JP4850526B2 - Method for producing metal glass alloy and method for producing metal glass alloy product - Google Patents

Method for producing metal glass alloy and method for producing metal glass alloy product Download PDF

Info

Publication number
JP4850526B2
JP4850526B2 JP2006024751A JP2006024751A JP4850526B2 JP 4850526 B2 JP4850526 B2 JP 4850526B2 JP 2006024751 A JP2006024751 A JP 2006024751A JP 2006024751 A JP2006024751 A JP 2006024751A JP 4850526 B2 JP4850526 B2 JP 4850526B2
Authority
JP
Japan
Prior art keywords
ppm
less
glass alloy
exceeding
metallic glass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006024751A
Other languages
Japanese (ja)
Other versions
JP2007204812A (en
Inventor
新敏 王
明久 井上
久道 木村
芳信 八島
英一 真壁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tohoku University NUC
Original Assignee
Tohoku University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku University NUC filed Critical Tohoku University NUC
Priority to JP2006024751A priority Critical patent/JP4850526B2/en
Publication of JP2007204812A publication Critical patent/JP2007204812A/en
Application granted granted Critical
Publication of JP4850526B2 publication Critical patent/JP4850526B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Glass Compositions (AREA)

Description

非晶質相の比率が高い非鉄系金属ガラス合金の製造方法および金属ガラス合金製品の製造方法に関する。   The present invention relates to a method for producing a non-ferrous metallic glass alloy having a high amorphous phase ratio and a method for producing a metallic glass alloy product.

金属ガラス合金とは、ガラスのように元素の配列に規則性がない非晶質金属のことをいう。金属ガラス合金は、高い反発係数、高い強度、優れた鋳造性、および優れた耐腐食性といった特徴を有することにより、ゴルフクラブ、携帯電話のフレーム、腕時計のケーシング、圧力センサ、バネ材、および歯車などにその適用範囲が広がっている。   A metal glass alloy refers to an amorphous metal having no regularity in the arrangement of elements such as glass. Metallic glass alloys have characteristics such as high coefficient of restitution, high strength, excellent castability, and excellent corrosion resistance, so that golf clubs, mobile phone frames, watch casings, pressure sensors, spring materials, and gears The range of application is expanding.

ところで、Zr−Cu−Al−Niの四元金属ガラス合金を製造するため、従来から、当該四元金属原子を所定の配合率とすることが知られている(例えば、特許文献1)。しかし、特許文献1に記載された金属原子の成分割合で、真空溶解鋳造方法を用いて金属ガラス合金を製造しても、金属ガラス相に結晶が生じることが多く、金属ガラス合金の非晶質比率を高めることが困難であった。
特公平7−122120号公報
By the way, in order to manufacture the quaternary metal glass alloy of Zr-Cu-Al-Ni, it is conventionally known that the quaternary metal atoms have a predetermined mixing ratio (for example, Patent Document 1). However, even when a metal glass alloy is produced using the vacuum melting casting method at the component ratio of the metal atoms described in Patent Document 1, crystals are often generated in the metal glass phase, and the metal glass alloy is amorphous. It was difficult to increase the ratio.
Japanese Patent Publication No. 7-122120

本発明は、かかる問題点に鑑みてなされたものであり、その主たる目的は、非晶質相の比率が高い金属ガラス合金の製造方法を提供することにある。   This invention is made | formed in view of this problem, The main objective is to provide the manufacturing method of a metallic glass alloy with a high ratio of an amorphous phase.

請求項1に記載した発明は、「質量割合で、66%以上68%以下のジルコニウム(Zr)、24.5%以上26.5%以下の銅(Cu)、2.6%以上4.6%以下のアルミニウム(Al)、および2.9%以上4.9%以下のニッケル(Ni)主要成分金属及び不可避的不純物からなる原料を用いる金属ガラス合金の製造方法であって、不可避的不純物は、10ppmを超え2,000ppm未満の酸素(O)、1ppmを超え150ppm未満の水素(H)、10ppmを超え500ppm未満の窒素(N)、10ppmを超え500ppm未満の炭素(C)、および1ppmを超え500ppm未満の鉄(Fe)のいずれか1種以上であることを特徴とする金属ガラス合金の製造方法。」である。
The invention according to claim 1 is described as follows: "Zirconium (Zr) of 66% to 68%, 24.5% to 26.5% copper (Cu), 2.6% to 4.6% by mass ratio". % or less of aluminum (Al), and a method for producing a metallic glass alloy using a material made of main components metallic and inevitable impurities 2.9% to 4.9% of nickel (Ni), inevitable impurities Is greater than 10 ppm less than 2,000 ppm oxygen (O), greater than 1 ppm less than 150 ppm hydrogen (H), greater than 10 ppm less than 500 ppm nitrogen (N), greater than 10 ppm less than 500 ppm carbon (C), and 1 ppm method for producing a metallic glass alloy, characterized in that at least one type of exceeding of less than 500ppm iron (Fe). "a.

