JP2002022548A - Probe for continuous temperature measurement - Google Patents

Probe for continuous temperature measurement

Info

Publication number
JP2002022548A
JP2002022548A JP2000206096A JP2000206096A JP2002022548A JP 2002022548 A JP2002022548 A JP 2002022548A JP 2000206096 A JP2000206096 A JP 2000206096A JP 2000206096 A JP2000206096 A JP 2000206096A JP 2002022548 A JP2002022548 A JP 2002022548A
Authority
JP
Japan
Prior art keywords
heat
protective tube
continuous temperature
resistant
thermocouple
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000206096A
Other languages
Japanese (ja)
Inventor
Osamu Igawa
修 井川
Hisao Igawa
久雄 井川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawaso Electric Industrial Co Ltd
Original Assignee
Kawaso Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawaso Electric Industrial Co Ltd filed Critical Kawaso Electric Industrial Co Ltd
Priority to JP2000206096A priority Critical patent/JP2002022548A/en
Publication of JP2002022548A publication Critical patent/JP2002022548A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a probe for continuous temperature measurement used in a furnace having a chemically, thermally, and mechanically severe environment such as an incinerator in a waste incineration plant. SOLUTION: This probe for continuous temperature measurement is made by inserting a thermocouple into a heat-resistant protection tube with a closure part on its end part and causing a hot contact part of the thermocouple to face to the inside of the closure part, The closure part comprises a heat-resistant partition transversely separating an internal space of the protection tube leaving a cavity part in the end of the protection tube and a heat-resistant filler for gas invasion prevention packed in the cavity part.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、清掃工場における
焼却炉等のような化学的、熱的、機械的に非常に過酷な
環境とされた炉内に使用される連続測温プローブに関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a continuous temperature measuring probe used in a furnace in an extremely harsh environment chemically, thermally and mechanically, such as an incinerator in a cleaning plant.

【0002】[0002]

【従来の技術】従来、先端に閉塞部を備えた耐熱保護管
に熱電対を挿入し、熱電対の温接点部を前記閉塞部の内
側に臨ましめて成る連続測温プローブが公知であり、耐
熱保護管は、高炉や加熱炉等の高温環境下での使用を可
能にするため、SUS310、304、316等のステ
ンレス鋼や、サンドビックP−4(Cr系)、インコネ
ル(Ni−Cr)等の金属管により形成されている。然
しながら、このような連続測温プローブを清掃工場にお
ける焼却炉等の炉内に使用すると、耐熱保護管が短時間
で垂れ曲がり、使用に耐えないことが確認された。この
ような焼却炉の炉内は、極めて高温で且つ酸化性、硫化
性が非常に強く、化学的、熱的、機械的に非常に過酷な
環境下にあるからである。
2. Description of the Related Art Conventionally, there has been known a continuous temperature measuring probe in which a thermocouple is inserted into a heat-resistant protective tube provided with a closed portion at the tip and a hot junction portion of the thermocouple faces the inside of the closed portion. The protection tube is made of stainless steel such as SUS310, 304, 316, sandvik P-4 (Cr type), Inconel (Ni-Cr), etc. in order to enable use in a high temperature environment such as a blast furnace or a heating furnace. Formed of a metal tube. However, it was confirmed that when such a continuous temperature measuring probe was used in an incinerator or the like in an incineration plant, the heat-resistant protective tube would bend down in a short time and would not withstand use. This is because the inside of such an incinerator is at an extremely high temperature, has very strong oxidizing and sulfidizing properties, and is in a very severe environment chemically, thermally and mechanically.

【0003】ところで、連続測温時における保護管の曲
がり防止の目的は、酸化物分散強化型の耐熱合金により
保護管を形成することにより達成できる。このような酸
化物分散強化型の耐熱合金は、Crを10〜40重量
%、Alを10重量%以下、Tiを5重量%以下、高融
点金属酸化物を0.1〜2重量%、残部を実質的にFe
としており、高温耐熱性と高温耐蝕性と機械的強度を満
足する。そこで、この酸化物分散強化型の耐熱合金によ
り連続測温プローブの保護管を製作すれば、1320度
Cに加熱した酸化性の雰囲気の焼却炉における実験の結
果、168時間後においても、全く変形がなく、しか
も、酸化量も僅かであると報告されている。また、酸化
物分散強化型の耐熱合金は、例えば、MA956の製品
名の下で市販されている。
The purpose of preventing the protection tube from being bent at the time of continuous temperature measurement can be achieved by forming the protection tube from an oxide dispersion strengthened heat-resistant alloy. Such an oxide dispersion-strengthened heat-resistant alloy contains 10 to 40% by weight of Cr, 10% by weight or less of Al, 5% by weight or less of Ti, 0.1 to 2% by weight of a high melting point metal oxide, and the balance. Is substantially Fe
It satisfies high temperature heat resistance, high temperature corrosion resistance and mechanical strength. Therefore, if a protective tube for a continuous temperature measuring probe is manufactured using this oxide dispersion strengthened heat-resistant alloy, the results of an experiment in an incinerator in an oxidizing atmosphere heated to 1320 ° C. show that the tube is completely deformed even after 168 hours. It is reported that there is no oxidation and the oxidation amount is small. An oxide dispersion strengthened heat-resistant alloy is commercially available, for example, under the product name of MA956.

