JP2004205059A - Method of manufacturing high erosion resistance heat exchanger - Google Patents

Method of manufacturing high erosion resistance heat exchanger Download PDF

Info

Publication number
JP2004205059A
JP2004205059A JP2002371087A JP2002371087A JP2004205059A JP 2004205059 A JP2004205059 A JP 2004205059A JP 2002371087 A JP2002371087 A JP 2002371087A JP 2002371087 A JP2002371087 A JP 2002371087A JP 2004205059 A JP2004205059 A JP 2004205059A
Authority
JP
Japan
Prior art keywords
heat exchanger
phosphorus
nickel alloy
containing nickel
stainless steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002371087A
Other languages
Japanese (ja)
Inventor
Kimiaki Nakano
公昭 中野
Yoichiro Yoshida
洋一郎 吉田
Hiromi Ota
博巳 太田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Radiator Co Ltd
Original Assignee
Toyo Radiator Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Radiator Co Ltd filed Critical Toyo Radiator Co Ltd
Priority to JP2002371087A priority Critical patent/JP2004205059A/en
Publication of JP2004205059A publication Critical patent/JP2004205059A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Chemically Coating (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of manufacturing a heat exchanger having high temperature oxidation resistance and erosion resistance by using a relatively inexpensive ferrite and austenitic stainless steel plates. <P>SOLUTION: The parts of the heat exchanger are formed by bending the ferrite or austenitic stainless steel plates. Next, the surfaces of the parts are coated with a phosphorus-containing nickel alloy film 3 by electroless deposition. Next, these parts are assembled and put in a vacuum furnace, and the phosphorus-containing nickel alloy is diffused from the surface to the inside of the parts to form a nickel-enriched layer 4 on the surfaces thereof. Also, the coated phosphorus-containing nickel alloy film 3 is fused, and the heat exchanger assembly is cooled to fixedly braze the parts to each other with the phosphorus-containing nickel alloy as a brazing material. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、耐高温酸化性および高耐蝕性の要求される熱交換器の製造方法に関する。
【0002】
【従来の技術】
燃料電池用熱交換器として用いる蒸発器・改質器・高温再生器・燃料過熱器や、MGT用熱交換器(レキュプレーター等)や、耐蝕性が要求される熱交換器には、オーステナイト系ステンレス鋼(一例として18Cr-8Ni系ステンレス鋼)の板を用い、各部品間にアモルファスニッケルろう材箔を介装し、各部品間をろう付け固定していた。
また、アモルファスニッケル系ろう材の代わりに、ニッケル系ろう粉末をバインド材を介してステンレス鋼板の表面に塗布し、それにより各部品間をろう付け固定することもあった。
【0003】
【発明が解決しようとする課題】
耐高温酸化性と耐蝕性とを具備する熱交換器は、より高級なオーステナイト系ステンレス鋼板を用いる必要があると共に、高価なアモルファスシートろう材を用いる必要があった。そのため製品のコストアップに繋がっていた。そこで本発明は、比較的安価なフェライト系やオーステナイト系のステンレス鋼板を用いて、より高級なオーステナイト系のステンレス鋼板と同等以上の耐高温酸化性および耐蝕性を有する(以下両者を含め高耐蝕性熱交換器という)熱交換器を低コストで作ることを課題とする。
【0004】
【課題を解決するための手段】
請求項1に記載の本発明は、リン含有ニッケル合金を、ステンレス鋼材よりなる熱交換器用の各部品の表面に無電解メッキにより被覆して、各部品表面にリン含有ニッケル合金皮膜(3) を形成するする工程と、
次いでそれらの各部品を組み合わせて熱交換器組立て体を形成する工程と、
次いで、熱交換器組立て体を高温の真空炉に入れて、そのリン含有ニッケル合金を各部品表面から内部に拡散させて部品表面にニッケル富裕化層(4) を形成すると共に、被覆されたリン含有ニッケル合金皮膜(3) を溶融させる工程と、
次いで、その熱交換器組立て体を冷却することにより、各部品の接触部間をその表面に残存する前記リン含有ニッケル合金をろう材としてろう付け固定する工程と、
を具備する高耐蝕性熱交換器の製造方法である。
【0005】
請求項2に記載の本発明は、請求項1において、
前記リン含有ニッケル合金は、リンを4〜15重量%含むものである高耐蝕性熱交換器の製造方法である。
【0006】
請求項3に記載の本発明は、請求項1または請求項2において、
ステンレス鋼板(5) を曲折してフィン(1) およびプレート(2a)の熱交換器用部品を成形し、次いでその表面に前記リン含有ニッケル合金皮膜(3) を形成する高耐蝕性熱交換器の製造方法である。
【0007】
【発明の実施の形態】
次に、図面に基づいて本発明の高耐蝕性熱交換器の製造方法の実施の形態につき説明する。
図1〜図3は本発明の高耐蝕性熱交換器の製造方法の各工程を順に示す説明図である。
この例の熱交換器は、一例として両端部に出入口を有する一対の皿状プレートを互いに逆向きに重ね合わせ内部にインナーフィンを配置したもの、或いは図2(A)に示すような、一対の溝形プレートを互いに溝底が対向するように重ね合わせ、内部にインナーフィンを配置したである。この例では、比較的安価なフェライト系およびオーステナイト系のステンレス鋼板により、先ず、図1(A)の如く、フィンを一例として波形或いはオフセットフィン形に曲折形成すると共に、外周を立ち上げたチューブ形成用のプレート2aを曲折形成する。
【0008】
次いで、その熱交換器用部品ごとにそれ単独で、そのステンレス鋼5の表面に無電解メッキによりリン含有ニッケル合金を被覆して、図1(B)の如く、その部品表面にリン含有ニッケル合金皮膜3を形成する。このときのリン含有ニッケル合金は、一例としてリンの含有が4〜15重量%程度のもので、残部がニッケルであるものを使用することができる。即ち、いわゆる中リンタイプのニッケル合金あるいは高リンタイプのニッケル合金である。
なお、フェライト系ステンレス鋼板としてはSUS430,SUS436J1L等を用いることができ、オーストナイト系ステンレス鋼板としてはSUS304,SUS316その他を使用することができる。夫々の融点は前者が1510℃〜1532℃程度であり、後者が1400℃〜1420℃程度である。
