position at a predetermined depth from the metal sheath tip edge,
Thereby, after the sheath tip portion extending a predetermined length from the embedded surface remains in a cylindrical shape or the tip is reduced in diameter, it is melted substantially uniformly over the entire circumference from the tip edge,
Thus, a substantially thermospherical tip sealing portion made of the metal sheath material is formed.
少なくとも一対の熱電対素線およびこれら熱電対素線と金属シースの隙間を埋める無機絶縁物を収容した長尺な金属シースを、所定の長さに切断し、切断された金属シースの一端側から無機絶縁物を除去し、一対の熱電対素線を突出させ、突出した熱電対素線を結線して温接点を形成して、無機絶縁物を埋め戻し、該無機絶縁物の埋設表面を金属シース先端縁から所定深さの位置に設定し、該埋設表面から所定長さ延出しているシース先端部位を、そのまま若しくは先端を縮径させた後に溶融して前記略半球形状の先端封止部を形成する請求項記載のシース熱電対の製造方法。 A long metal sheath containing at least a pair of thermocouple wires and an inorganic insulator that fills the gap between the thermocouple wires and the metal sheath is cut to a predetermined length, and from one end side of the cut metal sheath Remove the inorganic insulator, protrude the pair of thermocouple wires, connect the protruding thermocouple wires to form a hot junction, backfill the inorganic insulator, and replace the embedded surface of the inorganic insulator with metal set from the sheath tip edge position of a predetermined depth, the tip seal of the substantially hemispherical shape by melting after the sheath distal end portion that extends a predetermined length from said buried surface, which has a reduced diameter as it or tip The method for manufacturing a sheathed thermocouple according to claim 2, wherein the stop portion is formed. 前記温接点を形成する手法が、前記金属シース一端側に内嵌する外周面とその先端面に縦断面略V字状の切り欠き部を設けた冶具を、前記無機絶縁物を除去した空所に挿入し、金属シース端部の内壁に付着した無機絶縁物を前記冶具の外周面でかき落とすと同時に、温接点を形成する一対の熱電対素線を前記切り欠き部の略V字面に案内させて互いにもたれ合うように折曲して前記熱電対素線端部を結線する請求項記載のシース熱電対の製造方法。 The method for forming the hot junction is to remove the inorganic insulator from a jig provided with an outer peripheral surface fitted into one end of the metal sheath and a notch portion having a substantially V-shaped longitudinal section at the tip end surface. The inorganic insulator attached to the inner wall of the end portion of the metal sheath is scraped off at the outer peripheral surface of the jig, and at the same time, a pair of thermocouple wires forming a hot junction are guided to the substantially V-shaped surface of the notch portion. 4. The method for manufacturing a sheathed thermocouple according to claim 3, wherein the thermocouple element ends are bent so as to lean against each other. 少なくとも一対の熱電対素線およびこれら熱電対素線と金属シースの隙間を埋める無機絶縁物を収容した長尺な金属シースを、所定の長さに切断し、切断された金属シースの一端側から無機絶縁物を除去し、一対の熱電対素線を突出させ、前記シース先端部位を溶融して、前記突出した熱電対素線を当該金属シース材からなる先端封止部に埋入させてなる請求項記載のシース熱電対の製造方法。 A long metal sheath containing at least a pair of thermocouple wires and an inorganic insulator that fills the gap between the thermocouple wires and the metal sheath is cut to a predetermined length, and from one end side of the cut metal sheath The inorganic insulator is removed, a pair of thermocouple wires are protruded, the sheath tip portion is melted, and the protruding thermocouple wires are embedded in a tip sealing portion made of the metal sheath material. A method for manufacturing a sheathed thermocouple according to claim 2 . 前記シース先端部位を、溶接により溶融してなる請求項2又は3記載のシース熱電対の製造方法。
The method of manufacturing a sheath thermocouple according to claim 2 or 3 , wherein the sheath tip portion is melted by welding.
JP2006335601A 2005-12-15 2006-12-13 Sheath thermocouple and manufacturing method thereof Active JP4853269B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006335601A JP4853269B2 (en) 2005-12-15 2006-12-13 Sheath thermocouple and manufacturing method thereof