【0004】[0004]

【発明が解決しようとする課題】連続測温プローブのた
めに使用する保護管を前述のような酸化物分散強化型の
耐熱合金から成る管材により製作する場合、管材の先端
を確実に閉塞しなければならない。この点に関して、管
材の先端部を絞り加工することにより中心部に小孔を残
して膨出する底壁部を形成した後、この小孔を溶接によ
り閉塞せしめる技術が知られている。
When a protective tube used for a continuous temperature measuring probe is made of a tube made of a heat-resistant alloy of the oxide dispersion strengthened type as described above, the tip of the tube must be securely closed. Must. In this regard, a technique is known in which a bottom wall portion is formed by squeezing a distal end portion of a pipe material to leave a small hole at the center portion and swell, and then close the small hole by welding.

【0005】然しながら、酸化物分散強化型の耐熱合金
から成る管材の先端部を絞り加工した後、先端の小孔を
溶接により封じた保護管を連続測温プローブとして使用
するため過酷な炉内環境に長時間曝すと、溶接金属が剥
離して小孔から脱落することが知見された。その理由
は、先端の小孔を溶接により封じる際に、小孔の周縁部
において、溶接温度によりその成分のY2 3 及びAl
が表面に溶出し、内部での成分を少なくし強度不足をも
たらすからであると考えられる。即ち、Y2 3は、高
温強度を向上させるために添加されたものであるが、こ
れが溶接温度を受けると合金内での分散を乱してしま
い、高温強度を低下すると考えられる。
[0005] However, since the end of a pipe made of a heat-resistant alloy of an oxide dispersion strengthened type is drawn and then a protective tube in which the small hole at the end is sealed by welding is used as a continuous temperature measuring probe, a severe furnace environment is required. It has been found that when exposed to a long time, the weld metal peels off and falls off from the small holes. The reason is that, when the small hole at the tip is sealed by welding, the components Y 2 O 3 and Al
Is eluted on the surface, and the internal components are reduced, resulting in insufficient strength. That is, Y 2 O 3 is added to improve the high-temperature strength, but when it is subjected to the welding temperature, it disturbs the dispersion in the alloy, and is considered to lower the high-temperature strength.

【0006】そこで、本出願人は、共同出願による特願
平10−235006号において、管材の先端部を絞り
加工することにより中心部に残された小孔を閉塞するに
際し、Coを含有するFe−Cr系合金で且つ低炭素の
耐熱合金から成る溶接金属により該小孔を充填溶接する
技術を知得したが、未だ溶接金属による密封効果が十分
でない。
The applicant of the present application has disclosed a joint application in Japanese Patent Application No. 10-235006 in which, when a small hole left in the center portion is closed by drawing a front end portion of a pipe material, Fe containing Fe containing Co is used. -We have learned a technique of filling and welding the small holes with a welding metal made of a Cr-based alloy and a low-carbon heat-resistant alloy, but the sealing effect of the welding metal is still insufficient.

【0007】そして、連続測温中に、万一、溶接金属が
小孔から剥離し、炉内ガスが保護管に浸入すると、熱電
対を劣化せしめたり、最悪の場合、炉外ガスが保護管を
経て端子箱から作業者に向けて噴出するという危険があ
る。
If, during continuous temperature measurement, the weld metal is separated from the small holes and the gas inside the furnace enters the protective tube, the thermocouple may be deteriorated, or in the worst case, the gas outside the furnace may be removed from the protective tube. There is a danger that the gas will be ejected from the terminal box toward the worker through the terminal box.

【0008】[0008]

【課題を解決するための手段】本発明によれば、酸化物
分散強化型の耐熱合金から成る管材により連続測温プロ
ーブの保護管を製作するために該管材の先端を確実に閉
塞せしめるに際し、管材の先端に空洞部を残して該管材
の内部空間を横断状に遮断する耐熱性の仕切壁を設け、
該仕切壁を管材の内面に溶接される。これによれば、溶
接部分は、管材の外部に露出することなく、管材の先端
から内部に奥深い位置にあるので、炉内の過酷な雰囲気
から好適に保護される。しかも、仕切壁それ自体も管材
の先端よりも内側の奥深い位置に設けられているので、
容易に脱落することはない。尚、仕切壁の溶接作業は、
空洞部を介して容易に行うことができる。そして、空洞
部には耐熱性のガス侵入防止充填剤が充填されるので、
仕切壁と管材の間の溶接部分に隙間が形成される場合で
も、炉内ガスが熱電対に向けて侵入することを確実に阻
止できる。
According to the present invention, there is provided a method for manufacturing a protection tube for a continuous temperature measuring probe by using a tube made of a heat-resistant alloy of an oxide dispersion strengthened type. Providing a heat-resistant partition wall that cuts off the internal space of the tube material transversely, leaving a hollow portion at the tip of the tube material,
The partition is welded to the inner surface of the tube. According to this, the welded portion is located deep inside from the tip of the tube material without being exposed to the outside of the tube material, so that it is suitably protected from the severe atmosphere in the furnace. Moreover, since the partition wall itself is provided at a deeper position inside the tip of the pipe material,
It does not fall off easily. In addition, the welding work of the partition wall
It can be easily performed through the cavity. And since the cavity is filled with a heat-resistant gas intrusion prevention filler,
Even when a gap is formed in the welded portion between the partition wall and the pipe, it is possible to reliably prevent the gas in the furnace from entering the thermocouple.