請求項2に記載した発明は、「質量割合で、66%以上68%以下のジルコニウム(Zr)、24.5%以上26.5%以下の銅(Cu)、2.6%以上4.6%以下のアルミニウム(Al)、および2.9%以上4.9%以下のニッケル(Ni)主要成分金属及び不可避的不純物からなる原料を用いる金属ガラス合金の製造方法であって、不可避的不純物は、10ppmを超え1,000ppm以下の酸素(O)、1ppmを超え100ppm以下の水素(H)、10ppmを超え400ppm以下の窒素(N)、10ppmを超え400ppm以下の炭素(C)、および1ppmを超え400ppm以下の鉄(Fe)のいずれか1種以上であることを特徴とする金属ガラス合金の製造方法。」である。
The invention described in claim 2 is “by mass ratio, zirconium (Zr) of 66% to 68%, copper (Cu) of 24.5% to 26.5%, 2.6% to 4.6%. % or less of aluminum (Al), and a method for producing a metallic glass alloy using a material made of main components metallic and inevitable impurities 2.9% to 4.9% of nickel (Ni), inevitable impurities Is greater than 10 ppm and less than 1,000 ppm oxygen (O), greater than 1 ppm and less than 100 ppm hydrogen (H), greater than 10 ppm and less than 400 ppm nitrogen (N), greater than 10 ppm and less than 400 ppm carbon (C), and 1 ppm The manufacturing method of the metallic glass alloy characterized by being one or more of iron (Fe) exceeding 400 ppm and below. "

請求項3に記載した発明は、「原料を溶解することによって溶湯とし、溶湯を層流状態で鋳型に注入して鋳造すること」を特徴とする請求項1および2のいずれかに記載の金属ガラス合金の製造方法である。   The invention described in claim 3 is characterized in that “the molten metal is made by melting the raw material, and the molten metal is cast in a mold in a laminar flow state”. It is a manufacturing method of a glass alloy.

金属ガラスの製造方法としては、水焼入れ法、アーク溶解法、金型鋳造法、高圧射出成型法、吸引鋳造法、型締め鋳造法、および回転ディスク製線法などがあり、これらの方法を用いることによって、大型形状の金属ガラス合金(バルク金属ガラス)を製造できることが知られているが、これらの製造方法では、金属ガラス合金の非晶質相の比率を高めることが困難であった。   As methods for producing metal glass, there are a water quenching method, an arc melting method, a mold casting method, a high pressure injection molding method, a suction casting method, a mold clamping casting method, a rotating disk wire manufacturing method, and the like, and these methods are used. Although it is known that a large-sized metallic glass alloy (bulk metallic glass) can be produced by this, it is difficult to increase the ratio of the amorphous phase of the metallic glass alloy by these production methods.

これは、従来の製造方法において、金属ガラス合金の原料中に不可避不純物として含まれている酸素、水素、窒素、および炭素(以下、これら元素を「結晶化促進原子」と記載する。)と、これら結晶化促進原子と親和力の高い金属元素とが結合することによって生成された酸化物、水素化物、窒化物、および炭化物が、クラスター(結晶化するときに結晶の基となる、複数個の原子の集まり)化して結晶化の核となることで、金属ガラス中の結晶比率が高まることが原因である。   This is because oxygen, hydrogen, nitrogen, and carbon (hereinafter, these elements are referred to as “crystallization promoting atoms”) contained as inevitable impurities in the raw material of the metal glass alloy in the conventional manufacturing method, Oxides, hydrides, nitrides, and carbides formed by the combination of these crystallization promoting atoms and metal elements with high affinity are clustered (a plurality of atoms that form the basis of crystals when crystallizing). This is because the crystal ratio in the metallic glass is increased by forming a nucleus of crystallization.