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2005361441 2005-12-15
JP2005361441 2005-12-15
JP2006335601A JP4853269B2 (en) 2005-12-15 2006-12-13 Sheath thermocouple and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2007187654A JP2007187654A (en) 2007-07-26
JP4853269B2 true JP4853269B2 (en) 2012-01-11

Family

ID=38342905

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006335601A Active JP4853269B2 (en) 2005-12-15 2006-12-13 Sheath thermocouple and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4853269B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4967770B2 (en) * 2007-04-11 2012-07-04 山里産業株式会社 Double sheath type thermocouple and manufacturing method thereof
DE102013015379B4 (en) * 2012-09-17 2020-10-15 Tesona Gmbh & Co. Kg Process for the production of a high temperature sensor with a pressed protective tube
JP6317292B2 (en) * 2015-04-28 2018-04-25 株式会社岡崎製作所 Sheath thermocouple and method for manufacturing tip thereof

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5138475A (en) * 1974-09-24 1976-03-31 Arata Morita
JPS5828536B2 (en) * 1978-05-11 1983-06-16 株式会社中村工業所 Thermocouple manufacturing method
JPS5937771B2 (en) * 1979-06-27 1984-09-12 株式会社フジクラ How to form the hot junction end of a thermocouple wire
JPS60120578A (en) * 1983-12-02 1985-06-28 Toshiba Corp Manufacture of sheathed thermocouple and device therefor
JPH0231316B2 (en) * 1985-12-03 1990-07-12 Fujikura Ltd HIITOPAIPUNOKANTANFUSHIHOHO
JPH084156B2 (en) * 1986-07-01 1996-01-17 株式会社東芝 Method for manufacturing sheath thermocouple
JPH02295028A (en) * 1989-05-08 1990-12-05 Matsushita Electric Ind Co Ltd Exhaust pipe of vacuum container, and device and method of sealing same
JP2538746Y2 (en) * 1992-01-22 1997-06-18 石川島播磨重工業株式会社 Thermocouple tip structure
JP3613089B2 (en) * 1999-09-10 2005-01-26 株式会社デンソー Sensor for temperature measurement
JP2004205059A (en) * 2002-12-20 2004-07-22 Toyo Radiator Co Ltd Method of manufacturing high erosion resistance heat exchanger
JP2008096215A (en) * 2006-10-10 2008-04-24 Kawasaki Precision Machinery Ltd Sheathed thermocouple for measuring temperature in high pressure domain, and its manufacturing method

Also Published As

Publication number Publication date
JP2007187654A (en) 2007-07-26

Similar Documents

Publication Publication Date Title
JP4967770B2 (en) Double sheath type thermocouple and manufacturing method thereof
US10168228B2 (en) Thermocouple apparatus and method
US20090296781A1 (en) High vibration thin film RTD sensor
JP4853269B2 (en) Sheath thermocouple and manufacturing method thereof
JP5561292B2 (en) Temperature sensor
US20110222583A1 (en) Apparatus for determining and/or monitoring a process variable
JP2015232552A (en) Sensor and its manufacturing method
US20090147826A1 (en) Temperature sensor
JP5198934B2 (en) Temperature sensor
EP2728303B1 (en) Capacitive sensor device and method of manufacture
CN111684246A (en) Temperature sensor and temperature measuring device
US3969696A (en) Refractory resistor with supporting terminal
US10712205B2 (en) Flexible multipoint thermometer
JP6969929B2 (en) Probe and its manufacturing method
JP4853235B2 (en) Temperature sensor
KR101617353B1 (en) Sheathed thermocouple
JP6152463B1 (en) thermocouple
JP2008089494A (en) Sheathed thermocouple and its manufacturing method
JP4398823B2 (en) Capsule type strain gauge installation method
JP2006017556A (en) Sheathed thermocouple
JP4807201B2 (en) Sheath thermocouple and manufacturing method thereof
JP6627073B1 (en) Sheath thermocouple
CN110337556A (en) Pipe structure with shielded sensor and the method for manufacturing the pipe structure with shielded sensor
JP6317292B2 (en) Sheath thermocouple and method for manufacturing tip thereof
JP2002022548A (en) Probe for continuous temperature measurement

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091118

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110627

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110705

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110905

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110927

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111010

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141104

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4853269

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141104

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250