【0009】
また、無電解ニッケルメッキはニッケルイオンからジアリン酸ナトリウム等の還元剤によってニッケル金属が析出させるものであり、メッキ液の組成の一例として、メッキ液1リットル当たり硫酸ニッケル20g、ジアリン酸ナトリウム25g、乳酸25g、プロピオン3g、鉛系安定剤小量としたものを使用し、メッキ液の温度を90℃とすることができる。そして図1に示す如く、25〜40μmのリン含有ニッケル合金皮膜3を形成することができる。
【0010】
このような熱交換器用の各部品を図2(A)の如く組立て、その熱交換器組立て体(2) を高温の真空炉内に入れる。なお、図2(B)はその要部拡大図である。そしてそのリン含有ニッケル合金を各部品表面から内部に拡散させて、図3の如く、その表面にニッケル富裕化層4を形成させる。さらに炉内温度を上昇して、各部品表面に被覆されたリン含有ニッケル合金皮膜3を溶融させ、各部品の接触部間にリン含有ニッケル合金を保持させ、次いで熱交換器組立て体(2) を冷却することにより、各部品間にそのリン含有ニッケル合金のろうフィレット4aを形成して、ろう付け固定する。
このリン含有ニッケル合金の溶融温度は、880 ℃〜1100℃である。
【0011】
このようにして比較的安価なステンレス鋼板5を用い、その表面にニッケル富裕化層4を形成すると共に、各部品間をリン含有ニッケル合金でろう付けすることにより、耐高温酸化性と耐蝕性とを有する熱交換器を完成することができる。
【0012】
【発明の作用・効果】
本発明の高耐蝕性熱交換器の製造方法は、ステンレス鋼材よりなる熱交換器用の各部品の表面に無電解メッキによりリン含有ニッケル合金皮膜3を被覆し、次いで熱交換器組立て体を高温の真空炉にいれて、そのリン含有ニッケル合金を各部品表面から内部に拡散させてその表面にニッケル富裕化層4を形成させる。それと共に、被覆されたリン含有ニッケル合金皮膜3を真空炉内で溶融させる。次いで、その熱交換器組立て体を冷却することにより、各部品の接触部間をリン含有ニッケル合金をろう材としてろう付け固定するものである。
従って、無電解メッキにより被覆したリン含有ニッケル合金皮膜3によって、ニッケル富裕化層4の形成とろう付けとを行うことができ、製造が比較的容易で高品質の高耐蝕性熱交換器を安価に製造することができる。
即ち、従来ステンレス鋼板用ろう材として使用していた高価なアモルファスニッケルろうを不要とする。
【0013】
また、ニッケル系粉末ろうを使用するときのように塗りむらを生じることなく、均一なリン含有ニッケル合金皮膜3を各部品表面に被覆することができる。それにより高品質なものとなる。
しかも、真空炉においてその部品表面にリン含有ニッケル合金を拡散させてそこにニッケル富裕化層4を容易に形成することによって、元のステンレス鋼に存在しない高耐蝕・高温酸化性を有する熱交換器となる。
【0014】
上記構成において、リン含有ニッケル合金としてリンを4〜15重量%含むものを用いることができる。
この場合には、さらに高耐蝕・高温酸化性を有する熱交換器となる。
上記構成において、ステンレス鋼板を曲折して予めフィンおよびプレート等の熱交換器用部品を形成し、次いでその表面にリン含有ニッケル合金皮膜3を形成することができる。
このようにすることにより、各部品表面にリン含有ニッケル合金皮膜3を均一に被覆させ、それを溶融・固化することにより部品表面にニッケル富裕化層4を容易に形成すると共に、それをろう材として各部品間を一体的に固定することが容易となる。
【図面の簡単な説明】
【図1】本発明の高耐蝕性熱交換器の製造方法の第1工程を示す説明図。
【図2】同製造方法の第2工程を示す説明図。
【図3】同製造方法の第3工程を示す説明図。
【符号の説明】
1 フィン
2 熱交換器組立て体
2a プレート
3 リン含有ニッケル合金皮膜
4 ニッケル富裕化層
4a ろうフィレット
5 ステンレス鋼板
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for manufacturing a heat exchanger that requires high-temperature oxidation resistance and high corrosion resistance.
[0002]
[Prior art]
Austenitic stainless steel is used for evaporators, reformers, high-temperature regenerators, fuel superheaters used as heat exchangers for fuel cells, heat exchangers for MGTs (recuperators, etc.), and heat exchangers requiring corrosion resistance. A plate of steel (18Cr-8Ni stainless steel as an example) was used, and an amorphous nickel brazing foil was interposed between the components, and the components were brazed and fixed.
Further, instead of the amorphous nickel-based brazing material, nickel-based brazing powder may be applied to the surface of a stainless steel plate via a binding material, thereby brazing and fixing the components.
[0003]
[Problems to be solved by the invention]
For a heat exchanger having high-temperature oxidation resistance and corrosion resistance, it was necessary to use a higher-grade austenitic stainless steel plate and to use an expensive amorphous sheet brazing material. This has led to increased product costs. Therefore, the present invention uses a relatively inexpensive ferritic or austenitic stainless steel sheet and has high-temperature oxidation resistance and corrosion resistance equal to or higher than that of a higher-grade austenitic stainless steel sheet. It is an object to make a heat exchanger (called a heat exchanger) at low cost.
[0004]
[Means for Solving the Problems]
According to the first aspect of the present invention, the surface of each component for a heat exchanger made of stainless steel is coated by electroless plating with a phosphorus-containing nickel alloy, and the surface of each component is coated with a phosphorus-containing nickel alloy film (3). Forming, and
Then combining the components to form a heat exchanger assembly;
Next, the heat exchanger assembly is placed in a high-temperature vacuum furnace, and the phosphorous-containing nickel alloy is diffused from the surface of each part to the inside to form a nickel-enriched layer (4) on the part surface, and the coated phosphorous is added. Melting the containing nickel alloy film (3);