そこで、発明者らは、請求項1および2に記載された金属ガラス合金の製造方法において「溶湯を層流状態で鋳型に注入して鋳造する」方法を用いることを特徴とする本発明に至った。   Accordingly, the inventors have reached the present invention characterized by using the method of “injecting and casting a molten metal into a mold in a laminar flow state” in the method for producing a metallic glass alloy according to claims 1 and 2. It was.

本発明によれば、金属ガラス合金が層流状態で鋳型に注入されることにより、金属ガラス合金に含有される結晶化促進原子と、これら結晶化促進原子と親和力の高い金属元素とが結合する確率が低くなり、金属ガラス中の酸化物、水素化物、窒化物、および炭化物がクラスター化して結晶化の核となる確率が著しく低減する。   According to the present invention, when a metallic glass alloy is injected into a mold in a laminar flow state, crystallization promoting atoms contained in the metallic glass alloy are bonded to metallic elements having high affinity with these crystallization promoting atoms. The probability is lowered, and the probability that the oxides, hydrides, nitrides, and carbides in the metal glass are clustered and become nuclei of crystallization is significantly reduced.

また、本発明に係る製造方法により得られた金属ガラス合金に過冷却液体温度域における高温塑性加工を施しても、金属ガラス合金中の酸化物、水素化物、窒化物、および炭化物がクラスター化する可能性が低い。   In addition, even when the metal glass alloy obtained by the production method according to the present invention is subjected to high temperature plastic working in the supercooled liquid temperature range, oxides, hydrides, nitrides, and carbides in the metal glass alloy are clustered. Less likely.

請求項4に記載した発明は、「請求項1および2のいずれかに記載の原料を溶解して溶湯とし、溶湯を層流状態で鋳型に注入して鋳造するのと同時に高温塑性加工し、または、溶湯を層流状態で鋳型に注入して鋳造した後に高温塑性加工する」金属ガラス合金製品の製造方法である。
The invention described in claim 4, "the claims 1 and 2 in either the melt by dissolving the raw material according to, high temperature plastic working simultaneously with the casting by injecting into a mold a molten metal in a laminar flow state Or, a molten glass is poured into a mold in a laminar flow state, casted, and then subjected to high-temperature plastic working. ”This is a method for producing a metal glass alloy product.

本発明によれば、非晶質相の比率が高い非鉄系金属ガラス合金を製造することができる。また、請求項3に記載した製造方法によれば、より非晶質相の比率が高い非鉄系金属ガラス合金を製造することができる。さらに、請求項4に記載した金属ガラス合金製品の製造方法によれば、高温塑性加工を施した後においても金属ガラス合金中の酸化物、水素化物、窒化物、および炭化物がクラスター化する可能性が低いことから、非晶質相の比率が高い金属ガラス合金製品を提供することができる。   According to the present invention, a non-ferrous metallic glass alloy having a high amorphous phase ratio can be produced. Moreover, according to the manufacturing method described in claim 3, a non-ferrous metallic glass alloy having a higher ratio of amorphous phase can be manufactured. Further, according to the method for producing a metal glass alloy product according to claim 4, oxides, hydrides, nitrides, and carbides in the metal glass alloy may be clustered even after high temperature plastic working. Therefore, it is possible to provide a metal glass alloy product having a high amorphous phase ratio.

本発明に係る金属ガラス合金の製造方法では、質量割合で、66%以上68%以下のジルコニウム(Zr)、24.5%以上26.5%以下の銅(Cu)、2.6%以上4.6%以下のアルミニウム(Al)、および2.9%以上4.9%以下のニッケル(Ni)を主要成分金属とし、10ppmを超え2,000ppm未満の酸素(O)、1ppmを超え150ppm未満の水素(H)、10ppmを超え500ppm未満の窒素(N)、10ppmを超え500ppm未満の炭素(C)、および1ppmを超え500ppm未満の鉄(Fe)のいずれか1種以上を不可避不純物として含有する原料が用いられる。このように不可避不純物として含まれる結晶化促進原子、および鉄の含有率を規定した理由について、以下に説明する。   In the method for producing a metallic glass alloy according to the present invention, zirconium (Zr) of 66% to 68%, copper (Cu) of 24.5% to 26.5%, 2.6% to 4% by mass. .6% or less of aluminum (Al) and 2.9% or more and 4.9% or less of nickel (Ni) as a main component metal, oxygen exceeding 10 ppm and less than 2,000 ppm (O), exceeding 1 ppm and less than 150 ppm Of hydrogen (H), more than 10 ppm and less than 500 ppm nitrogen (N), more than 10 ppm and less than 500 ppm carbon (C), and more than 1 ppm and less than 500 ppm iron (Fe) Raw materials are used. The reason why the crystallization promoting atoms contained as inevitable impurities and the content ratio of iron are specified will be described below.