【0009】ところで、上記のような構成によれば、仕
切壁の位置に対応して、保護管に挿入された熱電対の先
端の温接点部が保護管の先端よりも後退した位置に臨ま
しめられるため、熱電対の測温応答時間に難点を生じる
虞れがあるが、本発明によれば、熱電対の先端部を埋入
せしめる耐火物粉末から成る熱伝導充填剤を保護管に充
填せしめることにより、熱電対の測温応答時間を従来と
同等以上の短時間にて確保することができた。
By the way, according to the above configuration, the hot junction at the tip of the thermocouple inserted into the protection tube faces the position retracted from the tip of the protection tube corresponding to the position of the partition wall. However, according to the present invention, the protective tube is filled with a heat conductive filler made of refractory powder for embedding the tip of the thermocouple. By doing so, the temperature measurement response time of the thermocouple was able to be secured in a short time equivalent to or longer than the conventional one.

【0010】そこで、本発明が第一の手段として構成し
たところは、先端部に閉塞部を備えた耐熱性の保護管に
熱電対を挿入し、熱電対の温接点部を前記閉塞部の内側
に臨ましめて成る連続測温プローブにおいて、前記閉塞
部が、保護管の先端に空洞部を残して該保護管の内部空
間を横断して遮断する耐熱性の仕切壁と、前記空洞部に
充填された耐熱性のガス侵入防止充填剤とから構成され
て成る点にある。
Therefore, the present invention is configured as a first means in that a thermocouple is inserted into a heat-resistant protective tube having a closed portion at a tip end, and a hot junction portion of the thermocouple is placed inside the closed portion. In the continuous temperature measuring probe, the closed part is filled with the heat-resistant partition wall that cuts off the inner space of the protective tube while leaving a hollow part at the tip of the protective tube, and is filled in the hollow part. And a heat resistant gas intrusion preventing filler.

【0011】また、本発明が第二の手段として構成した
ところは、先端部に閉塞部を備えた耐熱性の保護管に熱
電対を挿入し、熱電対の温接点部を前記閉塞部の内側に
臨ましめて成る連続測温プローブにおいて、前記閉塞部
が、保護管の先端に空洞部を残して該保護管の内部空間
を横断して遮断する耐熱性の仕切壁と、前記空洞部に充
填された耐熱性のガス侵入防止充填剤とから構成されて
成り、前記仕切壁の近傍に位置する熱電対の先端部を埋
入せしめる耐火物粉末から成る熱伝導充填剤を保護管に
充填して成る点にある。
Further, the present invention is configured as a second means in that a thermocouple is inserted into a heat-resistant protective tube having a closed portion at a tip portion, and a hot junction portion of the thermocouple is placed inside the closed portion. In the continuous temperature measuring probe, the closed part is filled with the heat-resistant partition wall that cuts off the inner space of the protective tube while leaving a hollow part at the tip of the protective tube, and is filled in the hollow part. The protective tube is filled with a heat conductive filler made of a refractory powder for embedding the tip of a thermocouple located near the partition wall. On the point.

【0012】本発明の実施形態において、仕切壁は、空
洞部に臨む部位を保護管の内面に溶接される。
In an embodiment of the present invention, the partition wall has a portion facing the hollow portion welded to the inner surface of the protective tube.

【0013】保護管及び仕切壁は、酸化物分散強化型の
耐熱合金から成ることが好ましく、ガス侵入防止充填剤
は、耐火セメント及び耐火接着剤の一つ又は複数から選
ばれることが好ましい。
The protective tube and the partition wall are preferably made of an oxide dispersion strengthened heat-resistant alloy, and the gas intrusion preventing filler is preferably selected from one or more of a refractory cement and a refractory adhesive.

【0014】前記第二の手段における熱伝導充填剤は、
アルミナ、ジルコニア、シリカ及びマグネシアの一つ又
は複数から選ばれることが好ましい。
The heat conductive filler in the second means is as follows:
It is preferably selected from one or more of alumina, zirconia, silica and magnesia.