Then, by cooling the heat exchanger assembly, a step of brazing and fixing the phosphorus-containing nickel alloy remaining on the surface between the contact portions of the components as a brazing material,
This is a method for producing a high corrosion resistant heat exchanger comprising:
[0005]
The present invention described in claim 2 is based on claim 1,
The phosphorus-containing nickel alloy is a method for manufacturing a highly corrosion-resistant heat exchanger containing 4 to 15% by weight of phosphorus.
[0006]
According to a third aspect of the present invention, in the first or second aspect,
The stainless steel plate (5) is bent to form the heat exchanger parts of the fin (1) and the plate (2a), and then the phosphorus-containing nickel alloy film (3) is formed on the surface of the high corrosion resistant heat exchanger. It is a manufacturing method.
[0007]
BEST MODE FOR CARRYING OUT THE INVENTION
Next, an embodiment of a method for manufacturing a high corrosion resistant heat exchanger of the present invention will be described with reference to the drawings.
1 to 3 are explanatory diagrams sequentially showing each step of the method for manufacturing a high corrosion resistant heat exchanger of the present invention.
The heat exchanger of this example has, as an example, a pair of dish plates having inlets and outlets at both ends overlapped in the opposite direction, and inner fins are arranged inside, or a pair of inner fins as shown in FIG. The grooved plates were overlapped so that the groove bottoms faced each other, and inner fins were arranged inside. In this example, first, as shown in FIG. 1A, a fin is used as an example to form a corrugated or offset fin, and a tube is formed by raising the outer periphery, using relatively inexpensive ferritic and austenitic stainless steel plates. Plate 2a is bent.
[0008]
Next, the surface of the stainless steel 5 is coated with a phosphorus-containing nickel alloy by electroless plating alone for each heat exchanger component, and the surface of the component is coated with a phosphorus-containing nickel alloy film as shown in FIG. Form 3 As the phosphorus-containing nickel alloy at this time, for example, a phosphorus-containing nickel alloy having a phosphorus content of about 4 to 15% by weight and a balance of nickel can be used. That is, it is a so-called medium phosphorus type nickel alloy or high phosphorus type nickel alloy.
Note that SUS430, SUS436J1L, or the like can be used as the ferritic stainless steel sheet, and SUS304, SUS316, or the like can be used as the austenitic stainless steel sheet. The melting points of the former are about 1510 ° C. to 1532 ° C., and those of the latter are about 1400 ° C. to 1420 ° C.
[0009]
In the electroless nickel plating, nickel metal is precipitated from nickel ions by a reducing agent such as sodium diphosphate. As one example of the composition of the plating solution, 20 g of nickel sulfate, 25 g of sodium diphosphate, 25 g of lactic acid, The temperature of the plating solution can be set to 90 ° C. by using 25 g, 3 g of propion, and a small amount of a lead-based stabilizer. Then, as shown in FIG. 1, a phosphorus-containing nickel alloy film 3 of 25 to 40 μm can be formed.
[0010]
The components for such a heat exchanger are assembled as shown in FIG. 2A, and the heat exchanger assembly (2) is placed in a high-temperature vacuum furnace. FIG. 2B is an enlarged view of the main part. Then, the phosphorus-containing nickel alloy is diffused from the surface of each component to the inside to form a nickel-enriched layer 4 on the surface as shown in FIG. The temperature in the furnace is further increased to melt the phosphorus-containing nickel alloy coating 3 coated on the surface of each component, to hold the phosphorus-containing nickel alloy between the contact portions of each component, and then to assemble the heat exchanger (2) Is cooled to form a braze fillet 4a of the phosphorus-containing nickel alloy between the components, and brazed and fixed.