結晶化促進原子について;結晶化促進原子の含有率についてそれぞれ下限を定めた理由は、商用的に入手可能な原料(実験室などでごく少量使用するために特別に精製された、結晶化促進原子の含有率が極端に小さい原料ではないもの。)に含まれる結晶化促進原子の含有率をこれ以下に抑えることは、実質的に困難だからである。一方、結晶化促進原子の含有率の上限を定めた理由は、この上限を超えた場合、結晶化が著しく進むことにより非晶質相が維持されないことが、後述する実験によって明らかになったからである。   Regarding crystallization promoting atoms; the reason for setting the lower limit for the content of crystallization promoting atoms is that the commercially available raw materials (crystallization promoting atoms specially purified for use in very small quantities in laboratories, etc.) This is because it is practically difficult to keep the content of the crystallization promoting atoms contained in the raw material in which the content of is not extremely low. On the other hand, the reason for setting the upper limit of the content of crystallization promoting atoms is that, when this upper limit is exceeded, it has become clear from experiments to be described later that the amorphous phase is not maintained due to remarkable progress of crystallization. is there.

鉄(Fe)について;鉄の含有率の下限を1ppmに定めた理由は、商用的に入手可能な原料に含まれる鉄の含有率をこれ以下に抑えることが実質的に困難だからであり、結晶化促進原子の含有率の下限を設定した理由と同じである。一方、鉄の含有率の上限を500ppmと定めた理由は、まだ科学的に機構解明の途上であるが、この含有量を超えた場合、結晶化が著しく進むことにより非晶質相が維持されないことが、後述する実験によって明らかになったからである。   Regarding iron (Fe); the reason why the lower limit of the iron content is set to 1 ppm is that it is substantially difficult to keep the iron content contained in commercially available raw materials below this level. This is the same as the reason why the lower limit of the content rate of the chemical promotion atom is set. On the other hand, the reason why the upper limit of the iron content is set to 500 ppm is still in the process of elucidating the mechanism scientifically, but when this content is exceeded, the amorphous phase is not maintained due to remarkable crystallization. This is because it has been clarified by experiments described later.

次に、溶湯を層流状態で鋳型に注入して鋳造する方法について、具体的に説明する。   Next, a method for casting by injecting molten metal into a mold in a laminar flow state will be specifically described.

金属ガラス合金Xの溶湯を層流状態で鋳造することのできる鋳造装置10は、図1に示すように、溶湯が注入されるキャビティ12を内部に有する金型14と、キャビティ12の中央下部から鉛直下向きに延びる円筒状のスリーブ16と、スリーブ16の内部で摺動するプランジャーチップ18と、一端がプランジャーチップ18の下面に取り付けられている射出用ロッド20と、油圧により射出用ロッド20を鉛直方向に移動させるシリンダー22と、スリーブ16に入れた金属ガラス合金Xを加熱して溶湯にするためのスリーブヒータ24と、金型14の温度を150℃〜250℃の範囲内に保つための金型ヒータ26とを備えており、キャビティ12が、水平方向に延びるとともに、スリーブ16の中心線に対して対称となる形状であることを特徴とする。   As shown in FIG. 1, a casting apparatus 10 capable of casting a molten metal glass alloy X in a laminar flow state includes a mold 14 having a cavity 12 into which molten metal is injected, and a central lower portion of the cavity 12. A cylindrical sleeve 16 extending vertically downward, a plunger tip 18 sliding inside the sleeve 16, an injection rod 20 having one end attached to the lower surface of the plunger tip 18, and an injection rod 20 by hydraulic pressure In order to keep the temperature of the mold 14 within the range of 150 ° C. to 250 ° C., the cylinder 22 for moving the metal glass alloy X in the vertical direction, the sleeve heater 24 for heating the metallic glass alloy X contained in the sleeve 16 to a molten metal The cavity 12 extends in the horizontal direction and is symmetrical with respect to the center line of the sleeve 16. It is characterized in.

そして、スリーブ16の中に入れた金属ガラス合金Xがスリーブヒータ24からの熱により溶解されるとともに、シリンダー22により射出用ロッド20が鉛直上向きに移動されることにより、プランジャーチップ18も鉛直上向きに移動されて、溶解された金属ガラス合金Xがキャビティ12内に射出される。   The metallic glass alloy X placed in the sleeve 16 is melted by the heat from the sleeve heater 24, and the plunger rod 18 is also moved vertically upward by the cylinder 22 being moved vertically upward by the cylinder 22. The molten glass alloy X is injected into the cavity 12.