【0015】[0015]

【発明の実施の形態】以下図面に基づいて本発明の好ま
しい実施形態を詳述する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Preferred embodiments of the present invention will be described below in detail with reference to the drawings.

【0016】(全体的構成)図1は、連続測温プローブ
の全体を示している。図例において、耐熱性の保護管1
は、尾端に端子箱2を備えると共に軸方向中途部にフラ
ンジ3を備えた尾端側保護管1aと、先端に閉塞部4を
備えた先端側保護管1bとに分割され、両保護管1a、
1bを継手5により同心状に連結することにより構成さ
れている。然しながら、図例のように分割することな
く、保護管1を1本の管材により一体に形成しても良
い。
(Overall Configuration) FIG. 1 shows the whole of a continuous temperature measuring probe. In the illustrated example, a heat-resistant protective tube 1 is shown.
Is divided into a tail-end side protection tube 1a having a terminal box 2 at the tail end and a flange 3 in the middle part in the axial direction, and a front-end side protection tube 1b having a closing portion 4 at the front end. 1a,
1b is concentrically connected by a joint 5. However, the protective tube 1 may be integrally formed of a single tube without being divided as in the illustrated example.

【0017】保護管1は、酸化物分散強化型の耐熱合金
により形成されており、連続測温時に垂れ下がり状の曲
がりを生じることなく長時間耐える。例えば、1320
度Cに加熱した酸化性の雰囲気の焼却炉に使用された場
合でも、168時間後においても全く変形がなく、しか
も、酸化量も僅かであった。酸化物分散強化型の耐熱合
金は、Crを10〜40重量%、Alを10重量%以
下、Tiを5重量%以下、高融点金属酸化物を0.1〜
2重量%、残部を実質的にFeとしており、高温耐熱性
と高温耐蝕性と機械的強度を満足する。具体的には、例
えば、MA956の製品名の下で市販されている酸化物
分散強化型の耐熱合金を使用することができる。図例の
ように、保護管1を尾端側保護管1aと先端側保護管1
bとに分割形成した場合、両保護管1a、1bを酸化物
分散強化型の耐熱合金により形成しても良いが、少なく
とも先端側保護管1bを酸化物分散強化型の耐熱合金に
より形成すれば良い。
The protective tube 1 is made of a heat-resistant alloy of the oxide dispersion strengthened type, and can withstand a long time without sagging bending at the time of continuous temperature measurement. For example, 1320
Even when used in an incinerator in an oxidizing atmosphere heated to a degree C, there was no deformation even after 168 hours, and the amount of oxidation was small. The oxide dispersion strengthened heat-resistant alloy contains 10 to 40% by weight of Cr, 10% by weight or less of Al, 5% by weight or less of Ti, and 0.1 to 10% by weight of a high melting point metal oxide.
2% by weight, with the balance being substantially Fe, satisfying high-temperature heat resistance, high-temperature corrosion resistance and mechanical strength. Specifically, for example, an oxide dispersion strengthened heat-resistant alloy commercially available under the product name of MA956 can be used. As shown in the figure, the protection tube 1 is divided into a tail-side protection tube 1a and a tip-side protection tube 1.
b, the protective tubes 1a and 1b may be formed of an oxide dispersion-strengthened heat-resistant alloy, but at least the distal protection tube 1b may be formed of an oxide dispersion-strengthened heat-resistant alloy. good.

【0018】保護管1には、シース熱電対6が内装され
ており、該熱電対6の温接点部7を閉塞部4の内側に臨
ましめている。尚、図示省略しているが、シース熱電対
6は、短尺筒状の碍子を軸方向に列設して成る絶縁シー
スに挿入されており、公知のシース熱電対を構成する。
A sheath thermocouple 6 is housed in the protective tube 1, and the hot junction 7 of the thermocouple 6 faces the inside of the closed portion 4. Although not shown, the sheath thermocouple 6 is inserted into an insulating sheath formed by arranging short cylindrical insulators in the axial direction, and constitutes a known sheath thermocouple.

【0019】このような連続測温プローブは、図2に示
すように、焼却炉等の炉壁Wに貫通して設けられた測温
開口部に挿入され、フランジ3を炉壁の外側面に取付固
着することにより、保護管1の先端領域(図例では先端
側保護管1b)を炉内に延出せしめ、熱電対6の温接点
部7により感知される温度を連続的に測温する。
As shown in FIG. 2, such a continuous temperature measuring probe is inserted into a temperature measuring opening provided through a furnace wall W of an incinerator or the like, and a flange 3 is attached to an outer surface of the furnace wall. By attaching and fixing, the distal end region of the protective tube 1 (the distal-side protective tube 1b in the illustrated example) extends into the furnace, and the temperature sensed by the hot junction 7 of the thermocouple 6 is continuously measured. .