The melting temperature of this phosphorus-containing nickel alloy is 880 ° C. to 1100 ° C.
[0011]
In this way, by using the relatively inexpensive stainless steel plate 5 and forming the nickel-enriched layer 4 on the surface thereof and brazing the components with a phosphorus-containing nickel alloy, high-temperature oxidation resistance and corrosion resistance are obtained. Can be completed.
[0012]
[Action and Effect of the Invention]
The method for manufacturing a high corrosion resistant heat exchanger of the present invention comprises coating the surface of each heat exchanger component made of stainless steel with a phosphorus-containing nickel alloy film 3 by electroless plating, and then heating the heat exchanger assembly to a high temperature. In a vacuum furnace, the nickel alloy containing phosphorus is diffused from the surface of each component to the inside to form a nickel-enriched layer 4 on the surface. At the same time, the coated phosphorus-containing nickel alloy film 3 is melted in a vacuum furnace. Then, the heat exchanger assembly is cooled to braze and fix a nickel alloy containing phosphorus as a brazing material between the contact portions of the components.
Therefore, the nickel-enriched layer 4 can be formed and brazed by the phosphorus-containing nickel alloy film 3 coated by the electroless plating, so that it is relatively easy to manufacture and a high-quality, high-corrosion-resistant heat exchanger is inexpensive. Can be manufactured.
That is, expensive amorphous nickel brazing, which has been conventionally used as a brazing material for stainless steel plates, is not required.
[0013]
In addition, a uniform phosphorus-containing nickel alloy film 3 can be coated on the surface of each component without causing uneven coating unlike the case of using a nickel-based solder powder. This results in high quality.
Moreover, by diffusing the phosphorus-containing nickel alloy on the surface of the component in the vacuum furnace and easily forming the nickel-enriched layer 4 thereon, a heat exchanger having high corrosion resistance and high-temperature oxidizing property not existing in the original stainless steel. It becomes.
[0014]
In the above configuration, a nickel alloy containing 4 to 15% by weight of phosphorus can be used as the phosphorus-containing nickel alloy.
In this case, a heat exchanger having higher corrosion resistance and higher temperature oxidation properties is obtained.
In the above configuration, a stainless steel plate is bent to form a heat exchanger component such as a fin and a plate in advance, and then a phosphorus-containing nickel alloy film 3 can be formed on the surface thereof.
In this manner, the surface of each component is uniformly coated with the phosphorous-containing nickel alloy film 3, and the nickel-enriched layer 4 is easily formed on the surface of the component by melting and solidifying it. As a result, it is easy to integrally fix the components.
[Brief description of the drawings]
FIG. 1 is an explanatory view showing a first step of a method for manufacturing a high corrosion resistant heat exchanger of the present invention.
FIG. 2 is an explanatory view showing a second step of the manufacturing method.
FIG. 3 is an explanatory view showing a third step of the manufacturing method.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Fin 2 Heat exchanger assembly 2a Plate 3 Phosphorus-containing nickel alloy film 4 Nickel enrichment layer 4a Braze fillet 5 Stainless steel plate