このとき、プランジャーチップ18が0.1m毎秒ないし2m毎秒の速度でスリーブ16の内部を鉛直上向きに移動するようにシリンダー22に送る圧油の量を調節することにより、スリーブ16内で溶解された金属ガラス合金Xにおける乱流の発生を抑制し、溶湯の層流状態を維持しながら、溶湯を射出することができる。また、キャビティ12の形状が水平方向に延びる形状であることにより、キャビティ12の内部に射出された溶湯の流れを均一にすることができる。さらに、金型ヒータ26により金型14の温度を保持することにより、キャビティ12に満たされる前に溶湯の温度が低下して、溶湯が固まることを防ぐことができるので、溶湯の流れを均一にすることができる。   At this time, the plunger tip 18 is dissolved in the sleeve 16 by adjusting the amount of pressure oil sent to the cylinder 22 so that the plunger tip 18 moves vertically upward in the sleeve 16 at a speed of 0.1 m / sec to 2 m / sec. The molten metal can be injected while suppressing the occurrence of turbulent flow in the metallic glass alloy X and maintaining the laminar flow state of the molten metal. Moreover, since the shape of the cavity 12 is a shape extending in the horizontal direction, the flow of the molten metal injected into the cavity 12 can be made uniform. Furthermore, by holding the temperature of the mold 14 with the mold heater 26, it is possible to prevent the molten metal from lowering before the cavity 12 is filled and solidifying the molten metal, so that the molten metal flow is made uniform. can do.

なお、層流状態で鋳造加工をすることができるのであれば、鋳造装置10を用いた鋳造加工に限定されることはなく、溶湯鍛造、傾倒鋳造、および重力鋳造など他の方法を用いても良い。   In addition, as long as casting can be performed in a laminar flow state, the present invention is not limited to casting using the casting apparatus 10, and other methods such as molten metal forging, tilt casting, and gravity casting may be used. good.

さらに、層流状態で鋳造加工をすることにより製造された金属ガラス合金は、過冷却液体温度域における高温塑性加工を行っても再び酸化物、水素化物、窒化物、および炭化物によりクラスター化する確率が低い。そのため、該金属ガラスの鋳造加工と同時、あるいは鋳造加工に引き続いて高温塑性加工を組み合わせることによって得られた金属ガラス合金製品は、過冷却温度域が広く、広い温度範囲で高温塑性加工をすることができるといった特徴を有する。   Furthermore, the probability that a metallic glass alloy produced by casting in a laminar flow state will be clustered again by oxides, hydrides, nitrides and carbides even after high temperature plastic working in the supercooled liquid temperature range. Is low. Therefore, metallic glass alloy products obtained by combining high-temperature plastic processing simultaneously with casting processing of the metallic glass or subsequent to the casting processing have a wide supercooling temperature range and high-temperature plastic processing over a wide temperature range. It has a feature that it can

本発明において不可避不純物の含有率の上限を規定した理由を構成する実験結果について説明する。   The experimental results constituting the reason for defining the upper limit of the content of inevitable impurities in the present invention will be described.

実験に供する金属ガラス合金を得るために、ジルコニウム、銅、アルミニウム、およびニッケルの含有率を前述した範囲に調整し、結晶化促進原子の含有率を変化させた多数種類の原料を溶製して金属ガラス合金を得た。   In order to obtain a metallic glass alloy to be used for the experiment, the content of zirconium, copper, aluminum, and nickel was adjusted to the above-mentioned range, and a large number of raw materials with varying contents of crystallization promoting atoms were melted. A metallic glass alloy was obtained.

表1に、結晶化促進原子の含有率をそれぞれ変化させた金属ガラス合金における非晶質比率を判定した結果を示す。   Table 1 shows the result of determining the amorphous ratio in the metallic glass alloys in which the content of crystallization promoting atoms was changed.

Figure 0004850526
Figure 0004850526

表1において、「○」は金属ガラス合金における非晶質比率が非常に大きいと判定される場合を示し、「△」は金属ガラス合金における非晶質比率が大きいと判定される場合を示している。そして、「×」は金属ガラス合金における非晶質比率が小さいと判定される場合を示している。   In Table 1, “◯” indicates a case where the amorphous ratio in the metal glass alloy is determined to be very large, and “Δ” indicates a case where the amorphous ratio in the metal glass alloy is determined to be large. Yes. And "x" has shown the case where it determines with the amorphous ratio in a metallic glass alloy being small.