【0020】(閉塞部の構成)図2(A)に示すよう
に、閉塞部4は、保護管1の先端に空洞部Sを残して該
保護管1の内部空間を横断して遮断する耐熱性の仕切壁
8と、前記空洞部Sに充填された耐熱性のガス侵入防止
充填剤9とから構成されている。具体的には、保護管1
(図例では先端側保護管1b)を構成する管材の先端か
ら、管材の内部に円板状の仕切壁8を挿入すると共に嵌
着又は点溶接等により固定し、該管材の先端部を絞り加
工することにより中心部に開口孔10を残して内向きに
屈曲された絞り壁11を形成した後、前記空洞部Sを残
した位置において仕切板8を管材の内面に溶接12す
る。この溶接12のための作業は、開口孔10から空洞
部Sを介して容易に行うことができ、従って、仕切壁8
の空洞部に臨む周縁の部位が管材の内面に溶接される。
次いで、開口孔10から空洞部Sに耐熱性のガス侵入防
止充填剤9が充填される。ガス侵入防止充填剤9は、空
洞部Sに充填された後、固化した状態で高気密性を保持
する。尚、空洞部Sは絞り壁11により開口孔10を狭
窄状とするので、ガス侵入防止充填剤9が開口孔10か
ら脱落することはない。
(Structure of Closed Portion) As shown in FIG. 2 (A), the closed portion 4 has a heat-resistant portion that cuts off the inner space of the protective tube 1 while leaving a cavity S at the tip of the protective tube 1. And a heat-resistant gas intrusion preventing filler 9 filled in the cavity S. Specifically, protection tube 1
(In the illustrated example, the distal protective tube 1b in the drawing) inserts a disk-shaped partition wall 8 from the distal end of the tubular material into the tubular material and fixes it by fitting or spot welding to narrow the distal end of the tubular material. After forming the diaphragm wall 11 bent inward leaving the opening hole 10 at the center by processing, the partition plate 8 is welded 12 to the inner surface of the pipe at the position leaving the cavity S. The work for this welding 12 can be easily performed from the opening hole 10 through the cavity S, and therefore, the partition wall 8
Is welded to the inner surface of the pipe material.
Next, the cavity S is filled with the heat-resistant gas intrusion preventing filler 9 through the opening hole 10. After the gas intrusion prevention filler 9 has been filled in the hollow portion S, it keeps high airtightness in a solidified state. Since the opening S of the cavity S is narrowed by the diaphragm wall 11, the gas intrusion preventing filler 9 does not fall out of the opening 10.

【0021】仕切壁8は、保護管1と同様の酸化物分散
強化型の耐熱合金により円板状に形成されている。仕切
壁8の溶接12は、特願平10−235006号により
提案したようなCoを含有するFe−Cr系合金で且つ
低炭素の耐熱合金を溶接金属とする充填溶接技術に基づ
いても良いが、その他の公知の溶接技術に基づいても良
い。
The partition wall 8 is formed in a disk shape from the same oxide dispersion strengthened heat-resistant alloy as the protective tube 1. The welding 12 of the partition wall 8 may be based on a filling welding technique proposed by Japanese Patent Application No. 10-235006, which is a Fe-Cr alloy containing Co and uses a low-carbon heat-resistant alloy as a welding metal. And other known welding techniques.

【0022】ガス侵入防止充填剤9は、耐火セメント及
び耐火接着剤の一つ又は複数から選ぶことができる。例
えば、耐火セメントと耐火接着剤の一方により構成して
も良いが、空洞部Sの内部において、耐火セメントと耐
火接着剤による複合層を構成しても良い。
The gas intrusion preventing filler 9 can be selected from one or more of a refractory cement and a refractory adhesive. For example, it may be composed of one of the refractory cement and the refractory adhesive, but a composite layer of the refractory cement and the refractory adhesive may be formed inside the cavity S.

【0023】(熱伝導充填剤の構成)図2(A)に示す
好ましい実施形態において、仕切壁8の近傍に位置する
熱電対6の先端部は、保護管1(先端側保護管1b)に
充填された耐火物粉末から成る熱伝導充填剤13に埋入
保持されている。熱伝導充填剤13は、耐火物粉末であ
り且つ熱伝導性の良好なものであれば良く、アルミナ、
ジルコニア、シリカ及びマグネシアの一つ又は複数から
選ぶことができる。例えば、アルミナと、ジルコニア
と、シリカと、マグネシアの何れか一つにより構成して
も良いが、これらの選択された混合粉末により構成して
も良い。後述するように、熱伝導充填剤13は、測温時
における熱電対6のレスポンスを確保する目的であるか
ら、保護管1(先端側保護管1b)の全長にわたり充填
しても良いが、熱電対6の温接点部7から所定長さだけ
延びる限定された区域にのみ充填すれば足りる。
(Structure of Thermal Conductive Filler) In the preferred embodiment shown in FIG. 2A, the tip of the thermocouple 6 located near the partition wall 8 is attached to the protection tube 1 (tip protection tube 1b). It is embedded and held in a heat conductive filler 13 made of the filled refractory powder. The heat conductive filler 13 may be a refractory powder and a material having good heat conductivity.
It can be selected from one or more of zirconia, silica and magnesia. For example, it may be composed of any one of alumina, zirconia, silica, and magnesia, or may be composed of a selected mixed powder thereof. As will be described later, the heat conductive filler 13 is for the purpose of ensuring the response of the thermocouple 6 at the time of temperature measurement. Therefore, the heat conductive filler 13 may be filled over the entire length of the protection tube 1 (tip side protection tube 1b). It is sufficient to fill only a limited area extending from the pair of hot junctions 7 by a predetermined length.