Claims (3)

リン含有ニッケル合金を、ステンレス鋼材よりなる熱交換器用の各部品の表面に無電解メッキにより被覆して、各部品表面にリン含有ニッケル合金皮膜(3) を形成するする工程と、
次いでそれらの各部品を組み合わせて熱交換器組立て体を形成する工程と、
次いで、熱交換器組立て体を高温の真空炉に入れて、そのリン含有ニッケル合金を各部品表面から内部に拡散させて部品表面にニッケル富裕化層(4) を形成すると共に、被覆されたリン含有ニッケル合金皮膜(3) を溶融させる工程と、
次いで、その熱交換器組立て体を冷却することにより、各部品の接触部間をその表面に残存する前記リン含有ニッケル合金をろう材としてろう付け固定する工程と、
を具備する高耐蝕性熱交換器の製造方法。
A step of coating the surface of each component for a heat exchanger made of stainless steel by electroless plating with a phosphorus-containing nickel alloy, and forming a phosphorus-containing nickel alloy film (3) on the surface of each component;
Then combining the components to form a heat exchanger assembly;
Next, the heat exchanger assembly is placed in a high-temperature vacuum furnace, and the phosphorous-containing nickel alloy is diffused from the surface of each part to the inside to form a nickel-enriched layer (4) on the part surface, and the coated phosphorous is added. Melting the containing nickel alloy film (3);
Then, by cooling the heat exchanger assembly, a step of brazing and fixing the phosphorus-containing nickel alloy remaining on the surface between the contact portions of the components as a brazing material,
A method for producing a high corrosion resistant heat exchanger comprising:
請求項1において、
前記リン含有ニッケル合金は、リンを4〜15重量%含むものである高耐蝕性熱交換器の製造方法。
In claim 1,
The method for manufacturing a high corrosion resistant heat exchanger, wherein the phosphorus-containing nickel alloy contains 4 to 15% by weight of phosphorus.
請求項1または請求項2において、
ステンレス鋼板(5) を曲折してフィン(1) およびプレート(2a)の熱交換器用部品を成形し、次いでその表面に前記リン含有ニッケル合金皮膜(3) を形成する高耐蝕性熱交換器の製造方法。
In claim 1 or claim 2,
The stainless steel plate (5) is bent to form the heat exchanger parts of the fin (1) and the plate (2a), and then the phosphorus-containing nickel alloy film (3) is formed on the surface of the high corrosion resistant heat exchanger. Production method.
JP2002371087A 2002-12-20 2002-12-20 Method of manufacturing high erosion resistance heat exchanger Pending JP2004205059A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002371087A JP2004205059A (en) 2002-12-20 2002-12-20 Method of manufacturing high erosion resistance heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002371087A JP2004205059A (en) 2002-12-20 2002-12-20 Method of manufacturing high erosion resistance heat exchanger