表1に示すとおり、金属ガラス合金における酸素の含有率が2,000ppmの場合、水素の含有率が150ppmの場合、窒素の含有率が500ppmの場合、炭素の含有率が500ppmの場合、および鉄(Fe)の含有率が500ppmの場合において、金属ガラス合金における非晶質比率が大きいと判断される結果を得た。そして、酸素の含有率が1,000ppm以下、水素の含有率が100ppm以下、窒素の含有率が400ppm以下、炭素の含有率が400ppm以下、および鉄(Fe)の含有率が400ppm以下の範囲に規制することで、金属ガラス合金における非晶質比率が非常に大きいと判定される結果を得ることができた。   As shown in Table 1, when the oxygen content in the metallic glass alloy is 2,000 ppm, the hydrogen content is 150 ppm, the nitrogen content is 500 ppm, the carbon content is 500 ppm, and iron When the content rate of (Fe) was 500 ppm, the result that it was judged that the amorphous ratio in a metallic glass alloy was large was obtained. The oxygen content is 1,000 ppm or less, the hydrogen content is 100 ppm or less, the nitrogen content is 400 ppm or less, the carbon content is 400 ppm or less, and the iron (Fe) content is 400 ppm or less. By regulating, it was possible to obtain a result that the amorphous ratio in the metal glass alloy was determined to be very large.

金属ガラス合金における非晶質比率の判定は、金属ガラス合金のX線回折法(XRD法;X−Ray Diffractometer法)による測定結果に基づいて行った。この判定について具体的に説明するため、X線回折試験結果の例を図2に示す。図2に示された3種類の測定結果線(1)ないし(3)は、下から、「○」と判断される金属、「△」と判断される金属、および「×」と評価される場合の例を示している。   Determination of the amorphous ratio in the metal glass alloy was performed based on the measurement result of the metal glass alloy by the X-ray diffraction method (XRD method; X-Ray Diffractometer method). In order to specifically explain this determination, an example of an X-ray diffraction test result is shown in FIG. The three types of measurement result lines (1) to (3) shown in FIG. 2 are evaluated from the bottom as a metal judged as “◯”, a metal judged as “Δ”, and “x”. An example of the case is shown.

金属ガラス合金に結晶が存在すれば図2中の(ア)ないし(ウ)のような測定結果線にピークが生じる。そして、このピークの高さを基に合金中の結晶質比率を評価することができる。すなわち、ピークの高さが高いほど、金属ガラス合金に存在する結晶質比率が大きく、非晶質比率が小さいと評価することができる。以上より、測定結果線(3)における(ア)が最も高いピークであることから、測定結果線(3)に係る金属ガラス合金は、非晶質比率が小さいと評価することができる。   If a crystal exists in the metal glass alloy, a peak is generated in the measurement result line such as (a) to (c) in FIG. And the crystalline ratio in an alloy can be evaluated based on the height of this peak. That is, it can be evaluated that the higher the peak height, the larger the crystalline ratio present in the metal glass alloy and the smaller the amorphous ratio. From the above, since (a) in the measurement result line (3) is the highest peak, the metal glass alloy according to the measurement result line (3) can be evaluated as having a small amorphous ratio.

金属ガラス合金の溶湯を層流状態で鋳造することのできる鋳造装置を示す図である。It is a figure which shows the casting apparatus which can cast the molten metal of a metal glass alloy in a laminar flow state. X線回折法による測定結果の例を示したグラフである。It is the graph which showed the example of the measurement result by a X ray diffraction method.

符号の説明Explanation of symbols

10…鋳造装置
12…キャビティ
14…金型
16…スリーブ
18…プランジャーチップ
20…射出用ロッド
22…シリンダー
24…スリーブヒータ
26…金型ヒータ
DESCRIPTION OF SYMBOLS 10 ... Casting apparatus 12 ... Cavity 14 ... Mold 16 ... Sleeve 18 ... Plunger tip 20 ... Injection rod 22 ... Cylinder 24 ... Sleeve heater 26 ... Mold heater

Claims (4)