【0024】(本発明の二つの実施形態)図2(A)に
示す第1実施形態に係る連続測温プローブは、前述の通
り熱伝導充填剤13を設けているが、これに対して、図
2(B)に示す第2実施形態に係る連続測温プローブは
これを設けていない。その他の構成は両者同様である。
そこで、この二つの実施形態に基づく連続測温プローブ
を使用して応答速度の対比実験を行ったところ、第2実
施形態が、応答時間(熱電対の起電力の平衡を得るまで
の時間)のために201秒を必要としたのに対して、第
1実施形態は、僅かに72秒であった。
(Two Embodiments of the Present Invention) The continuous temperature measuring probe according to the first embodiment shown in FIG. 2A is provided with the heat conductive filler 13 as described above. The continuous temperature measuring probe according to the second embodiment shown in FIG. 2B does not have this. Other configurations are the same.
Then, when a comparison experiment of the response speed was performed using the continuous temperature measurement probe based on these two embodiments, the second embodiment showed that the response time (the time until equilibrium of the electromotive force of the thermocouple) was obtained. In contrast, the first embodiment requires only 72 seconds, whereas the first embodiment requires only 72 seconds.

【0025】[0025]

【発明の効果】本発明によれば、連続測温プローブにお
ける耐熱性の保護管1を形成するために管材の先端を確
実に閉塞せしめるに際し、管材の先端に空洞部Sを残し
て該管材の内部空間を横断状に遮断する耐熱性の仕切壁
8を固着した構成であるから、該仕切壁8と管材(保護
管1)の溶接個所12が保護管1の外部に露出すること
なく、該保護管1の先端から内部に奥深い位置にあるの
で、炉内の過酷な雰囲気から好適に保護され、溶接剥離
を生じない。しかも、仕切壁8それ自体も保護管1の先
端よりも内側の奥深い位置に設けられ、更に、空洞部S
に充填剤9を充填しているので、仕切壁8が保護管1か
ら脱落することもない。そして、空洞部Sに充填された
充填剤が耐熱性且つ高気密性のガス侵入防止充填剤9を
構成しているので、仕切壁8と保護管1の間の溶接部分
12に隙間が形成されているような場合でも、炉内ガス
が熱電対6に向けて侵入することを確実に阻止すること
ができ、長時間の連続測温を可能にする。
According to the present invention, in order to form the heat-resistant protective tube 1 in the continuous temperature measuring probe, when the tip of the tube is securely closed, the hollow S is left at the tip of the tube. Since the heat-resistant partition wall 8 that blocks the internal space transversely is fixed, the welding portion 12 between the partition wall 8 and the pipe material (protective tube 1) is not exposed to the outside of the protective tube 1 without being welded. Since it is located deep inside the protective tube 1 from the tip, it is suitably protected from the severe atmosphere in the furnace and does not cause welding delamination. In addition, the partition wall 8 itself is also provided at a position deep inside the tip of the protection tube 1, and furthermore, the cavity S
Is filled with the filler 9, so that the partition wall 8 does not fall out of the protective tube 1. Since the filler filled in the cavity S constitutes the heat-resistant and highly airtight gas intrusion preventing filler 9, a gap is formed in the welded portion 12 between the partition wall 8 and the protective tube 1. Even in such a case, it is possible to reliably prevent the in-furnace gas from invading the thermocouple 6, thereby enabling long-term continuous temperature measurement.

【0026】更に、このような構成によれば、仕切壁8
の位置に対応して、保護管1に挿入された熱電対6の先
端の温接点部7が保護管1の先端よりも後退した位置に
臨ましめられるため、熱電対6の測温応答時間に難点を
生じる虞れがあるが、本発明によれば、熱電対6の先端
部を埋入せしめる耐火物粉末から成る熱伝導充填剤13
を保護管1に充填せしめた構成であるから、熱電対6の
測温応答時間を従来と同等以上の短時間に確保できると
いう効果がある。
Further, according to such a configuration, the partition wall 8
The hot junction 7 at the tip of the thermocouple 6 inserted into the protection tube 1 is positioned at a position retracted from the tip of the protection tube 1 corresponding to the position of the thermocouple 6, so that the temperature measurement response time of the thermocouple 6 However, according to the present invention, the heat conductive filler 13 made of a refractory powder for embedding the tip of the thermocouple 6 can be used.
Is filled in the protective tube 1, so that there is an effect that the temperature measurement response time of the thermocouple 6 can be secured in a short time equal to or longer than the conventional one.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の連続測温プローブを一部破断して示す
正面図である。
FIG. 1 is a partially cutaway front view of a continuous temperature measuring probe of the present invention.