Publications (1)

Publication Number Publication Date
JP2004205059A true JP2004205059A (en) 2004-07-22

Family

ID=32810066

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002371087A Pending JP2004205059A (en) 2002-12-20 2002-12-20 Method of manufacturing high erosion resistance heat exchanger

Country Status (1)

Country Link
JP (1) JP2004205059A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007187654A (en) * 2005-12-15 2007-07-26 Yamari Sangyo Kk Sheathed thermocouple and its manufacturing method
EP1906131A2 (en) 2006-09-29 2008-04-02 International Truck Intellectual Property Company, LLC. Corrosion resistant, alloy-coated charge air cooler
EP1944563A1 (en) * 2007-01-12 2008-07-16 Innospin AG Heat exchanger tube and method for the production thereof
WO2008132944A1 (en) * 2007-04-25 2008-11-06 Ihi Corporation Heat exchanger, method of producing heat exchanger, and egr system
EP1906127A3 (en) * 2006-09-29 2009-05-06 International Truck Intellectual Property Company, LLC. Corrosion resistant bi-metal charge air cooler
WO2009128886A1 (en) * 2008-04-14 2009-10-22 Hemlock Semiconductor Corporation Manufacturing apparatus for depositing a material and an electrode for use therein
JP2010002067A (en) * 2008-06-18 2010-01-07 Denso Corp Exhaust heat recovery device
WO2010041577A1 (en) * 2008-10-07 2010-04-15 三菱重工業株式会社 Welded header/nozzle structure
WO2010092944A1 (en) * 2009-02-10 2010-08-19 セイコーインスツル株式会社 Electrochemical cell, portable electronic device and method for manufacturing electrochemical cell
WO2011148242A2 (en) 2010-05-24 2011-12-01 Toyota Jidosha Kabushiki Kaisha Method of plating stainless steel and plated material
US8784565B2 (en) 2008-04-14 2014-07-22 Hemlock Semiconductor Corporation Manufacturing apparatus for depositing a material and an electrode for use therein
US8951352B2 (en) 2008-04-14 2015-02-10 Hemlock Semiconductor Corporation Manufacturing apparatus for depositing a material and an electrode for use therein
US20160370134A1 (en) * 2015-06-22 2016-12-22 Doosan Heavy Industries & Construction Co., Ltd. Heat exchanger plate for transition liquid phase bonding
KR20170130528A (en) 2015-03-26 2017-11-28 닛폰 스틸 앤드 스미킨 스테인레스 스틸 코포레이션 Stainless steel with excellent brazing property