質量割合で、66%以上68%以下のジルコニウム(Zr)、24.5%以上26.5%以下の銅(Cu)、2.6%以上4.6%以下のアルミニウム(Al)、および2.9%以上4.9%以下のニッケル(Ni)主要成分金属及び不可避的不純物からなる原料を用いる金属ガラス合金の製造方法であって、
前記不可避的不純物は、10ppmを超え2,000ppm未満の酸素(O)、1ppmを超え150ppm未満の水素(H)、10ppmを超え500ppm未満の窒素(N)、10ppmを超え500ppm未満の炭素(C)、および1ppmを超え500ppm未満の鉄(Fe)のいずれか1種以上であることを特徴とする金属ガラス合金の製造方法。
66% or more and 68% or less of zirconium (Zr), 24.5% or more and 26.5% or less of copper (Cu), 2.6% or more and 4.6% or less of aluminum (Al), and 2 by mass A method for producing a metallic glass alloy using a raw material comprising a main component metal of nickel (Ni) of 9.9% to 4.9% and unavoidable impurities,
The inevitable impurities include oxygen exceeding 10 ppm and less than 2,000 ppm (O), hydrogen exceeding 1 ppm and less than 150 ppm (H), nitrogen exceeding 10 ppm and less than 500 ppm (N), carbon exceeding 10 ppm and less than 500 ppm (C ), and manufacturing method of the metallic glass alloy, characterized in that 1ppm either one or more than 500ppm less than iron (Fe).
質量割合で、66%以上68%以下のジルコニウム(Zr)、24.5%以上26.5%以下の銅(Cu)、2.6%以上4.6%以下のアルミニウム(Al)、および2.9%以上4.9%以下のニッケル(Ni)主要成分金属及び不可避的不純物からなる原料を用いる金属ガラス合金の製造方法であって、
前記不可避的不純物は、10ppmを超え1,000ppm以下の酸素(O)、1ppmを超え100ppm以下の水素(H)、10ppmを超え400ppm以下の窒素(N)、10ppmを超え400ppm以下の炭素(C)、および1ppmを超え400ppm以下の鉄(Fe)のいずれか1種以上であることを特徴とする金属ガラス合金の製造方法。
66% or more and 68% or less of zirconium (Zr), 24.5% or more and 26.5% or less of copper (Cu), 2.6% or more and 4.6% or less of aluminum (Al), and 2 by mass A method for producing a metallic glass alloy using a raw material comprising a main component metal of nickel (Ni) of 9.9% to 4.9% and unavoidable impurities,
The inevitable impurities include oxygen (O) exceeding 10 ppm and 1,000 ppm or less, hydrogen (H) exceeding 1 ppm and 100 ppm or less, nitrogen (N) exceeding 10 ppm and nitrogen (N) exceeding 10 ppm, carbon (C) exceeding 10 ppm and 400 ppm or less. ), and manufacturing method of the metallic glass alloy, characterized in that 1ppm either one or more than 400ppm or less iron (Fe).
前記製造方法は、前記原料を溶解することによって溶湯とし、前記溶湯を層流状態で鋳型に注入して鋳造することを特徴とする請求項1および2のいずれかに記載の金属ガラス合金の製造方法。   The said manufacturing method makes a molten metal by melt | dissolving the said raw material, and inject | pours and casts the said molten metal to a casting_mold | template in a laminar flow state, The manufacturing of the metallic glass alloy in any one of Claim 1 and 2 characterized by the above-mentioned. Method. 請求項1および2のいずれかに記載の前記原料を溶解して溶湯とし、
当該溶湯を層流状態で鋳型に注入して鋳造するのと同時に高温塑性加工し、
または、当該溶湯を層流状態で鋳型に注入して鋳造した後に高温塑性加工する金属ガラス合金製品の製造方法。
A molten metal by dissolving the raw material of any of claims 1 and 2,
The molten metal is poured into a mold in a laminar state and cast at the same time as high-temperature plastic processing,
Or the manufacturing method of the metal glass alloy product which inject | pours the said molten metal into a casting_mold | template in a laminar flow state, casts, and then performs high temperature plastic processing.
JP2006024751A 2006-02-01 2006-02-01 Method for producing metal glass alloy and method for producing metal glass alloy product Expired - Fee Related JP4850526B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006024751A JP4850526B2 (en) 2006-02-01 2006-02-01 Method for producing metal glass alloy and method for producing metal glass alloy product

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006024751A JP4850526B2 (en) 2006-02-01 2006-02-01 Method for producing metal glass alloy and method for producing metal glass alloy product

Publications (2)