【図2】本発明の実施形態を拡大して示しおり、(A)
は第1実施形態を示す断面図、(B)は第2実施形態を
示す断面図である。
FIG. 2 shows an embodiment of the present invention in an enlarged manner, and (A)
FIG. 2 is a cross-sectional view illustrating a first embodiment, and FIG. 2B is a cross-sectional view illustrating a second embodiment.

【符号の説明】[Explanation of symbols]

1 耐熱性の保護管 4 閉塞部 6 熱電対 7 温接点部 8 仕切壁 9 耐熱性のガス侵入防止充填剤 10 開口孔 11 絞り壁 12 溶接 13 耐火物粉末から成る熱伝導充填剤 S 空洞部 DESCRIPTION OF SYMBOLS 1 Heat-resistant protective tube 4 Closed part 6 Thermocouple 7 Hot junction part 8 Partition wall 9 Heat-resistant gas intrusion prevention filler 10 Opening hole 11 Restricted wall 12 Welding 13 Heat conductive filler made of refractory powder S Cavity

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 先端部に閉塞部を備えた耐熱性の保護管
に熱電対を挿入し、熱電対の温接点部を前記閉塞部の内
側に臨ましめて成る連続測温プローブにおいて、 前記閉塞部が、保護管の先端に空洞部を残して該保護管
の内部空間を横断して遮断する耐熱性の仕切壁と、前記
空洞部に充填された耐熱性のガス侵入防止充填剤とから
構成されて成ることを特徴とする連続測温プローブ。
1. A continuous temperature measuring probe comprising a thermocouple inserted into a heat-resistant protective tube having a closed portion at a distal end, and a hot junction portion of the thermocouple facing the inside of the closed portion. Is composed of a heat-resistant partition wall that leaves a hollow portion at the tip of the protective tube and cuts off across the internal space of the protective tube, and a heat-resistant gas intrusion preventing filler filled in the hollow portion. A continuous temperature measuring probe characterized by comprising:
【請求項2】 先端部に閉塞部を備えた耐熱性の保護管
に熱電対を挿入し、熱電対の温接点部を前記閉塞部の内
側に臨ましめて成る連続測温プローブにおいて、 前記閉塞部が、保護管の先端に空洞部を残して該保護管
の内部空間を横断して遮断する耐熱性の仕切壁と、前記
空洞部に充填された耐熱性のガス侵入防止充填剤とから
構成されて成り、 前記仕切壁の近傍に位置する熱電対の先端部を埋入せし
める耐火物粉末から成る熱伝導充填剤を保護管に充填し
て成ることを特徴とする連続測温プローブ。
2. A continuous temperature measuring probe in which a thermocouple is inserted into a heat-resistant protective tube having a closed portion at a distal end thereof, and a hot junction of the thermocouple faces the inside of the closed portion. Is composed of a heat-resistant partition wall that leaves a hollow portion at the tip of the protective tube and cuts off across the internal space of the protective tube, and a heat-resistant gas intrusion preventing filler filled in the hollow portion. A continuous temperature measuring probe characterized in that a protective tube is filled with a heat conductive filler made of refractory powder for embedding a tip portion of a thermocouple located near the partition wall.
【請求項3】 仕切壁の空洞部に臨む部位を保護管の内
面に溶接されて成ることを特徴とする請求項1又は2に
記載の連続測温プローブ。
3. The continuous temperature measuring probe according to claim 1, wherein a portion facing the hollow portion of the partition wall is welded to an inner surface of the protection tube.
【請求項4】 保護管及び仕切壁が、酸化物分散強化型
の耐熱合金から成ることを特徴とする請求項1、2又は
3に記載の連続測温プローブ。
4. The continuous temperature measuring probe according to claim 1, wherein the protective tube and the partition wall are made of an oxide dispersion strengthened heat-resistant alloy.
【請求項5】 ガス侵入防止充填剤が、耐火セメント及
び耐火接着剤の一つ又は複数から選ばれて成ることを特
徴とする請求項1、2、3又は4に記載の連続測温プロ
ーブ。
5. The continuous temperature measuring probe according to claim 1, wherein the gas intrusion preventing filler is selected from one or more of a refractory cement and a refractory adhesive.
【請求項6】 熱伝導充填剤が、アルミナ、ジルコニ
ア、シリカ及びマグネシアの一つ又は複数から選ばれて
成ることを特徴とする請求項2に記載の連続測温プロー
ブ。
6. The continuous temperature measuring probe according to claim 2, wherein the thermal conductive filler is selected from one or more of alumina, zirconia, silica, and magnesia.
JP2000206096A 2000-07-07 2000-07-07 Probe for continuous temperature measurement Pending JP2002022548A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000206096A JP2002022548A (en) 2000-07-07 2000-07-07 Probe for continuous temperature measurement

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000206096A JP2002022548A (en) 2000-07-07 2000-07-07 Probe for continuous temperature measurement

Publications (1)

Publication Number Publication Date
JP2002022548A true JP2002022548A (en) 2002-01-23

Family

ID=18703079

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000206096A Pending JP2002022548A (en) 2000-07-07 2000-07-07 Probe for continuous temperature measurement

Country Status (1)

Country Link
JP (1) JP2002022548A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007255956A (en) * 2006-03-22 2007-10-04 Nippon Steel Corp Air heating furnace brick temperature measuring device, and mounting method of temperature measuring device
JP2010175257A (en) * 2009-01-27 2010-08-12 Rkc Instrument Inc Temperature measuring sensor
KR101345705B1 (en) * 2012-02-23 2013-12-27 우진 일렉트로나이트(주) A speedy response thermocouple preventing decrease of insulation resistance at high temperature
KR101517377B1 (en) * 2013-10-28 2015-05-06 한국원자력연구원 High temperature measurement instrument in molten material with long-term durability
JP2021076378A (en) * 2019-11-05 2021-05-20 大同特殊鋼株式会社 Temperature measuring tool

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5837527U (en) * 1981-09-07 1983-03-11 山里産業株式会社 High temperature thermocouple
JPS6372530U (en) * 1986-10-30 1988-05-14
JPH034237U (en) * 1989-05-31 1991-01-17
JPH0523075U (en) * 1991-09-09 1993-03-26 川惣電機工業株式会社 Temperature measurement probe in the lower part of the blast furnace

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5837527U (en) * 1981-09-07 1983-03-11 山里産業株式会社 High temperature thermocouple
JPS6372530U (en) * 1986-10-30 1988-05-14
JPH034237U (en) * 1989-05-31 1991-01-17
JPH0523075U (en) * 1991-09-09 1993-03-26 川惣電機工業株式会社 Temperature measurement probe in the lower part of the blast furnace

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007255956A (en) * 2006-03-22 2007-10-04 Nippon Steel Corp Air heating furnace brick temperature measuring device, and mounting method of temperature measuring device
JP4676913B2 (en) * 2006-03-22 2011-04-27 新日本製鐵株式会社 Hot stove brick temperature measuring device and method for mounting the temperature measuring device
JP2010175257A (en) * 2009-01-27 2010-08-12 Rkc Instrument Inc Temperature measuring sensor
KR101345705B1 (en) * 2012-02-23 2013-12-27 우진 일렉트로나이트(주) A speedy response thermocouple preventing decrease of insulation resistance at high temperature
KR101517377B1 (en) * 2013-10-28 2015-05-06 한국원자력연구원 High temperature measurement instrument in molten material with long-term durability
JP2021076378A (en) * 2019-11-05 2021-05-20 大同特殊鋼株式会社 Temperature measuring tool
JP7342626B2 (en) 2019-11-05 2023-09-12 大同特殊鋼株式会社 Temperature measurement equipment

Similar Documents

Publication Publication Date Title
US6280083B2 (en) Thermocouple lance with layered sheath for measuring temperature in molten metal
US5520461A (en) Airtight thermocouple probe
JPH11183265A (en) Temperature measuring instrument with thermocouple
JP4437592B2 (en) Fast response thermocouple
JP2002022548A (en) Probe for continuous temperature measurement
JPH07260739A (en) Oxygem sensor probe for boiler
JPS61246636A (en) Protective tube for continuously measuring temperature of molten steel
US5232286A (en) Long lasting thermocouple for high temperature measurements of liquid metals, mattes and slags
JP3572312B2 (en) Ceramic sheath type thermocouple
US6462640B2 (en) Sensor with a temperature-dependent measuring element
JP3306426B2 (en) Thermocouple for measuring molten metal temperature
US6772921B2 (en) Refractory nozzle
JP3627317B2 (en) Thermocouple structure
JP3603557B2 (en) Ceramic thermocouple for measuring molten metal temperature
JP4484129B2 (en) thermocouple
JP4416146B2 (en) thermocouple
JP2538746Y2 (en) Thermocouple tip structure
JPS63300924A (en) Thermoelectric thermometer
JP3350190B2 (en) Thermocouple device
JPH11330566A (en) Structure of protective tube for thermocouple provided with breakdown detecting function
JP7342626B2 (en) Temperature measurement equipment
JPH0429385Y2 (en)
JP3398105B2 (en) thermocouple
JP3355166B2 (en) Thermocouple for measuring molten metal temperature
JP2000055741A (en) Apparatus for continuously measuring temp.

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070601

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100526

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100713

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110104