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007187654A (en) * 2005-12-15 2007-07-26 Yamari Sangyo Kk Sheathed thermocouple and its manufacturing method
EP1906131A2 (en) 2006-09-29 2008-04-02 International Truck Intellectual Property Company, LLC. Corrosion resistant, alloy-coated charge air cooler
EP1906127A3 (en) * 2006-09-29 2009-05-06 International Truck Intellectual Property Company, LLC. Corrosion resistant bi-metal charge air cooler
EP1906131A3 (en) * 2006-09-29 2009-05-06 International Truck Intellectual Property Company, LLC. Corrosion resistant, alloy-coated charge air cooler
EP1944563A1 (en) * 2007-01-12 2008-07-16 Innospin AG Heat exchanger tube and method for the production thereof
WO2008083971A2 (en) * 2007-01-12 2008-07-17 Innospin Ag Heat exchanger tubes, and method for producing heat exchanger tubes
WO2008083971A3 (en) * 2007-01-12 2008-09-18 Innospin Ag Heat exchanger tubes, and method for producing heat exchanger tubes
WO2008132944A1 (en) * 2007-04-25 2008-11-06 Ihi Corporation Heat exchanger, method of producing heat exchanger, and egr system
US8784565B2 (en) 2008-04-14 2014-07-22 Hemlock Semiconductor Corporation Manufacturing apparatus for depositing a material and an electrode for use therein
WO2009128886A1 (en) * 2008-04-14 2009-10-22 Hemlock Semiconductor Corporation Manufacturing apparatus for depositing a material and an electrode for use therein
US8951352B2 (en) 2008-04-14 2015-02-10 Hemlock Semiconductor Corporation Manufacturing apparatus for depositing a material and an electrode for use therein
JP2010002067A (en) * 2008-06-18 2010-01-07 Denso Corp Exhaust heat recovery device
WO2010041577A1 (en) * 2008-10-07 2010-04-15 三菱重工業株式会社 Welded header/nozzle structure
JP2010091174A (en) * 2008-10-07 2010-04-22 Mitsubishi Heavy Ind Ltd Welded structure of header and nozzle stub
KR101233555B1 (en) * 2008-10-07 2013-02-14 미츠비시 쥬고교 가부시키가이샤 Welded header/nozzle structure
WO2010092944A1 (en) * 2009-02-10 2010-08-19 セイコーインスツル株式会社 Electrochemical cell, portable electronic device and method for manufacturing electrochemical cell
WO2011148242A2 (en) 2010-05-24 2011-12-01 Toyota Jidosha Kabushiki Kaisha Method of plating stainless steel and plated material
US9347145B2 (en) 2010-05-24 2016-05-24 Toyota Jidosha Kabushiki Kaisha Method of plating stainless steel and plated material
KR20170130528A (en) 2015-03-26 2017-11-28 닛폰 스틸 앤드 스미킨 스테인레스 스틸 코포레이션 Stainless steel with excellent brazing property
US10669606B2 (en) 2015-03-26 2020-06-02 Nippon Steel & Sumikin Stainless Steel Corporation Stainless steel having excellent brazeability
US20160370134A1 (en) * 2015-06-22 2016-12-22 Doosan Heavy Industries & Construction Co., Ltd. Heat exchanger plate for transition liquid phase bonding
JP2017009273A (en) * 2015-06-22 2017-01-12 ドゥサン ヘヴィー インダストリーズ アンド コンストラクション カンパニー リミテッド Heat exchanger plate for transition liquid phase bonding

Similar Documents

Publication Publication Date Title
JP2004205059A (en) Method of manufacturing high erosion resistance heat exchanger
JP2002028775A (en) Method for manufacturing corrosion resistant heat exchanger
JP3893110B2 (en) Plate heat exchanger and manufacturing method thereof
JP5084260B2 (en) Brazing material, brazing composite material and brazing structure brazed and bonded using the same
CN103492119A (en) Nickel-based brazing foil, method for producing a brazing foil, object having a braze joint, and method for brazing
JP2017120174A (en) Tube for heat exchanger assembly configuration
KR910006685A (en) Heat exchanger tube and fin assembly of power plant and manufacturing method
JP2008275183A (en) Heat exchanger, manufacturing method of heat exchanger and egr system
US8152047B2 (en) Method of producing a corrosion resistant aluminum heat exchanger
JP2011117720A (en) Plate heat exchanger
JP2013204070A (en) Extruded heat-conducting tube for heat-exchanger and manufacturing method therefor
JP2015090266A (en) Heat exchanger and method of producing the same
JP2005118826A (en) Brazing method
JPH0233977Y2 (en)
JP2001001133A (en) Brazing jointing method
JP6003778B2 (en) Manufacturing method of heat exchanger
JP2007296546A (en) Soldering method
JP2007023311A (en) Clad material and manufacturing method therefor
JP2002336959A (en) Joining method for dissimilar metal joined article
JP2539229B2 (en) Heat exchanger manufacturing method
CN101423938B (en) Metallic material for brazing, brazing method, and heat exchanger
JP2003225760A (en) Aluminum heat exchanger manufacturing method
JPH1123181A (en) Heat exchanger
JP2007113030A (en) High strength aluminum alloy with excellent brazability, high strength aluminum alloy sheet and heat exchanger
JPS62230474A (en) Heat exchanger