Publication Number Publication Date
JP2007204812A JP2007204812A (en) 2007-08-16
JP4850526B2 true JP4850526B2 (en) 2012-01-11

Family

ID=38484530

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006024751A Expired - Fee Related JP4850526B2 (en) 2006-02-01 2006-02-01 Method for producing metal glass alloy and method for producing metal glass alloy product

Country Status (1)

Country Link
JP (1) JP4850526B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8418366B2 (en) * 2007-11-27 2013-04-16 Namiki Seimitsu Houseki Kabushiki Kaisha Internal gear manufacturing method and metallic glass internal gear manufactured thereby
CN101941065B (en) * 2010-09-14 2012-11-07 南昌大学 Method forming endogenic crystal plasticized block amorphous base composite material
CN102031463B (en) * 2010-12-21 2012-06-06 哈尔滨工业大学 Method for preparing zirconium-base amorphous alloy with plasticity at room temperature
CN102162076B (en) * 2011-03-22 2013-01-23 南京理工大学 Method for improving plasticity of bulk metal glass and structural component thereof
KR101501068B1 (en) * 2013-06-07 2015-03-17 한국생산기술연구원 Zr-based amorphous alloy composition
CN104498845B (en) * 2014-11-24 2017-01-25 中国科学院金属研究所 Zirconium-based amorphous alloy and preparation method thereof
CN105817597A (en) * 2015-07-30 2016-08-03 维沃移动通信有限公司 Mobile terminal middle frame and preparation method thereof

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5063990A (en) * 1990-06-22 1991-11-12 Armco Inc. Method and apparatus for improved melt flow during continuous strip casting
JP2000119826A (en) * 1998-08-11 2000-04-25 Alps Electric Co Ltd Injection molded body of amorphous soft magnetic alloy, magnetic parts, manufacture of injection molded body of amorphous soft magnetic alloy, and metal mold for injection molded body of amorphous soft magnetic alloy
JP4515548B2 (en) * 1999-02-15 2010-08-04 株式会社東芝 Bulk amorphous alloy and high strength member using the same
JP2001108866A (en) * 1999-10-05 2001-04-20 Ykk Corp Ferrule integrated with metallic pipe and its manufacturing method
JP4557368B2 (en) * 2000-05-09 2010-10-06 株式会社東芝 Bulk amorphous alloy and high strength member using the same

Also Published As

Publication number Publication date
JP2007204812A (en) 2007-08-16

Similar Documents

Publication Publication Date Title
JP4850526B2 (en) Method for producing metal glass alloy and method for producing metal glass alloy product
TWI607093B (en) Metal alloy composite material and method for making the same
JP4382152B1 (en) Method for producing semi-solid slurry of iron alloy, method for producing cast iron casting using the method for producing semi-solid slurry, and cast iron casting
TW200416291A (en) Tantalum modified amorphous alloy
WO2014079188A1 (en) Zirconium-based amorphous alloy
CN103958709B (en) Block metal glass forms alloy
US11655529B2 (en) Zr-based amorphous alloy and manufacturing method thereof
JP2004353053A (en) Titanium based amorphous alloy
JP2020531683A (en) Copper-based alloys for the production of bulk metallic glasses
JP4510541B2 (en) Aluminum alloy casting molding method
JP2004034135A (en) Aluminum alloy with superior formability in semi-molten state and manufacturing method of its cast ingot
JP3778763B2 (en) Mg-based amorphous alloy
JP4320278B2 (en) Ti-based metallic glass
KR101910868B1 (en) Zinc-Aluminium alloy having directional grain and method for fabricating the same
JP5035508B2 (en) Solidified aluminum alloy and method for producing the same
JP2016000409A (en) Maraging steel manufacturing method
JP4557368B2 (en) Bulk amorphous alloy and high strength member using the same
JP4618569B2 (en) Cu-based metallic glass alloy
JP5392703B2 (en) Cu-based metallic glass alloy
CN115786793B (en) Light medium-entropy alloy with excellent mechanical properties and preparation method thereof
KR101179073B1 (en) Hafnium-copper based amorphous alloy and method for manufacturing the same
JP4296158B2 (en) Method for producing Mg alloy
JP5638887B2 (en) Method for producing copper alloy material and copper alloy part
JPH05115954A (en) Production of aluminum alloy
JP5173283B2 (en) Nickel-based alloy and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090128

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110222

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110824

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110915

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111019

R150 Certificate of patent or registration of utility model

Ref document number: 4850526

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141028

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees